POPULARITY
Dorothy Crowfoot Hodgkin war eine außerordentliche Wissenschaftlerin, deren Entdeckung unter anderem den Verlauf des zweiten Weltkriegs beeinflusste... Als dritte Frau überhaupt erhielt Dorothy für ihre Entdeckungen den Chemie-Nobelpreis und blieb doch bescheiden. Sie wusste quasi schon mit zehn Jahren, dass sie Chemikerin werden wollte und zog ihren Traum, trotz einiger Widerstände durch. Zwei Weltkriege, eine schwere Erkrankung und Vorurteile in dem männlich dominierten Fachgebiet hielten sie nicht auf. Die Chemikerin erforschte verschiedenste Kristallstrukturen und erlangte schließlich DEN Durchbruch. Verleihung des Chemie-Nobelpreis an Dorothy: https://bit.ly/46M9QMp Kristallstrukturanalyse (Super Video!!): https://bit.ly/44kFUpi Und damit willkommen zu unserem True Science-Podcast! Wir reden über die absurden, irren, romantischen und verworrenen Geschichten hinter Entdeckungen und Erfindungen. Denn in der Wissenschaft gibt es jede Menge Gossip! Wir erzählen zum Beispiel, wie die Erfinderin des heutigen Schwangerschaftstests mit Hilfe einer Büroklammerbox den Durchbruch schaffte, oder wie eine Hollywood-Schauspielerin den Grundstein für unser heutiges WLAN legte. Immer samstags - am Science-Samstag. Wir, das sind Marie Eickhoff und Luisa Pfeiffenschneider. Wir haben Wissenschaftsjournalismus studiert und die Zeit im Labor schon immer lieber zum Quatschen genutzt. Schreibt uns gerne (podcast@behindscience.de)! Wir lieben Feedback, Themenwünsche und nette Grüße. Bei Instagram (behindscience.podcast) versorgen wir euch zwischen den Folgen mit Wissen. Hinweis: Die Werbung in dieser Folge erfolgt automatisiert. Wir haben keinen Einfluss auf die Auswahl. Vermarktung: Julep Media GmbH | Grafikdesign: Mara Strieder | Sprecherin: Madeleine Sabel | Fotos: Fatima Talalini
Diamanten aus CO2: Kann das Treibhausgas in Kristallstrukturen dauerhaft gespeichert werden? Dale Vince hat eine Technologie entwickelt, um dem umweltschädlichen Abbau von Diamanterz entgegenzuwirken. DW-Reporter Ahmad Kalaji hat nachgefragt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 04/06
Die vorliegende Arbeit stellt die Ergebnisse der Untersuchungen aus zwei Themengebieten vor. Der erste Teil der Arbeit widmet sich der Synthese sowie der Komplex- und Strukturchemie von (Amino)phosphin- und -phosphonsäuren. Anhand von mehr als 20 neuen Kristallstrukturen wurden erstmals systematisch die Koordinationseigenschaften von Vertretern dieser interessanten Verbindungsklasse untersucht. Im Mittelpunkt des Interesses bei der Analyse der Kristallstrukturen stand die Art und Weise der Koordination der Phosphinato- bzw. Phosphonatoliganden an das Metallzentrum sowie die Rolle der Wasserstoffbrückenbindungen bei der Ausbildung der Kristallstruktur. Das zweite behandelte Themengebiet der vorliegenden Dissertation stellt die Entwicklung und Optimierung von Synthesewegen zu chiralen und achiralen Heterophospholen, sowie die Untersuchung der Stereoselektivität der 1,2-Additionsreaktion an der Phosphor-Element-Doppelbindung dar.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Wed, 17 Dec 2008 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/9566/ https://edoc.ub.uni-muenchen.de/9566/1/Jakubcova_Petra.pdf Jakubcova, Petra ddc:540, ddc:500, Fakul
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Tue, 21 Dec 2004 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/4113/ https://edoc.ub.uni-muenchen.de/4113/1/Pocha_Regina.pdf Pocha, Regina
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In dieser Arbeit werden neue Kohlenhydrat-Komplexe mit Palladium(II) und Kupfer(II) beschrieben. Die Verbindungen mit Palladium(II) werden durch ein- und zweidimensionale NMR-Spektroskopie in Lösung und durch Einkristall-Röntgenstrukturanalyse identifiziert, während Verbindungen von Kupfer(II) durch ihre Redoxstabilität in Lösung und Einkristall- Röntgenstrukturanalysen charakterisiert werden. Besonderes Augenmerk wird in dieser Arbeit auf Metallkomplexe mit reduzierenden Zuckern gelegt, denn hier existierten noch keine strukturell charakterisierten Komplexe mit Kupfer(II) oder Palladium(II). Strenge Regeln für die Koordination von Zuckeralkoholen in Pd-en konnten mit Hilfe der 13C-NMR-Spektroskopie ausgearbeitet werden. Hierbei wurde zum ersten Mal eine Koordination von zwei Pd(en)-Fragmenten in einer Threit-Teilstruktur bei der Verbindung mit dem Zucker-alkohol Xylit 1 röntgenstrukturanalytisch nachgewiesen. Es wurden Lösungen von Palladium(II) mit reduzierenden Zuckern stabilisiert. Dabei wurde die Röntgenstruktur der in Pd-en entstehenden Metall-koordinierten Verbindungen von rac-Mannose 2, D-Arabinose 3, D-Ribose 4, D-Glucose 5 und D-Galactose 6 aufgeklärt. Die Strukturen 3–6 sind die ersten Kristallstrukturen von Metall-Komplexen dieser reduzierenden Zucker. Auch konnte das erste Mal ein Metallkomplex mit einem reduzierenden Zucker in der Pyranose-Form strukturell charakterisiert werden. Die Lösungen dieser Zucker in Pd-en wurden mit Hilfe der zweidimensionalen NMR-Spektroskopie untersucht und der Anteil von den jeweiligen verschiedenen vorhandenen Konfigurationen der Zucker in Lösung bestimmt. Neue [(RNH2)2Pd(OH)2]-Reagenzien wurden synthetisiert, wobei die beiden Amin- Liganden im Gegensatz zum bisher untersuchten [(en)Pd(OH)2] durch keine Alkylbrücke verbunden sind. Ihre Koordination an Polyole wurde mit Hilfe der Röntgenstrukturanalyse charakterisiert, wobei Strukturen von Pd-NH3 mit Erythrit 7 und von Pd-MeNH2 mit Dulcit 8 bestimmt wurden. NMR-spektroskopische Untersuchungen zeigten, dass die Anbindung an Zuckeralkohole analog dem Pd-en erfolgt. Dies ist jedoch nicht mehr der Fall, wenn der Platz für die Anbindung an Kohlenhydrate geringer ist. So konnte gezeigt werden, dass der sterische Anspruch der [(RNH2)2Pd(OH)2]-Reagenzien in der Reihe Pd-en ≈ Pd-NH3 < Pd-MeNH2 < Pd-iPrNH2 deutlich steigt. Während reduzierende Zucker stets an zwei Pd(en)-Fragmente anbinden, binden sie meist nur einmal an Pd(iPrNH2)2-Fragmente an. Dabei erfolgt die Koordination stets über O1 und O2. Dieser steigende Platzbedarf zeigt sich auch in Komplexen mit Cyclodextrinen. Hier konnten erstmals heteroleptische Metall-Komplexe von Cyclodextrinen mit Palladium(II) strukturell charakterisiert werden. Sowohl mit α-Cyclodextrin und Pd-NH3 bzw. Pd-iPrNH2 als auch mit γ-Cyclodextrin und Pd-iPrNH2 (Strukturen 9–11) erhält man Strukturen, bei denen jede zweite Anhydroglucose-Einheit an Palladium anbindet, wobei die nicht-koordinierenden Hydroxy-Gruppen O2-H und O3-H intramolekulare Wasserstoffbrückenbindungen zu den deprotonierten Alkoxy-O-Atomen benachbarter Anhydroglucose-Einheiten ausbilden. 13CNMR- Spektren ergaben hier für Pd-en und Pd-NH3 in Lösung Gemische, die auf Spezies hinweisen, bei denen mehr als jede zweite Anhydroglucose-Einheit an Palladium koordiniert. In Lösungen mit Pd-iPrNH2 wurden lediglich die kristallisierten Spezies gefunden. Beim Versuch, ungewöhnliche Polyol-Strukturen mit Palladium-Zweikernkomplexen zu stabilisieren, wurden die neuen Komplexe Dihydroxy-µ-oxo-[1,3-bis(2’-(dimethylamino)- ethyl)-hexahydropyrimidin]-dipalladium(II), Dihydroxy-µ-oxo-[1,3-bis(2’-(dimethylamino)- ethyl)-imidazolidin]-dipalladium(II), Tetrahydroxy-[N,N´-bis(2-(dimethylamino)ethyl)-α,α´- diamino-p-xylol]-dipalladium(II) und Tetrahydroxy-[N,N´-bis(2-(dimethylamino)ethyl)-α,α´- diamino-m-xylol]-dipalladium(II) hergestellt. Die ersten beiden aufgeführten Komplexe stabilisieren Polyolato-Komplexe mit Palladium(II) in einer Pd2-µ-Triolato(3−)-Koordination, wobei jeweils die Verbindungen mit Dulcit [(C12H28N4)2Pd4(DulcH−6)] ⋅ 2 Cl ⋅ 16 H2O (12) bzw. [(C11H26N4)2Pd4(DulcH−6)] ⋅ 2 Cl ⋅ 16 H2O (14) strukturell charakterisiert wurden. Die langsame Oxidation von Galactose in Lösungen des erstgenannten Komplexes führte zur Kristallisation des Galactonsäure-Komplexes [(C12H28N4)2Pd4(Gal1AH−6)] ⋅ 2 Cl ⋅ 16 H2O (13). 13CNMR- spektroskopische Untersuchungen zeigten, dass Dihydroxy-µ-oxo-[1,3-bis(2’- (dimethylamino)-ethyl)-hexahydropyrimidin]-dipalladium(II) und Dihydroxy-µ-oxo-[1,3- bis(2’-(dimethylamino)-ethyl)-imidazolidin]-dipalladium(II) an reduzierende Zucker an den Atomen O1–O3 in ihrer Pyranose-Form anbinden, und dass hier stets eine Hauptspezies entsteht. Das an das mittlere verbrückende O-Atom gebundene C-Atom zeichnet sich im 13CNMR- Spektrum durch CIS-Werte von über 20 aus. Bei Diolato-Koordination beobachtet man lediglich CIS-Werte von ca. 10. Die hier gebildeten Komplexe sind unzersetzt löslich in Wasser und bei Raumtemperatur mehrere Stunden stabil. Die beiden oben aufgeführten Xylol- Komplexe bewirken eine Bisdiolato-Koordination der Polyole, wie man an den Strukturen der p-Xylol-Verbindung mit Ethylenglykol [(C16H30N4)Pd2(EthgH−2)2] ⋅ 11 H2O (15) und an der Struktur der m-Xylol-Verbindung mit Dulcit [(C16H30N4)2Pd4(Dulc2,3,4,5H−4)2] ⋅ 18 H2O (16) erkennen kann. Daher koordiniert auch nicht ein Polyol-Molekül an die beiden Pd-Atome eines Xylol-Liganden, sondern an Pd-Atome zweier verschiedener Liganden. Mit der Aufklärung der Struktur von Dulcit in Cu-en 17 konnte das noch fehlende Glied in der Reihe homoleptischer und heteroleptischer Komplexe von Kupfer(II) mit Erythrit und Dulcit charakterisiert werden. Hierbei koordinieren ähnlich wie beim Pd-en zwei Cu(en)- Fragmente an das Tetraolat in der Erythrit-Teilstruktur. Erstmals wurden Lösungen von Kupfer(II) und reduzierenden Zuckern so stabilisiert, dass Kristallstrukturen von Koordinationsverbindungen aus diesen Lösungen beschrieben werden konnten. Mit den Amin-Liganden Ethylendiamin und Ammoniak konnten trinukleare Komplexe mit D-Lyxose kristallisiert und ihre Strukturen 18 bzw. 19 beschrieben werden. Dabei wurde der erste Polyol-Komplex aus Schweizers Reagenz beschrieben. Bei allen Kupfer- Komplexen zeigt sich hierbei eine Stabilität von Cu2-µ-Triolato(3−)-Fragmenten. Die Strukturen von zwei Cu7-Clustern wurden mit den reduzierenden Zuckern D-Mannose 20 und DRibose 22 und den Hilfsliganden Ethylendiamin bzw. Hydroxyethyl-ethylendiamin bestimmt, wobei hier die Amin-Hilfsliganden teilweise am anomeren C-Atom N-glycosidisch anbinden. Ein Cu5-Cluster 21 konnte mit Mannose und Cu(OH)2 im stark alkalischen Medium ohne Zugabe eines Amins hergestellt und strukturell charakterisiert werden. Bei all diesen ClusternGibt man N,N´-Bis(2-(dimethylamino)ethyl)-α,α´-diamino-p-xylol zu Suspensionen aus Cu(OH)2 und Xylit, so erhält man Kristalle eines Cu18-Clusters 23, der in seinem Torus zwei Aceton-Moleküle eingelagert hat. Auch hier sind wieder eckenverknüpfte Cu3O3-Sechsecke charakteristisch für die Struktur. Eine unerwartete Reaktion wurde mit demselben Liganden bei Zugabe von D-Ribose gefunden. Hierbei entstand aus dem N-Alkyl-N´,N´- dimethylethylendiamin-Fragment, der D-Ribose bzw. ihren Abbauprodukten und aus Kupfer( II) eine Verbindung 24, die als Amin-Liganden cis-4,5-Dihydroxy-1,3-bis(2’- (dimethylamino)ethyl)-imidazolidin enthält. D-Ribose liegt dabei in der 1C4-Form vor, weil sie so über die O-Atome O1–O3 in der optimalen cis-cis-äquatorial-axial-äquatorial Konfiguration an das Cu2-µ-Triolato(3−)-Fragment koordinieren kann. Der trikationische Kupfer-Zweikernkomplex Diaqua-µ-hydroxy-[3,6-Bis(2’-pyridyl)- pyridazin]-dikupfer(II) ergibt mit Luftsauerstoff durch Reduktion mit einem reduzierenden Zucker eine für Kupfer(II) sehr ungewöhnliche Struktur 25 mit einer µ4-Peroxy-Einheit. Mit dem Liganden 1,4-Bis(2´-aminoethyl)-piperazin erhält man bei Zugabe von Kupfer(II) bei offenem Stehen an der Luft einen für Kupfer ungewöhnlich gebundenen Carbonat-Komplex 26, bei dem der Carbonat-Ligand über zwei O-Atome an das Kupfer bindet und somit ein Vierring entsteht. sind zwei über ein Kupfer-Atom eckenverknüpfte Cu3O3-Sechsecke vorhanden.
Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Diese Arbeit präsentiert Ergebnisse an piezoelektrischen Materialien aus der Langasitfamilie, die unter extremen Bedingungen untersucht wurden. Die Einkristalle aus dieser Familie, vor allem La3Nb0.5Ga5.5O14 (LNG) und La3Ta0.5Ga5.5O14 (LTG), sind vielversprechende Materialien für Oberflächenwellen (OFW) –Substratmaterialien, die in der mobilen Kommunikationstechnik der Frequenzsteuerungsgeräte (mobile Kommunikation, Sensoren, usw.) und bei Hochtemperatur- OFW- Anwendung finden. Mit LNG und LTG OFW-Sensorelementen können physikalische Meßgrößen, wie Druck und Temperatur erfaßt werden. Aus diesem Grund sind die Strukturuntersuchungen an LNG und LTG bei verschiedenen Drucken und Temperaturen extrem wichtig. Die Struktur von LNG und LTG ist unter normalen Bedingungen trigonal mit der Raumgruppe P321. In der Struktur sind die schweren Atome polyedrisch von Sauerstoffatomen koordiniert. Vier Polyedertypen bilden decaedrisch-oktaedrische und tetraedrische Schichten. Diese sind in einer A-B- Stapelfolge senkrecht zur c-Achse angeordnet. Die Kristallstrukturen von LNG und LTG wurden mittels Röntgenstrukturanalyse an LNG- und LTG- Einkristallen in Hochdruck- Diamant -Stempel Zellen unter Druck bis 23GPa untersucht. Die Proben für diese Forschungsarbeit wurden von den Forschungsgruppen von B. V. Mill (Rußland) und J. Bohm (Deutschland) freundlicherweise zur Verfügung gestellt. Als druckübertragende Medien wurden Alkohol und Helium benutzt. a- Quarz Kristalle und die Rubinfluoreszenzmethode wurden zur Druckmessung herangezogen. Die Experimente mit Röntgenstrahlung wurden im eigenen Labor und am Hamburger Synchrotronstrahlungslabor (HASYLAB, Beamline D-3) durchgeführt. Die Gitterkonstanten und Reflexintensitäten von LNG und LTG wurden unter Drucken bis 22,8 beziehungsweise 16.7GPa gesammelt. Innerhalb des erforschten Druckbereichs nimmt das c/a- Verhältnis von 0,6232 bis 0,6503 für LNG und von 0,6227 bis 0,6350 für LTG zu. Folglich ist die a-Achse die an stärksten komprimierte Richtung in beiden Substanzen. Damit zeigen LNG und LTG unter Druck ein anisotropes Verhalten, das durch unterschiedliche Bindungsstärken in den Richtungen parallel zu den a- beziehungsweise c- Achsen bedingt ist. Unter hydrostatischem Druck ist die Komprimierung der c- Richtung (also zwischen den Schichten) steif, was wegen der weniger flexiblen Verknüpfung der Polyeder (gemeinsame Kanten) verständlich ist. Demgegenüber ist die Komprimierung innerhalb der ab- Ebene (also innerhalb der Schichten) größer und kann hauptsächlich durch die abnehmenden Volumina und Verzerrungen der Polyeder erreicht werden. Weil die Kristallstrukturen von LNG und LTG wegen der hohen Symmetrie und der Polyederkopplungen sehr steif sind, führt die Komprimierung dieser Strukturen zu einer Zunahme der internen Spannungen und endet bei einem Druck von 12.4(3)GPa für LNG und 11.7(3)GPa für LTG mit einem Phasenübergang in Strukturen mit niedrigerer Symmetrie. In dem untersuchten Druckbereich sind die Kompressibilitäten entlang der c-Achse fast identisch für LNG und LTG. Andererseits sind die Druckabhängigkeiten der a Gitterparameter dieser Materialien nur für die Ausgangsphase ähnlich, während die Achsenkompressibilitäten für die Hochdruckphasen von LNG und von LTG unterschiedlich sind. Die Volumenkompressibilitäten des trigonalen LNG und LTG sind 0.007GPa -1 , die entsprechenden Kompressionsmodule sind 145(3)GPa und 144(2)GPa. Der Kompressionsmechanismus von LNG und LTG kann wie folgt beschrieben werden: Eine Erhöhung des Drucks verursacht eine Reduzierung der Gittervolumina von LNG und LTG. Folglich verringern sich die Abstände zwischen den Ionen. Auf diese Weise werden die größten Kationen (La 3+ ) innerhalb der ab- Fläche verschoben, um die Abstände zwischen den positiv geladenen benachbarten Ionen (Ga 3+ /Nb 5+ (Ta 5+ )) zu maximieren. Auf die gleiche Weise bewegen sich die tetraedrisch koordinierten Ga 3+ -Ionen. Wegen der Anionen-Kationenbindungsverkürzung versuchen die Polyeder zu rotieren. Nun werden diese Drehungen durch die gemeinsamen Ecken und/oder Kanten der benachbarten Polyeder behindert. Außerdem werden diese Bewegungen durch die geringe Flexibilität begrenzt, die durch die Symmetrie (zwei- und drei- zählige Achsen) verursacht wird. So resultiert die Komprimierung hauptsächlich aus Verkleinerungen der Polyedervolumina. Folglich steigen unter zunehmenden Druck die Spannungen innerhalb der Polyeder, vor allem innerhalb der kleinsten Polyeder (GaO4-Tetraeder), wegen deren geringer Flexibilität. Bei einem Druck von 12(1)GPa resultiert die Komprimierung von LNG und LTG in einer Transformation aus der Hochsymmetriephase in eine Niedersymmetriephase. Es kann gefolgert werden, daß dieser Phasenübergang durch die Zunahme der Spannungen innerhalb der Polyeder verursacht wird. Die Hochdruckphase ist verzerrter als die ursprüngliche Phase und beinhaltet mehr Freiheitsgrade für weitere Komprimierungen. Die Hochdruckphasen von LNG und von LTG können in Strukturmodellen mit monokliner Symmetrie (Raumgruppe A2) verfeinert werden. Die Kompressionsmodule sind B0=93(2)GPa und B0=128(12)GPa für die Hochdruckphasen von LNG beziehungsweise von LTG. Die entsprechenden Kompressibilitäten der Hochdruckphasen sind 0.011GPa -1 für LNG und 0.008GPa -1 für LTG. Somit zeigen die Hochdruckphasen unterschiedliche Kompressibilität, die durch eine Nb 5+ - Ta 5+ Substitution gut erklärt werden kann. Die Kompressibilität der Hochdruckphase von LNG ist größer als der entsprechende Wert für das Hochdruckpolymorph von LTG. Dieses Phänomen kann durch die größere Verzerrung von NbO6- Polyedern im Vergleich zu TaO6- Polyedern gut erklärt werden, welche durch die höhere Polarisation der Sauerstoffanordnung bei Nb 5+ -Kationen verursacht wird. Außerdem sind die Kompressibilitäten der Hochdruckphasen größer als die entsprechenden Werte für die Ausgangsphasen von LNG und LTG. Die Beobachtung einer Zunahme der Kompressibilität weis auf zusätzliche Polyederverkippungen hin. In den meisten Fällen ergibt sich die zusätzliche Freiheit aus dem Symmetriebruch. Das erklärt eine (auf den ersten Blick ziemlich unerwartete) erhöhte Kompressibilität der Hochdruckphase. Zusätzlich kann sich durch ein anomales Elastizitätsverhalten eine Steigerung der Kompressibilität der Hochdruckphase ergeben. Bei einer Zunahme des Druckes über 22GPa hinaus wird die Komprimierung der monoklinen Kristallstruktur von LGN vermutlich zu einer drastischen Strukturänderung führen, die von Änderungen der Korrdinationszahlen begleitet ist. Wahrscheinlich werden ähnliche Prozesse auch im LTG statt finden, jedoch unter höherem Druck. Im folgenden Teil dieser Arbeit wird die thermische Expansion der Gitterparameter von LNG, LTG und La3SbZn3GeO14 (LSZG) dargestellt. Die Hochtemperaturmessungen wurden mit dem Pulverdiffraktometer im HASYLAB an der beamline B2 durchgeführt. Die Temperaturabhängigkeit der Gitterparameter von LNG und von LTG wurde an polykristallinem Material bei Temperaturen von Raumtemperatur bis 850°C durchgeführt. Die thermischen Expansionen der Gitterparameter von LNG und LTG sind in diesem Temperaturbereich fast identisch. Die thermischen Expansionskoeffizienten des Gittervolumens aV (24°C- 850°C) von LNG und LTG betragen 22.563(7)x10 -6 °C -1 beziehungsweise 20.651(7)x10 -6 °C -1 . Deutliche Veränderungen der Temperaturabhängigkeit der Gitterparameter werden für die a- Richtung beobachtet. Folglich ist das Verhalten dieser Materialien bei thermischer Expansion ebenso wie bei Komprimierung anisotrop. Für einen Vergleich des Einflusses von Druck und Temperatur auf die Gitterparameter von LNG beziehungsweise LTG wurden die Druck und Temperatur- Abhängigkeiten des c/a- Verhältnisses gemeinsam aufgetragen. Es zeigt sich, dass eine lineare Abhängigkeit besteht. Daraus läßt sich ableiten, dass die Änderung der Gitterparameter von LNG (LTG) während der Abkühlung von 850°C auf Raumtemperatur einer Änderung der Gitterparameter von LNG (LTG) unter Zunahme des Drucks um 1.4GPa entspricht. Die Substanz LSZG, welche in dieser Arbeit untersucht wurde, ist ein weiters Mitglied der Langasitfamilie. LSZG kristallisiert in der monoklinen Symmetrie, Raumgruppe A2. Die Temperaturabhängigkeit der Gitterparameter der monoklinen Phase von LSZG wurden mittels der Röntgenbeugung an polykristallinem LSZG bei Temperaturen von Raumtemperatur bis 800°C untersucht. Bei Temperaturen oberhalb 250(50)°C wurde ein Phasenübergang erster Ordnung festgestellt, welcher sich in Sprüngen der Temperaturabhängigkeiten der Gitterparameter des LSZG äußert. Die monokline Struktur der bei Raumtemperatur und Normaldruck stabilen Phase des LSZG entspricht der der Hochdruckphase von LNG beziehungsweise LTG. Es ist bekannt, daß die Änderungen der Kristallstrukturen bei steigenden Drucken und Temperaturen gegenläufig sind. Aus diesem Grund wird vermutet daß sich die monokline Kristallstruktur des LSZG bei Temperaturen oberhalb von 250(50)°C in eine trigonale Kristallstruktur (Raumgruppe P321) umwandelt, welche der Normaldruckphase von LNG beziehungsweise LTG entspricht. Für eine detailliertere Beschreibung des Phasenübergang von LSZG bei einer Temperaturerhöhung über 250(50)°C hinaus werden weitere Experimente benötigt. Zum Vergleich von strukturellen und physikalischen Eigenschaften seien auch die physikalischen Eigenschaften von LNG und LTG zusammenfassend dargestellt: 1. LNG- und LTG- Kristalle der enantiomorphen Kristallklasse 32 können im Gegensatz zu GaPO4 mittels Züchtung nach der Czochralski- Methode mit ausreichend hoher struktureller Perfektion hergestellt werden. 2. DTA- Messungen von LNG und LTG zeigen keine Änderungen des thermischen Verhaltens bis zu Temperaturen von 1400°C [5]. Da LNG und LTG vermutlich keine Phasenübergänge bis zu ihren jeweiligen Schmelzpunkten bei ungefähr 1470(30)°C haben, sind sie für piezomechanische Anwendungen bei hohen Temperaturen gut geignet. 3. Die Härte von LNG beziehungsweise LTG ist vergleichbar mit der von Quarz. 4. LNG und LTG sind chemisch inert und unlöslich in Säuren beziehungsweise Laugen. 5. Die Breite des Bandpassfilters von LNG oder LTG ist ungefähr dreimal größer als die von Quarz. Folglich sind LNG und LTG für Filter besser geeignet als Quarz. Im Lichte der Ergebnisse aus dieser Forschungsarbeit können folgende Empfehlungen gemacht werden: 1. Bezüglich der hoher Qualität dieser Materialien (die Halbwertsbreite der Reflexionen beträgt 0.0008°) und wegen des großen Streuvermögens, kann empfohlen werden, diese Kristalle als Test- Kristalle für die Justage an Einkristall- Diffraktometer und für Experimente mit harter Röntgenstrahlung zu benutzen. 2. Ebenso wie a-Quarz- Einkristalle [ 58 ], können diese Kristalle als interner Druckstandard in Einkristallhochdruckexperimenten benutzt werden, weil diese Kristalle eine große Anzahl von starken unabhängigen Reflexen besitzen. Andererseits kann die niedrigere Kompressibilität von LNG beziehungsweise LTG, im Vergleich zu a-Quarz, zu einer niedrigeren Druckmessungspräzision führen. Dieser Nachteil wird wiederum durch große Streuvermögen kompensiert. 3. LNG oder LTG können als Materialien für Drucksensoren bis zu sehr hohen Drucken verwendet werden. Wegen des Phasenübergangs von LNG und LTG ist der Einsatz lediglich auf 12(1)GPa begrenzt. 4. Die Temperaturabhängigkeit der Gitterparameter dieser Materialien zeigt keine Anomalie innerhalb des untersuchten Temperaturbereiches (24°C - 850°C). Somit wurde die thermische Stabilität von LNG und LTG bestätigt. Auf diese Weise können LNG und LTG im Austausch für Quarz als Substratmaterialien für Temperatursensoren sehr empfohlen werden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In dieser Arbeit werden die ersten röntgenographisch charakterisierten Kristallstrukturen von Mangan(IV)-Polyolato-Komplexen vorgestellt (1–11, 13). Ausgehend von Mangan(II) wird mittels zwei Äquivalenten Kaliumhexacyanoferrat(III) die Oxidationsstufe +IV erreicht. Alle Komplexe entstehen aus wäßriger, stark alkalischer Lösung. Die Kristallisation erfolgt in der Kälte, da Mangan(IV)-Komplexe bei Raumtemperatur innerhalb eines Tages zu Mangan(III) reduziert werden. Mangan(IV) zeigt eine starke Präferenz für Koordinationsoktaeder, welches ein stabiles Struk- turelement darstellt. Das Metallion wird von mindestens zwei 1,2-Diolato- oder 1,3-Diolato- Gruppen chelatartig koordiniert. Mangan(IV) bildet mit D-Glucon- und Lactobionsäure jeweils einen mononuklearen Komplex, KNa3[Mn(D-Glc1AH–4)2] · 7 H2O (1) und KNa2,5[Mn(Lac1AH–3,75)2] · 19,23 H2O (2). D-Glu- conato(4–)-Liganden koordinieren über die Sauerstoff-Donoren der Alkohol-Gruppen an C3, C4 und C6, während Lactobionato(3,5–)-Liganden über die Sauerstoff-Donoren der Alkohol- Gruppen an C2, C3 und C5 an Mangan(IV) binden. Dieses Koordinationsmuster entspricht einer threo-Sequenz, von der die dritte Koordinationsstelle um ein C-Atom weiter entfernt liegt. Lactobionsäure besitzt D-Gluconsäure-Teilstruktur, was sich auch im Bauprinzip wie- derfindet. In 1 liegen die Kalium- und Natrium-Ionen mit den Mangan-Atomen auf unendlich langen Strängen entlang [001]. In 2 entsteht ein dreidimensionales Netzwerk mit dimeren Un- tereinheiten aus kantenverknüpften Oktaedern. Auch mit Dulcitol gelingt es, zwei Komplexe zu kristallisieren, die das Bindungsstellenmus- ter der Lactobionato(3,5–)-Liganden aufweisen: K6[Mn(Dulc2,3,5H–3)2]2 [DulcH–2] · 12 H2O (3) und Ba4[Mn(Dulc2,3,5H–3)2]2 [Fe(CN)6] · 8 H2O (4). Die beiden Dulcitolato-Komplexe unterscheiden sich nicht vom Bindungsmodus her, sondern nur in der Art der eingelagerten Gegenionen. In 3 verknüpfen die Kaliumkationen zwei Komplexanionen aus benachbarten Strängen miteinander, des weiteren koordinieren diese an die bindenden Alkohol-Gruppen der Dulcitolato-Liganden, als auch an die Sauerstoff-Atome des zweifach deprotonierten, nicht- koordinierenden Dulcitol. In 4 beteiligen sich die Bariumkationen sowohl an der Reduktion der effektiven Ladung an Mangan als auch am Aufbau eines dreidimensionalen Netzwerks über die Anbindung an Stickstoffatome des Hexacyanoferrat(II)-Ions. Mangan(IV) und Methyl-β-D-ribopyranosid-2,3,4-ato(3–)-Liganden bilden ebenfalls ein Ko- ordinationsoktaeder, Na4[Mn(Me-β-D-Ribp2,3,4H–3)2]2 · 4 H2O (5). Methyl-β-D-ribopyranosid koordiniert in 1C4-Konformation, in welcher die drei cis-ständigen Hydroxyl-Gruppen als Tri- olatoeinheit auf einer Seite zu liegen kommen. Die Natriumkationen binden an Ligand-O- Atome und ein Wassermolekül. Es entsteht ein dreidimensionales Netzwerk mit dimeren Un- tereinheiten von flächenverknüpften Oktaedern, jedoch fehlt eine Verknüpfung der Stränge entlang [001] wie in 4. Es ist kein Wasserstoffbrückenbindungssystem vorhanden. Pentaerythritol-Liganden bilden mit Mangan(IV) zwei Komplexe, die sich nicht in ihren Bin- dungsmodi, sondern in der Art der eingebauten Gegenionen als auch in der Ladung ihrer Komplexanionen unterscheiden, KLi4[Mn(C5H9O4)(C5H8O4)][Mn(C5H9O4)2] · 21 H2O (6) und Na6[Mn(C5H8O4)2][Mn(C5H9O4)2] · 20 H2O (7). Sowohl in 6 als auch in 7 entstehen mehrere kantenverknüpfte Polyeder, die wiederum einen unendlich langen Strang bilden. Mit α- und β-Cyclodextrin sind bei Verwendung von Lithiumhydroxid als Base zwei Kom- plexe durch Kristallisation zugänglich, Li2[∆-Mn(α-CDH–2)3] · 3 EtOH · 38 H2O (8) und K3Li4[Λ-Mn(β-CDH–3,67)3] · 33 H2O (9). Die Ausbildung von intramolekularen Wasserstoff- brückenbindungen wird durch die eingebauten Gegenkationen erleichtert, wodurch es zu einer Reduktion negativer Ladung um das Zentralmetall kommt. Die Koordinationsstelle wird durch die sperrigen Liganden nach außen abgeschirmt. Eine Anbindung von Lithium- bzw. Kalium-Ionen an die koordinierenden Alkohol-Gruppen ist deshalb nicht möglich. Die La- dungskompensation um das Zentralion geschieht allein durch intramolekulare Wasserstoff- brückenbindungen. Allerdings sind die höhere Ladungsdichte des Lithium-Ions bzw. des Ka- lium-Ions und die passende Größe für die Stabilität des Komplexes entscheidend. Xylitol und D-Threitol koordinieren mit jeweils zwei Liganden an Mangan(IV), die Koordina- tionssphäre wird durch eine di-µ-Oxo-Brücke vervollständigt. Xylitol besitzt D-Threitol- Teilstruktur. Es entstehen die Komplexe Ca8[Mn2(Xylt2,4H–2)4 (µ-O)2]2 [Fe(CN)6]2 · 24 H2O (10) und Ca4[Mn2(rac-Thre2,4H–2)4 (µ-O)2] [Fe(CN)6] · 22 H2O (11). Beiden Komplexen ist die zentrale, dimere Einheit [Mn2O2]4+ gemeinsam, die in Inversionssymmetrie vorliegt. Die Koordinationspolyeder sind untereinander kantenverknüpft. Die Annäherung der Mangan(IV)- Zentren liegt in derselben Größenordnung (in 10 287,4(2) pm, in 11 284,4(6) pm). Sowohl in 10 als auch in 11 finden sich Calcium- und Hexacyanoferrat(II)-Ionen, welche für die Stabili- sierung des Komplexes erforderlich sind. In beiden Fällen entsteht ein dreidimensionales Netzwerk mit dimeren Untereinheiten von kantenverknüpften Polyedern. Die Manganzentren sind jeweils antiferromagnetisch gekoppelt (für 10: J/k = –12,2 K und für 11: J/k = –15,2 K). Cytidin bildet mit Mangan(IV) ein Koordinationsoktaeder, K2[Mn(CytH–2)3]·17H2O (13), in welchem drei Cytidin-Liganden als 1,2-Diolat wirken. Mit meso-D-Glycero-D-gulo-heptitol gelingt lediglich die Kristallisation eines Mangan(III)- Komplexes, K2Ba11[Mn2(HeptH–7)2]2 [Fe(CN)6]4 · 49,8 H2O (12). Der Heptitol-Ligand weist sieben Hydroxyl-Gruppen auf, von denen fünf für die Komplexierung des Mangan(III) betätigt werden, wobei eine Hydroxyl-Gruppe µ2-verbrückend wirkt. Die Annäherung der Man- gan(III)-Zentren beträgt 326,3(2) pm bzw. 328,7(3) pm. Der Komplex zeigt die für Man- gan(III) typische Jahn-Teller-Verzerrung, die in den µ2-Oxo-Brücken zum Ausdruck kommt. Die Manganzentren sind ferromagnetisch gekoppelt (J/k = +1,1 K). Die UV/VIS-Spektren der intensiv roten Mangan(IV)-Polyol-Lösungen zeigen nur wenig cha- rakteristische Absorptionsbanden (Schulter bei ca. 520 nm bzw. 19230 cm–1). 4.2 Untersuchungen zur Sauerstoffabsorption wäßriger Mangan(II)- Polyol-Systeme Für die Untersuchung der Sauerstoffabsorption wäßriger Mangan(II)-Polyol-Systeme entfiel die Wahl auf vier Polyole, D-Gluconsäure, Dulcitol, Xylitol und α-Cyclodextrin. Das Ver- hältnis von Base : Mangan(II) : Ligand betrug 10:1:3,5, im Fall des α-Cyclodextrins 10:1:3. Es wurden zwei Meßreihen bei verschiedenen Temperaturen, 20 °C und 5 °C, durchgeführt. Die Messungen bei 20 °C wurden zudem UV/VIS-spektroskopisch verfolgt. Als relevante Parameter sind die Konzentration der Reaktionsteilnehmer, das gewählte Ver- hältnis von Base : Mangan(II) : Ligand, der pH-Wert, die gewählte Base und die Temperatur anzusehen. Auch dem eingesetzten Liganden muß ein Einfluß zugebilligt werden. Die Untersuchungen zeigen, daß eine sukzessive Erhöhung der Mangan(II)-Konzentration bei konstantem Verhältnis von Base : Mangan(II) : Ligand und bei konstanter Temperatur sowohl das Anwachsen der Basenkonzentration sowie des pH-Wertes als auch einen steigenden Sau- erstoffverbrauch bewirken. Starke Abweichungen vom theoretisch zu erwartenden Sauer- stoffbedarf zeigen sich bei hohen Konzentrationen (0,06 M Mn(II)) der Reaktionsteilnehmer. Dies konnte in beiden Meßreihen festgestellt werden. Die bessere Löslichkeit des Sauerstoffs bei abnehmender Temperatur läßt sich bestätigen, da der Gesamtsauerstoffbedarf bei hohen Konzentrationen der Reaktionsteilnehmer niedriger lag als bei den Messungen bei 20 °C. Die spektroskopischen Daten zeigen, daß die Oxidation zunächst sehr schnell voranschreitet und schließlich immer langsamer wird. Da die Reaktionsgeschwindigkeit von der Oxidationszahl des Zentralatoms abhängt und um so schneller ist, je niedriger die Oxidationszahl des Zentral- atoms und je größer das Zentralatom ist, erfolgt die Bildung von Mangan(IV) demnach (klei- nes Metallion, hohe Oxidationszahl) langsam. Bei einer sequentiellen Oxidation von Man- gan(II) über Mangan(III) zu Mangan(IV) wird ein isosbestischer Punkt bei Verwendung von D- Gluconsäure, Dulcitol und Xylitol durchlaufen. Dieser zeigt an, daß zwei Spezies den glei- chen Extinktionskoeffizienten haben. Bei Messungen mit α-Cyclodextrin ist kein isosbesti- scher Punkt vorhanden. Daher sind wohl thermodynamische Aspekte zu berücksichtigen, die einerseits die Stabilisierung von Mangan(III) begünstigen und andererseits die Stabilisierung von Mangan(IV). Die Auswertung des Sauerstoffverbrauchs im Zusammenhang mit der Rot- verschiebung der Absorptionsbanden deckt eine Diskrepanz auf: Es ist ein Überschuß an Sau- erstoff vorhanden, welcher nicht für die Oxidation von Mangan(II) zu Mangan(IV) genutzt wird. Der Gesamtsauerstoffbedarf setzt sich folglich aus zwei Komponenten zusammen. Ab- hängig von der Einwaage an Mangan(II) dient ein Teil dazu, Mangan(II) zu Mangan(IV) zu oxidieren, der Rest des Sauerstoffverbrauchs läßt auf Ligandoxidationsprozesse schließen. Analyseverfahren wie die HPLC oder/und die Cyclovoltammetrie könnten dieses Ergebnis untermauern. Eine Ausnahme bilden Mangan(II)-α-Cyclodextrin-Systeme: Diese erreichen den theoretisch zu erwartenden Verbrauch nicht. Ob Diskrepanzen in den ermittelten Ergeb- nissen apparativ bedingt sein können, muß geprüft werden. Untersuchungen mit Wasserstoffperoxid und natronalkalischen Gluconat-Lösungen sprechen für den gleichen Sachverhalt. Der theoretisch zu erwartende Verbrauch bei hohen Konzentra- tionen der Reaktionsteilnehmer und bei gleicher Meßtemperatur wird ebenfalls überschritten. Die spektroskopischen Daten zeigen die gleiche Rotverschiebung der Absorptionsbanden. Die Annahme, daß es sich bei der reaktiven Spezies in Lösung um die gleiche handeln könnte, scheint nicht abwegig.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ein wesentliches Ziel dieser Arbeit war die Suche nach einer gezielten Darstellung von Tellur(IV)aziden. Dazu wurden zunächst eine Reihe von Diorganomonotelluriden synthetisiert und, auch im Fall des bekannten (C6F5)2Te, vollständig charakterisiert. Sie wurden durch eine Modifizierung der Literatursynthese von (C6F5)2Te erhalten, bei der Na2Te und Aryl- bzw. Alkylbromide miteinander umgesetzt werden. So konnte z.B. die Ausbeute von (C6F5)2Te (4) um ca. 50 % gesteigert werden. Bei den Umsetzungen von teil- und perfluorierten Arylbromiden mit Na2Te konnte gezeigt werden, dass sich bei einem Arylbromid in ortho-Position zum jeweiligen Bromatom mindestens zwei Fluoratome befinden müssen, damit eine Reaktion stattfinden kann. In diesem Rahmen konnten mit (CF3C6F4)2Te (2) und (C6F5)2Te (4) die ersten fluorarylsubstituierten Tellur(II)verbindungen kristallographisch untersucht werden. Die Diorganomonotelluride wurden dann durch Halogenierung mit XeF2, SO2Cl2 und Br2 zu den korrespondierenden Diorganotellur(IV)dihalogeniden umgesetzt. Bei der Fluorierung der Monotelluride zeigte sich in der Reaktivität zwischen denjenigen mit aromatischen und aliphatischen Substituenten kein Unterschied, sodass die Tellur(IV)difluoride 5摯瑬敳獩 13 isoliert und vollständig charakterisiert werden konnten. Während sich die aromatischen Monotelluride 1摯瑬敳獩 4 mit einem Überschuss an SO2Cl2 bzw. Br2 problemlos zu den entsprechenden Tellur(IV)dichloriden und –dibromiden 14摯瑬敳獩 17 und 22摯瑬敳獩 25 umsetzen ließen, zeigten die Dialkylmonotelluride ein völlig anderes Reaktionsverhalten. So konnten bei der Chlorierung nicht nur die Dialkyltellur(IV)dichloride 18摯瑬敳獩 21, sondern auch die entsprechenden Alkyltellur(IV)trichloride nachgewiesen werden. Da die Umsetzung bei einem Überschuss SO2Cl2 zu den Tellur(IV)trichloriden nicht vollständig ablief, sondern immer nur ein untrennbares Gemisch aus Tellur(IV)dichlorid und Tellur(IV)trichlorid erhalten wurde, konnten keine Tellur(IV)trichloride isoliert werden. Bei der gezielten Darstellung der Dialkyltellur(IV)dichloride aus den jeweiligen Monotelluriden müssen exakt äquimolare Mengen an Sulfurylchlorid eingesetzt werden. Bei der Umsetzung der Dialkylmonotelluride (C2H5)2Te und (n-C3H7)2Te mit einem Überschuss an Brom konnten die Dialkyltellur(IV)dibromide (C2H5)2TeBr2 (26) und (n-C3H7) 2TeBr2 (27a) isoliert und vollständig charakterisiert werden. Im Gegensatz dazu konnten von den Isoalkyltelluriden (i-C3H7)2Te und (c-C6H11)2Te stets die jeweiligen Tellur(IV)tribromide i-C3H7TeBr3 (28) und c-C6H11TeBr3 (29) erhalten werden. Auch mit stöchiometrischen Mengen an Brom ließen sich keine Diisoalkyltellur(IV)dibromide nachweisen. Dass hier neben den Tellur(IV)tribromiden auch noch unreagiertes Monotellurid gefunden wurde, legt den Schluss einer sehr schnellen Reaktion nahe. Offenbar wird beim Einsatz stöchiometrischer Mengen vorhandenes Brom bei der Bildung von Tellur(IV)tribromiden schneller verbraucht, bzw. spaltet eine Te-C Bindung schneller, als es mit weiterem Monotellurid zu reagieren vermag. Jedoch konnte nach längerer Zeit bei (n-C3H7) 2TeBr2 (27a) in Lösung die Bildung von n-C3H7TeBr3 (27b) nachgewiesen werden. Die Tellur(IV)tribromide n-C3H7TeBr3 (27b), i-C3H7TeBr3 (28) und c-C6H11TeBr3 (29) liegen im Festkörper als typische Te2Br6-Dimere vor. Die Kristallstrukturen der Tellur(IV)dihalogenide (C6H3F2)2TeF2 (5), (CF3C6F4)2TeF2 (6), (C6H3F2)2TeCl2 (14), (CF3C6F4)2TeCl2 (15) und (C6H3F2)2TeBr2 (22) zeigen allesamt die zu erwartende Ψ -trigonal-bipyramidale Geometrie für das einzelne Molekül. Aufgrund von Sekundärbindungen zwischen den Tellur- und den jeweiligen tellurgebundenen Halogenatomen, kommt es zu Ψ -oktaedrischen oder Ψ -pentagonal-bipyramidalen Geometrien im Molekülverband. Diese intermolekularen Wechselwirkungen führen dabei zur Ausbildung von polymerartigen Kettenstrukturen. Mit Hilfe der Kernresonanzspektroskopie konnte anhand der arylsubstituierten Tellur(IV)dihalogenide gezeigt werden, dass die freie Drehbarkeit um die Te-C Bindungen bei R2TeHal2 eingeschränkt ist. So erscheinen teils bei Raumtemperatur im 19 F NMR Spektrum stark verbreiterte Signale für die jeweiligen ortho-, und −in geringerem Maße − meta- Fluoratome, welche bei Temperaturerniedrigung unterhalb der Koaleszenztemperatur in je zwei Signale aufspalten. Die Energiebarrieren für diese Koaleszenz wurden dabei mit Hilfe der Eyring-Gleichung berechnet. Nach den durchgeführten Untersuchungen kann eine Pseudorotation der Liganden oder eine Dissoziation der Moleküle ausgeschlossen werden. Ebenso kann widerlegt werden, dass dieser Effekt angeblich nur bei sterisch anspruchsvollen Substituenten auftritt. Durch Reaktion der Diorganotellur(IV)difluoride mit (CH3)3SiN3 lassen sich die entsprechenden Diorganotellur(IV)diazide herstellen. Es handelt sich hierbei um feuchtigkeitsempfindliche, nicht jedoch schlag- oder stoßempfindliche Verbindungen. Sie verpuffen mit blauer Flammenfärbung unter starker Russbildung. Die Streckschwingungen der Azidgruppen von R2Te(N3)2 erscheinen in den Schwingungs-spektren im typischen Bereich von 2200摯瑬敳獩 2000 cm −1 . Ebenfalls sehr charakteristisch sind in den Ramanspektren, wie bei den Tellur(IV)dihalogeniden die ν TeHal Schwingung, die Te-N Streckschwingungen. Die ersten Kristallstrukturen von Tellur(IV)diaziden konnten von (C6H5)2Te(N3)2 (35) und (C6F5)2Te(N3)2 (36) bestimmt werden. Wie bei den Tellur(IV)dihalogeniden kommt es hier im Kristall zur Bildung von TeReaktion mit den Tellur(IV)dichloriden und Tellur(IV)dibromiden zu den entsprechenden Diorganotellur(IV)diaziden konnte auch bei Variation der Reaktionsbedingungen nicht beobachtet werden. Da allerdings berichtet wird, dass sich bis zu zwei Chloratome in TeCl4 durch Azidgruppen ersetzen lassen, wurde die Reaktion von TeCl4 mit (CH3)3SiN3 nochmals untersucht. Tatsächlich werden TeCl3N3 (43) bzw. TeCl2(N3)2 (44) gebildet und konnten jetzt vollständig charakterisiert werden. Jedoch sind diese beiden Verbindungen nicht spontan explosiv. Die beschriebenen angebliche Explosivität ist möglicherweise auf partielle Hydrolyse zum explosiven HN3 zurückzuführen. Der Austausch des dritten oder gar vierten Chloratoms bei Verwendung eines Überschusses an (CH3)3SiN3 konnte nicht erreicht werden. Analog zur Reaktion der Tellur(IV)difluoride wurden, hier ausgehend von Ditelluriden, Tellur(IV)trifluoride generiert und mit (CH3)3SiN3 versetzt. Dabei entstehen Organotellur(IV)triazide, die isoliert und vollständig R = CH 3 (30), C 2 H 5 (31), n-C 3 H 7 (32), i-C 3 H 7 (33), c-C 6 H 11 (34), C 6 H 5 (35), C 6 F 5 (36) CH 2 Cl 2 / 0 °C CH 2 Cl 2 / 0 °C R 2 TeF 2 + (CH3)3SiN3 R 2 Te(N 3 ) 2 R 2 TeCl 2 / R 2 TeBr 2 + (CH 3 ) 3 SiN 3charakterisiert werden konnten. R = Alkyl, Aryl [RTeF3 ] R 2 Te 2 - Xe XeF 2 RTe(N3 )3 (CH 3 ) 3 SiN 3 - (CH 3 ) 3 SiF Es handelt sich hier um äußerst feuchtigkeitsempfindliche Verbindungen, die jedoch nicht schlag- oder stoßempfindlich sind, aber in der Flamme mit lautem Knall explodieren. Mit CH3Te(N3)3 (37) (N 46.9 %) konnte dabei die bislang stickstoffreichste Chalcogen-Stickstoff Verbindung zweifelsfrei synthetisiert und vollständig charakterisiert werden. So ist 37 von allen dargestellten Tellur(IV)triaziden in gängigen organischen Lösungsmitteln am schwersten löslich, und explodiert in der Flamme am heftigsten. Die Streckschwingungen der Azidgruppen in den Schwingungsspektren erscheinen für die Tellur(IV)triazide im typischen Bereich von 2200摯瑬敳獩 2000 cm −1 . Ebenfalls sehr charakteristisch sind die Te-N Streckschwingungen bei 430摯瑬敳獩 330 cm −1 . Die chemischen Verschiebungen in den 125 Te NMR Spektren Tellur(IV)triatide RTe(N3)3 liegen in einem Bereich von δ = 1400摯瑬敳獩 1250 , während die Tellur(IV)diazide R2Te(N3)2 im Bereich von δ = 1150摯瑬敳獩 800 erscheinen. Von den Tellur(IV)triaziden C2H5Te(N3)3 (38), n-C3H7Te(N3)3 (39), i-C3H7Te(N3)3 (40) und 2,4,6-(CH3)3C6H2Te(N3)3 (42) konnten die Kristallstrukturen bestimmt werden. Sie sind, abgesehen von dem ionischen [Te(N3)3][SbF6], die ersten Strukturen von neutralen Tellur(IV)triaziden. Dabei kommt es auch hier zwischen den Telluratomen und den Stickstoffatomen zu Sekundärbindungen, und es werden Ψ -pentagonal-bipyramidale Geometrien beobachtet, welche zur Ausbildung von polymerartigen Kettenstrukturen führen. C Zusammenfassung Eine interessante Ausnahme bildet hierbei i-C3H7Te(N3)3 (40), bei dem dimere Einheiten gebildet werden. Hier kommt es für die Telluratome zu einer Ψ -oktaedrischen Umgebung. Te C1 N4 N7 N1 Te(i) N4(i) N8 N9 N2 N3 N5 N6 C2 C3 Für alle denkbaren Methyltellur(IV)azide des Typs (CH3)4-nTe(N3)n, sowie Te(N3)4 wurden die Totalenergien, die Nullpunktschwingungsenergien und die IR und Raman Intensitäten auf Hybrid-DFT Niveau (MPW1PW91) berechnet. Ebenso wurden die Schwingungsspektren und die Molekülstrukturen berechnet. Alle Rechnungen wurden mit Hilfe von Gaussian 98 durchgeführt. Verglichen mit den experimentellen Daten der Tellur(IV)diazide (C6H5)2Te(N3)2 (35) und (C6F5)2Te(N3)2 (36), sowie dem Tellur(IV)triazid C2H5Te(N3)3 (38), zeigen die für (CH3)2Te(N3)2 und CH3Te(N3)3 berechneten Strukturparameter eine recht gute Übereinstimmung. Vergleicht man dagegen von (CH3)2Te(N3)2 (30) und CH3Te(N3)3 (37) die berechneten mit den experimentell ermittelten IR- und Ramanschwingungen, erkennt man vor allem bei den Schwingungen der Azidgruppen einen deutlichen Unterschied. Die Abweichung der berechneten Schwingungsfrequenzen (IR und Raman) von den beobachteten kann im wesentlichen darauf zurückgeführt werden, dass bei den quantenchemischen Rechnungen stets ein harmonisches Potential angesetzt wurde, was – zumindest bei den Streckschwingungen – im allgemeinen zu zu hohen berechneten Wellenzahlen führen sollte. Die nicht exakte Berücksichtigung der Elektronenkorrelation sollte ebenfalls zu Anweichungen zwischen berechneten und experimentellen Frequenzen führen. In der Regel würde man bei Vernachlässigung der Korrelation (SCF-HF) wiederum für die Streckschwingungen zu hohe berechnete Wellenzahlen erwarten. Allerdings scheinen die DFT Austausch-Korrelations Funktionale oft die Elektronenkorrelation etwas zu überschätzen. Aus diesem Grund wurden in der vorliegenden Arbeit auch Hybrid-Funktionale verwendet, die eine Mischung aus HF-Austausch und DFT-Austausch-Korrelation enthalten. Darüber hinaus wurden die Rechnungen bei 0 K für isolierte Moleküle in der Gasphase durchgeführt, was einerseits aufgrund von real auftretenden intermolekularen Wechselwirkungen und Packungseffekten zu Abweichungen im Vergleich zu den am Feststoff vorgenommen experimentellen Messungen (IR und Raman) führen sollte. Andererseits darf auch nicht vergessen werden, dass sich die berechneten Strukturparameter auf re (re = Gleichgewichtskernabstand, Minimum der Potentialkurve) beziehen, während bei T > 0 K und einem anharmonischen Potential zumindest der thermisch gemittelte internucleare Kernabstand rg verwendet werden sollte (re ≈rg – (3/2) a (lT)2 , wobei a der Morseparameter ist und lT der quadratische Mittelwert der Vibrations-Amplitude. Die Reaktivität von R2TeHal2 gegenüber weiteren Halogeniden/Pseudohalogeniden wurde getestet. Dabei zeigten (CH3)3SiNCO und (CH3)3SiNSO mit R2TeHal2 keine Reaktion, während im Gegensatz dazu (CH3)3SiNCS, (CH3)3SiI und ((CH3)3Si)2S mit R2TeHal2 unter Bildung von (NCS)x, I2 bzw. S8 und Monotellurid R2Te reagieren. Bei der Reaktion von R2TeF2 mit (CH3)3SiCN konnten erstmalig zwei Vertreter der Tellur(IV)dicyanide, (CF3C6F4)2Te(CN)2 (45) und (C6F5)2Te(CN)2 (46), isoliert und charakterisiert werden. Diese sind in Lösung sehr instabil und zerfallen in wenigen Stunden in das jeweilige Monotellurid und wahrscheinlich Dicyan (CN)2. Die Tellur(IV)dicyanide können in den Scwingungsspektren anhand der charakteristischen CN Streckschwingung identifiziert werden. Aus der Lösung von 46 konnten nach längerem Stehen Kristalle gewonnen werden, die sich jedoch als das bislang unbekannte Hydrolyseprodukt (C6F5)2TeO erwiesen. Eine ungewöhnliche Reaktion hingegen liefern die Tellur(IV)dichloride R2TeCl2 und Tellur(IV)dibromide R2TeBr2 (R = CF3C6F4, C6F5) in CHCl3 bzw. CHBr3 mit einem Überschuss AgCN. In einem bislang nicht aufgeklärten Mechanismus entstehen in Abhängigkeit vom eingesetzten Lösungsmittel die Telluroniumhalogenide (C6F5)3TeCl (48), (C6F5)3TeBr (49), (CF3C6F4)3TeCl (50) und (CF3C6F4)3TeBr (51). Die Struktur dieser Verbindungen konnte eindeutig mit der Kristallstruktur von (C6F5)3TeCl belegt werden. In dieser Struktur kommt es auch aufgrund intermolekularer Wechselwir-kungen zwischen Tellur und Chlor zur Ausbildung einer polymerartigen Kettenstruktur. R 2 TeHal2 + AgCN R 3 TeCl R 3 TeBr CHCl 3 /14 d/25 °C CHBr3 /6 d/25 °C // R2 Te(CN)2 R = C 6 F 5 (48, 49), CF 3 C 6 F 4 (50, 51) Hal = Cl, Br Zusätzlich konnte von Dicyclohexyltellurid (c-C6H11)2Te Temperaturabhängigkeit der 125 Te und 13 C NMR Spektren festgestellt und im Detail studiert werden. Dabei zeigte sich, dass die Temperaturabhängigkeit durch die Inversion der Cyclohexylringe verursacht wird. Die zwischen −90 °C und +80 °C aufgenommen 125 Te NMR Spektren von (c-C6H11)2Te wurden berechnet und konnten mit den experimentellen Daten in Übereinstimmung gebracht werden. Ebenso konnten die Aktivierungsparameter für die Inversion bestimmt werden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Gegensatz zu den Alkalimetall-pentoliden erweckt das Gebiet der Erdalkalimetallbis( pentolide) erst seit einigen Jahren das Interesse einiger Arbeitsgruppen. Westerhausen et al. konnten vor einigen Jahren bei der Umsetzung von Diphenylbutadiin mit Calcium- und Strontium-bis[bis(trimethylsilyl)phosphanid] die Bildung von Erdalkalimetall-bis(phospholid) nachweisen. Ein alternativer Weg nutzt die Metallierung von 1-Chlor-substituierten Pentolen durch Erdalkalimetalle zu Nutze. Ebenso wie den Erdalkalimetall-bis(pentoliden) wird den metallorganischen Verbindungen der schweren Erdalkalimetalle mit Erdalkalimetall- Kohlenstoffatom-σ-Bindungen seit einigen Jahren starkes Interesse entgegen gebracht. Die meisten Vertreter dieser Substanzklasse zeichnen sich durch ihr schlechtes Löslichkeitsverhalten in aromatischen und aliphatischen Kohlenwasserstoffen aus. Zudem ist noch kein allgemeines Syntheseprinzip zur Darstellung von Verbindungen aller schweren Erdalkalimetalle bekannt. Den Verbindungen dieser Klasse kommt ein hohes Maß an Reaktivität sowie Oxidations- und Hydrolyseempfindlichkeit zu, was ihre Synthese und Handhabung erschwert. Trotzdem gewähren diese Verbindungen einen interessanten Einblick in die metallorganische Chemie der zweiten Hauptgruppe. Die vorliegende Arbeit gliedert sich in drei Themengebiete. Im ersten Teil beschäftigten wir uns mit der Erweiterung des Spektrums der Alkalimetall- und Erdalkalimetall-pentolide, dabei lag unser Hauptinteresse in der Synthese und Strukturaufklärung von Metall-Pentoliden der Elemente Phosphor bis Antimon, wobei die Synthesen und Strukturaufklärungen des ersten Kalium-Stibolids und des Barium-Phospholids gelangen. Ein weiteres Ziel lag in der Untersuchung der Transmetallierung von Dialkylzink- Verbindungen mit aktivierten Erdalkalimetallen. Das Hauptaugenmerk auf eine mögliche Synthese von metallorganischen Verbindungen mit Erdalkalimetall-Kohlenstoff-σ-Bindungen gerichtet, gelang die Charakterisierung einer ganzen Reihe von Erdalkalimetall-bis(zinkaten). Zuletzt beschäftigten wir uns mit dem Einsatz der von uns dargestellten Erdalkalimetallbis( zinkate) in Metallierungsreaktionen gegenüber CH-acider Verbindungen. Zur Darstellung der Alkalimetall- und Erdalkalimetall-pentolide wählten wir als Edukte die 1- Chlor-substituierten Pentole. Diese Verbindungen sind durch Transmetallierung entsprechender Zirconacyclopentadiene mit Penteltrichlorid leicht zugänglich. Die Umsetzung der 1-Chlor-substituierten Pentole mit Metallen der 1. bzw. 2. Hauptgruppe führt in einem ersten Reaktionsschritt zu den entsprechenden Dipentolylen. Bis zu dieser Stufe zeigt die Reaktion eine nur geringfügige Abhängigkeit vom eingesetzten Metall. Die Reduktion von Octaethyldiphospholyl 5 und Octaethyldistibolyl 7 mit Kaliummetall in THF führt zur Bildung von Kalium-2,3,4,5-tetraethylphospholid 8 und Semi(tetrahydrofuran- O)biskalium–bis(2,3,4,5-tetraethylstibolid) 9. Das Reaktionsschema 4.1 verdeutlicht die Darstellung anschaulich.Die Verbindungen zeichen sich durch die Ausbildung ungewöhnlicher Festkörperstrukturen aus. Verbindung 8 kristallisiert in einer hochsymmetrischen polymeren Kettenstruktur. Jedes Kaliumatom liegt zwischen zwei parallelen Phospholid-Liganden. Aufgrund der geringen endocyclischen Bindungslängendifferenz ∆ [∆ = d(C2C3) – d(C3C4)] von nur 2,6 pm, liegt bei den Pentoliden ein weitgehend aromatisches Anion vor, das an Kaliumkationen η5- gebunden vorliegt. Im Vergleich dazu weist die analoge Stibolid-Verbindung 9 eine völlig andere Festkörperstruktur auf. Verbindung 9 bildet ebenfalls Ketten aus, in denen Kalium-Kationen und Stibolid-Anionen alternierend auftreten, jedoch beobachtet man wie in Abbildung 4.1 wiedergegeben drei kristallographisch und chemisch unterschiedliche Metallzentren. K1 liegt zwischen zwei parallelen Stibolidanionen, an K3 ist ein THF-Ligand gebunden und erzwingt eine nichtparallele Anordnung der benachbarten Stibolidsubstituenten, wohingegen K2 engen Kontakt zur benachbarten Kette zeigt, was zur Ausbildung einer gewellten Schichtstruktur führt.Auch hier sind die Heterocyclen eindeutig η5 an die Metallzentren koordiniert. Die K-Sb- Abstände innerhalb der einzelnen Ketten weisen durchschnittlich 352 pm auf, während der KSb- Kontakt zwischen den Ketten 362 pm beträgt. Bei den Umsetzungen der 1-Chlor-substituierten Pentole mit den schweren Erdalkalimetallen Magnesium, Calcium, Strontium und Barium isolierten wir abhängig vom Metallzentrum vier unterschiedliche Produkte. Ebenso wie bei den Alkalimetallen konnte bei allen Erdalkalimetallen in einem ersten Schritt die Bildung der Dipentolyle nachgewiesen werden. Während Strontium und Barium die Pentel-Pentel-Bildung der entsprechenden Dipentolyle unter Bildung von Erdalkalimetall-bis(pentoliden) reduktiv spaltet [vgl. Reaktionsschema 4.3], gelingt diese Reaktion mit den leichteren Homologen Calcium und Magnesium nicht. Erst der Zusatz der stöchiometrischen Menge Metalldichlorid führt zur Bildung der heteroleptischen Magnesium- und Calcium-pentolidchloride [vgl. Reaktionsschema 4.2]. Um den Einfluß der Erdalkalimetallatomgröße auf die Reaktion detaillierter beschreiben zu können, wurden die Kristallstrukturen der dimerem Verbindungen von (Tetrahydrofuran- O)magnesium-2,3,4,5,-tetraethyl-λ3-phospholidchlorid 10 und Bis(tetrahydrofuran- O)calcium-2,3,4,5,-tetraethyl-λ3-phospholidchlorid 13 bestimmt. Alle heterocyclischen Liganden sind η5 an die Metallatome koordiniert. Die Abstände der Magnesiumatome zu den Ringkohlenstoffatomen liegen im Bereich von 247 bis 249 pm, für die vergleichbare Calcium- Verbindung im weiten Bereich von 277 bis 287 pm. Der Metall-Phosphor-Abstand beträgt für Verbindung 10 262 pm, für 13 findet man Werte von 295 bzw. 297 pm.Die Umsetzung von 5, 6 und 7 mit einem Überschuß von Strontium oder Barium führt durch Bruch der Pentel-Pentel-Bindung zur Bildung der Erdalkalimetall-bis(pentolide). Während die Barium-Verbindungen (20, 21, 22) ohne neutralen Co-Liganden am Metallatom kristallisieren, verbleibt bei den Strontium-Verbindungen (16, 17, 18) ein THF-Molekül in der Koordinationssphäre des Metallzentrums. Die von Verbindung 20 angefertigte Röntgenstrukturanalyse zeigt jedes Bariumatom an zwei Phospholid-Anionen η5-koordiniert, während zwei weitere Phospholid-Liganden über die Phosphoratome σ-gebunden auftreten wobei ein eindimensionaler Strang gebildet wird. Die η5-koordinierten Phospholid-Liganden sind gegeneinnader verkippt, der daraus resultierende Winkel zwischen den Zentren der Ringe und dem Metallzentrum beträgt 142°. Die Abstände der Metallzentren zu den Ringkohlenstoffatomen liegen aufgrund der Winkelung im weiten Bereich von 306 bis 318 pm. Die Ba-P-Abstände zu den Heteroatomen der η5-koordinierten Heterocyclen nehmen Werte von 324 und 329 pm an und sind ungefähr 20 pm kürzer als die Kontakte zu den η1- gebundenen Phosphoratomen. Neben den Erdalkalimetall-pentoliden mit η5-gebundenen Heterocylen beschäftigten wir uns mit der Transmetallierung von Bis(trimethylsilylmethyl)zink durch aktivierte Erdalkalimetalle zur Darstellung von Verbindungem mit Metall-Kohlenstoff-σ-Bindungen. Wir konnten zeigen, dass destilliertes Calcium und Strontium nur in THF mit Bis(trimethylsilylmethyl)zink zu den Erdalkalimetall-bis[tris(trimethylsilylmethyl)zinkaten] reagieren, während Barium reaktiv genug ist, um sowohl in THF als auch in Toluol und Heptan das entsprechende Zinkat zu bilden. Eine Übersicht über die Reaktionen ist in Reaktionsschema 4.4 wiedergegeben.Von großem Interesse waren die Bindungsverhältnisse der Erdalkalimetallbis[ tris(trimethylsilylmethyl)zinkate]. Zur Klärung dieser Frage wurden die Röntgenstrukturanalysen der Verbindungen 24, 25, 26 und 27 angefertigt. In allen Verbindungen ist das Erdalkalimetall an vier verbrückende Methylen-Gruppen gebunden. Je nach Lösemittel wird die Koordinationssphäre der Metallzentren durch als Lewis-Basen wirkende Lösemittel-Moleküle ergänzt. Die Erdalkalimetall-Kohlenstoff-Zink- Bindungsverhältnisse lassen sich als Zwei-Elektronen-Drei-Zentren-Bindungen beschreiben. Die gefundenen Erdalkalimetall-Kohlenstoff-Abstände sind durchschnittlich 20 pm länger als die berechneten Werte der entsprechenden Dimethylerdalkalimetall-Verbindungen. Zu einem interessanten Ergebnis führte die Transmetallierung von solvensfreiem Bariumbis[ tris(trimethylsilylmethyl)zinkat] mit einem Überschuss an Barium und gleichzeitiger Ultraschall-Behandlung. Aus der roten Reaktionslösung konnten wir Dibarium- {bis[bis(trimethylsilylmethyl)zink]-tris(trimethylsilylmethanido)zinkat} 30 isolieren. Die Verbindung ist in mehrfacher Hinsicht interessant. Die Festkörperstruktur der dimeren Verbindung 30 weist als Grundgerüst einen Ba4Zn2C6-Käfig auf, der als verzerrter Doppelwürfel mit einer gemeinsamen Ba2C2-Fläche vorliegt. Das Strukturmodell von 30 ist in Abbildung 4.2 anschaulich dargestellt. Die Ba-C-Abstände innerhalb des flächenverknüpften Doppelwürfels liegen im Bereich von 283 bis 320 pm. Die Koordinationssphären der Metallzentren werden durch agostische Bindungen zu Methylen-Gruppen ergänzt. Verbindung 30 ist das bisher zweite strukturell untersuchte geminal biszinkierte Alkan. Die gefundenen Zink-Kohlenstoff-Abstände liegen im Bereich von 206 bis 215 pm. Sowohl diese großen Koordinationszahlen als auch die teilweise auf benachbarten Atomen lokalisierten anionischen Ladungen führen zu diesen großen Zn-C-Abständen, die Aufweitung im Vergleich zu entsprechenden Dialkylzinkverbindungen liegt bei etwa 20 pm. Durch den Einsatz der von uns synthetisierten Erdalkalimetallbis[ tris(trimethylsilylmethyl)zinkate] in Metallierungsreaktionen mit CH-aciden Verbindungen konnte eine Reihe neuartiger Verbindungen dargestellt werden. Bei der Umsetzung der THF-Addukte der Erdalkalimetall-bis(zinkate) von Calcium, Strontium und Barium mit 2,3-Bis(trimethylsilyl)-2,3-dicarba-nido-hexaboran konnten wir die entsprechenden Erdalkalimetall-bis(carborate) isolieren. Bei der Metallierung ist jeweils nur ein Trimethylsilylmethyl-Substituent aktiv, auch eine Folgereaktion der Carborate mit gebildetem Bis(trimethylsilymethyl)zink wurde nicht beobachtet. Diese Syntheseroute bietet eine Alternative zu der bisher genutzten Methathese von Alkalimetall-Carboraten mit Erdalkalimetall-dihalogeniden. Die von Verbindung 32 und 33 angefertigten Röntgenstrukturanalysen zeigen unterschiedliche Koordination der Carborat-Liganden an die Metallzentren. Ein Ligand koordiniert über zwei hydridische Wasserstoffatome an das Erdalkalimetall. Die Bindungsverhältnisse können als Metall-H-B2-Vier-Zentren-Bindung beschrieben werden. Die Sr-H-Abstände in 32 liegen bei 269 und 262 pm, in Verbindung 33 wurden Ba-HAbstände von annähernd 290 pm gefunden. Unterschiedlich ist die Koordination des zweiten Liganden. Verbindung 32 zeigt die Bindung über ein Brückenwasserstoffatom, sowie über jeweils ein Bor- und ein Kohlenstoffatom. Die homologe, dimere Barium-Verbindung 33 koordiniert ebenfalls über ein Brückenwasserstoffatom sowie über die beiden Kohlenstoffatome. Durch Metallierung von Triisopropylsilylphosphan und –arsan eröffnet sich von der Verbindungsklasse der Erdalkalimetall-bis(zinkate) aus ein Zugang zu neuartigen Erdalkalimetall-zinkaten. So führt die Umsetzung des Calcium-Derivats 24 mit drei Äquivalenten Triisopropylsilylphosphan zur Bildung von Tris(tetrahydrofuran-O)calcium- [1,3-bis(triisopropylsilylphosphanyl)-1,3-bis(trimethylsilylmethyl)-2-triisopropylsilyl-1,3- dizinka-2-phosphapropandiid] 34. Das von drei THF-Liganden und den drei Phosphoratomen des dreizähnigen Liganden verzerrt oktaedrisch umgebenes Calciumatom weist Ca-PAbstände von 292 bis 296 pm auf. Aus der von Verbindung 34 abgetrennten Mutterlauge kann man durch erneutes Kühlen Bis[tris(tetrahydrofuran-O)calcium]-tris(µ- triisopropylsilylphosphanid)-tris(triisopropylsilylphosphanyl)zinkat 35 isoliern. Verbindung 35 kristallisiert als getrenntes Ionenpaar. Das binukleare Kation entspricht einer trigonalen Bipyramide mit den Calciumatomen in den apikalen Positionen. Drei THF-Liganden pro Calciumatom vervollständigen die verzerrt oktaedrische Umgebung der Metallzentren. Die Ca-P-Bindungslängen innerhalb des Bicyclus variieren von 294 bis 302 pm. Das Zinkatom im Tris(triisopropylsilylphosphanyl)zinkat-Anion ist trigonal planar umgeben. Die Zn-PAbstände liegen im Bereich von 231 bis 238 pm. Bei der Umsetzung von 24 mit Triisopropylsilylarsan konnten wir Tetrakis(tetrahydrofuran- O)calcium-[1,3-bis(triisopropylsilylarsanyl)-2,4-bis(triisopropylsilyl)-1,3-dizinka-2,4-diarsacyclobutandiid] 37 isolieren. Das zentrale Strukturelement ist ein Zn2As2-Viering mit zwei terminalen Arsanyl-Substituenten an den Zinkatomen. Das Calciumatom ist über die endocyclischen Arsanyl-Gruppen koordiniert, die gefundenen Ca-As-Bindungsabstände betragen 295 und 300 pm. Die endocyclischen Zn-As-Bindungslängen sind im Vergleich zu den terminalen Arsanyl-Liganden um 5 pm länger. Eine Überblick über die Reaktionen von Calcium-bis(zinkat) 24 mit primären Pentelen bietet Reaktionsschema 4.6. Bei der Umsetzung des Strontium-Derivats 25 mit Triisopropylsilylphosphan isoliert man das zu den Calcium-Verbindungen 34 und 35 verschiedene Bis(tetrahydrofuran-O)strontiumbis[ bis(triisopropylsilylphosphanyl)(trimethylsilylmethyl)zinkat] 36. Durch den Ersatz der vier verbrückenden Trimethylsilylmethyl-Substituenten von 25 durch Triisopropylsilylphosphanyl-Reste erhält man ein von vier Phosphoratomen quadratisch planar umgebenes Strontiumatom. Die oktaedrische Umgebung wird durch zwei THFLiganden in den apikalen Positionen vervollständigt. Die Strontium-Phosphor- Bindungslängen bewegen sich im Bereich von 308 bis 313 pm. Die Reaktion ist ebenfalls in Schema 4.6 aufgeführt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
1 Hydraziniumazide In dieser Arbeit wurde untersucht, ob die Eigenschaften von Hydraziniumazid durch Einführung organischer Substituenten verbessert werden können. Die Hydraziniumazidderivate wurden aus den jeweiligen wasserfreien, substituierten Hydrazinen und einer wasserfreien Lösung von HN3 in Ether dargestellt, die aus der Reaktion von Tetrafluoroborsäureetherat mit Natriumazid gewonnen wurde. Hydraziniumazid ist ein Addukt der schwachen Säure HN3 (pKs = 4.92) mit Hydrazin. Zwischen den Hydrazinium- und Azidionen treten starke Wasserstoffbrückenbindungen auf. Die Stärke der Wasserstoffbrückenbindungen ist entscheidend für die Eigenschaften der jeweiligen Verbindungen. Die Leichtflüchtigkeit sowie die Hygroskopie von Hydraziniumazid und seinen Derivaten lassen sich auf die Stärke und Zahl der Wasserstoffbrückenbindungen zurückführen. Die Einführung organischer Substituenten schwächt die Bindung zwischen Azidionen und Hydraziniumionen bereits dadurch, dass weniger NH Wasserstoffatome, die Wasserstoffbrückenbindungen bilden können, vorhanden sind. Je mehr Substituenten vorhanden sind, desto schwächer ist somit die Bindung zwischen Hydrazin und HN3. Der Schmelzpunkt der Hydraziniumazide ist eine gute Beschreibungsgröße für die Stärke der Wasserstoffbrückenbindungen und damit die Stärke des Hydrazin-HN3 Addukts. Dies kann an den sinkenden Schmelzpunkten der methylierten Verbindungen Methylhydraziniumazid (3), N,N-Dimethylhydraziniumazid (4), N,N´- Dimethylhydraziniumazid (5), und N,N,N´-Trimethylhydraziniumazid (6) überprüft werden. Die organischen Substituenten lieferten während der Explosion keine Energiebeiträge, da sie entweder zum Kohlenwasserstoff oder zum organylsubstituierten Amin reagierten. Daher sinkt der Anteil an aktiver Masse mit zunehmendem Substitutionsgrad. Erstaunlicherweise explodierten aber die flüssigen di-, tri- und tetramethylierten Verbindungen 4-7 bei Erwärmung heftiger als das monomethylierte 3. Dies ist auf die schwache Bindung von HN3 in diesen Verbindungen zurückzuführen. Es wurde zuerst HN3 abgespalten, das dann explodierte. Es wurde versucht, die Bindung zwischen Hydrazinium- und Azidionen durch zusätzliche Wasserstoffbrückenbindungen mit weiteren NH und OH Protonen in 2-Hydroxyethylhydrazin und Ethylendihydrazin zu stärken. Aus der Reaktion dieser Hydrazinderivate mit HN3 wurden keine Feststoffe, sondern zähflüssige Produkte, die nicht die stöchiometrische Menge HN3 enthielten, isoliert.Der Einbau eines Hydrazinstickstoffatoms in Ringsysteme führt zur Erhöhung der Basizität des Stickstoffatoms. Stärkere Hydrazin-HN3 Addukte sollten sich ergeben. Dies wird dadurch belegt, dass der Schmelzpunkt der N,N-dimethylierten Verbindungen N,NDimethylhydraziniumazid (4) und N-Amino-1-azoniacyclohexanazid (18) im Sechsringsystem 18 um 50 °C höher ist. Das Siebenringsystem N-Amino-1- azoniacycloheptanazid (19) zeigt ebenfalls eine Erhöhung des Schmelzpunktes von 18 °C gegenüber 4. Die Erhöhung ist geringer als bei 18, da in Siebenringsystemen die Basizitätserhöhung des Ringstickstoffatoms niedriger ist als in Sechsringsystemen. Das bei N-Amino-1-azonia-4-oxacylcohexanazid (20) im Ringsystem vorhandene Sauerstoffatom zeigt keine Auswirkungen auf den Schmelzpunkt. 20 spaltete jedoch während längerer Lagerung eine NH2-Gruppe ab, Morpholiniumazid (21) wurde erhalten. Auch bei den N,N´-dimethylierten Verbindungen N,N´-Dimethylhydraziniumazid 5, N,N´-Diethylhydraziniumazid (22), Pyrazolidiniumazid (23) und Hexahydropyridaziniumazid (24) wurde eine Erhöhung des Schmelzpunktes durch Einbinden des Hydrazinmoleküls in ein Ringssystem festgestellt. Während die offenkettigen Azide 5 und 22 erst unterhalb Raumtemperatur fest wurden, waren die Ringsysteme 23 und 24 bei Raumtemperatur fest. Diorganylsubstituierte Hydraziniumazide sind nicht praktisch anwendbar, da zu viele organische Substituenten vorhanden sind, die die Explosion hemmen. Während der Explosion entstanden große Mengen an organischen Nebenprodukten, vor allem Organylamine. Ein weiterer Nachteil ist die Oxidationsempfindlichkeit der Alkylhydrazine, die sich in den Azidderivaten wiederfindet. Die Verbindungen N,N,N´,N´-Tetramethylhydraziniumazid-tetramethylhydrazinat (7) und Phenylhydraziniumazid-phenylhydrazinat (14) sind Grenzfälle. Bei der Reaktion mit HN3 bildeten sich Dimere der Hydrazine, an die das Azidion über Wasserstoffbrückenbindungen gebunden ist. Es war nicht möglich, aus einem festen, substituierten Hydrazin das Addukt mit HN3 zu bilden, da bei der Entfernung des Lösungsmittels immer das substituierte Hydrazin ausfiel. Substituierte Hydrazine mit einem permethylierten Stickstoffatom ergaben Hydraziniumazidderivate, die nicht mehr flüchtig, aber sehr hygroskopisch sind. Sie wurden aus der Umsetzung der jeweiligen Hydraziniumiodide mit Silberazid erhalten. N,N,NTrimethylhydraziniumazid (8), N,N,N,N´-Tetramethylhydraziniumazid (9) und Pentamethylhydraziniumazid (10) haben Schmelzpunkte um 180 °C. Die Anzahl der Methylgruppen wirkt sich hier nicht auf den Schmelzpunkt aus. 8-10 explodierten aufgrund der vielen organischen Substituenten nur schwach, bei der Explosion entstanden größere Mengen Trimethylamin. Günstige Auswirkung auf die Eigenschaften von Hydraziniumazid hat die Adduktbildung mit einem weiteren Molekül Hydrazin. Hydraziniumazidhydrazinat (2) ist nicht mehr hygroskopisch, wesentlich weniger flüchtig und die Empfindlichlichkeit gegenüber Schlag, Reibung und Temperaturerhöhung sinkt. Der Schmelzpunkt ist mit 65 °C allerdings noch niedriger als der Schmelzpunkt von Hydraziniumazid mit 75 °C. Ein weiterer Nachteil ist, dass bei der Explosion mehr Ammoniak entsteht als bei Hydraziniumazid. Als Beispiel ist hier die Struktur von Hydraziniumazidhydrazinat (2) abgebildet, die Strukturen vieler anderer Hydraziniumazide finden sich in Kapitel 1. 2 Methylierte Hydraziniumnitrate In Raketentriebwerken werden Methylhydrazin oder N,N-Dimethylhydrazin und N2O4 eingesetzt. Bei der unvollständigen Verbrennung können Ablagerungen der jeweiligen Ammonium- und Hydraziniumnitrate gebildet werden. Die mono- und N,N-dimethylierten Ammonium- und Hydraziniumnitrate wurden hergestellt und ihre Eigenschaften überprüft. Sowohl Methylhydrazinium- (27) als auch N,N-Dimethylhydraziniumnitrat (28) sind sehr hygroskopische Substanzen. Wasser konnte aus den Hydraziniumnitraten nicht im Vakuum entfernt werden. Daher wurden 27 und 28 aus den wasserfreien, methylierten Hydrazinen und wasserfreier Salpetersäure bei –78 °C hergestellt. Die Hydraziniumnitrate zersetzten sich bei leicht erhöhter Temperatur (60 °C) bereits langsam zu den jeweiligen Ammoniumnitraten. Die Strukturen von Methylhydraziniumnitrat (27) und Dimethylhydraziniumnitrat (28) wurden bestimmt, die Struktur von Methylhydraziniumnitrat (27) ist hier als Beispiel angegeben. Die Zersetzung der Ammonium- und Hydraziniumnitrate bei hoher Temperatur erfolgte nicht vollständig. Während die Ammoniumnitrate größere Mengen NO2 ergaben, wurden bei den Hydraziniumnitraten nur Produkte einer weiter fortgeschrittenen Zersetzung, z.B. NO, nachgewiesen. Auch kleine Mengen Methylazid wurden gefunden. Während der durchgeführten Test ist es nicht gelungen, die Nitrate zur Explosion zu bringen. Beim starken Erhitzen der Hydraziniumnitrate 27 und 28 fand nur eine Zersetzung, keine Explosion statt. 3 Reaktionen mit cis-Hyponitrit Die in der Literatur erwähnten Verbindungen mit cis-Hyponitritanionen wurden entweder durch Kupplung von zwei NO Molekülen an einem Metallzentrum oder durch Reaktion von N2O mit Natriumoxid erhalten. In dieser Arbeit ist es nicht gelungen, aus Reaktionen des cis-Hyponitritions neue Verbindungen zu isolieren, es wurde immer die Bildung von N2O beobachtet. Die theoretische Untersuchung der Zersetzung der einfach protonierten Verbindung cis-HN2O2 – ergab eine niedrige Aktivierungsbarriere von 11.9 kcal/mol (MP2/6-31+G(d,p)) für die Bildung von N2O und OH– in der Gasphase. Zusätzlich muss berücksichtigt werden, dass vor allem das OH–-Ion in einem Lösungsmittel gegenüber der Gasphase beträchtlich stabilisiert wird, so dass die Aktivierungsenergie in Lösung noch niedriger liegen dürfte. Dies erklärt die Bildung von N2O, die bei allen durchgeführten Experimenten, selbst bei sehr tiefen Temperaturen beobachtet wurde. Eine Isolierung der cis-hyposalpetrigen Säure kann daher wahrscheinlich nicht aus Lösung erfolgen, da sich die einfach protonierte Verbindung sofort zu N2O und OH– zersetzt. Ein Stickstoffoxid N6O4, das aus der Reaktion von Natrium-cis-hyponitrit mit Tetrafluorhydrazin entstehen kann, hat nur bei der Berechnung auf PM3 und HF Niveau ein Miniumum. Bei stärkerer Berücksichtigung der Elektronenkorrelation auf B3LYP oder MP2 Niveau wurden keine Minima auf der Energiehyperfläche gefunden. 4 Verbindungen mit 5,5´-Azotetrazolat Das 5,5´-Azotetrazolation enthält bereits 5 Mol Stickstoff. Durch Kombination mit Kationen von Stickstoffbasen, vor allen Hydraziniumkationen, können Verbindungen erhalten werden, die pro Formeleinheit viele Mole Gas erzeugen. Der Hauptbestandteil der Explosionsgase ist Stickstoff. Hydraziniumverbindungen bilden zusätzlich Wasserstoff, was für hohe Detonationsgeschwindigkeiten sorgt. Verbindungen, die große Mengen Stickstoff erzeugen, werden für Gasgeneratoren in automatischen Feuerlöschsystemen, Airbags und Rettungswesten gesucht. Ein Vorteil der Salze von 5,5´-Azotetrazolat mit Stickstoffbasen ist, dass sie gegenüber Schlag und Reibung relativ unempfindlich sind, was für eine Anwendung wichtig ist. Das empfindlichste Salz ist das Ammoniumsalz, das im Fallhammertest in der Literatur bei 4.4 kg bei einer Fallhöhe von 50 cm explodierte. [130] 5,5´-Azotetrazol ist im Gegensatz zu HN3 eine starke Säure und zerfiel bei Raumtemperatur innerhalb einer Minute vollständig zu Tetrazolhydrazin. Die freie Säure kann bei –30 °C hergestellt und bei –80 °C mehrere Wochen gelagert werden. Aus Methanol kristallisierte 5,5´-Azotetrazol mit zwei Molekülen Kristallwasser (70). 5,5´-Azotetrazolatsalze sind jedoch stabil. Die Synthese von 5,5´-Azotetrazolatsalzen erfolgte durch Umsetzung von Sulfaten der entsprechenden Kationen mit Barium-5,5´-azotetrazolat. Die Stabilität von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen ist davon abhängig, wie leicht das Proton von der Stickstoffbase auf das 5,5´-Azotetrazolation übertragen werden kann. Dies kann an den Ammmoniumsalzen Diammonium-5,5´- azotetrazolat (45), Bis-methylammonium-5,5´-azotetrazolat (46), Bis-dimethylammonium- 5,5´-azotetrazolat (47), Bis-trimethylammonium-5,5´-azotetrazolat (48) und den Hydraziniumsalzen Hydrazinium(2+)-5,5´-azotetrazolat (51), Dihydrazinium-5,5´- azotetrazolat (53), Bis-methylhydrazinium-5,5´-azotetrazolat (54), Bis-N,Ndimethylhydrazinium- 5,5´azotetrazolat (55) und Bis-N,N´-dimethylhydrazinium-5,5´- azotetrazolat (56) abgelesen werden. Je mehr Methylgruppen vorhanden waren, desto tiefer waren die Zersetzungstemperatur der Salze. Waren keine NH+ Gruppen in den Kationen vorhanden, z.B. in Bis-tetramethylammonium-5,5´-azotetrazolat (49) und Bis-N,N,Ntrimethylhydrazinium- 5,5´-azotetrazolat (57), so erfolgte die Zersetzung über einen anderen Mechanismus, der wahrscheinlich umgekehrt zur Bildung der Tetrazolringe verläuft und erst bei höheren Temperaturen stattfindet. Die Synthese von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen kann bei Raumtemperatur nur in Wasser als Lösungsmittel stattfinden. In organischen Lösungsmitteln erfolgte eine Zersetzung des Azotetrazolations. Dihydrazinium-5,5´-azotetrazolat (53) ist eine neue hochenergetische Verbindung, die alle Anforderungen für einen modernen Sprengstoff erfüllt. Die hohe Standardbildungsenthalpie von 264 kcal/mol (ber.), die bei der Detonation freigesetzt wird sowie die bei der Detonation gebildeten großen Mengen Wasserstoff sorgen für ein gute Detonationsgeschwindigkeit von 6330 m/s. Der größte Nachteil von 53 ist die niedrigen Dichte. Bei einer vergleichbaren Dichte würde die Verbindung die Werte der kommerziellen Sprengstoffe RDX und HMX übertreffen. Die bereits bekannten Guanidinium- (66) und Triaminoguanidiniumverbindungen (68), deren Kristallstrukturen in dieser Arbeit bestimmt wurden, haben höhere Dichten und sind thermisch stabiler. Vor allem das Guanidiniumsalz wird wahrscheinlich in den nächsten Jahren in Gasgeneratoren zum Einsatz kommen. Die niedrigen Dichten der Hydraziniumsalze im Vergleich zu den Guanidiuniumsalzen sind geometrisch begründet. Die Guanidiuniumderivate sind flach. Dadurch können sich sowohl die 5,5´-Azotetrazolationen als auch die Kationen platzsparend übereinander anordnen. Hydraziniumionen haben Wasserstoffatome, die nach allen Raumrichtungen ausgerichtet sind. Da diese Wasserstoffatome in Wasserstoffbrückenbindungen einbezogen werden, entstehen Lücken zwischen den 5,5´-Azotetrazolationen in der Kristallpackung. Das Hydraziniumsalz 53 kann zwei Einheiten Wasser oder Hydrazin über Wasserstoffbrücken binden. Sowohl das Ammoniumsalz 45, als auch Hydroxylammonium- 5,5´-azotetrazolat (50) und die methylierten Ammonium- 46-49 und Hydraziniumverbindungen 54-57 können keine zusätzlichen Stickstoffbasen über Wasserstoffbrückenbindungen binden. Die Alkali- und Erdalkalisalze 29-37 von 5,5´-Azotetrazolat binden große Mengen Kristallwasser. Die Wassermoleküle sind sowohl an die Kationen koordiniert als auch über Wasserstoffbrückenbindungen im Kristall gebunden. Daraus ergeben sich verschiedene Bedingungen für die Entfernung des Kristallwassers. Während nur über Wasserstoffbrückenbindungen gebundenes Kristallwasser beim Aufheizen bereits bei Temperaturen um 100 °C entwichen ist, liessen sich die koordierten Wassermoleküle erst bei Temperaturen von 120-150 °C entfernen. Bei der Entfernung der letzten Wassermoleküle wurden im DSC jeweils große Energiemengen festgestellt, die für eine Strukturänderung nach der Entfernung der letzten Wassermoleküle sprechen. Die Temperaturstabilität der Alkali- und Erdalkalimetallsalze sinkt mit zunehmender Größe des Kations. Während die Lithiumverbindung (29) erst bei 335 °C explodierte, explodierte die Bariumverbindung (37) bereits bei 211 °C. Bei der Entfernung von Wasser bei Temperaturen um 100 °C im Ölpumpenvakuum fanden Explosionen statt. Daher kann Wasser praktisch nur durch lange Lagerung der Salze im Exsikkator über P2O5 entfernt werden. Die wasserfreien Alkali- und Erdalkalimetallsalze sind schlag- und reibungsempfindlich, was sie zu potentiellen Primärexplosivstoffen macht Die Kristallstrukturen von Lithium-5,5´-azotetrazolat-hexahydrat (29), Natrium-5,5´- azotetrazolat-pentahydrat (30), Rubidium-5,5´-azotetrazolat-hydrat (32) und Barium-5,5´- azotetrazolat-pentahydrat (37) zeigen eine Koordination von 5,5´-Azotetrazolat– stickstoffatomen an das jeweilige Metallion. In Calcium-5,5´-azotetrazolat-octahydrat (35) und Yttrium-5,5´-azotetrazolat-docosahydrat (39) sind die 5,5´-Azotetrazolatstickstoffatome nicht mehr an die Metallionen koordiniert, die Metallionen sind von einer Hydrathülle umgeben. Auch Magnesium-5,5´-azotetrazolat-octahydrat (34) und die Salze der dreiwertigen Kationen Aluminium 38, Lanthan 40, Cer 41 und Neodym 42 sind im Einklang mit dem HSAB-Prinzip wahrscheinlich nur von einer Hydrathülle umgeben. Das Magnesiumsalz 34 sowie die Salze der dreiwertigen Kationen sind nur solange stabil, wie das Kation von der Hydrathülle umgeben ist. Verlieren die Verbindungen Wasser, z. B. beim Erhitzen, so werden farblose Zersetzungsprodukte erhalten. Bei der Reaktion von [Ce]4+[SO4]2– 2 mit Barium-5,5´-azotetrazolat kommt es sofort zu einer Gasentwicklung, Ce+4 ist in wässriger Lösung zu sauer. Nach Auflösen von Barium-5,5´-azotetrazolat in Hydrazin entfärbte sich die Reaktionslösung innerhalb von zwei Stunden. Farbloses Barium-N,N´-ditetrazolatohydrazintrihydrazin (44) wurde erhalten. 5 Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid Aus der Reaktion von Benzoldiazoniumchlorid mit Lithiumazid konnte Phenylpentazol isoliert werden. Analoge Reaktionen mit verschiedenen Phenylderivaten ergaben substituierte Phenylpentazole. Die Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid ergibt Tetrazolazid. Daher wurde auch in dieser Reaktion eine Pentazolzwischenstufe vermutet. Theoretische Berechnungen ergaben, dass die Aktivierungsenergie für den Zerfall verschiedener Tetrazolpentazolisomere in der Gasphase zu Tetrazolazid und Stickstoff mindestens 14.8 kcal/mol beträgt. Daher erschien es möglich, Tetrazolpentazol im Experiment zu beobachten. Bei der 15N-NMR spektroskopischen Verfolgung der Reaktion von Tetrazoldiazoniumchlorid (71) mit Lithium-15Nα-azid wurden zwei Signale bei δ = –29.7 und δ = 7.7 beobachtet, die bei Erwärmung auf –50 °C an Intensität abnahmen und bei –30 °C vollständig verschwunden waren. Gleichzeitig nahm das Signal von Stickstoff an Intensität zu und ein Signal von Nβ markiertem Tetrazolazid erschien. Die bereits bei tiefen Temperaturen wieder verschwindende Zwischenstufe der Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid entspricht daher sowohl ihrem chemischen Verhalten, als auch in den beobachteten Signalen dem Verhalten, das von Tetrazolpentazol erwartet wird.
Die Darstellung und die Kristallstrukturen von (C5Cl4SPh)Rh-(1,5-COD)(2b), [C5Cl3(SR)2Mn](CO)3 [R = Ph (4a), Me (4b)] und [C5Cl2(SPh)3]Mn(CO)3 (5a) sowie die Darstellung von [C5Cl5-x (SBu)x]Mn(CO)3 [x = 1 (3b), 2 (4c), 3 (5b)], ferner Reaktionen von [C5Cl2(SR)3]Mn(CO)3 und [C5(SMe)5]Mn(CO)3 mit PdCl2-(PhCN)2 werden beschrieben. In 2b ist der Cyclopentadienylring nicht planar, und in 5a stehen die drei Phenylringe nahezu parallel.