Podcasts about explosivit

  • 2PODCASTS
  • 3EPISODES
  • 22mAVG DURATION
  • ?INFREQUENT EPISODES
  • Oct 16, 2018LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about explosivit

NFL frei Schnauze! - Footballerei Podcast Deutschland
NFL Boulevard #35: Die „Monster of Defense”

NFL frei Schnauze! - Footballerei Podcast Deutschland

Play Episode Listen Later Oct 16, 2018 22:41


In der neuen Ausgabe des “NFL Boulevard” wird’s historisch aus aktuellem Anlass. Carsten und Kucze sprechen diesmal über die gefürchtetsten NFL-Verteidiger aller Zeiten: Die „Monster of Defense”. Während heutzutage die Quarterbacks in „Watte gepackt” worden sind und Verteidiger kaum noch die Chance haben, sie ohne Strafe zu Boden zu bringen, waren die „Monster of Defense” in ihrem Wirken kaum eingeschränkt. Ihre Aggressivität, Explosivität und Kompromisslosigkeit waren gefürchtet. Typen wie Lawrence Taylor in den 80er Jahren, Reggie White in den Neunzigern und Troy Polamalu nach der Jahrtausendwende lösten bei gegnerischen Spielmachern regelmäßig Angstschweiß auf der Stirn aus. Carsten und Kucze stellen euch dieses Trio mal etwas genauer vor und besprechen, was Lawrence Taylor, Reggie White und Troy Polamalu so berühmt-berüchtigt gemacht hat. Und wie immer könnt ihr euch diese Folge auch auf dem YouTube-Kanal der Footballerei anschauen.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Beiträge zur Tellur-Stickstoffchemie sowie zu Verbindungen des Tellurs mit Halogenen und Pseudohalogenen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jul 20, 2001


Ein wesentliches Ziel dieser Arbeit war die Suche nach einer gezielten Darstellung von Tellur(IV)aziden. Dazu wurden zunächst eine Reihe von Diorganomonotelluriden synthetisiert und, auch im Fall des bekannten (C6F5)2Te, vollständig charakterisiert. Sie wurden durch eine Modifizierung der Literatursynthese von (C6F5)2Te erhalten, bei der Na2Te und Aryl- bzw. Alkylbromide miteinander umgesetzt werden. So konnte z.B. die Ausbeute von (C6F5)2Te (4) um ca. 50 % gesteigert werden. Bei den Umsetzungen von teil- und perfluorierten Arylbromiden mit Na2Te konnte gezeigt werden, dass sich bei einem Arylbromid in ortho-Position zum jeweiligen Bromatom mindestens zwei Fluoratome befinden müssen, damit eine Reaktion stattfinden kann. In diesem Rahmen konnten mit (CF3C6F4)2Te (2) und (C6F5)2Te (4) die ersten fluorarylsubstituierten Tellur(II)verbindungen kristallographisch untersucht werden. Die Diorganomonotelluride wurden dann durch Halogenierung mit XeF2, SO2Cl2 und Br2 zu den korrespondierenden Diorganotellur(IV)dihalogeniden umgesetzt. Bei der Fluorierung der Monotelluride zeigte sich in der Reaktivität zwischen denjenigen mit aromatischen und aliphatischen Substituenten kein Unterschied, sodass die Tellur(IV)difluoride 5摯瑬敳獩 13 isoliert und vollständig charakterisiert werden konnten. Während sich die aromatischen Monotelluride 1摯瑬敳獩 4 mit einem Überschuss an SO2Cl2 bzw. Br2 problemlos zu den entsprechenden Tellur(IV)dichloriden und –dibromiden 14摯瑬敳獩 17 und 22摯瑬敳獩 25 umsetzen ließen, zeigten die Dialkylmonotelluride ein völlig anderes Reaktionsverhalten. So konnten bei der Chlorierung nicht nur die Dialkyltellur(IV)dichloride 18摯瑬敳獩 21, sondern auch die entsprechenden Alkyltellur(IV)trichloride nachgewiesen werden. Da die Umsetzung bei einem Überschuss SO2Cl2 zu den Tellur(IV)trichloriden nicht vollständig ablief, sondern immer nur ein untrennbares Gemisch aus Tellur(IV)dichlorid und Tellur(IV)trichlorid erhalten wurde, konnten keine Tellur(IV)trichloride isoliert werden. Bei der gezielten Darstellung der Dialkyltellur(IV)dichloride aus den jeweiligen Monotelluriden müssen exakt äquimolare Mengen an Sulfurylchlorid eingesetzt werden. Bei der Umsetzung der Dialkylmonotelluride (C2H5)2Te und (n-C3H7)2Te mit einem Überschuss an Brom konnten die Dialkyltellur(IV)dibromide (C2H5)2TeBr2 (26) und (n-C3H7) 2TeBr2 (27a) isoliert und vollständig charakterisiert werden. Im Gegensatz dazu konnten von den Isoalkyltelluriden (i-C3H7)2Te und (c-C6H11)2Te stets die jeweiligen Tellur(IV)tribromide i-C3H7TeBr3 (28) und c-C6H11TeBr3 (29) erhalten werden. Auch mit stöchiometrischen Mengen an Brom ließen sich keine Diisoalkyltellur(IV)dibromide nachweisen. Dass hier neben den Tellur(IV)tribromiden auch noch unreagiertes Monotellurid gefunden wurde, legt den Schluss einer sehr schnellen Reaktion nahe. Offenbar wird beim Einsatz stöchiometrischer Mengen vorhandenes Brom bei der Bildung von Tellur(IV)tribromiden schneller verbraucht, bzw. spaltet eine Te-C Bindung schneller, als es mit weiterem Monotellurid zu reagieren vermag. Jedoch konnte nach längerer Zeit bei (n-C3H7) 2TeBr2 (27a) in Lösung die Bildung von n-C3H7TeBr3 (27b) nachgewiesen werden. Die Tellur(IV)tribromide n-C3H7TeBr3 (27b), i-C3H7TeBr3 (28) und c-C6H11TeBr3 (29) liegen im Festkörper als typische Te2Br6-Dimere vor. Die Kristallstrukturen der Tellur(IV)dihalogenide (C6H3F2)2TeF2 (5), (CF3C6F4)2TeF2 (6), (C6H3F2)2TeCl2 (14), (CF3C6F4)2TeCl2 (15) und (C6H3F2)2TeBr2 (22) zeigen allesamt die zu erwartende Ψ -trigonal-bipyramidale Geometrie für das einzelne Molekül. Aufgrund von Sekundärbindungen zwischen den Tellur- und den jeweiligen tellurgebundenen Halogenatomen, kommt es zu Ψ -oktaedrischen oder Ψ -pentagonal-bipyramidalen Geometrien im Molekülverband. Diese intermolekularen Wechselwirkungen führen dabei zur Ausbildung von polymerartigen Kettenstrukturen. Mit Hilfe der Kernresonanzspektroskopie konnte anhand der arylsubstituierten Tellur(IV)dihalogenide gezeigt werden, dass die freie Drehbarkeit um die Te-C Bindungen bei R2TeHal2 eingeschränkt ist. So erscheinen teils bei Raumtemperatur im 19 F NMR Spektrum stark verbreiterte Signale für die jeweiligen ortho-, und −in geringerem Maße − meta- Fluoratome, welche bei Temperaturerniedrigung unterhalb der Koaleszenztemperatur in je zwei Signale aufspalten. Die Energiebarrieren für diese Koaleszenz wurden dabei mit Hilfe der Eyring-Gleichung berechnet. Nach den durchgeführten Untersuchungen kann eine Pseudorotation der Liganden oder eine Dissoziation der Moleküle ausgeschlossen werden. Ebenso kann widerlegt werden, dass dieser Effekt angeblich nur bei sterisch anspruchsvollen Substituenten auftritt. Durch Reaktion der Diorganotellur(IV)difluoride mit (CH3)3SiN3 lassen sich die entsprechenden Diorganotellur(IV)diazide herstellen. Es handelt sich hierbei um feuchtigkeitsempfindliche, nicht jedoch schlag- oder stoßempfindliche Verbindungen. Sie verpuffen mit blauer Flammenfärbung unter starker Russbildung. Die Streckschwingungen der Azidgruppen von R2Te(N3)2 erscheinen in den Schwingungs-spektren im typischen Bereich von 2200摯瑬敳獩 2000 cm −1 . Ebenfalls sehr charakteristisch sind in den Ramanspektren, wie bei den Tellur(IV)dihalogeniden die ν TeHal Schwingung, die Te-N Streckschwingungen. Die ersten Kristallstrukturen von Tellur(IV)diaziden konnten von (C6H5)2Te(N3)2 (35) und (C6F5)2Te(N3)2 (36) bestimmt werden. Wie bei den Tellur(IV)dihalogeniden kommt es hier im Kristall zur Bildung von TeReaktion mit den Tellur(IV)dichloriden und Tellur(IV)dibromiden zu den entsprechenden Diorganotellur(IV)diaziden konnte auch bei Variation der Reaktionsbedingungen nicht beobachtet werden. Da allerdings berichtet wird, dass sich bis zu zwei Chloratome in TeCl4 durch Azidgruppen ersetzen lassen, wurde die Reaktion von TeCl4 mit (CH3)3SiN3 nochmals untersucht. Tatsächlich werden TeCl3N3 (43) bzw. TeCl2(N3)2 (44) gebildet und konnten jetzt vollständig charakterisiert werden. Jedoch sind diese beiden Verbindungen nicht spontan explosiv. Die beschriebenen angebliche Explosivität ist möglicherweise auf partielle Hydrolyse zum explosiven HN3 zurückzuführen. Der Austausch des dritten oder gar vierten Chloratoms bei Verwendung eines Überschusses an (CH3)3SiN3 konnte nicht erreicht werden. Analog zur Reaktion der Tellur(IV)difluoride wurden, hier ausgehend von Ditelluriden, Tellur(IV)trifluoride generiert und mit (CH3)3SiN3 versetzt. Dabei entstehen Organotellur(IV)triazide, die isoliert und vollständig R = CH 3 (30), C 2 H 5 (31), n-C 3 H 7 (32), i-C 3 H 7 (33), c-C 6 H 11 (34), C 6 H 5 (35), C 6 F 5 (36) CH 2 Cl 2 / 0 °C CH 2 Cl 2 / 0 °C R 2 TeF 2 + (CH3)3SiN3 R 2 Te(N 3 ) 2 R 2 TeCl 2 / R 2 TeBr 2 + (CH 3 ) 3 SiN 3charakterisiert werden konnten. R = Alkyl, Aryl [RTeF3 ] R 2 Te 2 - Xe XeF 2 RTe(N3 )3 (CH 3 ) 3 SiN 3 - (CH 3 ) 3 SiF Es handelt sich hier um äußerst feuchtigkeitsempfindliche Verbindungen, die jedoch nicht schlag- oder stoßempfindlich sind, aber in der Flamme mit lautem Knall explodieren. Mit CH3Te(N3)3 (37) (N 46.9 %) konnte dabei die bislang stickstoffreichste Chalcogen-Stickstoff Verbindung zweifelsfrei synthetisiert und vollständig charakterisiert werden. So ist 37 von allen dargestellten Tellur(IV)triaziden in gängigen organischen Lösungsmitteln am schwersten löslich, und explodiert in der Flamme am heftigsten. Die Streckschwingungen der Azidgruppen in den Schwingungsspektren erscheinen für die Tellur(IV)triazide im typischen Bereich von 2200摯瑬敳獩 2000 cm −1 . Ebenfalls sehr charakteristisch sind die Te-N Streckschwingungen bei 430摯瑬敳獩 330 cm −1 . Die chemischen Verschiebungen in den 125 Te NMR Spektren Tellur(IV)triatide RTe(N3)3 liegen in einem Bereich von δ = 1400摯瑬敳獩 1250 , während die Tellur(IV)diazide R2Te(N3)2 im Bereich von δ = 1150摯瑬敳獩 800 erscheinen. Von den Tellur(IV)triaziden C2H5Te(N3)3 (38), n-C3H7Te(N3)3 (39), i-C3H7Te(N3)3 (40) und 2,4,6-(CH3)3C6H2Te(N3)3 (42) konnten die Kristallstrukturen bestimmt werden. Sie sind, abgesehen von dem ionischen [Te(N3)3][SbF6], die ersten Strukturen von neutralen Tellur(IV)triaziden. Dabei kommt es auch hier zwischen den Telluratomen und den Stickstoffatomen zu Sekundärbindungen, und es werden Ψ -pentagonal-bipyramidale Geometrien beobachtet, welche zur Ausbildung von polymerartigen Kettenstrukturen führen. C Zusammenfassung Eine interessante Ausnahme bildet hierbei i-C3H7Te(N3)3 (40), bei dem dimere Einheiten gebildet werden. Hier kommt es für die Telluratome zu einer Ψ -oktaedrischen Umgebung. Te C1 N4 N7 N1 Te(i) N4(i) N8 N9 N2 N3 N5 N6 C2 C3 Für alle denkbaren Methyltellur(IV)azide des Typs (CH3)4-nTe(N3)n, sowie Te(N3)4 wurden die Totalenergien, die Nullpunktschwingungsenergien und die IR und Raman Intensitäten auf Hybrid-DFT Niveau (MPW1PW91) berechnet. Ebenso wurden die Schwingungsspektren und die Molekülstrukturen berechnet. Alle Rechnungen wurden mit Hilfe von Gaussian 98 durchgeführt. Verglichen mit den experimentellen Daten der Tellur(IV)diazide (C6H5)2Te(N3)2 (35) und (C6F5)2Te(N3)2 (36), sowie dem Tellur(IV)triazid C2H5Te(N3)3 (38), zeigen die für (CH3)2Te(N3)2 und CH3Te(N3)3 berechneten Strukturparameter eine recht gute Übereinstimmung. Vergleicht man dagegen von (CH3)2Te(N3)2 (30) und CH3Te(N3)3 (37) die berechneten mit den experimentell ermittelten IR- und Ramanschwingungen, erkennt man vor allem bei den Schwingungen der Azidgruppen einen deutlichen Unterschied. Die Abweichung der berechneten Schwingungsfrequenzen (IR und Raman) von den beobachteten kann im wesentlichen darauf zurückgeführt werden, dass bei den quantenchemischen Rechnungen stets ein harmonisches Potential angesetzt wurde, was – zumindest bei den Streckschwingungen – im allgemeinen zu zu hohen berechneten Wellenzahlen führen sollte. Die nicht exakte Berücksichtigung der Elektronenkorrelation sollte ebenfalls zu Anweichungen zwischen berechneten und experimentellen Frequenzen führen. In der Regel würde man bei Vernachlässigung der Korrelation (SCF-HF) wiederum für die Streckschwingungen zu hohe berechnete Wellenzahlen erwarten. Allerdings scheinen die DFT Austausch-Korrelations Funktionale oft die Elektronenkorrelation etwas zu überschätzen. Aus diesem Grund wurden in der vorliegenden Arbeit auch Hybrid-Funktionale verwendet, die eine Mischung aus HF-Austausch und DFT-Austausch-Korrelation enthalten. Darüber hinaus wurden die Rechnungen bei 0 K für isolierte Moleküle in der Gasphase durchgeführt, was einerseits aufgrund von real auftretenden intermolekularen Wechselwirkungen und Packungseffekten zu Abweichungen im Vergleich zu den am Feststoff vorgenommen experimentellen Messungen (IR und Raman) führen sollte. Andererseits darf auch nicht vergessen werden, dass sich die berechneten Strukturparameter auf re (re = Gleichgewichtskernabstand, Minimum der Potentialkurve) beziehen, während bei T > 0 K und einem anharmonischen Potential zumindest der thermisch gemittelte internucleare Kernabstand rg verwendet werden sollte (re ≈rg – (3/2) a (lT)2 , wobei a der Morseparameter ist und lT der quadratische Mittelwert der Vibrations-Amplitude. Die Reaktivität von R2TeHal2 gegenüber weiteren Halogeniden/Pseudohalogeniden wurde getestet. Dabei zeigten (CH3)3SiNCO und (CH3)3SiNSO mit R2TeHal2 keine Reaktion, während im Gegensatz dazu (CH3)3SiNCS, (CH3)3SiI und ((CH3)3Si)2S mit R2TeHal2 unter Bildung von (NCS)x, I2 bzw. S8 und Monotellurid R2Te reagieren. Bei der Reaktion von R2TeF2 mit (CH3)3SiCN konnten erstmalig zwei Vertreter der Tellur(IV)dicyanide, (CF3C6F4)2Te(CN)2 (45) und (C6F5)2Te(CN)2 (46), isoliert und charakterisiert werden. Diese sind in Lösung sehr instabil und zerfallen in wenigen Stunden in das jeweilige Monotellurid und wahrscheinlich Dicyan (CN)2. Die Tellur(IV)dicyanide können in den Scwingungsspektren anhand der charakteristischen CN Streckschwingung identifiziert werden. Aus der Lösung von 46 konnten nach längerem Stehen Kristalle gewonnen werden, die sich jedoch als das bislang unbekannte Hydrolyseprodukt (C6F5)2TeO erwiesen. Eine ungewöhnliche Reaktion hingegen liefern die Tellur(IV)dichloride R2TeCl2 und Tellur(IV)dibromide R2TeBr2 (R = CF3C6F4, C6F5) in CHCl3 bzw. CHBr3 mit einem Überschuss AgCN. In einem bislang nicht aufgeklärten Mechanismus entstehen in Abhängigkeit vom eingesetzten Lösungsmittel die Telluroniumhalogenide (C6F5)3TeCl (48), (C6F5)3TeBr (49), (CF3C6F4)3TeCl (50) und (CF3C6F4)3TeBr (51). Die Struktur dieser Verbindungen konnte eindeutig mit der Kristallstruktur von (C6F5)3TeCl belegt werden. In dieser Struktur kommt es auch aufgrund intermolekularer Wechselwir-kungen zwischen Tellur und Chlor zur Ausbildung einer polymerartigen Kettenstruktur. R 2 TeHal2 + AgCN R 3 TeCl R 3 TeBr CHCl 3 /14 d/25 °C CHBr3 /6 d/25 °C // R2 Te(CN)2 R = C 6 F 5 (48, 49), CF 3 C 6 F 4 (50, 51) Hal = Cl, Br Zusätzlich konnte von Dicyclohexyltellurid (c-C6H11)2Te Temperaturabhängigkeit der 125 Te und 13 C NMR Spektren festgestellt und im Detail studiert werden. Dabei zeigte sich, dass die Temperaturabhängigkeit durch die Inversion der Cyclohexylringe verursacht wird. Die zwischen −90 °C und +80 °C aufgenommen 125 Te NMR Spektren von (c-C6H11)2Te wurden berechnet und konnten mit den experimentellen Daten in Übereinstimmung gebracht werden. Ebenso konnten die Aktivierungsparameter für die Inversion bestimmt werden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Halogen-, Azid- und Koordinationsverbindungen des Arsens und Antimons

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Jun 6, 2001


Ziel dieser Arbeit war es, Arsen- bzw. Antimonverbindungen zu synthetisieren und zu charakterisieren, die Chemiker aufgrund allgemeiner Erfahrungen als instabil bzw. explosiv bezeichnen würden. Dabei wurden vier verschiedene Schwerpunkte gesetzt. (a) binäre Arsenazide und Antimonazide (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 (a) binäre Arsenazide und Antimonazide Die binären Arsenazid- und Antimonazid-Verbindungen M(N3)3, M(N3)4 + , M(N3)4 – , M(N3)5 und M(N3)6 – (M = As, Sb) wurden durch Reaktion der entsprechenden Chlorid-Verbindungen mit TMS-N3 oder aktiviertem NaN3 synthetisiert. Die Verbindungen wurden als reine Substanzen bzw. als Salze isoliert. Die Isolation der reinen Pentaazide gelang aufgrund der extremen Explosivität nicht. Die Strukturen und Normalschwingungen aller binären Verbindungen wurden auf B3LYP-Niveau berechnet. Die kationischen Spezies zeigen S4-Symmetrie, die monomeren M(N3)4 – -Anionen und die neutralen M(N3)5-Spezies Cs-Symmetrie, die dimeren [M(N3)4 – ]2-Anionen S2-Symmetrie und die M(N3)6 – -Anionen S6-Symmetrie. Abbildung 46 zeigt die berechneten Strukturen und die explosiven Eigenschaften der Verbindungen. Die berechneten durchschnittlichen M-N-Bindungslängen steigen in der Reihenfolge M(N3)4 + < M(N3)5 < M(N3)3 < M(N3)4 – < M(N3)6 – . Die N-N-Bindungslängen innerhalb der Azidgruppen zeigen eine ähnliche Tendenz. Die kationischen Verbindungen zeigen die längsten N -N - und die kürzesten N -N -Bindungslängen (Konnektivität: M–N –N –N ) gefolgt von den Neutral-verbindungen und den anionischen Spezies. Dementsprechend ist die Bindungsordnung zwischen dem N und N -Stickstoffatom (vgl. Lewisformel III, Schema 1) für die kationischen Azidverbidungen am höchsten und für die anionischen am geringsten. Diese Tendenzen stimmen gut mit den experimentell bestimmten und berechneten Schwingungsdaten für die Azidgruppen überein.Die ionischen Verbindungen werden durch voluminöse Gegenionen im Kristall stabilisiert. Die relativen kurzen N -N -Bindungslängen erklären dennoch die gesteigerte Explosivität der kationischen Verbindungen gegenüber den anionischen Spezies. Eine Eliminierung von N2 ist aufgrund dieser kurzen N -N -Bindungslängen erleichtert. Die neutralen Triazide sind außerordentlich explosiv und die Pentaazide zersetzen sich aufgrund des extrem hohen Stickstoffgehalts spontan. Es gelang erstmals eine Arsenazidverbindung durch Röntgenstrukturanalyse zu charakterisieren. Die Struktur des As(N3)6 – -Anions wurde als desses PPh4 + - und Py-H + -Salz geklärt. Das Arsenatom ist von sechs Stickstoffatomen oktaedrisch umgeben. Das Anion zeigt im Kristall zentrosymmetrische S2-Symmetrie. Die experimentell bestimmten Struktur-parameter stimmen mit den auf B3LYP-Niveau berechneten gut überein. Abbildung 47 zeigt die Molekülstruktur des As(N3)– -Anions. Die 14 N-NMR-Spektren aller Verbindungen zeigen drei Resonanzen für die nichtäquivalenten Stickstoffatome der kovalent gebundenen Azide. In den 75 As- bzw. 121 Sb-NMR-Spektren konnten nur im Falle der Hexaazidoanionen Resonanzen aufgelöst werden, da diese Kerne nur in hochsymmetrischer Umgebung aufgrund ihres hohen Quadrupolmoments detektiert werden können. (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon Gemischte Halogen- bzw. Halogen/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) konnten bisher nicht isoliert werden, da diese Verbindungen leicht in die jeweiligen Trihalogenide bzw. Pseudohalogenide dismutieren. Deratige Dismutierungen wurden in dieser Arbeit bei Reaktionen von MX3 (M =As, Sb; X = F, Br, I) mit azidübertragenden Reagentien beobachtet. Gemischte Halogen/Azid-Verbindungen von Arsen und Antimon konnten nur im Falle des Chlorids eindeutig isoliert werden. Die Dismutierungsneigung ist aufgrund der chemischen Ähnlichkeit von Chlorid und Azid am geringsten. SbCl(N3)2 wurde durch Reaktion von SbCl3 und zwei Äquivalenten NaN3 synthetisiert. SbCl2N3 konnte nur in Gegenwart von Pyridin als Lewis-Base kristallisiert werden, wobei das Lewis-Säure-Base-Addukt SbCl2N3 · 2 Pyridin entstand. Eine gemischte Chlorid/Azid-Verbindung von Arsen konnte ebenfalls in Gegenwart von Pyridin als Lewis-Base isoliert werden. Es wurde die Verbindung AsCl(N3)2 · 2 Pyridin durch Röntgenstrukturanalyse eindeutig charakterisiert. Abbildung 48 zeigt die Molekülstruktur von SbCl(N3)2. Die Molekülstrukturen der beiden anderen gemischten Chlorid/Azid-Verbindung von Arsen und Antimon sind in Kap. 3.2.4 abgebildet. Die Zentralatome sind in Übereinstimmung mit dem VSEPR-Konzept in SbCl(N3)2 Ψ -tetraedrisch, in AsCl(N3)2 · Pyridin Ψ -trigonal-bipyramidal, und in SbCl2N3 · 2 Pyridin Ψ -toktaedrisch umgeben. Die Schwingungsspektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen Banden bei 216 cm –1 und 139 cm –1 (As) und 166 cm –1 und 109 cm –1 (Sb). Diese Banden werden den Streck- bzw. Deformationsschwingung der M-NPy-Bindungen (M = As, Sb) zugeordnet. Die 14 N-NMR-Spektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, breite Resonanzen bei einer chemischen Verschiebung von δ = –164 ppm (As) und –157 ppm (Sb). Diese Resonanzen werden den Stickstoffatomen der Pyridinmoleküle zugeordnet. Sie sind im Vergleich zu freiem Pyridin deutlich verschoben (–63 ppm). Es folgt, dass die Addukte ebenso in Lösung stabil sind. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. In AsCl(N3)2 · Pyridin werden 0.20 Elektronen vom Pyridin auf AsCl(N3)2 übertragen und in SbCl2N3 · 2 Pyridin 0.27 Elektronen von den beiden Pyridinmolekülen auf SbCl2N3. Die Wechselwirkung pro Molekül Pyridin ist damit im Vergleich zu AsCl(N3)2 · Pyridin schwächer. Dieses Ergebnis spiegelt sich in den experimentell bestimmten M-NPy-Bindungslängen wieder. (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 Die Isolation der binären Spezies As(N3)5 und Sb(N3)5 gelang aufgrund der spontanen Explosionen nicht. Daher wurden die Verbindungen in situ durch Reaktion von AsF5 bzw. SbF5 mit TMS-N3 dargestellt und mit Lewis-Basen stabilisiert. Die Verbindungen As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) wurden auf diese Weise synthetisiert. Die Verbindungen sind bei Raumtemperatur stabil, explodieren jedoch heftig bei Reibung oder höheren Temperaturen. Die Strukturen und Normalschwingungen wurden auf B3LYP-Niveau berechnet. Die Zentralatome sind jeweils okatedrisch von sechs Stickstoffatomen umgeben. Fünf stammen dabei von Azidliganden und eines von der jeweiligen Lewis-Base. In Abbildung 49 ist die Struktur von As(N3)5 · N2H4 abgebildet. Die berechneten Strukturen der anderen Addukte sind in Kap. 3.3.5 zu finden. Die Schwingungsspektren zeigen alle Schwingungen die auf kovalent gebundene Azide schließen lassen. Zusätzlich sind im Bereich von 111 cm –1 bis 430 cm –1 Banden ersichtlich, die den Streck- bzw. Deformationsschwingungen der M-NLB-Bindungen zugeordnet werden. Die 14 N-NMR-Spektren von As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, Signale, die den Stickstoffatomen der jeweiligen Lewis-Basen zugeordnet werden. Diese Resonanzen sind im Vergleich zu den Resonanzen der freien N-Basen deutlich verschoben. Es folgt, dass die Addukte ebenso in Lösung stabil sind. Aufgrund der 14 N-NMR-Spektren von As(N3)5 · NCNH2 bzw. Sb(N3)5 · NCNH2 kann gefolgert werden, dass die Cyanamid-Verbindungen über die Cyanid-Einheiten an die Zentralatome koordinieren. Die 75 As- bzw. 121 Sb-NMR-Spektren belegen eine oktaedrische Koordination an den Zentral-atomen. Es konnten für alle Addukte Resonanzen in den Spektren detektiert werden. Die Bindungsdissoziationsenthalpien für die Dissoziation der Addukte gemäß Gleichung 25 wurden quantenmechanisch berechnet. M(N3)5 · LB → M(N3)5 + LB (25) (M = As,Sb; LB = Pyridin, NH3, N2H4 und NH2CN) Die Bindungsdissoziationsenthalpie ist ein Maß für die As- bzw. Sb-NLB-Bindungsstärke dieser Addukte. Die Stabilität der Addukte steigt in der Reihenfolge NH2CN < Pyridin < NH3 < N2H4 und As(N3)5 < Sb(N3)5. Die Bindungsdissoziationsenthalpien stimmen qualitativ gut mit den berechneten As- bzw. Sb-NLB-Bindungslängen überein. Die schwächsten Cyanamid-Addukte zeigen die längsten As- bzw. Sb-NLB-Bindungslängen, die stärksten Hydrazin-Addukte zeigen die kürzesten. (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 AsCl5 ist aufgrund der d-Blockkontraktion und der damit verbundenen geringer Abschirmung der hohen Kernladung sehr instabil. Addukte von AsCl5 wurden ebenso wenige beschrieben. SbCl5 hingegen ist stabil. In dieser Arbeit wurde das Koordinationsverhalten schwacher Lewis-Basen gegenüber MCl5 (M = As, Sb) sowohl experimentell als auch theoretisch untersucht. Die Verbindungen MCl5 · LB (M = As, Sb; LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) wurden auf B3LYP-Niveau berechnet, die Verbindungen SbCl5 · LB (LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) und AsCl5 · NCI konnten synthetisiert werden. Strukturen, die ein lokales Minimum (NIMAG = 0) aufweisen, wurden für alle Addukte berechnet. Die Übereinstimmung der berechneten Strukturparameter für SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 mit den durch Röntgenstrukturanalyse bestimmten Bindungs-längen und -winkel ist außerordentlich gut. Abbildung 50 zeigt die Molekülstruktur des 2:1 Addukts SbCl5 · NCCN · SbCl5. Die Strukturen zeigen eine sechsfache Koordination mit nahezu idealer oktaedrischer Umgebung an den Zentralatomen. Sie sind umgeben von fünf Chloratomen und jeweils einem Stickstoffatom der entsprechenden Lewis-Basen. Die Ramanspektren zeigen bei ca. 200 cm –1 Banden für die ν SbN-Streckschwingungen und von 83 cm –1 bis 134 cm –1 Banden für die δ SbN-Deformationsschwingungen. Die ν CN-Streckschwingungen der Addukte ergeben Banden zwischen 2187 cm –1 und 2352 cm –1 und sind damit um 18 - 76 cm –1 zu höheren Wellenzahlen im Vergleich zu den freien Cyaniden verschoben. Die 14 N-NMR-Spektren zeigen deutlich verschobene Resonanzen der Stickstoffatome im Vergleich zu den freien Lewis-Basen. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation dieser schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. Die Wechselwirkung der Lewis-Base Dicyan mit SbCl5 ist geringer als die Wechselwirkung von ClCN mit SbCl5. Basierend auf quantenmechanischen Rechnungen (B3LYP) wurde die Bindungs-dissoziationsenthalpien, die der thermodynamische Stabilität der Addukte entspricht, aller Addukte bestimmt. Die Stabilität steigt in der Reihenfolge (CN)2 < ClCN < BrCN < ICN < NH2CN < Pyridin und AsCl5 < SbCl5. Ferner wurden in dieser Arbeit die Molekülstrukturen der Verbindungen [NEt4][SbCl6], [PPh4][SbCl4] · CHCl3 (Kap. 3.1.7), [NH4][SbCl6] (Kap. 3.6.3) und[NMe4]2[As4O2Cl10] (Kap. 3.5.3) durch Röntgenstrukturanalyse gelöst. Das As4O2Cl10 2– -Anion weist eine ungewöhnliche Struktur auf. Das Anion besitzt im Kristall D2h-Symmetrie, in denen vier Arsenatome und zwei Sauerstoffatome coplanar angeornet sind. Jedes Arsenatom weist eine lokale Ψ -oktaedrische Geometrie auf, in denen es von vier Chloratomen in nicht-äquivalenten äquatorialen Positionen (zwei verbrückende- und zwei terminalen Chloratome) und einem stereochemischen aktivem Elektronenpaar in trans Position zu dem axial verbrückendem Sauerstoffatom umgeben ist. Die Bindungssituation dieses Anions wurde durch NBO-Analyse geklärt. Die verbrückenden Chloratome übertragen jeweils eine Ladung von 0.374 Elektronen auf eine Cl2As-O-AsCl2-Einheit. Dabei sind hauptsächlich Wechselwirkungen der s-LP´s der verbrückenden Chloratome mit den antibindenden σ∗-Orbitalen der As-Clterm.-Bindungen erkennbar. Diese Wechselwirkungen spiegeln sich in den relativ langen As-Clterm.-Bindungen (2.219(1) Å) wieder. Ein weiters Ziel dieser Arbeit war die Synthese und strukturelle Charakterisierung von Azid-Komplexen der Metalle Palladium und Platin. Die Palladiumazid-Komplexe L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) wurden erstmalig synthetisiert und eindeutig mittels IR-, Raman- und 14 N-NMR-Spektroskopie charakterisiert. Die Ergebnisse dieser spektroskopischen Untersuchungen deuten auf trans-stehende Azidliganden. Diese Ergebnisse konnten teilweise durch Röntgenstrukturanalyse bestätigt werden. Ferner wurden die von Beck et al. synthetisierten Palladiumazid-Komplexe L2Pd(N3)2 (L = PPh3, AsPh3) strukturell charaktersisiert. Ähnlich wie in L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) sind die Azidgruppen trans zueinander angeordnet. Die Struktur von Pd(PPh3)2(N3)2 ist hier als Beispiel angegeben (Abbildung 51). In dem gemischt valenten Chlorid/Azid-Komplex [AsPh4]2[Pd2(N3)4Cl2] liegen die Pd(N3)2Cl – -Anionen als azidverbrückte Dimere vor, die einen planaren Pd2N2-Ring ausbilden. Desweiteren wurden in vorliegender Arbeit die binären Palladiumazid- und Platinazid- Anionen Pd(N3)4 2– , Pt(N3)4 2– und Pt(N3)6 2– strukturell charakterisiert. Auftretende Probleme bezüglich N-N-Abständen innerhalb der Azid-Einheiten konnten durch quantenmechanische Rechnungen auf HF- und B3LYP-Niveau gelöst werden. Die Tetraazid-Anionen weisen im Kristall beinahe ideale C4h-Symmetrie, und das Hexaazid-Anion annähernd ideale S6- Symmetrie auf. Für die Tetraazid-Anionen resultiert dadurch eine molekulare Struktur, die dem eines "Windrades" sehr ähnlich ist (vgl. Kap. 3.7.7). Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 45 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Originalarbeiten als Literaturstelle angegeben.