POPULARITY
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Diffusive Transportprozesse auf der Nanometerskala spielen eine entscheidende Rolle für das Verständnis von kolloidalen Systemen jeglicher Art — in Anwendungen aus der Biologie sind sie gar von lebenswichtiger Bedeutung. In dieser Dissertation untersuche ich die Diffusion von Makromolekülen in verschiedenen Umgebungen anhand von drei typischen Modellszenarien. Der zentrale Teil dieser Arbeit beschäftigt sichmit der Dynamik in Suspensionen dünner Stäbchen, wobei die Stabformeine Idealisierung anisotroper, länglicher Teilchen mikroskopischerGröße darstellt. Ein vereinfachtes Modell wird ausgearbeitet, welches das Problem auf die Bewegung eines einzelnen Stäbchens in einem zweidimensionalen Parcours von punktförmigen Hindernissen reduziert. Ich untersuche dieses Modell auf zweierlei Art: Zum einen habe ich Molekulardynamik- Simulationen entwickelt, die die Brownsche Bewegung des Stäbchens über neun Größenordnungen in der Zeit berechnen. Experimentell relevante Observablen werden dabei in statistisch exzellenter Qualität erfasst, u.a. die intermediäre Streufunktion. Zum Zweiten formuliere ich eine analytische Beschreibung dieser Dynamik auf mesoskopischer Skala, basierend auf der Smoluchowski-Perrin-Gleichung der freienDiffusion. Erstmals präsentiere ich hierzu die geschlossene Lösung dieser Gleichung in zwei Dimensionen und zeige, dass man mithilfe der Messung zweier Diffusionskoeffizienten eine quantitative mesoskopische Theorie für Systeme mit Hindernissen gewinnt. Der Vergleich der Simulationen mit der Theorie ermöglicht ein fundiertes quantitatives Verständnis der Dynamik in Suspensionen von Stäbchen, gekennzeichnet durch mehrere Zeit- und Längenskalen. Ich belege, dass die effektive Theorie bis hinab zu Längenskalen von der Größe des mittleren Teilchenabstands gültig ist und untermauere die bisher nicht verlässlich gestützten skalentheoretischen Vorhersagen von Doi und Edwards. Schließlich finde und erkläre ich ein intermediäres Potenzgesetz in den Streufunktionen. Dies interpretiere ich als ein neues generisches Charakteristikumder anisotopen Dynamik von Stäbchen in ungeordneten Suspensionen mit starker gegenseitiger räumliche Einschränkung. In Ergänzung dieses Themenkomplexes beschäftigt sich der erste Teil der vorliegenden Arbeit mit dem diffusiven Transport in heterogenen Umgebungen fraktaler Geometrie—eine Fragestellung, die für dieDynamik beispielsweise in porösenMedien und in der sehr heterogen zusammengesetzten biologischen Zelle relevant ist. Im Rahmen des Lorentz-Modells bilde ich dieses Transportproblem ab auf die Diffusion eines einzelnen, isotropen Teilchens im Leerraum zwischen zufällig angeordneten harten Kugeln. Ich präsentiere umfangreiche Computersimulationen zusammen mit einer detaillierten Skalenanalyse der kritischen Dynamik in der Nähe des Perkolationsübergangs. In unmittelbarer Nähe des kritischen Punktes beobachte ich anomale Diffusion über vier Größenordnungen in der Zeit. Diese herausragende Genauigkeit ermöglicht die Darstellung der universellen dynamischen Skalenfunktion im sehr langsam konvergierenden Übergang zum anomalen Bewegungsgesetz, unter Einbeziehung universeller Korrekturen des Potenzverhaltens. Der letzte Teil der Arbeit ist der Dynamik einzelner semiflexibler Filamente gewidmet, die z.B. im Zytoskelett der Zelle essentielle mechanische Aufgaben erfüllen. Die Bewegungsgleichung eines solchen Polymers in strömenden Flüssigkeiten drücke ich durch die Dynamik der Eigenmoden aus, unter Berücksichtigung der Zwangsbedingung longitudinaler Steifigkeit. Eine darauf aufbauende Analyse der Rotation eines Polymers in Scheerströmungen beleuchtet das charakteristische Verhalten der Modenspektren. Zusammenfassend vertiefen meine Ergebnisse fundamental das Verständnis dynamischer Prozesse bei der Diffusion von Makromolekülen, mit konkreten Vorhersagen für auch experimentell messbare Größen. Besonders zu nennen ist hier die Streufunktion einer Suspension von Stäbchen, deren intermediäres Potenzverhalten ich als ein universelles Merkmal der Reptationsbewegung von Stäbchen ansehe.
Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Die fortschreitende Erhöhung des Integrationsgrades moderner elektronischer und optoelektronischer Bauelemente erfordert im zunehmenden Maße eine Funktionalisierung von Systemstrukturen auf Nanometerskala. In diesem Zusammenhang bietet poröses Silizium (PSi) ein heute noch nicht abschätzbares Anwendungspotential, da vor allem seine optischen Eigenschaften auf Quanteneffekten („quantum confinement“) in Kristalliten beruhen, deren Ausdehnung nicht mehr als wenige Nanometern betragen. So sind beispielsweise sehr einfach aufgebaute nanoskalige Punkt- und Linienstrukturen aus porösem Silizium vorstellbar, die ganz bestimmte optische, aber auch elektrische Eigenschaften besitzen. Die vorliegende Arbeit trägt mit ihren Untersuchungen zur Herstellung von integrierten PSi-Emittersensoren für die optische Nahfeldmikroskopie zur Erforschung und Entwicklung solcher nanoskaligen Funktionselemente bei. Dabei mußte weitgehend technologisches Neuland beschritten werden, denn der geforderte Miniaturisierungsgrad für Nahfeldlichtquellen verlangte eine Verfeinerung der Strukturierungsverfahren für poröses Silizium bis zur Größenordnung von 100 nm und darunter. Die speziell zu diesem Zweck entwickelten lokalen PSi-Formierungsverfahren eigenen sich jedoch nicht nur für die definierte und reproduzierbare Formierung nanoskaliger PSi-Regionen an nahfeldoptischen Sensorspitzen. Da sie zu herkömmlichen Siliziumtechnologien kompatibel sind, ermöglichen sie die extrem lokalisierte, monolithische Integration von porösem Silizium in Si-Bauelementen der unterschiedlichsten Strukturformen. Im Ergebnis der Arbeit konnten zwei verschiedene Lösungswege zur Realisierung eines integrierten optischen PSi-Nahfeldsensors aufgezeigt werden. Diese beruhen zum einen auf dem herkömmlichen AFM-Siliziumcantilever und zum anderen auf einem neu entwickelten AFM-Scherkraftsensor. Beide Fertigungskonzepte erlauben eine ökonomisch vertretbare Herstellung des Sensors in einem kostensparenden industriellen Batch-Prozeß, da alle notwendigen technologischen Herstellungsschritte parallelisierbar und in übliche Herstellungsprozesse der Rastersondenfertigung auf Halbleiterbasis implementierbar sind.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Kolloidale Halbleiternanokristalle sind aufgrund ihrer vom Ultravioletten bis weit ins Infrarote durchstimmbaren Emissionswellenlänge besonders interessante Nanostrukturen für zukünftige optoelektronische Bauelemente und werden daher zurzeit intensiv erforscht. Im Mittelpunkt der vorliegenden Arbeit steht die Untersuchung und Manipulation der Lichtemission von neuartigen, stäbchenförmigen Cadmiumselenid/Cadmiumsulfid (CdSe/CdS) Nanokristallen in einem Einzelpartikelfluoreszenzaufbau. Diese Nanokristalle bestehen aus einem sphärischen CdSe-Kern, an den ein CdS-Nanostäbchen monokristallin gewachsen wird. Dadurch entstehen räumlich asymmetrische Halbleiternanostäbchen mit einem Aspektverhältnis zwischen 1,6 und 4,0. Durch die Messung der strahlenden Rate konnte in dieser Arbeit gezeigt werden, dass das Elektron über das gesamte Nanostäbchen delokalisiert ist, wohingegen das Loch im CdSe-Kern lokalisiert ist. Daher kann man durch die Länge des Cadmiumsulfidstäbchens den Wellenfunktionsüberlapp direkt manipulieren. Die Wellenfunktionen und damit die Emissionsenergien können neben der Geometrie insbesondere auch durch externe elektrische Felder kontrolliert werden. Da die Größe dieses so genannten „Starkeffekts in quantenbeschränkten Strukturen“ mit der räumlichen Ausdehnung der Nanostruktur zunimmt, konnte in den Nanostäbchen ein, verglichen zu sphärischen Nanokristallen, deutlich erhöhter Feldeffekt beobachtet werden. Experimente an einzelnen CdSe/CdS Nanostäbchen zeigen aber nicht nur eine Verschiebung der Emissionsenergie um das 50-fache der Linienbreite, sondern zugleich eine feldinduzierte Abnahme der Emissionsintensität um eine Größenordnung. Die experimentellen Ergebnisse lassen sich hervorragend mit einem theoretischen Modell vergleichen. Dazu wurde das effektive Massenmodell um die Coulombwechselwirkung ergänzt und durch eine finite Elemente Methode für asymmetrische Geometrien erweitert. Damit ist es möglich, sowohl die strahlende Rate, die Starkverschiebung der Emissionsenergie wie auch die Intensitätsmodulation durch elektrische Felder qualitativ und quantitativ vorherzusagen und den Starkeffekt in kolloidalen Nanokristallen durch ein quantenmechanisches Modell zu beschreiben. Die Emissionscharakteristik wird nicht nur durch externe Felder, sondern auch durch Fluktuationen lokaler Felder beeinflusst, welche durch diffundierende Oberflächenladungen entstehen. Diese lokalen Feldveränderungen induzieren ebenfalls eine Starkverschiebung und führen zu einer zeitlichen Variation der Emissionsenergie. Durch die elongierte Form der Nanostäbchen ist es erstmals gelungen, bei kolloidalen Nanokristallen die Bewegung von Oberflächenladungen auf der Nanometerskala zu beobachten. In dieser Arbeit wird gezeigt, dass man dabei zwischen einer zufälligen Bewegung der Oberflächenladungen um den Ladungsschwerpunkt und der Verschiebung des Ladungsträgerschwerpunkts unterscheiden kann.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Thema der vorliegenden Arbeit ist die Beschreibung von Ladungstransporteigenschaften molekularer Systeme, wenn diese das Verbindungsstück zweier Elektroden bilden. Einen technologischen Meilenstein setzte auf diesem Gebiet die Rastertunnelmikroskopie, welche ursprünglich für die Abbildung von Oberflächen mit atomarer Auflösung entwickelt wurde (Binnig et al., 1981). Heute ermöglicht sie die gezielte Untersuchung von Transporteigenschaften einzelner, auf Oberflächen adsorbierter Moleküle. Parallel dazu hat der immense Fortschritt in der Miniaturisierung klassischer elektronischer Bauteile in jüngster Zeit ermöglicht, Zuleitungsstrukturen auf der Nanometerskala zu bauen, und diese mit einzelnen oder wenigen Molekülen zu überbrücken (Reed et al., 1997). Es besteht die Hoffnung, mit solchen Systemen Schaltungselemente zu realisieren, die heutigen elektronischen Bauteilen in Hinblick auf ihre Effizienz und den Grad ihrer Miniaturisierung deutlich überlegen sind. Experimente mit diesen molekularelektronischen Apparaten werfen die Frage auf, wie sich die chemische Natur eines Moleküls sowie seine Kopplung an die Oberfläche der Elektroden auf die Leitungseigenschaften auswirkt. Eine theoretische Beantwortung dieser Frage erzwingt eine quantenmechanische Beschreibung des Systems. Ein genaues Verständnis dieser Zusammenhänge würde ein gezieltes Entwerfen molekuarelektronischer Bauteile ermöglichen. Trotz bedeutender experimenteller wie theoretischer Fortschritte besteht zwischen den Ergebnissen bisher allerdings nur beschränkt Übereinstimmung. Diese Arbeit beginnt mit einem Überblick über die gängigen Methoden zur theoretischen Beschreibung von Ladungstransport durch molekulare Systeme und charakterisiert sie hinsichtlich der ihnen zugrundeliegenden Annahmen und Näherungen. Dabei findet eine Unterteilung in störungstheoretische sowie streutheoretische Verfahren statt. Anschließend werden Methoden der Quantenchemie behandelt, da diese in nahezu allen Ansätzen zur Beschreibung von elektronischem Transport durch molekulare Systeme Anwendung finden. Wir liefern eine Zusammenstellung der wichtigsten unter den auf diesem Gebiet in immenser Anzahl entwickelten Methoden und der ihnen zugrundeliegenden Näherungen. Auf diese allgemeinen Darstellungen folgt eine detaillierte Beschreibung des numerischen Verfahrens, das im Rahmen dieser Dissertation zur Berechnung von Stromtransport durch Molekülstrukturen implementiert worden ist. Mit der vorliegenden Arbeit wird eine Verallgemeinerung eingeführt, die eine vormalige Einschränkung der ursprünglichen Methode bezüglich der betrachtbaren Systeme beseitigt. Diese so erhaltene Methode wird dann verwendet, um der durch Experimente von Dupraz et al. (2003) aufgekommenen Frage nachzugehen, welchen Einfluß die verschiedenen geometrischen Anordnungen einer Gruppe von identischen Molekülen auf die Leitfähigkeitseigenschaften eines molekularelektronischen Apparats ausüben. Unsere Untersuchungen zeigen, daß sich die Transporteigenschaften nur bei Bildung von Molekülgruppierungen mit bedeutender intermolekularer Wechselwirkung wesentlich von denen einzelner Moleküle unterscheiden. Damit lassen sich Konsequenzen aus der Stabilität von Molekül-Elektroden Verbindungen für die Reproduzierbarkeit von gewonnenen Meßdaten ableiten. Abschließend befassen wir uns mit der Berechnung von Rastertunnelmikroskop-Bildern. Dabei geben wir zuerst einen Überblick über bisherige Anwendungen von Modellrechnungen zur Erklärung experimenteller Daten. Dann präsentieren wir eigene Berechnungen, die im Rahmen einer Kooperation mit Constable et al. (2004) dazu beitragen sollen, durch Vergleich mit deren experimentellen Bildern verschiedene Konformationen eines auf Graphit adsorbierten Moleküls identifizieren zu können. Die enorme Größe des Moleküls führt zu Gesamtsystemgrößen, die eine numerische Durchführung in der Praxis bisher scheitern ließen. Durch eine neuartige Zerlegung des Eigenwertproblems, das die praktische Durchführung der von uns verwendeten Methode bisher verhinderte, sind wir in der Lage, erstmalig Berechnungen für weitaus größere als die bisher betrachtbaren Systeme durchzuführen.