POPULARITY
Hier kommt ein Text hin Dr. Alexander Fink leitet das Institut für Glaube und Wissenschaft (IGUW, www.iguw.de) in Marburg und hat nach seinem Physikstudium in Biophysik promoviert. Seit seiner Promotion setzt er sich aktiv für einen konstruktiven Dialog zwischen Glaube, Weltanschauungen und Wissenschaften ein, z.B. durch regelmäßige eigene Vortragstätigkeit, durch Mitorganisation von neun Regensburger Symposien, Mitarbeit im Leitungsteam des European Leadership Forum u.v.a. Das IGUW veröffentlicht den „Begründet-glauben-Podcast“ und verwaltet die Multimediawebsite www.begruendet-glauben.org Kapitel 00:00 Start 01:17 Frühe Erdgeschichte und Grundbausteine des Lebens 07:18 Das Miller Experiment von 1953 13:12 Die Moleküle des Lebens und die DNA 21:27 Gibt es eine Intelligenz, die bei der Entstehung von Leben eingegriffen hat? 25:35 Unser Universum hat genau die Eigenschaften, die für die Enstehung von Leben nötig ist 28:43 Das Problem der Feinabstimmung 33:02 Naturwissenschaft oder Metaphysik 37:46 Sind wir allein im Universum? Zusammenfassende Gedanken 42:08 Zusammenfassung der 3 Vorträge _________________________________________________________________________________________________ glaubendenken ist eine Initiative von... Tobias Becker, Gemeinschaftspastor ESG (Ludwigsburg) Dr. Dominik Klenk, Publizist und Verleger (Basel) Konrad Schmid, Filmemacher Daniel Wilken (Ludwigsburg) Prof. Dr. Dr. Roland Werner, Theologe und Sprachwissenschaftler (Zinzendorf-Institut, Marburg) Unterstützung Spenden zur Unterstützung des Projekts glaubendenken überweisen Sie bitte an das Zinzendorf-Institut mit dem Vermerk „glaubendenken“. Eine Spendenbescheinigung wird am Anfang des Folgejahres versandt. Vielen Dank! Unsere Kontodaten: Empfänger: Zinzendorf-Institut IBAN DE36 5335 0000 0010 0057 44 SWIFT-BIC: HELADEF1MAR Verwendungszweck: glaubendenken Kontakt Zinzendorf-Institut Steinweg 12 35037 Marburg info@glaubendenken.net
Kohlenhydrate unser Energielieferant! Kohlenhydrate sind im Grunde genommen alle Lebensmittel, die vom Körper in Glucose als Energielieferant umbewandelt werden können. Dabei gibt es verschiedene Arten von Kohlenhydraten: einfache und komplexe. Die Molekülkette in einfachen Kohlenhydraten ist sehr kurz. Ein wichtiges Merkmal eines einfaches Kohlenhydrates ist, dass du die Süße schon in deinem Mund schmecken kannst sobald du anfängst zu kauen. Dies ist der Fall für alle zuckerhaltigen oder verarbeiteten Produkte. Du kannst ein kleines Experiment machen: nimm ein Stück Brot oder ein Stück herzhaftes Gebäck und kau es für ein paar Minuten und du wirst anfangen die Süße zu schmecken. Dies geschieht weil es ein einfaches Kohlenhydrat ist, dass durch die Enzyme im Speichel zersetzt wird, was dazu führt, dass du die Glucose schmecken kannst. Das Problem mit einfachen Kohlenhydraten ist, dass sie den Blutzucker erhöhen und somit bewirken, dass der Körper auf einmal zuviel Insulin freisetzt. Dadurch, dass die Insulinreaktion spontan und unkontrolliert war, wird sehr viel Insulin freigesetzt. Daher ist selbst nachdem der Zucker aus dem Blut entfernt wurde, noch einiges an Insulin in der Blutbahn. Insulin ist ein fleißiges Hormon und verlangt nach mehr Zucker wenn es nicht beschäftigt ist während es in der Blutbahn ist. Dies wiederum, führt zu Heißhungerattacken und macht es schwer sich satt zu fühlen. mehr über Kohlenhydrate Bist du motiviert aus deinen Grenzen auszubrechen und möchtest auch andere ermächtigen? Schreibe mir doch ein Review so dass auch andere auf die Show aufmerksam werden! Vielen Dank, das bedeutet mir die Welt!. Shownotes: Katis Show- KINDERWUNSCH UND GESUNDE FAMILIEN kannst du außerdem hier finden:Apple PodcastSpotify Katis Show - KINDERWUNSCH UND GESUNDE FAMILIEN bei Social Media:Facebook: Kati Siemens NutritionInstagram: katis_siemensBlog: KINDERWUNSCH UND GESUNDE FAMILIENWebsite: KS NUTRITIONAcademy: KS NUTRITION ACADEMY BONUS Nutze hier dein Starterpacket um erste Schritte zur Fruchtbarkeitsverbessertung zu wagen! Jetzt kostenlos, statt 149 € JETZT ANMELDEN
Ob auf der Erde Leben entstehen konnte, oder ob es entstehen musste, darüber sind sich Wissenschafter ziemlich einig: Es musste entstehen. Die Chance, dass es entstehen konnte, war gering, aber da das "Experiment", wie Gottfried Schatz es nennt, so oft und so lange durchgeführt wurde - nämlich die passenden Moleküle zu bilden - war es nur eine Frage der Zeit, bis Leben entstand. Die Moleküle des Lebens sind im Vergleich zu vielen anderen chemischen Verbindungen sehr komplex. Um diese Komplexität zu behalten und um alle notwendigen Lebensaktivitäten aufrechtzuerhalten, brauchen lebende Zellen viel Energie. Mit dieser Energie wird in ihrer Umgebung "Unordnung" erzeugt: Wärme. Die große Frage ist, woher die Energie kommt. Erste Einzeller verwendeten Energie der Erde, die sie von anderen bereits gebildeten Molekülen im Ozean erhielten. Nachdem diese Energiequelle aufgebraucht war, begannen einige von ihnen, das Licht der Sonne zu nutzen. Die Photosynthese begann, bei der als Abfallprodukt Sauerstoff entsteht, ein für die meisten damals existierenden Einzeller giftiges Gas. Die erste Umweltkatastrophe fand statt. Ihr entkamen einige wenige Einzeller, indem sie die Atmung entwickelten. Mit Hilfe von Sauerstoff werden Überreste von sonnenlichtessenden Einzellern der Umgebung "veratmet", es entsteht dabei Energie. Sehr viel Energie, die es nun ermöglicht, komplexere Aufgaben des Lebens zu bewältigen. Der "große Wurf" gelang dem "Konzept Leben", als Einzeller, die sich nur wenig Energie durch Gärung erarbeiten konnten, Einzeller, die die Atmung beherrschten, in eine symbiotische Lebensgemeinschaft einluden. Sie sind als "Zellkraftwerke" auch heute noch in jeder Zelle enthalten und werden "Mitochondrien" genannt. Durch diese Symbiose entstanden Zellen, die eigentlich aus zwei Lebewesen bestanden. Die Mitochondrien brachten ihr eigenes Erbgut mit. Das von Gottfried Schatz maßgeblich entdeckte Erbmaterial in den Mitochondrien wird übrigens nur von der Mutter an das Kind weitergegeben und ermöglicht so zum Beispiel die Rückführung der Abstammung des modernen Menschen auf nur wenige Urmütter, die in Afrika gelebt haben. Pflanzenzellen entstanden durch eine zweifache Symbiose. Einerseits durch die Einladung von "Gästen", die die Atmung beherrschen (Mitochondrien), andererseits durch die Einladung von "Gästen", die die Umwandlung von Sonnenlicht durch Photosynthese beherrschen (Chloroplasten). Interviewpartner: Prof. Dr. Gottfried Schatz Biozentrum der Universität Basel
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Anwendung der Einzelmolekülspektroskopie auf poröse Festkörper wird erstmals in dieser Arbeit beschrieben. Um diese relativ neue Methode auf die Untersuchung von Farbstoffen in porösen Festkörpern anzuwenden, wurde ein konfokales Mikroskop so umgebaut, daß es zur Detektion und Spektroskopie einzelner Moleküle einsatzfähig ist. Dafür wurden verschiedene optische Detektionssysteme aufgebaut, um alle im Fluoreszenzlicht enthaltenen Informationen zu erhalten. Mit einer Avalanche Photodiode wurde die Empfindlichkeit des Mikroskops auf die Detektion einzelner Lichtquanten gesteigert. Mit einem gepulsten Laser wurde der ZeitbereichObwohl die Einzelmolekülspektroskopie im Vordergrund der Arbeit steht, sind auch einige interessante Beobachtungen an porösen Materialien mit vielen Farbstoffmolekülen (Ensemblemessungen) durchgeführt worden. Aufgrund des hohen dreidimensionalen Auflösungsvermögen des konfokalen Mikroskopes war es möglich, auch an nur wenige Mikrometer großen Kristallen ortsaufgelöste Untersuchungen durchzuführen. Bisher war es oft nicht möglich, zwischen Oberflächeneffekten und Eigenschaften, die in der Porenstruktur hervorgerufen werden, zu unterscheiden. Untersuchungen mit vielen Farbstoffmolekülen (Ensemblemessungen) zeigten, daß auch scheinbar perfekte Kristalle im Inneren oft unregelmäßig aufgebaut sind. So wurde eine Methode entwickelt, um Defektstrukturen in Kristallen mit Fluoreszenzfarbstoff anzufärben und dreidimensional mit dem konfokalen Mikroskop darzustellen. Große kalzinierte MFI Kristalle besitzen Defektstrukturen, die sich im Inneren entlang der langen Kristallachse ausbreiten. Darüber hinaus konnte gezeigt werden, daß scheinbar homogen mit Farbstoff beladene Kristalle oft eine sehr ungleichmäßige Farbstoffverteilung besitzen. Auch Kristalle, die schon während der Synthese mit Farbstoff beladen werden, sind oft nicht gleichmäßig beladen. Dreidimensionale Fluoreszenzbilder von großen und regelmäßig aufgebauten AlPO4-5 Kristallen, die mit dem Farbstoff DCM beladen wurden, zeigten verschiedene geordnete und ungeordnete Strukturen. Durch die Analyse der Polarisation kann die Orientierung der Farbstoffmoleküle untersucht werden. Untersuchungen an verschieden großen Oxazin Farbstoffen, die während der Synthese in AlPO4-5 eingebaut wurden, zeigten, daß die Ausrichtung entlang der Porenrichtung mit steigender Molekülgröße abnimmt. Das kleine Oxazin 1 ist noch relativ gut orientiert, während das große Oxazin 750 ohne Vorzugsrichtung eingebaut wird. In verschiedenen M41S Materialien wurde die Diffusion von Farbstoff untersucht. Fluoreszenzbilder von M41S Monolithen zeigten das Eindiffundieren verschiedener Farbstoffe in den Festkörper. Über die zeitabhängige Analyse der Eindringtiefe konnten dadurch die Diffusionskonstanten ermittelt werden. Es zeigte sich, daß die Diffusion jeweils bei geladenen Molekülen, größeren Molekülen und bei kalziniertem Monolithen verlangsamt wird. Die Untersuchung des Diffusionsverhaltens in einer M41S Nadel zeigte eine etwa doppelt so schnelle Diffusion quer zur Nadel. Dies steht in Übereinstimmung zu elektronenmikroskopischen Bildern, die zeigen, daß die Nadeln aus zirkularen Poren besteht, die quer zur Nadelrichtung orientiert sind. Im Verlauf dieser Arbeit wurden erstmals einzelne Farbstoffmoleküle innerhalb von porösen Festkörpern detektiert. Im Vergleich zu Referenzproben, bei denen der Farbstoff in einer dünnen Polymerschicht eingebettet wird, ist das Signal zu Untergrund Verhältnis der Einzelmoleküluntersuchungen in den porösen Festkörpern etwas geringer. Auch an der Photostabilität der Fluoreszenzfarbstoffe konnte durch die Einlagerung in die Porenstrukturen keine Verbesserung beobachtet werden. Die Moleküle können nicht nur detektiert, sondern auch spektroskopiert werden. Dabei konnten durch die Analyse der Fluoreszenz verschiedene Parameter bestimmt werden, wie folgende Tabelle zeigt: der Detektion bis hinab in den Nanosekundenbereich erweitert. Durch den Einbau einer Lambda-Halbe Platte wurde die Polarisation des Laserlichtes beeinflußt, um die Orientierung eines einzelnen Moleküls zu bestimmen. Schließlich wurde durch den Einsatz eines Prismas und einer empfindlichen CCD-Kamera die spektrale Aufspaltung ermöglicht, um damit die Fluoreszenzspektren zu bestimmen. Mit allen Experimenten war es nicht nur möglich statische Eigenschaften der einzelnen Fluoreszenzfarbstoffe zu bestimmen, sondern auch deren dynamische Veränderungen. Eine der wichtigsten Anforderungen an organische Farbstoffmoleküle für Einzelmolekülspektroskopie ist die Photostabilität. Um geeignete Farbstoff für den Einbau in die Porenstrukturen zu erhalten, wurden die Photostabilitäten verschiedener Farbstoffe untersucht. Dazu wurden von einigen ausgewählten Farbstoffen die detektierbaren Fluoreszenzphotonen gezählt. Es stellte sich heraus, daß das Farbstoffmolekül TDI in einer dünnern PMMA Schicht eine außergewöhnlich hohe Photostabilität besitzt. Einige TDI-Molekülen emittieren sogar 10 11 Fluoreszenzphotonen bis zum irreversiblen Photobleichen. Zum anderen wurde für sehr instabile Farbstoffmoleküle eine Methode entwickelt, um durch Bleichexperimente an einem Ensemble von Molekülen mit dem konfokalen Mikroskop die Anzahl der emittierten Fluoreszenzphotonen zu ermitteln. Für den Einbau in poröse Festkörper wurden daraufhin einige Oxazinfarbstoffe und das in biologischen Untersuchungen häufig verwendete Cy5 ausgewählt. Diese Farbstoffe können im roten Spektralbereich anreget werden und besitzen mit etwa 10 7 emittierten Fluoreszenzphotonen eine relativ gute Photostabilität. Als Porenstruktur wurden besonders zwei Materialien untersucht. Die Porenstruktur AFI, die im Material AlPO4-5 vorkommt, besitzt eindimensionale Kanäle, die hexagonal wie in einer Bienenwabe angeordnet sind. Von diesem Material können auch regelmäßige Kristalle hergestellt werden, die bis zu einem Millimeter lang sind. Leider sind die Poren des AlPO4-5 mit 0,73 nm Innendurchmesser sehr eng. Alle geeigneten Fluoreszenzfarbstoffe sind etwas größer und werden daher in mehr oder weniger großen Deformationen in dem Kristall eingelagert. Größere Poren besitzen die mesoporösen M41S Materialien. In diese passen alle Farbstoffe ohne Deformation hinein. Jedoch ist die Kristallgröße der M41S Materialien auf wenige µm beschränkt. Mit der Methode der homogenen Fällung können die bisher größten hexagonal geordneten MCM-41 Kristalle hergestellt werden. Zentimeter große hexagonale M41S Festkörper (Monolithe), die durch eine Synthese mit einem Flüssigkristall hergestellt werden, verlieren, wie hier gezeigt wird, während der Synthese ihre eindimensionale Ausrichtung der Poren.Beobachtete Eigenschaft des Lichtes Information aus statischen Bestimmungen Information aus zeitabhängigen Bestimmungen Intensität immer Notwendig Raten (Singulett, Triplett, etc.) Ort Position Diffusion, Transport Polarisation Orientierung Drehung, Rotation Energie Fluoreszenzspektren spektrale Diffusion Diese verschiedenen Untersuchungsmöglichkeiten wurden aufgebaut und an einer Referenzprobe (TDI in PMMA) getestet. Für die Datenanalyse konnte zum Teil auf Methoden in der Literatur zurückgegriffen werden. Es wurde darauf geachtet, daß immer eine Fehlerabschätzung oder eine Simulation durchgeführt wurde, damit die Ergebnisse sinnvoll interpretiert werden konnten. Oft konnten schon an der Referenzprobe (TDI in PMMA) sehr interessante Ergebnisse erhalten werden. So wurden z.B. neben der extrem hohen Photostabilität zwei verschiedene Populationen der Triplettlebensdauer gemessen. Die Position eines einzelnen TDI Moleküls konnte durch die Detektion vieler Photonen auf besser als 1 nm bestimmt werden. Die Analyse von zeitabhängigen Orientierungswinkeln deutet darauf hin, daß ein TDI Molekül in PMMA noch eine sehr geringe Wackelbewegung (~1°) ausführen kann. Bei der Analyse mehrerer 10000 Fluoreszenzspektren von einem TDI Molekül konnten spontane Änderungen der Fluoreszenzwellenlänge und der Schwingungskopplung beobachtet werden. Obwohl die Messungen in den Porenstrukturen aufgrund der geringeren Photostabilität nicht so präzise Ergebnisse liefern, konnten auch hier interessante Beobachtungen gemacht werden. Durch die Analyse der Orientierungswinkel vieler individueller Farbstoffmoleküle konnte gezeigt werden, daß die einzelnen Oxazinfarbstoffe in AlPO4-5 eine gaußförmige Verteilungsfunktion bezüglich ihres Tiltwinkels zur Porenrichtung aufweisen. Die zuvor erwähnten Messungen an einem Ensemble von Molekülen können die Form der Verteilungsfunktion nicht bestimmen. Aufgrund der Kenntnis einer gaußförmige Verteilungsfunktion kann auf ein statistisches Einbauverhalten der Farbstoffmoleküle in Defektstrukturen während der Synthese geschlossen werden. Auch in einem MCM-41 Kristall, dessen große Poren jeden beliebigen Einbauwinkel des Farbstoffes Cy5 erlauben würden, wird eine bevorzugte Orientierung beobachtet. Der Orientierungswinkel zur Porenrichtung zeigt auch hier eine gaußförmige Verteilungsfunktion. Interessanterweise wird bei der frontalen Ansicht auf die hexagonale Struktur (entlang der Bienenwabenstruktur) eine bevorzugte Orientierung auf die Flächen des Sechsecks beobachtet. Eine Ensemblemessung kann unmöglich diese bevorzugte Orientierung detektieren. Neben diesem statischen Verhalten zeigen einige wenige Moleküle auch eine Änderung der Molekülorientierung. Zwei individuelle Oxazin 1 Moleküle änderten ihre Orientierung in AlPO4-5 während der Messung spontan. Im Vergleich zu den anderen Oxazin 1 Molekülen besaßen diese beiden einen ungewöhnlich großen Orientierungswinkel gegen die Porenrichtung. Vermutlich wird die Bewegung durch einen größeren Defekt der Porenstruktur ermöglicht. Ein TDI Molekül im Inneren eines M41S Monolithen zeigte sogar eine mehrfache Drehung zwischen 3 verschiedenen Orientierungen.Eine Dynamik bezüglich des Ortes zeigten einzelne TDI Moleküle im M41S Monolith. Aufgrund der starken hydrophoben Eigenschaften des TDI kann davon ausgegangen werden, daß sich der Farbstoff immer noch im Inneren der Mizelle des Flüssigkristalls befindet, aus dem der Festkörper synthetisiert wurde. Die Diffusionsbewegung kann durch eine Serie von Fluoreszenzbilden mit dem konfokalen Mikroskop direkt verfolgt werden. Entgegen der erwarteten eindimensionalen Diffusion, die die hexagonale Struktur des Monolithen eigentlich erwarten läßt, wird eine isotrope Diffusion ohne Vorzugsrichtung beobachtet (D ~ 0,04 µm 2 /s). Im reinen Flüssigkristall dagegen ist die eindimensionale Diffusion vorhanden. Vermutlich werden die eindimensionalen Poren bei der Synthese der festen Silikatwand so stark verknäult, daß auf der beobachteten Längenskala ein Festkörper ohne Vorzugsrichtung entsteht. Auch die viel langsamere Diffusion im Vergleich zum reinen Flüssigkristall (D ~ 2 µm 2 /s) kann über diese Verknäulung der Poren erklärt werden. Schließlich wurden noch Messungen durchgeführt, um simultane Änderungen der Orientierung, Fluoreszenzspektren oder Triplettraten an einem einzelnen Farbstoffmolekül zu beobachten. Besonders die gleichzeitige Detektion von Fluoreszenzspektren und der Orientierung lassen sich experimentell gut durchführen. Zur Interpretation der Ergebnisse muß hier zwischen einer starken und einer schwachen Kopplung zwischen Gast und Wirt unterschieden werden. Bei einer polaren Probe wird eine starke Wechselwirkung zwischen Gast und Wirt erwartet. Diese müßte dazu führen, daß sich Änderungen in der Orientierung auch in geänderten Fluoreszenzspektren und umgekehrt bemerkbar machen. Bei einem geladenen Molekül wie Oxazin 1 wird solch eine starke Kopplung des elektronischen Systems an die polare AlPO4-5 Umgebung erwartet. Eine starke Änderung des Fluoreszenzspektrums könnte daher von einer Umorientierung des Farbstoffes herrühren. Bei den durchgeführten gleichzeitigen Messungen konnte aber nur spektrale Diffusion (±1-20 nm), aber keine gleichzeitige signifikante Umorientierung (>3°) beobachtet werden. Eine Erklärung für dieses Verhalten könnte die Bewegung des Gegenions des Farbstoffmoleküls sein, dessen Lage einen großen Einfluß auf die Fluoreszenzeichenschaften hat. Eine Umorientierung mit gleichzeitiger Detektion der Fluoreszenzspektren konnte jedoch nicht gemessen werden. Beide Ereignisse, Umorientierungen und spektrale Änderungen, konnten an TDI im M41S Monolith detektiert werden. Dabei zeigte sich aber, daß es sich hier um zwei unabhängige Prozesse handelt. Deutliche spektrale Sprünge (> 3 nm) korrelieren nicht mit deutlichen Umorientierungen (~60°). Eine geometrische Änderung des Farbstoffmoleküls oder der näheren Umgebung scheidet daher als Ursache für die spektrale Diffusion aus. Da hier aber eine schwache Wechselwirkung zwischen dem unpolaren TDI und der unpolaren Tensidumgebung vorliegt, werden auch keine starke Änderungen der Fluoreszenzspektren während der Umorientierung erwartet. Die spektrale Diffusion wird hier vermutlich von kleinen diffundierenden Teilchen (z.B. O2 oder Ionen) verursacht, die sich unabhängig von den Farbstoffmolekül bewegen können. Die Methode der Einzelmolekülspektroskopie liefert neue Einblicke in poröse Festkörper. Besonders durch die zeitabhängigen Untersuchungen können Informationen erhalten werden, die zuvor unter dem Mittelwert verborgen blieben. Ein kleiner Teil der Arbeit beschäftigt sich mit der Tieftemperaturfluoreszenz-spektroskopie an dem grün fluoreszierendem Protein (GFP). Dafür wurden der Wildtyp und verschiedene Varianten mit Mutationen in der Umgebung des zentralen Chromophors bei 2 K untersucht. Im Vergleich zur Raumtemperatur zeigten die Spektren bei tiefen Temperaturen deutlich mehr Struktur. Dadurch konnten verschiedene Sub-Zustände in den Varianten identifiziert werden. Bei fast allen Varianten konnten durch intensive Bestrahlung langwellig absorbierende Photoprodukte erzeugt werden, die erst bei etwa 50 bis 100 K wieder zerfallen. Obwohl eine relativ starke Elektron-Phonon-Kopplung beobachtet wird, ist an einigen ausgewählten Stellen auch hochaufgelöste Tieftemperaturspektroskopie wie spektrales Lochbrennen und Fluoreszenzlinienverschmälerung möglich. Durch Temperatur-Ableitungs-Spektroskopie werden an Wildtyp-GFP die Energien und Verteilungsfunktionen der Zerfallsbarrieren der metastabilen Photoprodukte bestimmt. Schließlich wurde durch temperaturabhängige Kurzzeitspektroskopie an Wildtyp-GFP der 'Excited state proton transfer' (ESPT) charakterisiert. Für diesen wird bis etwa 50 K eine thermische Barriere nach Arrhenius mit einer Aktivierungsenergie von ~2,3 kJ/mol gefunden. Unterhalb von etwa 50 K dominiert vermutlich ein Tunnelprozeß.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war es, Arsen- bzw. Antimonverbindungen zu synthetisieren und zu charakterisieren, die Chemiker aufgrund allgemeiner Erfahrungen als instabil bzw. explosiv bezeichnen würden. Dabei wurden vier verschiedene Schwerpunkte gesetzt. (a) binäre Arsenazide und Antimonazide (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 (a) binäre Arsenazide und Antimonazide Die binären Arsenazid- und Antimonazid-Verbindungen M(N3)3, M(N3)4 + , M(N3)4 – , M(N3)5 und M(N3)6 – (M = As, Sb) wurden durch Reaktion der entsprechenden Chlorid-Verbindungen mit TMS-N3 oder aktiviertem NaN3 synthetisiert. Die Verbindungen wurden als reine Substanzen bzw. als Salze isoliert. Die Isolation der reinen Pentaazide gelang aufgrund der extremen Explosivität nicht. Die Strukturen und Normalschwingungen aller binären Verbindungen wurden auf B3LYP-Niveau berechnet. Die kationischen Spezies zeigen S4-Symmetrie, die monomeren M(N3)4 – -Anionen und die neutralen M(N3)5-Spezies Cs-Symmetrie, die dimeren [M(N3)4 – ]2-Anionen S2-Symmetrie und die M(N3)6 – -Anionen S6-Symmetrie. Abbildung 46 zeigt die berechneten Strukturen und die explosiven Eigenschaften der Verbindungen. Die berechneten durchschnittlichen M-N-Bindungslängen steigen in der Reihenfolge M(N3)4 + < M(N3)5 < M(N3)3 < M(N3)4 – < M(N3)6 – . Die N-N-Bindungslängen innerhalb der Azidgruppen zeigen eine ähnliche Tendenz. Die kationischen Verbindungen zeigen die längsten N -N - und die kürzesten N -N -Bindungslängen (Konnektivität: M–N –N –N ) gefolgt von den Neutral-verbindungen und den anionischen Spezies. Dementsprechend ist die Bindungsordnung zwischen dem N und N -Stickstoffatom (vgl. Lewisformel III, Schema 1) für die kationischen Azidverbidungen am höchsten und für die anionischen am geringsten. Diese Tendenzen stimmen gut mit den experimentell bestimmten und berechneten Schwingungsdaten für die Azidgruppen überein.Die ionischen Verbindungen werden durch voluminöse Gegenionen im Kristall stabilisiert. Die relativen kurzen N -N -Bindungslängen erklären dennoch die gesteigerte Explosivität der kationischen Verbindungen gegenüber den anionischen Spezies. Eine Eliminierung von N2 ist aufgrund dieser kurzen N -N -Bindungslängen erleichtert. Die neutralen Triazide sind außerordentlich explosiv und die Pentaazide zersetzen sich aufgrund des extrem hohen Stickstoffgehalts spontan. Es gelang erstmals eine Arsenazidverbindung durch Röntgenstrukturanalyse zu charakterisieren. Die Struktur des As(N3)6 – -Anions wurde als desses PPh4 + - und Py-H + -Salz geklärt. Das Arsenatom ist von sechs Stickstoffatomen oktaedrisch umgeben. Das Anion zeigt im Kristall zentrosymmetrische S2-Symmetrie. Die experimentell bestimmten Struktur-parameter stimmen mit den auf B3LYP-Niveau berechneten gut überein. Abbildung 47 zeigt die Molekülstruktur des As(N3)– -Anions. Die 14 N-NMR-Spektren aller Verbindungen zeigen drei Resonanzen für die nichtäquivalenten Stickstoffatome der kovalent gebundenen Azide. In den 75 As- bzw. 121 Sb-NMR-Spektren konnten nur im Falle der Hexaazidoanionen Resonanzen aufgelöst werden, da diese Kerne nur in hochsymmetrischer Umgebung aufgrund ihres hohen Quadrupolmoments detektiert werden können. (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon Gemischte Halogen- bzw. Halogen/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) konnten bisher nicht isoliert werden, da diese Verbindungen leicht in die jeweiligen Trihalogenide bzw. Pseudohalogenide dismutieren. Deratige Dismutierungen wurden in dieser Arbeit bei Reaktionen von MX3 (M =As, Sb; X = F, Br, I) mit azidübertragenden Reagentien beobachtet. Gemischte Halogen/Azid-Verbindungen von Arsen und Antimon konnten nur im Falle des Chlorids eindeutig isoliert werden. Die Dismutierungsneigung ist aufgrund der chemischen Ähnlichkeit von Chlorid und Azid am geringsten. SbCl(N3)2 wurde durch Reaktion von SbCl3 und zwei Äquivalenten NaN3 synthetisiert. SbCl2N3 konnte nur in Gegenwart von Pyridin als Lewis-Base kristallisiert werden, wobei das Lewis-Säure-Base-Addukt SbCl2N3 · 2 Pyridin entstand. Eine gemischte Chlorid/Azid-Verbindung von Arsen konnte ebenfalls in Gegenwart von Pyridin als Lewis-Base isoliert werden. Es wurde die Verbindung AsCl(N3)2 · 2 Pyridin durch Röntgenstrukturanalyse eindeutig charakterisiert. Abbildung 48 zeigt die Molekülstruktur von SbCl(N3)2. Die Molekülstrukturen der beiden anderen gemischten Chlorid/Azid-Verbindung von Arsen und Antimon sind in Kap. 3.2.4 abgebildet. Die Zentralatome sind in Übereinstimmung mit dem VSEPR-Konzept in SbCl(N3)2 Ψ -tetraedrisch, in AsCl(N3)2 · Pyridin Ψ -trigonal-bipyramidal, und in SbCl2N3 · 2 Pyridin Ψ -toktaedrisch umgeben. Die Schwingungsspektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen Banden bei 216 cm –1 und 139 cm –1 (As) und 166 cm –1 und 109 cm –1 (Sb). Diese Banden werden den Streck- bzw. Deformationsschwingung der M-NPy-Bindungen (M = As, Sb) zugeordnet. Die 14 N-NMR-Spektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, breite Resonanzen bei einer chemischen Verschiebung von δ = –164 ppm (As) und –157 ppm (Sb). Diese Resonanzen werden den Stickstoffatomen der Pyridinmoleküle zugeordnet. Sie sind im Vergleich zu freiem Pyridin deutlich verschoben (–63 ppm). Es folgt, dass die Addukte ebenso in Lösung stabil sind. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. In AsCl(N3)2 · Pyridin werden 0.20 Elektronen vom Pyridin auf AsCl(N3)2 übertragen und in SbCl2N3 · 2 Pyridin 0.27 Elektronen von den beiden Pyridinmolekülen auf SbCl2N3. Die Wechselwirkung pro Molekül Pyridin ist damit im Vergleich zu AsCl(N3)2 · Pyridin schwächer. Dieses Ergebnis spiegelt sich in den experimentell bestimmten M-NPy-Bindungslängen wieder. (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 Die Isolation der binären Spezies As(N3)5 und Sb(N3)5 gelang aufgrund der spontanen Explosionen nicht. Daher wurden die Verbindungen in situ durch Reaktion von AsF5 bzw. SbF5 mit TMS-N3 dargestellt und mit Lewis-Basen stabilisiert. Die Verbindungen As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) wurden auf diese Weise synthetisiert. Die Verbindungen sind bei Raumtemperatur stabil, explodieren jedoch heftig bei Reibung oder höheren Temperaturen. Die Strukturen und Normalschwingungen wurden auf B3LYP-Niveau berechnet. Die Zentralatome sind jeweils okatedrisch von sechs Stickstoffatomen umgeben. Fünf stammen dabei von Azidliganden und eines von der jeweiligen Lewis-Base. In Abbildung 49 ist die Struktur von As(N3)5 · N2H4 abgebildet. Die berechneten Strukturen der anderen Addukte sind in Kap. 3.3.5 zu finden. Die Schwingungsspektren zeigen alle Schwingungen die auf kovalent gebundene Azide schließen lassen. Zusätzlich sind im Bereich von 111 cm –1 bis 430 cm –1 Banden ersichtlich, die den Streck- bzw. Deformationsschwingungen der M-NLB-Bindungen zugeordnet werden. Die 14 N-NMR-Spektren von As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, Signale, die den Stickstoffatomen der jeweiligen Lewis-Basen zugeordnet werden. Diese Resonanzen sind im Vergleich zu den Resonanzen der freien N-Basen deutlich verschoben. Es folgt, dass die Addukte ebenso in Lösung stabil sind. Aufgrund der 14 N-NMR-Spektren von As(N3)5 · NCNH2 bzw. Sb(N3)5 · NCNH2 kann gefolgert werden, dass die Cyanamid-Verbindungen über die Cyanid-Einheiten an die Zentralatome koordinieren. Die 75 As- bzw. 121 Sb-NMR-Spektren belegen eine oktaedrische Koordination an den Zentral-atomen. Es konnten für alle Addukte Resonanzen in den Spektren detektiert werden. Die Bindungsdissoziationsenthalpien für die Dissoziation der Addukte gemäß Gleichung 25 wurden quantenmechanisch berechnet. M(N3)5 · LB → M(N3)5 + LB (25) (M = As,Sb; LB = Pyridin, NH3, N2H4 und NH2CN) Die Bindungsdissoziationsenthalpie ist ein Maß für die As- bzw. Sb-NLB-Bindungsstärke dieser Addukte. Die Stabilität der Addukte steigt in der Reihenfolge NH2CN < Pyridin < NH3 < N2H4 und As(N3)5 < Sb(N3)5. Die Bindungsdissoziationsenthalpien stimmen qualitativ gut mit den berechneten As- bzw. Sb-NLB-Bindungslängen überein. Die schwächsten Cyanamid-Addukte zeigen die längsten As- bzw. Sb-NLB-Bindungslängen, die stärksten Hydrazin-Addukte zeigen die kürzesten. (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 AsCl5 ist aufgrund der d-Blockkontraktion und der damit verbundenen geringer Abschirmung der hohen Kernladung sehr instabil. Addukte von AsCl5 wurden ebenso wenige beschrieben. SbCl5 hingegen ist stabil. In dieser Arbeit wurde das Koordinationsverhalten schwacher Lewis-Basen gegenüber MCl5 (M = As, Sb) sowohl experimentell als auch theoretisch untersucht. Die Verbindungen MCl5 · LB (M = As, Sb; LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) wurden auf B3LYP-Niveau berechnet, die Verbindungen SbCl5 · LB (LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) und AsCl5 · NCI konnten synthetisiert werden. Strukturen, die ein lokales Minimum (NIMAG = 0) aufweisen, wurden für alle Addukte berechnet. Die Übereinstimmung der berechneten Strukturparameter für SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 mit den durch Röntgenstrukturanalyse bestimmten Bindungs-längen und -winkel ist außerordentlich gut. Abbildung 50 zeigt die Molekülstruktur des 2:1 Addukts SbCl5 · NCCN · SbCl5. Die Strukturen zeigen eine sechsfache Koordination mit nahezu idealer oktaedrischer Umgebung an den Zentralatomen. Sie sind umgeben von fünf Chloratomen und jeweils einem Stickstoffatom der entsprechenden Lewis-Basen. Die Ramanspektren zeigen bei ca. 200 cm –1 Banden für die ν SbN-Streckschwingungen und von 83 cm –1 bis 134 cm –1 Banden für die δ SbN-Deformationsschwingungen. Die ν CN-Streckschwingungen der Addukte ergeben Banden zwischen 2187 cm –1 und 2352 cm –1 und sind damit um 18 - 76 cm –1 zu höheren Wellenzahlen im Vergleich zu den freien Cyaniden verschoben. Die 14 N-NMR-Spektren zeigen deutlich verschobene Resonanzen der Stickstoffatome im Vergleich zu den freien Lewis-Basen. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation dieser schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. Die Wechselwirkung der Lewis-Base Dicyan mit SbCl5 ist geringer als die Wechselwirkung von ClCN mit SbCl5. Basierend auf quantenmechanischen Rechnungen (B3LYP) wurde die Bindungs-dissoziationsenthalpien, die der thermodynamische Stabilität der Addukte entspricht, aller Addukte bestimmt. Die Stabilität steigt in der Reihenfolge (CN)2 < ClCN < BrCN < ICN < NH2CN < Pyridin und AsCl5 < SbCl5. Ferner wurden in dieser Arbeit die Molekülstrukturen der Verbindungen [NEt4][SbCl6], [PPh4][SbCl4] · CHCl3 (Kap. 3.1.7), [NH4][SbCl6] (Kap. 3.6.3) und[NMe4]2[As4O2Cl10] (Kap. 3.5.3) durch Röntgenstrukturanalyse gelöst. Das As4O2Cl10 2– -Anion weist eine ungewöhnliche Struktur auf. Das Anion besitzt im Kristall D2h-Symmetrie, in denen vier Arsenatome und zwei Sauerstoffatome coplanar angeornet sind. Jedes Arsenatom weist eine lokale Ψ -oktaedrische Geometrie auf, in denen es von vier Chloratomen in nicht-äquivalenten äquatorialen Positionen (zwei verbrückende- und zwei terminalen Chloratome) und einem stereochemischen aktivem Elektronenpaar in trans Position zu dem axial verbrückendem Sauerstoffatom umgeben ist. Die Bindungssituation dieses Anions wurde durch NBO-Analyse geklärt. Die verbrückenden Chloratome übertragen jeweils eine Ladung von 0.374 Elektronen auf eine Cl2As-O-AsCl2-Einheit. Dabei sind hauptsächlich Wechselwirkungen der s-LP´s der verbrückenden Chloratome mit den antibindenden σ∗-Orbitalen der As-Clterm.-Bindungen erkennbar. Diese Wechselwirkungen spiegeln sich in den relativ langen As-Clterm.-Bindungen (2.219(1) Å) wieder. Ein weiters Ziel dieser Arbeit war die Synthese und strukturelle Charakterisierung von Azid-Komplexen der Metalle Palladium und Platin. Die Palladiumazid-Komplexe L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) wurden erstmalig synthetisiert und eindeutig mittels IR-, Raman- und 14 N-NMR-Spektroskopie charakterisiert. Die Ergebnisse dieser spektroskopischen Untersuchungen deuten auf trans-stehende Azidliganden. Diese Ergebnisse konnten teilweise durch Röntgenstrukturanalyse bestätigt werden. Ferner wurden die von Beck et al. synthetisierten Palladiumazid-Komplexe L2Pd(N3)2 (L = PPh3, AsPh3) strukturell charaktersisiert. Ähnlich wie in L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) sind die Azidgruppen trans zueinander angeordnet. Die Struktur von Pd(PPh3)2(N3)2 ist hier als Beispiel angegeben (Abbildung 51). In dem gemischt valenten Chlorid/Azid-Komplex [AsPh4]2[Pd2(N3)4Cl2] liegen die Pd(N3)2Cl – -Anionen als azidverbrückte Dimere vor, die einen planaren Pd2N2-Ring ausbilden. Desweiteren wurden in vorliegender Arbeit die binären Palladiumazid- und Platinazid- Anionen Pd(N3)4 2– , Pt(N3)4 2– und Pt(N3)6 2– strukturell charakterisiert. Auftretende Probleme bezüglich N-N-Abständen innerhalb der Azid-Einheiten konnten durch quantenmechanische Rechnungen auf HF- und B3LYP-Niveau gelöst werden. Die Tetraazid-Anionen weisen im Kristall beinahe ideale C4h-Symmetrie, und das Hexaazid-Anion annähernd ideale S6- Symmetrie auf. Für die Tetraazid-Anionen resultiert dadurch eine molekulare Struktur, die dem eines "Windrades" sehr ähnlich ist (vgl. Kap. 3.7.7). Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 45 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Originalarbeiten als Literaturstelle angegeben.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In der vorliegenden Arbeit wurden drei verschiedene Schwerpunkte gesetzt: (a) Phosphonium- und Diphosphanium-Kationen, (b) Phosphor-Bor-Addukte und (c) Phosphorazid-Verbindungen. •= Es konnte gezeigt werden, daß die Phosphortrihalogenide PCl3, PBr3, PI3 und P2I4 wie auch die Phosphor-Chalkogenide P4S3 und P4Se3 aufgrund ihrer schwachen Donoreigenschaft nur sehr schwachgebundene Spezies mit Elektronenacceptoren bilden. So sind die gebildeten Komplexverbindungen X3P⋅BY3 (X = Cl, Br, I; Y = Br, I) und (P4E3)⋅(BX3) (X = Br, I) wie auch die PX4 +- (X = Br, I) und P2I5 +-Salze nur im Festkörper stabil. In Lösung hingegen neigen diese Spezies gewöhnlich zur Dissoziation. Die Donorfähigkeit von Phosphinen hingegen ist aufgrund des positiven induktiven Effekts der Alkyl- oder Arylgruppen deutlich höher. So konnte z.B. gezeigt werden, daß die Verbindungen H2PMe2 +AlCl4 − und n-Pr3P⋅BX3 (X = Cl, Br, I) im Gegensatz zu den oben genannten Komplexen auch in Lösung stabil sind. •= Die 31P-NMR-Resonanzen der PI4 +-Spezies zeigen in Abhängigkeit vom jeweiligen Anion ungewöhnlich starke Hochfeldverschiebungen im Bereich zwischen −295 ppm (PI4 +GaI4 −, ∆ δcoord = −532 ppm, Abb. 61) und −519 ppm (PI4 +AsF6 −, ∆ δcoord = −756 ppm, Abb. 61), welche auf Spinbahn-Effekte zurückzuführen sind. Durch Röntgenstrukturanalyse (PI4 +AlCl4 −, PI4 +AlBr4 −, PI4 +GaI4 −), 31P-MAS-NMR- und Schwingungsspektroskopie konnte gezeigt werden, daß das PI4 +-Kation je nach Eigenschaft des Gegenanions "isoliert" oder polymer vorliegt. Die intermolekularen Kation ⋅⋅⋅ Anion- Wechselwirkungen in den PI4 +-Komplexen nehmen in der Reihenfolge PI4 +GaI4 − ≥ PI4 +AlI4 − > PI4 +GaBr4 − ≥ PI4 +AlBr4 − > PI4 +AlCl4 − > PI4 +SbF6 − ≥ PI4 +AsF6 − ab. Die dadurch steigende P-I-Bindungsordnung (kürzere P-I-Bindungslängen, stärkere P-IKraftkonstanten) im PI4 +-Kation verursacht eine Verschiebung der 31P-Resonanz zu niedrigeren Frequenzen (höherem Feld) bzw. eine Verschiebung der Normalschwingungen zu höheren Wellenzahlen (ν1 (PI4 +) = 150 − 180 cm−1). Dieses Phänomen ist in den PBr4 +-Spezies weniger ausgeprägt ( δ = −72 bis −83 ppm, ν1 (PBr4 +) = 250 − 266 cm−1) (s. 3.1). •= Durch Auftragen der P-I-Bindungslänge gegen die 31P-chemische Verschiebung bzw. gegen die ν1-Streckschwingung des PI4 +-Kations konnte zum ersten Mal der P-I-Abstand in PI4 +AsF6 − abgeschätzt werden (d (P-I) ≈ 2.352(2) Å, s. 3.1). •= Mit den Reaktionssystemen PBr3 / I3 +MF6 − (M = As, Sb) und PBr3 / IBr / EBr3 (E = Al, Ga) gelang es erstmalig, die Existenz der bisher unbekannten gemischt substituierten Bromoiodophosphonium-Kationen PBrnI4−n + (0 ≤ n ≤ 3) durch 31P-MAS-NMRSpektroskopie nachzuweisen. Es konnte sowohl experimentell als auch durch quantenchemische Berechnungen gezeigt werden, daß der Hochfeldshift für PBrnI4−n + aufgrund der anwachsenden Spinbahn-Beiträge entlang PBr4 + < PBr3I+ < PBr2I2 + < PBrI3 + < PI4 + ansteigt (s. 3.1). •= Die Verbindungen P2I5 +EI4 − (E = Al, Ga, In) sind auf zwei unterschiedlichen Synthesewegen darstellbar. Das P2I5 +-Kation wird im Festkörper durch schwache I ⋅⋅⋅ IKontakte mit den EI4 −-Anionen stabilisiert. Die 31P-Resonanz des Phosphoratoms des PI3- Fragments zeigt eine deutliche Hochfeldverschiebung von der Resonanz von P2I4 (∆ δcoord = δ (−PI3 +, P2I5 +) − δ (−PI2, P2I4) = −267 ppm, Abb. 61), welche − wie auch in den PI4 +- Spezies − auf Spinbahn-Beiträge der schweren Iodsubstituenten zurückzuführen sind (s. 3.2). •= Durch Röntgenstrukturanalyse von H2PMe2 +AlCl4 −, welches aus HPMe2, HCl und AlCl3 dargestellt wurde, konnte die strukturelle Aufklärung der Dimethylphosphonium-Kationen HnPMe4−n + (0 ≤ n ≤ 3) vervollständigt werden (s. 3.3). •= Die Umsetzung von PBr3 mit Ph3P führte zu einer definierten Verbindung, welche durch 31P-MAS-NMR-Spektroskopie als Ph2P−PBr2 +Br− identifiziert wurde. Im Gegensatz zu früheren Arbeiten, in denen oft über die Zusammensetzung und Struktur der durch die Umsetzungen von Phosphorhalogeniden mit Alkyl- oder Arylphosphinen erhaltenen Reaktionsprodukte (orange Niederschläge) spekuliert wurde, konnte hier gezeigt werden, daß die Festkörper-Spektroskopie eine geeignete Methode zur Untersuchung derartiger Verbindungen darstellt (s. 3.4). •= Im Zusammenhang mit der Untersuchung des Koordinationsverhalten von Phosphor- Basen (Elektronendonoren) gegenüber Lewis-Säuren (Elektronenacceptoren) wie BX3 (X = Cl, Br, I) konnten zahlreiche Addukt-Verbindungen dargestellt werden (Gleichung 20). Base + BX3 → Base⋅BX3 (20) für X = Br, I: Base = PCl3, PBr3, PI3, n-Pr3P, P4S3, P4Se3 für X = Cl: Base = n-Pr3P •= Strukturell konnten die zum Teil sehr schwachgebundenen Komplexe Br3P⋅BBr3, I3P⋅BBr3 und n-Pr3P⋅BBr3 durch Röntgenstrukturanalyse am Einkristall bestimmt werden (s. 3.5 − 3.6). •= Aufgrund der 31P-MAS-NMR- und Schwingungsdaten und konnte gezeigt werden, daß die Reaktion von BX3 (X = Br, I) mit P4S3 zu apikalen Addukten, mit P4Se3 jedoch zu basalen Addukten führt. Zusätzlich konnten die Molekülstrukturen von (P4S3)⋅(BBr3) und (P4S3)⋅(BI3) durch Röntgen-Pulverbeugung eindeutig bestimmt werden (s. 3.7). •= In Analogie zu früheren Arbeiten konnte bestätigt werden, daß die Acceptorstärke (Lewis- Acidität) von BX3 (X = Cl, Br, I) in der Reihenfolge BCl3 < BBr3 < BI3 ansteigt. So bildet die schwache Lewis-Säure BCl3 nur noch mit starken Phosphor-Basen wie Alkyl- oder Arylphosphinen stabile Komplexe. Bezüglich der Stabilität der Reaktionsprodukte konnte für die BX3-Addukte (X = Br, I) sowohl theoretisch (quantenchemische Berechnungen) als auch experimentell folgende Reihenfolge beobachtet werden: P4S3 < PCl3 < PBr3 < P4Se3 < PI3 < n-Pr3P (s. 3.5 − 3.7). •= Durch Analyse der Bindungsorbitale (NBO) von X3P⋅BY3 (X = Cl, Br, I, Me) konnte gezeigt werden, daß: (a) die Bindungsordnung entlang der BCl3- < BBr3- < BI3-Addukte zunimmt und (b) der Ladungstransfer in der gleichen Reihenfolge ansteigt. blaue Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (PI3); roter Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (P2I4); grüne Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (PBr3); brauner Balken: Koordinationsshift ∆ δcoord = δ (Komplex) − δ (PCl3); orangefarbene Balken: Koordinationsshift ∆ δcoord = δ (Pap; Komplex) − δ (Pap; P4S3); lila Balken: Koordinationsshift ∆ δcoord = δ (Pbas; Komplex) − δ (Pbas; P4Se3). •= Die bei der Koordination in der Reihe Cl3P⋅BBr3 (∆ δcoord = −110 ppm) < Br3P⋅BBr3 (∆ δcoord = −149 ppm) < I3P⋅BBr3 (∆ δcoord = −268 ppm) < I3P⋅BI3 (∆ δcoord = −278 ppm) ansteigende Hochfeldverschiebung der 31P-Resonanz (Abb. 61) ist ebenfalls (vgl. PI4 +- und P2I5 +-Salze) auf Schweratomeffekte zurückzuführen (s. 3.5). •= Ein entgegengesetzter Trend wurde für die Addukte (P4E3)⋅(BX3) (X = Br, I) und (P4Se3)⋅(NbCl5) gefunden: Der Koordinationsshift der Phosphor-Chalkogenid-Komplexe ist im Gegensatz zu den Komplexen X3P⋅BY3 positiv (Verschiebung zum tieferen Feld) und liegt für die apikalen P4S3-Addukte bei ca. 50 − 60 ppm (Abb. 61). Für die basalen P4Se3-Addukte ist der Tieffeld-Koordinationsshift deutlich größer und steigt in der Reihe NbCl5 (∆ δcoord = +64.2 ppm) < BBr3 (∆ δcoord = +104.1 ppm) < BI3 (∆ δcoord = +177.0 ppm) an (s. 3.7, Abb. 61). •= Durch die Umsetzung von [PhNPCl3]2 und [(C6F5)NPCl3]2 mit TMS-N3 konnten die Phosphorazid-Spezies [PhNP(N3)3]2 und [(C6F5)NP(N3)3]2 dargestellt werden. Durch Kernresonanz- und Schwingungsspektroskopie konnte gezeigt werden, daß [PhNP(N3)3]2 sowohl in Lösung als auch im Festkörper als dimere Verbindung zweier monomerer PhNP(N3)3-Einheiten vorliegt, während das analoge Pentafluorphenylderivat durch die elektronenziehende Wirkung der perfluorierten Phenylgruppen in Lösung überwiegend monomer als (C6F5)NP(N3)3, im Festkörper jedoch als Dimer [(C6F5)NP(N3)3]2 vorliegt (s. 3.8). •= [PhNP(N3)3]2 und [(C6F5)NP(N3)3]2 konnten durch Röntgenbeugung am Einkristall charakterisiert werden (Abb. 62) und sind somit die ersten strukturell charakterisierten Phosphorazid-Spezies, in welchen das Phosphoratom verzerrt trigonal-bipyramidal von drei Azidgruppen umgeben ist. Die Molekülstruktur von [PhNP(N3)3]2 zeigt eine ungewöhnliche Bindungssituation mit vier deutlich unterschiedlichen Phosphor- Stickstoff-Bindungslängen. Sowohl im 14N-NMR-Spektrum als auch in den Schwingungsspektren (Raman, IR) konnte eine Aufspaltung durch die chemisch nicht äquivalenten Azidgruppen (eine axiale, zwei äquatoriale N3-Gruppen) beobachtet werden (s. 3.8). Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 58 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Orginalarbeiten als Literaturstelle angegeben. Tabelle 58 Im Rahmen der vorliegenden Arbeit dargestellte Verbindungen Verbindung Schwingungsspektroskopie Kernresonanzspektroskopie Röntgenstrukturanalyse Lit. PBr4 +AsF6 − Raman, IR 31P-MAS-NMR 14 PI4 +AlBr4 − Raman, IR 31P-MAS-NMR Einkristall 14 PI4 +GaBr4 − Raman, IR 31P-MAS-NMR, 71Ga-MAS-NMR 14 PI4 +AlCl4 − Raman, IR 31P-MAS-NMR Einkristall 14 PI4 +GaI4 − Einkristall 6,7,14 P2I5 +AlI4 − a Raman, IR 31P-MAS-NMR 27,31 P2I5 +GaI4 − Raman, IR 31P-MAS-NMR Einkristall 31 P2I5 +InI4 − Raman, IR 31P-MAS-NMR 31 H2PMe2 +AlCl4 − Raman, IR 31P-, 13C-, 1H-NMR Einkristall 45 Ph3P−PBr2 +Br− Raman 31P-MAS-NMR Cl3P⋅BBr3 b Raman, IR 31P-MAS-NMR 54,73 Cl3P⋅BI3 b Raman 54,73 Br3P⋅BBr3 b Raman, IR 31P-MAS-NMR Einkristall 52,73 Br3P⋅BI3 b Raman 54,73 I3P⋅BBr3 b Raman, IR 31P-MAS-NMR Einkristall 56,73,74 I3P⋅BI3 b Raman, IR 31P-MAS-NMR 57,73 n-Pr3P⋅BCl3 Raman, IR 31P-, 11B-, 13C- ,1H-NMR n-Pr3P⋅BBr3 Raman, IR 31P-, 11B-, 13C-, 1H-NMR Einkristall 74 n-Pr3P⋅BI3 Raman, IR 31P-, 11B-, 13C-, 1H-NMR (P4S3)⋅(BBr3) Raman, IR 31P-MAS-NMR Pulver 119 (P4S3)⋅(BI3) Raman, IR 31P-MAS-NMR Pulver 119,120 (P4Se3)⋅(NbCl5)a Raman, IR 31P-MAS-NMR 112,119 (P4Se3)⋅(BBr3) Raman, IR 31P-MAS-NMR 119 (P4Se3)⋅(BI3) Raman, IR 31P-MAS-NMR 113,119 [PhNP(N3)3]2 Raman, IR 31P-, 14N-, 13C-, 1H-NMR Einkristall 142 [(C6F5)NP(N3)3]2 Raman, IR 31P-, 14N-, 13C-{19F}-, 19F- NMR Einkristall 143 a Verbindung bekannt, bisher nur durch Röntgenstrukturanalyse charakterisiert; b Verbindung bereits bekannt, wurde aber in der Literatur nur schlecht charakterisiert. Durch die vorliegende Dissertationsschrift konnten neue Aspekte und Einblicke über die vielfältigen chemischen Eigenschaften und Bindungsverhältnisse binärer und ternärer kationischer Phosphor-Spezies sowie Phosphor-Bor-Addukt-Komplexe und Phosphorazide gewonnen werden. Insbesondere gibt diese Arbeit einen Überblick über den Einfluß und das Ausmaß relativistischer Effekte am Phosphor in Gegenwart schweren Halogensubstituenten, denn: "Aufgabe der Naturwissenschaft ist es nicht nur, die Erfahrung stets zu erweitern, sondern in diese Erfahrung eine Ordnung zu bringen." Niels Bohr (1885 − 1962), dänischer Physiker, Nobelpreis für Physik (1922).
Die Reaktion von Dichlorethin mit Pd(PPh3)4 oder RhCl(PPh3)3 führt zu Komplexen mit einem Phosphoniumacetylid-Liganden, Ph3P+ CC−. Ein Platin-Komplex mit demselben Liganden kann durch Reaktion von Pt(PPh3)2(C2H4) mit[Ph3PCCCl]+Cl− dargestellt werden. Die Molekülstruktur des Palladium-Komplexes wurde durch Kristallstrukturanalyse bestimmt.