POPULARITY
Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 06/07
Die vorliegende Arbeit untersuchte die Rolle der Perizyten bei steriler Inflammation. Bisher war in diesem Zusammenhang der Einfluss der Perizyten nicht bekannt, ebenso wenig ob und wie sie zu Entzündungsreaktionen beitragen. Weiterhin war der Einfluss der Perizyten auf die interstitielle Migration myeloider Zellen in vivo unerforscht. Hier konnte gezeigt werden, dass Perizyten durch eine Vielzahl von Rezeptoren wie TLR2, TLR4, TNFR1, FPR2 in der Lage sind inflammatorische Reize zu detektieren und daraufhin einen proinflammatorischen Phänotyp annehmen. Dieser ist durch die vermehrte Expression von NLRP3 sowie des Adhäsionsmoleküls ICAM-1 und die Sekretion von Chemokinen wie CXCL1, IL8 und CCL2 gekennzeichnet. Weiterhin wird das Chemokin-ähnliche Molekül MIF von aktivierten Perizyten sowohl sezerniert als auch an der Oberfläche präsentiert. Die ausgeschütteten Chemokine beeinflussen wiederum Monozyten und neutrophile Granulozyten durch ihre chemotaktische Wirkung. Auch konnte ein anti-apoptotischer sowie aktivierender Effekt der Perizyten auf neutrophile Granulozyten gezeigt werden, was die Überlebensdauer dieser Zellen im interstitiellen Gewebe signifikant verlängert. Anhand eines Mausmodells und der 2-Photonen Mikroskopie wurde gezeigt, dass Perizyten auch in vivo einen entscheidenden Beitrag zur Rekrutierung neutrophiler Granulozyten und Monozyten zur Inflammation leisten. Zum ersten Mal wurde die Interaktion myeloider Zellen mit Perizyten in vivo visualisiert und genauer charakterisiert. Diese Interaktion beeinflusst die interstitielle Migration neutrophiler Granulozyten und Monozyten abhängig davon, ob ein Stimulus für gerichtete oder ungerichtete Migration vorliegt. Es wurde deutlich, dass Perizyten sowohl einen chemotaktischen als auch einen haptotaktischen Reiz auf myeloide Leukozyten ausüben, was an einer Polarisierung der Zellen zu erkennen ist. Ebenso tragen sie durch die Interaktion zur Aktivierung der myeloiden Zellen in vivo bei. Diese Arbeit leistet demnach einen Beitrag zur genaueren Definition der Rolle von Perizyten bei steriler Inflammation. Hierfür wurden die zellulären und molekularen Mechanismen in vitro und die in vivo ablaufenden Prozesse bei der interstitiellen Migration myeloider Zellen genauer charakterisiert. Dabei konnten Perizyten als neuer Zelltyp identifiziert werden, der Gewebeschäden detektiert und aktiv zur akuten Entzündungsreaktion beiträgt indem er die Rekrutierung und Funktionalität myeloider Leukozyten unterstützt.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19
Die direkte Rekrutierung von Effektor-Leukozyten aus dem peripheren Blut in interstitielle Gewebe wird in Teilen von chemotaktischen Zytokinen (Chemokinen) und ihren Rezeptoren kontrolliert. Diesen Schritt zu blockieren stellt ein wichtiges Instrument der Kontrolle einer Entzündungsreaktion dar. Das proinflammatorische Chemokin CCL5/RANTES ist ein chemotaktisches Agens das über die CCR1-, CCR3- und CCR5-Rezeptoren von „Gedächtnis“-CD4+ T-Zellen, Monozyten und Eosinophile wirkt. Es wird von vielen Gewebetypen im Laufe einer Entzündungsreaktion produziert. Die CCR1- und CCR5-Aktivierung konnte als wichtiger Faktor für die Entstehung von akuten Abstoßungsreaktionen mittels in-vitro und in-vivo Experimenten identifiziert werden. Durch metRANTES, dem um ein Methionin verlängerten CCL5-Protein welches einen potenten CCR1 und CCR5 Rezeptor-Antagonisten darstellt, konnte eine Abstoßungsreaktion effektiv reduziert und in Kombination mit anderen Substanzen fast völlig unterdrückt werden. Weitere Modifizierungen am metRANTES-Protein verändern die für CCL5 charakteristische Multimerisierung und seine GAG-Bindungskapazität. Das „protein engineering“ genannte Verbinden eines Proteins mit einem GPI-Anker bietet die Möglichkeit, durch Reintegration in die Oberflächenmembranen unterschiedlicher Gewebe, Proteine an definierte Lokalisationen zu bringen. Dort können sie, dank der Fähigkeit, sich in die Membranen anderer Zellen wieder einzufügen und die ursprüngliche Funktion wieder anzunehmen (Premkumar, Fukuoka et al. 2001; Djafarzadeh, Mojaat et al. 2004), längere Zeit als soluble Chemokine verbleiben. In dieser Arbeit wurden unterschiedliche CCL5-Analoga, sowie ein virales Chemokin-Analogon, um eine GPI-kodierende Sequenz erweitert und in einen Expressionsvektor subkloniert. Mittels Transformation wurden sie in Chinese Hamster Ovarial-Zellen (CHO-Zellen) exprimiert. Ihre Expression an der Zelloberfläche konnte dank der FACS-Analyse ermittelt werden und in einem gleichen Schritt wurde die Fähigkeit verschiedener anti-RANTES Antikörper, an die N-terminal veränderten Proteine zu binden, analysiert. Diese membranverankerten Proteine wurden in höchstmöglicher Konzentration aus der Einheitsmembran extrahiert und in einem weiteren Schritt durch unterschiedliche Chromatographieverfahren isoliert. Dabei wurde die Heparin-Chromatographie gefolgt von einer Size-exclusion Chromatographie als Methode mit der besten Reinheit und Ausbeute identifiziert. Zuletzt wurden die gereinigten, GPI-verbundenen CCL5-Analoga mit „einfachen“ CHO-Zellen, sowie humanen mikrovaskulären Endothelzellen inkubiert und ihre Reintegration an der Zelloberfläche bewiesen. Die in dieser Arbeit hergestellten GPI-gebundenen RANTES-Antagonisten eröffnen die Möglichkeit, in weiteren in-vitro, sowie in-vivo Versuchen, die biologische Aktivität dieses Chemokins gezielt zu blockieren oder (in einem analogen Verfahren) zu verstärken. Dadurch kann die Bedeutung des RANTES-Proteins in der Transplantatabstoßung, sowie in weiteren Entzündungsreaktionen herausgearbeitet werden. Durch Perfusion des Organs vor der Transplantation mit dem GPI-verbudenen Chemokin-basierenden Antagonisten, erhofft man sich die Integration des GPI-Ankers in die mikrovaskuläre Endothelialzellmembran und somit die Präsentation des Antagonisten für die zirkulierenden Leukozyten. Ein solches Vorgehen könnte dem Gefäßsystem während der kritischen ersten Tage nach der Transplantation Schutz bieten und somit signifikant die akute vaskuläre Verletzung, die mit einer Verschlechterung der Überlebensprognose verbunden ist, vermindern (Notohamiprodjo, Djafarzadeh et al. 2005).
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Das Glioblastoma multiforme ist ein maligner hirneigener Tumor mit einer bislang infausten Prognose. Humane mesenchymale Progenitorzellen des Knochenmarks (hMSC) zeigen in-vitro und in-vivo einen ausgeprägten glioblastom¬induzierten Tropismus. Sie sind einfach in der Handhabung, weil sie leicht zu gewinnen, in Kultur zu vervielfältigen und anschließend autolog zu transplantieren sind. Diese Eigenschaften machen hMSC zu vielversprechenden Kandidaten für eine zellbasierte Gentherapie des Glioblastoms. Die molekularen Mechanismen, welche zu der gerichteten Migration der hMSC hin zu den Glioblastomzellen führen und die biologischen Wechselwirkungen zwischen Stammzellen und Tumorzellen sind bisher kaum verstanden. Um erste Einblicke in diese Wechselwirkungen zu erlangen, wurden im Rahmen des vorliegenden Promotionsvorhabens in-vitro Untersuchungen zu den Grundlagen des glioblastominduzierten Tropismus von hMSC durchgeführt. Die Fragestellung befasste sich insbesondere damit, welche Chemokine an der Vermittlung der glioblastomgerichteten Migration von hMSC beteiligt sind. Hierzu wurden Migrationsversuche mit einer modifizierten Boyden Kammer durchgeführt, wobei zunächst einige bekannte glioblastomassoziierte Chemokin-kandidaten (IL-8, NT-3, TGF-ß1, EGF, CNTF, GDNF, PDGF und BDNF) getestet wurden. Eine signifikante chemotaktische Eigenschaft auf hMSC wurde hierbei für IL-8, TGF-ß1 und NT-3 beobachtet. Die promigratorische Wirkung dieser drei Chemokine erwies sich hierbei als konzentrationsabhängig. Im Weiteren wurde nachgewiesen, dass die bekannte chemotaktische Wirkung von glioblastom-konditioniertem Medium auf hMSC durch die Zugabe von IL-8, TGF-ß, beziehungs¬weise NT-3 neutralisierenden Antikörpern signifikant reduziert wird. Somit konnte funktionell nachgewiesen werden, dass diese Chemokine tatsächlich eine Rolle beim glioblastominduziertem Tropismus der hMSC spielen. Ergänzend wurde mittels Immunfluoreszenzfärbung die Expression der entsprechenden Chemokin¬rezeptoren auf den hMSC nachgewiesen und die Sekretion der Chemokine durch die Glioblastomzellen mittels ELISA quantifiziert. Aus Vorarbeiten unserer Arbeitsgruppe ist bekannt, dass auch VEGF-A eine chemotaktische Wirkung auf hMSC besitzt. Wie VEGF-A werden auch IL-8, TGF-ß1 und NT-3 von Glioblastomen überexprimiert. Zudem wird über diese Chemokine die Neoangiogenese jener Tumore vermittelt. Dies führt zu der Hypo-these, dass Glioblastome die Migration der hMSC aus dem peripheren Blut in das Tumorgebiet über angiogenetische Signalwege vermitteln. Damit könnten hMSC an dem Prozess der Angiogenese des Glioblastoms beteiligt sein. Ein genaues Verständnis des möglichen Beitrages von hMSC zum Glioblastomwachstum ist eine unabdingbare Voraussetzung für ihre mögliche klinische Anwendung als gentherapeutische Vektoren beim Menschen. Deshalb müssen zukünftig neben weiteren in-vitro vor allem in-vivo Studien mit Langzeit-beobachtungen im Tiermodell durchgeführt werden. In diesen Studien sollten die Auswirkungen einer Transplantation nativer hMSC einerseits und genetisch modifizierter therapeutischer hMSC andererseits auf das Glioblastomwachstum untersucht werden. Die vielversprechenden Ergebnisse der bisher vorliegenden Arbeiten lassen hoffen, dass in nicht allzu ferner Zukunft eine bessere Therapie für Patienten mit Glioblastom gefunden werden kann.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Die Eigenschaft von Leukozyten, das Gefäßsystem zu verlassen und in das umliegende Gewebe auszuwandern, ist von essentieller Bedeutung für die Bekämpfung von Infektionen und darüber hinaus entscheidend für die Pathogenese des I/R-Schadens. Die Extravasation von Leukozyten stellt dabei einen kaskadenartig verlaufenden Prozess dar, welcher sich in die Schritte Rolling, Adhärenz, transendotheliale und interstitielle Migration gliedern lässt. Ein geeignetes Versuchsmodell, welches am M. cremaster der Maus in vivo alle Schritte des leukozytären Rekrutierungsprozesses während I/R zu analysieren erlaubt, liegt bisher nicht vor. Während die frühen Schritte des leukozytären Extravasationsprozesses weitgehend aufgeklärt sind, sind die Schritte der transendothelialen und interstitiellen Migration von Leukozyten unzureichend verstanden. In vitro Untersuchungen zeigen, dass das Molekül JAM-A in die Transmigration von Leukozyten involviert ist, jüngste in vivo Studien zeigen jedoch kontroverse Ergebnisse. Ferner gibt es zunehmend Hinweise darauf, dass die Chemokinrezeptoren Ccr1, Ccr2 und Ccr5 an der Extravasation von Leukozyten beteiligt sind. Welche Bedeutung diese Chemokinrezeptoren für die einzelnen Schritte des leukozytären Rekrutierungsprozesses bei Entzündung und I/R besitzen, ist bislang unklar. Die Ziele der vorliegenden Arbeit waren daher i) ein geeignetes Modell zur Untersuchung aller Schritte des leukozytären Rekrutierungsprozesses bei I/R am M. cremaster der Maus zu entwickeln, ii) die Bedeutung des Adhäsionsmoleküls JAM-A für die Transmigration von Leukozyten zu untersuchen und iii) die Rolle der Chemokinrezeptoren Ccr1, Ccr2 und Ccr5 für die einzelnen Schritte des leukozytären Rekrutierungsprozesses bei Entzündung und I/R zu analysieren. In unterschiedlichen Versuchsansätzen wurde mit Hilfe der RLOT-Intravitalmikroskopie am M. cremaster anästhesierter Mäuse die leukozytären Migrationsparameter untersucht. Zur Bestimmung des Phänotyps transmigrierter Leukozyten wurden immunhistochemische Färbungen von Paraffinschnitten durchgeführt. In einer ersten Versuchsreihe wurden die einzelnen Schritte des leukozytären Extravasations-prozesses systematisch in Abhängigkeit von Ischämiedauer und Reperfusionszeit untersucht. Die Ergebnisse zeigen, dass es bereits nach 30 min Ischämie und 120 min Reperfusion gegenüber schein-operierten Kontrolltieren zu einem starken Anstieg von Leukozyten-adhärenz und -transmigration kommt. Eine Verlängerung der Ischämiezeit auf 60 bzw. 90 min konnte keine Steigerung der Effekte erzielen. Diese Befunde waren der Ausgangspunkt für weitergehende Untersuchungen, welche die Mechanismen des leukozytären Rekrutierungs-prozesses näher charakterisieren sollen. In diesem Zusammenhang wurde in einer zweiten Versuchsreihe unter Verwendung von JAM-A-defizienten Mäusen die Bedeutung des Adhäsionsmoleküls JAM-A für die Leukozytenrekrutierung systematisch unter verschiedenen inflammatorischen Bedingungen analysiert. Unsere Daten belegen, dass die transendotheliale Migration von neutrophilen Granulozyten und Monozyten einer Stimulus-spezifischen Regulation durch JAM-A unterliegt. Ferner lassen die Ergebnisse unserer Untersuchungen in eJAM-A-defizienten Tieren darauf schließen, dass endotheliales JAM-A die Transmigration von neutrophilen Granulozyten und Monozyten zwar in der Initialphase entzündlicher Prozesse vermittelt, zu späteren Zeitpunkten jedoch keine Bedeutung mehr zu besitzen scheint. Schließlich deuten unsere Befunde darauf hin, dass leukozytäres JAM-A an den der interstitiellen Leukozytenmigration zugrunde liegenden Mechanismen beteiligt ist. In einer letzten Versuchsreihe wurde die Rolle der Chemokinrezeptoren Ccr1, Ccr2 und Ccr5 für die Rekrutierung von Leukozyten bei Chemokin-induzierter Entzündung und I/R untersucht. Es konnte gezeigt werden, dass diese Chemokinrezeptoren die Extravasation von neutrophilen Granulozyten und Monozyten bei Chemokin-induzierter Entzündung durch Effekte auf Adhärenz und (konsekutive) transendotheliale Migration mediieren und keinen Einfluss auf das interstitielle Migrationsverhalten transmigrierter Leukozyten besitzen. Des Weiteren ist es mittels durchflusszytometrischer Analyse gelungen, die Expression von Ccr2 und Ccr5 auf nativen neutrophilen Granulozyten nachzuweisen. Darüber hinaus konnte erstmals gezeigt werden, dass die Chemokinrezeptoren Ccr1, Ccr2 und Ccr5 zur Rekrutierung von neutrophilen Granulozyten und Monozyten in das postischämische Gewebe durch dynamische bzw. differentielle Regulation von Adhärenz und (konsekutiver) Transmigration beitragen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 07/19
Thu, 20 Dec 2007 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/7867/ https://edoc.ub.uni-muenchen.de/7867/1/Olszak_Torsten_M.pdf Olszak, Torsten Michael