POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 07/19
Die vorliegende Arbeit der Arbeitsgruppe Biomechanik/ Spannungsoptik (Ltg. Prof. Dr. E. Euler) befasst sich experimentell mit der Auswirkung unterschiedlicher Schraubenkonfigurationen bei der osteosynthetischen Versorgung der medialen Schenkelhalsfraktur auf den Kraftfluß am proximalen Femur. Zur Anwendung kommt das Verfahren der Spannungsoptik. Zur kopferhaltenden, osteosynthetischen Versorgung der medialen, instabilen Schenkelhalsfraktur werden heutzutage meist drei Spongiosazugschrauben verwendet. In der Literatur werden im wesentlichen 2 Varianten der Schraubenpositionierung empfohlen: Version 1: Zwei Schrauben liegen cranial in Bezug auf den Schenkelhalsquerschnitt, eine caudal im Bereich des Calcar femoris. Version 2: Zwei Schrauben liegen caudal im Bereich des Calcar femoris, eine weitere Schraube liegt cranial davon. Die Schrauben sollen parallel zueinander und senkrecht zum Bruchspalt liegen. Es gibt bisher kaum vergleichende experimentelle oder klinische Untersuchungen, die eine rationale Entscheidung für oder gegen eine dieser beiden Versionen erlauben. In dieser Arbeit wird der Frage nachgegangen, ob zwischen den beiden Versionen Unterschiede bezüglich des Kraftflusses am proximalen Femurende bestehen. Diese biomechanisch-experimentelle Untersuchung verwendet die Methode der Oberflächenspannungsoptik, auch Photo-Stress-Analyse genannt. Damit ist eine Visualisierung des Kraftflusses unter Belastung möglich. Hierzu wird eine optisch aktive Kunststoffschicht auf die Oberfläche eines Originaltestobjektes (Leichenfemora) appliziert. An der Oberfläche des belasteten Femur werden unter polarisiertem Licht farbige Belastungslinien (= Isochromaten) sichtbar, welche exakt messbar und einer definierten Dehnung zuordenbar sind. 4 Paare frischer, humaner Leichenfemora werden unter den Bedingungen der Steh-Phase während des Gehens entsprechend einer Geschwindigkeit von 2 km/h getestet, was einer typischen Belastung in der früh-postoperativen Phase gleichkommt. Die Tests werden in 2 Schritten ausgeführt: Testung des nativen Femur. Testung des standardisiert-frakturierten Femurs (Pauwels III-Fraktur) nach Stabilisierung mit einer der beiden Osteosynthesetechniken. Die jeweiligen gemessenen Isochromatenordnungen N können so miteinander verglichen werden. Weiterhin werden die Verschiebung des Kopffragments am Bruchspalt, die Maximalbelastbarkeit sowie die Art und Weise des Versagens des Präparates dokumentiert. Deutliche Veränderungen im Spannungsverhalten treten im wesentlichen im Bereich des Calcar femoris auf. Bei allen getesteten Knochenpaaren zeigt sich, dass die Isochromatenordnungen bei den mit Version 2 getesteten Präparaten deutlich unter denen mit Version 1 getesteten Präparaten liegen. Bei der Maximalbelastung der Präparate bis zum Versagen, halten dagegen die nach Version 1 versorgten Femora etwas höheren Belastungen stand. Innerhalb der einzelnen Femurpaare zeigt sich im Nativzustand eine weitgehende Übereinstimmung in Bezug auf Muster und Ordnung der Isochromaten. Somit scheint ein direkter Vergleich der beiden Verschraubungsversionen innerhalb eines Paares zulässig. Anhand der Untersuchungsergebnisse lässt sich feststellen, dass die nach Version 2 stabilisierten Femora im Vergleich zu Version 1 in Bezug auf die Isochromatenordnung sowie die Stressverteilung ein näher am Nativzustand liegendes Spannungsmuster aufweisen. Somit liegt der Kraftfluss bei den nach Version 2 versorgten Femora näher am physiologischen Nativzustand als bei denen, die nach Version 1 versorgt werden. Es liegt die Vermutung nahe, dass die Schraubenkonfiguration 2 im Vergleich zur Version 1 den physiologisch-anatomischen Verhältnissen am Schenkelhals besser Rechnung trägt. Somit scheint nach den Ergebnissen der vorliegenden Arbeit die Positionierung von 2 Schrauben am Calcar femoris und einer cranial davon (= Version 2) der Schraubenkonfiguration mit 2 Schrauben cranial am Schenkelhalsquerschnitt und einer am Calcar femoris (=Version 1) vorzuziehen zu sein.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 06/19
Als zentrales Achsenorgan des menschlichen Skelettes und aufgrund ihrer wesentlichen Bedeutung für die aufrechte Körperhaltung des Menschen sind Morphologie, Funktion und Degenerationserscheinungen oder Verletzungen der Wirbelsäule seit Jahrzehnten von besonderem Interesse in der medizinischen Forschung. Um den Kraftfluss durch Wirbelkörper und Bandscheiben bei Gesunden zu untersuchen, werden bis heute verschiedenste Studienmodelle entwickelt. Diese präsentieren jedoch meist nur begrenzte Ergebnisse, weil aufgrund der Komplexität der Bewegungen, der Zusammensetzung aus vielen Einzelgelenken und nicht zuletzt des Einflusses durch Muskeln und Bändern der Kraftfluss nicht realitätsnah dargestellt werden kann. Ausgehend von der Tatsache, dass die Verteilung der subchondralen Mineralisierung das biologische Korrelat der Langzeitbeanspruchung einer Gelenkfläche darstellt, war das Ziel dieser Studie, individuelle Mineralisierungsmuster der einzelnen Wirbelkörperendplatten der gesamten Wirbelsäule beim gesunden Menschen darzustellen und den jeweiligen Kalziumgehalt einer Endplatte zu bestimmen, um dann auf die Beanspruchung rückschließen zu können. Zu diesem Zweck wurden 10 möglichst gering degenerierte Wirbelsäulen von Leichen entnommen. Mit Hilfe der CT-Osteoabsorptiometrie (CT-OAM) wurde die subchondrale Mineralisierungsverteilung der Deck- und Grundplatten dargestellt und in standardisierten kartographischen Ansichten die Lage der Dichtemaxima dargestellt. Mittels quantitativer CT-OAM (qCT-OAM) wurde der Kalziumgehalt der Endplatten ermittelt und durch Einbeziehung der Endplattenfläche der relative Kalziumgehalt berechnet, wodurch intra- und interindividuelle Vergleiche möglich wurden. Der absolute Kalziumgehalt der Endplatten nahm – ebenso wie die Endplattenfläche – von kranial nach kaudal zu, woraus sich ein annähernd gleichbleibender relativer Kalziumgehalt in Hals-, Brust- und Lendenwirbelsäule ergab. Dies galt für alle untersuchten Wirbelsäulen gleichermaßen, obwohl es deutliche interindividuelle Unterschiede hinsichtlich des Kalzifizierungsgrades gab. Der Kalziumgehalt der Deck- und Grundplatte des Einzelwirbelkörpers unterschied sich bei Brust- und Lendenwirbelkörpern – im Gegensatz zu den Halswirbelkörpern – signifikant. Innerhalb des Wirbelkörpers fanden wir eine Zunahme der Mineralisierung. Im Gegensatz dazu fanden wir in thorakalen und lumbalen Bewegungssegmenten eine signifikante Mineralisierungsabnahme: die kranial einer Bandscheibe gelegene Grundplatte ist geringer mineralisiert als die kaudal gelegene Deckplatte. Wir vermuten, dass die Zunahme der Mineralisierung innerhalb des Wirbelkörpers u.a. durch zusätzliche Lastaufnahme über die in den Wirbelkörper einstrahlenden Wirbelpedikel entsteht. Diese sind je nach Körperhaltung und Durchstoßpunkt der Kraftresultierenden am Kraftfluss durch die Wirbelsäule beteiligt. Die Abnahme der Mineralisierung über eine Bandscheibe hinweg resultiert vermutlich aus deren Verformung bei Belastung. Im Falle degenerierter Bandscheiben konnten wir zeigen, dass diese Last offensichtlich unvermindert an kaudale Wirbelkörper weitergeleitet wird, wodurch es zu einer Mineralisierungszunahme der kaudal gelegenen Deckplatte kommt. Die differenten Ergebnisse der Halswirbelsäule könnten auf dem konvexbogigen Aufbau der Endplatten und der bereits in jungen Jahren ausgebildeten Uncovertebralgelenke durch Spaltenbildung der Bandscheiben beruhen, weshalb keine Lastminderung durch Verformung der Bandscheiben erfolgt. Die flächenhafte Mineralisierung, dargestellt in den Densitogrammen der CT-OAM, zeigte charakteristische Häufungen der Stellen höherer Mineralisierung. Die Endplatten der Halswirbelsäule wiesen vor allem posterolateral eine höhere Mineralisierung auf. In der Brustwirbelsäule dominierten gleichmäßig zirkuläre Mineralisierungsmaxima, während lumbal überwiegend dorsal Stellen höherer Mineralisierung lokalisiert waren. Die Übergänge zwischen Hals-, Brust- und Lendenwirbelsäule waren fließend. Weil sich die Lage des jeweiligen Rotationszentrums einer Bewegung aus dem Winkel der Wirbelpedikel zum Wirbelkörper und aus der variablen Belastung der Bandscheibe ergibt, unterscheiden sich die Hauptbelastungszonen der Endplatten je nach Lage in der Wirbelsäule. Aufgrund der zusätzlichen Einflussnahme der unterschiedlichen Bewegungsgrade der einzelnen Wirbelsäulenabschnitte konnten wir nachweisen, dass es charakteristische regionale (zervikal – thorakal – lumbal) Verteilungsmuster der Hauptbelastungszonen der Wirbelkörperendplatten gibt. Entsprechend der beschriebenen Mineralisierungsmuster verläuft eine Achse der Hauptbeanspruchung durch die Wirbelsäule. Diese verändert sich fließend von dorsolateral im Halsbereich nach gleichmäßig zirkulär auf Höhe der Brustwirbelsäule und schließlich wieder dorsolateral im lumboskralen Bereich. Die Ergebnisse unserer Untersuchungen zeigen, dass es beim Lebenden charakteristische Beanspruchungsmuster der Wirbelsäule gibt, welche nur durch Berücksichtigung aller am Achsenorgan beteiligten Strukturen verstanden werden können. Die klinische Erfahrung, dass bevorzugt Deckplatten der Hals- und Lendenwirbelsäule frakturieren können wir erstmals morphologisch begründen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Die vorliegende Untersuchung zielte zum einen auf die Entwicklung eines Modells zur in vitro Testung von pertrochantären Frakturen ab, zum anderen auf das Sichtbarmachen des Kraftflusses an der Oberfläche des proximalen Femur sowie auf die Darstellung der Veränderungen dieses Kraftflusses, bedingt durch verschiedene Stabilisierungsverfahren für pertrochantäre Femurfrakturen. Es ist nach wie vor wenig darüber bekannt, wie der Kraftfluss am proximalen Femur erfolgt, insbesondere darüber, wie die Kraftübertragung in den Femurknochen erfolgt, wenn dieser mit unterschiedlichen, für die Versorgung von pertrochantären Frakturen üblichen Systemen stabilisiert wird, nämlich der Dynamischen Hüftschraube (= DHS), dem Gamma-Nagel oder dem Proximalen Femur Nagel (= PFN). Aus diesem Grund erfolgte die Entwicklung eines Testmodells, welches es ermöglichte, den Kraftfluss am standarisiert-frakturierten humanen Leichenfemur sichtbar zu machen. Diese Visualisierung wurde mittels der PhotoStress-Methode erzielt: Optisch aktive Polymerschichten wurden direkt auf das gewünschte Testobjekt modelliert. An der Oberfläche des belasteten Femur wurden nun unter polarisiertem Licht farbige Belastungslinien (= Isochromaten) sichtbar, welche exakt meßbar und einer definierten Dehnung zuordbar sind. Nach der Entwicklung eines Testmodells (2 Femurpaare), welches eine möglichst physiologische Simulation einer Belastung erlaubt, wurden 10 Paare frischer Leichenfemora unter den Bedingungen der Steh-Phase während des Gehens mit einer Geschwindigkeit von 2 km/h getestet, was einer typischen Belastung in der früh-postoperativen Zeit gleichkommt (F = 9°, T = 0°, Belastung = 300% des Körpergewichts, Bergmann 1993). Folgende Konfigurationen wurden gegeneinander getestet: DHS versus Gamma-Nagel, Gamma-Nagel versus PFN, PFN-Stahl versus PFN-Titan. Die Tests wurden in 2 Schritten ausgeführt: a) Testung des nativen Femur. b) Testung des standarisiert-frakturierten Femur nach Stabilisierung mit einem der 3 Implantate. Die jeweiligen gemessenen Isochromatenordnungen N konnten so miteinander verglichen werden. Unter Bezug auf die eingangs erwähnten Ziele dieser Studie läßt sich folgendes festhalten: 1. Es ist gelungen, ein Modell zu entwickeln, welches es ermöglicht, humane Leichenfemora in vitro einer möglichst physiologischen Belastungssituation auszusetzen. Diese Belastungssimulation diente im weiteren Verlauf zur Testung von Femora, die nach Erzeugung einer artifiziellen, pertrochantären Hüftfraktur mit unterschiedlichen Osteosyntheseverfahren stabilisiert wurden. 2. Die PhotoStress-Methode, auch spannungsoptisches Oberflächenschichtverfahren genannt, ist in der Lage, sinnvolle und weiterführende Erkenntnisse in der in vitro Untersuchung von künstlich frakturierten, unter Belastung stehenden Femora zu liefern. 3. In der vorliegenden Arbeit ließen sich eindeutige biomechanische Unterschiede der drei Implantate DHS, Gamma-Nagel und PFN aufdecken. Derartige Unterschiede lassen sich sehr gut mit Erfahrungen aus dem klinischen Gebrauch der Implantate korrelieren. Aus den experimentell gewonnenen Ergebnissen können eindeutige Schlußfolgerungen für eine optimierte klinische Anwendung dieser Osteosynthesematerialien gezogen werden. Nach der Beantwortung der eingangs gestellten, allgemeinen Ziele bzw. Fragen, nun zu den konkreten Schlussfolgerungen, die aus den durchgeführten Versuchen gezogen werden können: 1. Die verwendete PhotoStress-Methode ermöglicht es erstmals, den Kraftfluss am belasteten, frakturierten, humanen Leichenfemur zu visualisieren. Sie stellt somit ein wichtiges methodisches Instrument für die medizinisch-biomechanische Testung von Osteosynthesematerialien dar. 2. Das Sichtbarmachen der Kraftlinien am proximalen Femur mittels Oberflächenspannungsoptik erlaubt es, Testmodelle zu entwickeln, welche eine möglichst physiologische Belastungssimulation zulassen. Die in zahlreichen Studien weit verbreitete Krafteinleitung in das Femur mit einem (zu großen) Winkel F (z. B. F = 25°) führt zu einem unphysiologischen, artifiziellen Biegemoment im Femurschaftbereich. Dieses Biegemoment konnte in unserem Modell unter Zuhilfenahme der PhotoStress-Methode durch einen auf F = 9° verminderten Winkel minimiert werden. Diese Art der Krafteinleitung erlaubt somit eine Minimierung von Artefakten. 3. Für die DHS zeigt sich, dass sie ein physiologischeres Spannungsmuster erzeugt als der Gamma-Nagel. Dies ist auf die Konzeption als „load sharing“ Implantat zurückzuführen. Eine Refixierung des medialen Fragmentes ist aus biomechanischer Sicht sinnvoll, und sollte, wenn klinisch ohne zu großen Aufwand möglich, erfolgen. Die DHS zeigt eine ausreichende Maximalbelastbarkeit auch in unphysiologisch hohen Belastungen, wenngleich die Maximalbelastbarkeit deutlich unter der des Gamma-Nagels liegt. Während der Belastungsphasen erscheint das Frakturrisiko für die DHS deutlich niedriger als für den Gamma-Nagel. Das Spannungsmuster der DHS liegt dem nativen Spannungsmuster von allen drei getesteten Implantaten am nächsten. 4. Für den Gamma-Nagel gilt, dass er aufgrund seiner Konfiguration als „load bearing“ Implantat einen Großteil der Kraft selbst trägt. Er zeigt im Gegensatz zur DHS eine wesentlich größere Maximalbelastbarkeit. Der Gamma-Nagel weist einen deutlich kürzerem Hebelarm auf als die DHS. Als Hauptkomplikation muß die distale Femurschaftfraktur (ausgehend von den distalen Verriegelungsschrauben) gefürchtet werden. Aufgrund seiner Konfiguration erscheint der Gamma-Nagel besonders für instabile Frakturen geeignet. 5. Proximaler Femur Nagel und Gamma-Nagel führen am frakturierten Femur zu einem qualitativ sehr ähnlichen Stressmuster. Um das Risiko für Frakturen im Bereich der distalen Verriegelungsschrauben zu minimieren, ist es unbedingt zu empfehlen, bei beiden Implantaten distal nur mit einer statt mit zwei Schrauben zu verriegeln. Dies führt zu einer Verringerung von Interferenzen, welche durch die Verwendung von zwei distalen Verriegelungsschrauben hervorgerufen werden. Die zu erwartenden Spannungsspitzen in diesem Bereich sind für den PFN geringer als für den Gamma-Nagel. Soll aus klinischen Gründen heraus distal dennoch mit zwei Schrauben verriegelt werden, so ist die Gefahr für eine spätere Schaftfraktur bei Anwendung des Gamma-Nagels deutlich größer als für die Anwendung des PFN. Die Maximalbelastbarkeit der beiden intramedullären Kraftträger ist in etwa vergleichbar groß. Wichtig ist es, darauf hinzuweisen, dass die Isochromatenwerte im Bereich der Verriegelungsbolzen beim PFN stets deutlich unter denen des Gamma- Nagels waren. Somit zeigt der PFN gegenüber dem Gamma-Nagel ein eindeutig vorteilhaftes Spannungsmuster. Einen weiteren Vorteil zeigt der PFN durch seine Antirotationsschraube, welche eine mögliche Rotation des Hüftkopffragmentes vermindert. Wird der PFN verwendet, so ist aufgrund des etwas günstigeren Spannungsmusters der Titanversion diese zu bervozugen. Insgesamt scheinen die biomechanischen Eigenschaften des PFN denen des Gamma-Nagels überlegen zu sei