Podcasts about relaxationsdynamik

  • 4PODCASTS
  • 4EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Dec 12, 2014LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about relaxationsdynamik

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05

Die grundlegenden Funktionsprinzipien der Natur zu verstehen, ist seit jeher Antrieb der Naturwissenschaften. Verhalten und Eigenschaften von Festkörpern werden dabei häufig von dynamischen Prozessen auf atomarer Skala (< 10^-10 m) bestimmt, welche typischerweise auf Zeitskalen im Bereich von zehn Femtosekunden (10^-15 s) bis hin zu vielen Picosekunden (10^-12 s) ablaufen. Zeitaufgelöste Elektronenbeugung an kristallinen Festkörpern ermöglicht die direkte Beobachtung solcher Prozesse in Raum und Zeit. Die bislang mit diesem Verfahren erreichte Zeitauflösung von etwa 100 fs eignet sich jedoch nicht zur Beobachtung der schnellsten Prozesse in Festkörpern. Auch die, zur zuverlässigen Auflösung von großen Elementarzellen molekularer Kristalle erforderliche, transversale Kohärenz ist unzureichend. Eine wesentliche Ursache für diese beiden Probleme liegt in der gegenseitigen Coulomb-Abstoßung der Elektronen innerhalb eines Pulses und den daraus resultierenden Veränderungen der Geschwindigkeitsverteilungen in radialer und longitudinaler Richtung. Während erstere zu verringerter transversaler Kohärenz führt, hat letztere längere Elektronenpulsdauern und damit eine begrenzte Zeitauflösung zur Folge. In dieser Arbeit wird ein Messaufbau zur zeitaufgelösten Elektronenbeugung vorgestellt, welcher auf der Erzeugung von nur einem Elektron pro Puls basiert. Aufgrund der Vermeidung von Coulomb-Abstoßung innerhalb der Pulse ist dieser Ansatz eine vielversprechende Basis zur konzeptionell nahezu unbegrenzten Verbesserung der Zeitauflösung. Eine hier eigens entwickelte, thermisch stabilisierte Elektronenquelle garantiert einen hohen Grad an Kohärenz bei gleichzeitig hervorragender Langzeitstabilität der Photoelektronenausbeute. Insbesondere letzteres ist für zeitaufgelöste Beugungsexperimente mit Einzeleelektronen aufgrund der längeren Integrationszeit unerlässlich, konnte jedoch durch vorhergehende Quellen nicht erreicht werden. Darüber hinaus werden in dieser Arbeit die besonderen Ansprüche der Einzelelektronenbeugung an die zu untersuchenden Materialien diskutiert und Strategien zur Vermeidung von Schäden an der Probe durch akkumulierte Anregungsenergie entwickelt. Diese erfordern neue Schwerpunkte bei der Probenpräparation, welche entwickelt und diskutiert werden. Die Beobachtung der komplexen Relaxationsdynamik in Graphit-Dünnfilmen mit zeitaufgelöster Einzelelektronenbeugung demonstriert abschließend die generelle Eignung dieses Verfahrens als zuverlässige Methodik zur Untersuchung von reversibler, struktureller Dynamik in Festkörpern mit atomarer Auflösung. Nicht-relativistische Einzelelektronenpulse können mit Hilfe von zeitabhängigen Feldern bei Mikrowellenfrequenzen bis in den 10 fs-Bereich komprimiert werden, eventuell sogar bis in den Attosekundenbereich. Die hier demonstrierte langzeitstabile und hochkohärente Elektronenquelle, sowie die Methodiken zur Probenpräparation und zeitaufgelösten Beugung mit Einzelelektronenpulsen liefern die Basis für zukünftige Experimente dieser Art.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Non-equilibrium dynamics of ultracold atoms in optical lattices

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Play Episode Listen Later Jan 30, 2014


Das Gebiet der Nichtgleichgewichtsdynamik stark korrelierter Quantensysteme beinhaltet eine Vielzahl interessanter Fragestellungen, erweist sich dabei allerdings oftmals als schwer zugänglich für gängige numerische und analytische mathematische Methoden. In den letzten Jahren hat sich durch die experimentelle Realisierung gut kontrollierbarer quantenmechanischer Systeme die Möglichkeit eröffnet, Experimente als Quantensimulatoren für das Verhalten komplexer Vielteilchensysteme zu benutzen. Ultrakalte Atome in optischen Gittern eignen sich hervorragend als Simulatoren für simple Festkörpersysteme, da sich sämtliche Parameter der zugrunde liegenden Hamiltonoperatoren präzise kontrollieren lassen und der Zustand der Systeme mit einer Vielzahl an Messmethoden untersucht werden kann. In unseren Experimenten realisieren wir Bose-Hubbard Systeme durch ultrakalte 39K Atome in blau verstimmten optischen Gittern. Zusätzliche optische Dipolpotenziale und magnetische Feshbach-Resonanzen erlauben es uns dabei, die Parameter der Systeme zu jedem Zeitpunkt beliebig zu variieren. Dadurch sind die von uns erzeugten Systeme in besonderem Maße dazu geeignet, Nichtgleichgewichtseffekte zu untersuchen. Unser Hauptaugenmerk liegt auf der Untersuchung der Expansionsdynamik wechselwirkender Atome in homogenen Gittern. Wir beginnen unsere Experimente mit einem Anfangszustand im tiefen Gitter, der aus lokalisierten Atomen auf maximal einfach besetzten Gitterplätzen besteht. Durch gleichzeitiges schnelles Verringern der Gittertiefe und der externen Potenziale werden die Atome in ein homogenes Gitter entlassen und die Zeitentwicklung ihrer Dichteverteilung wird durch Absorptionsabbildungen festgehalten. Es zeigt sich, dass sowohl die Wechselwirkung zwischen den Atomen als auch die Dimensionalität der Gitter einen starken Einfluss auf die Dynamik haben. In allen integrablen Grenzfällen des Bose-Hubbard Modells verhalten sich die Atome ballistisch und expandieren mit hoher Geschwindigkeit, doch sobald sich das System außerhalb der integrablen Regime befindet verringert sich die Expansionsgeschwind-igkeit drastisch. Diese verringerte Geschwindigkeit geht einher mit der Ausbildung charakteristischer bimodaler Dichteverteilungen, die auf eine diffusive Dynamik schließen lassen. Für stark wechselwirkende Systeme können wir einen dimensionalitätsabhängigen Übergang zwischen ballistischer Dynamik im 1D hard-core-regime und diffusiver Dynamik im 2D Fall beobachten sowie eine starke Verringerung der Expansionsgeschwindigkeit, wenn der Anfangszustand des Systems mehrfach besetzte Gitterplätze enthält. Des Weiteren beobachten wir die Erzeugung solcher Mehrfachbesetzungen nach dem Entlassen der Atome, deren schnelle Entwicklung auf eine lokale Relaxationsdynamik hin zu quasistationären Werten deuten lässt. Als Letztes untersuchen wir die Entwicklung der Quasiimpulsverteilung stark wechselwirkender expandierender Atome, die laut theoretischer Vorhersagen eine vorübergehende Quasikondensation zeigen sollen, bei der sich scharfe lokale Maxima in der Quasiimpulsverteilung bei endlichen Quasiimpulsen bilden. Wir beobachten die Entstehung nicht-thermischer Quasiimpulsverteilungen die Maxima an den vor-hergesagten Positionen zeigen. Allerdings sind die von uns beobachteten Maxima wesentlich breiter als die vorhergesagten und wir diskutieren eine Reihe möglicher Erklärungen für diese Verbreiterung sowie Vorschläge zur Verbesserung zukünftiger Experimente.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Fluoreszenz-Korrelations-Spektroskopie in Polymerlösungen

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Oct 19, 2004


Die Dynamik von Makromolekülen spielt bei Transportprozessen in weicher Materie eine wichtige Rolle. Fluoreszenz-Korrelations-Spektroskopie (FCS) kann die Dynamik spezifisch fluoreszenzmarkierter Moleküle in Lösung verfolgen. Das Prinzip der Methode basiert auf der Analyse von Intensitätsfluktuationen innerhalb eines Volumens in der Größenordnung eines Femtoliters (1 fl = 1 Kubikmikrometer). In dieser Arbeit wurde mit FCS die Dynamik von DNA, Aktin und Hyaluronsäure untersucht. Die Schwerpunktsdiffusion in Lösung, die intramolekulare Kettendynamik und das Verhalten von Polymerlösungen im Scherfluss wurden studiert. Die Möglichkeit für Messungen der Dynamik an Grenzflächen wurde geschaffen. Die Autokorrelation fluoreszenzmarkierter DNA in Lösung zeigt auf verschiedenen Zeitskalen charakteristische Abfälle, die ihre Ursache in unterschiedlichen dynamischen Prozessen haben. Mit den in dieser Arbeit entwickelten Modellfunktionen für die Autokorrelation lassen sich die charakteristischen Größen der verschiedenen Prozesse durch Anpassung an die experimentellen Daten gewinnen. Bei kurzen Zeiten im Mikrosekundenbereich fällt die Korrelationsfunktion auf Grund photochemischer Prozesse der Fluoreszenzfarbstoffe exponentiell ab. Im Bereich von 10-100 Mikrosekunden zeigen die Daten einen weiteren Abfall, der stark von der Anzahl der Farbstoffe auf der Polymerkette abhängt. Die On-Off-Kinetik eines Ensembles von Fluorophoren wurde in ein Modell für die Korrelationsfunktion umgesetzt. Intensitätsfluktuationen im Bereich von 1 - 100 Millisekunden stammen von der Diffusion und den internen Relaxationsmoden der Polymerketten. Ein Modell für die Korrelationsfunktion der Schwerpunktsdiffusion für Polymerketten mit kontinuierlicher Farbstoffverteilung entlang der Kontur wurde entwickelt und mit experimentellen Daten von DNA-Fragmenten unterschiedlicher Länge (1019 bp bis 7250 bp) bestätigt. Ausgehend von den dynamischen Strukturfaktoren der Modelle von Rouse, Zimm und semiflexibler Ketten in Lösung wurden Korrelationsfunktionen für interne Relaxationen berechnet und an Messdaten mit Lambda-DNA (48502 bp) angepasst. Über den Abstand der Farbstoffe entlang der Polymerkontur werden Moden selektiert, deren Relaxationsdynamik sich in die Autokorrelationsfunktion überträgt. Bei Abständen, die viel größer als die Persistenzlänge der DNA sind, liefert das angepasste Modell die erwarteten Werte für die Zimm-Dynamik. Aktinfilamente mit Längen im Bereich von 100 Nanometern bis 50 Mikrometer wurden als Modellsysteme semiflexibler Polymere untersucht. Für Filamentlängen, die kleiner als das Beobachtungsvolumen sind, ist die Korrelationsfunktion bestimmt durch die Schwerpunktsdiffusion. Für längere Filamente dominieren die Biegemoden. Charakteristisch für diese Form der internen Relaxation ist das zeitliche Skalenverhalten mit dem Exponenten 3/4. Theoretische Korrelationsfunktionen, die in Zusammenarbeit mit Roland Winkler vom Forschungszentrum Jülich entstanden sind, zeigen eine sehr gute Übereinstimmung mit den experimentellen Daten. Erstmals wurden Korrelationsfunktionen einzelner Aktinfilamente im halbverdünnten Bereich gemessen. Die charakteristische Abfallzeit der Korrelationsfunktion als Maß für die Dynamik der Biegemoden sinkt mit steigender Aktinkonzentration. Für Aktinkonzentrationen von 0,01 mg/ml bis 1 mg/ml folgt die Abfallzeit einem Skalengesetz tau ~ c^(-0,48 +- 0,03). Neben der Diffusion wurde in dieser Arbeit die Dynamik in Strömungen untersucht. Zur Verfolgung von gerichteten Transportprozessen wurden zwei Foki mit einem lateralen Abstand von 5 Mikrometern erzeugt. Durch eine Kreuzkorrelation der beiden getrennten Intensitätssignale lässt sich die Zeit bestimmen, die die Teilchen zum Durchlaufen des Abstandes der beiden Foki benötigen. Mit dieser mikroskopischen "Lichtschranke" wurden Flussgeschwindigkeiten in einem 100 Mikrometer hohen Kanal mit mikrometergenauer Ortsauflösung gemessen. Die Scherverdünnung einer Hyaluronsäurelösung konnte anhand des Geschwindigkeitsprofils nachgewiesen und eine kritische Scherrate von 285 +- 30 s^(-1) bei einer Polymerkonzentration von 2,5 mg/ml bestimmt werden.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Konformationsdynamik lichtschaltbarer Peptide: Molekulardynamiksimulationen und datengetriebene Modellbildung

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jun 16, 2004


Die Faltung und die Funktionsdynamik von Proteinen basieren auf schnellen Prozessen, die zum Teil im Zeitbereich der Pikosekunden bis Nanosekunden ablaufen. Zur Untersuchung dieser Dynamiken und der mit ihnen verbundenen strukturellen Änderungen werden häufig Molekulardynamik (MD)-Simulationen eingesetzt, die auf empirisch parametrisierten molekularmechanischen (MM) Kraftfeldern basieren. Die vorliegenden Arbeit stellt einen Ansatz zur Validierung solcher MM-Kraftfelder vor, der darin besteht, die Relaxationsdynamik kleiner lichtschaltbarer Modellpeptide zu simulieren und die dabei auftretenden Kinetiken mit Ergebnissen der Femtosekunden-Spektroskopie zu vergleichen. Erste Simulationen dieser Art zeigen eine überraschende Übereinstimmung zwischen den simulierten und den gemessenen Kinetiken. Weitere Untersuchungen, bei denen einzelne Details des eingesetzten Kraftfelds variiert werden, lassen jedoch erkennen, dass diese Übereinstimmung auf einer zufälligen Kompensation von Fehlern beruht. Es wird gezeigt, dass die simulierten Kinetiken sehr empfindlich auf Änderungen am MM-Kraftfeld reagieren und damit als Maßstab für die Güte seiner Parametrisierung dienen können. Besonders die Modellierung des Lösungsmittels DMSO hat einen entscheidenden Einfluss auf die beobachteten Kinetiken, und zwar nicht nur auf die Kühlzeiten der Wärmedissipation, sondern auch auf die Relaxationsdynamik des Peptidteils der Modellsysteme. Als Vorarbeit für die Simulation der Modellpeptide wird ein flexibles und explizites DMSO-Modell aus ersten Prinzipien abgeleitet und dessen thermodynamische und strukturelle Eigenschaften mit denen existierender Modelle verglichen. Ferner wird das eingesetzte Kraftfeld um Parameter für den in die Modellpeptide integrierten Farbstoff Azobenzol erweitert und dessen lichtinduzierte Isomerisierungsreaktion modelliert. Darüber hinaus werden neuartige Methoden zur statistischen Auswertung von MD-Trajektorien vorgestellt, die dazu dienen, eine strukturelle Klassifikation der Peptidgeometrien zu ermöglichen. Mit Hilfe dieser Klassifikation kann ein vertiefter Einblick in die während der Relaxation der Modellpeptide auftretenden Konformationsübergänge gewonnen werden. Ferner ermöglichen es die statistischen Auswertungsverfahren, aus Langzeitsimulationen der Modellpeptide deren Gleichgewichtskonformationen zu bestimmen. Der Vergleich dieser Konformationen mit Daten der NMR"=Spektroskopie zeigt schließlich die Leistungsfähigkeit der Methode der MD-Simulation für die Vorhersage von Peptidstrukturen.