POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19
Das Oropharynxkarzinom steht in Deutschland mit einem Anteil von 3,3% an allen bösartigen Neubil¬dungen bei Männern an der siebten Stelle der Krebsneuerkrankungen. Der jahrelange Gebrauch von Tabakwaren ist ein wichtiger Risikofaktor, der durch gleichzeitige Anwendung hochprozentiger Alko¬holika multipliziert wird. In vielen westeuropäischen Industrieländern konnte eine Zunahme von Inzi¬denz und Mortalität festgestellt werden, dagegen weist Schweden die niedrigste Inzidenzrate auf. Eine mögliche Erklärung dafür wird im geringeren Anteil an Rauchern vermutet. Ein Viertel der schwe¬dischen Männer verwendet Tabak in Form des Schwedischen Kautabaks, der als Snus bekannt ist. Die tabakspezifischen Nitrosamine N'-Nitrosonornicotin (NNN) und 4 (Methylnitrosamino) 1-(3 pyri¬dyl)-1-butanon (NNK) erzeugen im Tierversuch nicht nur Tumoren im Ösophagus bzw. Lunge, Leber und Pankreas, sondern bei gemeinsamer Gabe auch in der Mundhöhle. Beide Substanzen unterliegen einer metabolischen Aktivierung, die über reaktive Zwischenstufen zu einer Pyridyloxobutylierung der DNA führen. Unter saurer Hydrolyse spalten diese Addukte 4-Hydroxy-(3-pyridyl)-1-butanon (HPB) ab, das nach Derivatisierung mittels Gaschromatographie/Massenspektrometrie (GC-MS) nachgewie¬sen werden kann. Die Zielsetzungen der Studien mit männlichen Wistarratten waren die Bestimmung der Dosis-Wirkungs-Beziehung für die Bildung HPB-freisetzender Addukte in den Zielorganen Lunge und Leber, ausgelöst durch die Gabe von NNK und ihre Modulation durch Ethanol. Des Weiteren sollten protektive Effekte ausgewählter antioxidativer Substanzen auf die Entstehung der DNA-Addukte beur¬teilt werden. Der Vorversuch ergab, dass die 2- bis 4-wöchige Zufuhr von 1, 3 und 5 ppm NNK über das Trink¬wasser in Lunge und Leber der Ratten ausreichend hohe Konzentrationen HPB-freisetzender DNA-Addukten für die GC-MS-Bestimmung erzeugte. Für den Interaktionsversuch von NNK und Ethanol erhielten die Ratten über 4 Wochen 1 oder 5 ppm NNK alleine oder in Kombination mit 10% Ethanol über das Trinkwasser. NNK erzeugte in der Lunge doppelt so hohe HPB-Adduktwerte als in der Leber. Die 5fach höhere NNK-Konzentration führte nur zu einer Verdoppelung der Adduktkonzentrationen, eine Bestätigung für die in der Literatur berichtete Sättigung der Adduktbildung durch NNK. Die Alkoholzufuhr verminderte die Wasseraufnahme und damit die NNK-Dosis um etwa ein Drittel. Die Extrapolation auf die höhere NNK-Dosis bei alleiniger NNK-Gabe zeigt, dass die HPB-Adduktlevel in der Leber unter dem Einfluss von Ethanol deutlich geringer ausfielen. Dies spricht für eine kompetitive Hemmung der NNK-Aktivierung über CYP2E1 durch Ethanol in der Leber. Die Hemmung des Leberstoffwechsels führt zu einer höheren Verfügbar¬keit von NNK für die Lunge, in der leicht erhöhte HPB-Adduktlevel gefunden wurden. Der Chemopräventionsversuch diente der Untersuchung des Einflusses antioxidativer Substanzen auf die Schädigung der DNA in Leber- und Lungengewebe von Ratten durch 5 ppm NNK und die gemeinsame Gabe von 5 ppm NNK und 10% Ethanol 4 Wochen über das Trinkwasser. Die 5-wöchige Zufuhr der antioxidativen Substanzen über das Futter begann bereits 1 Woche vor der NNK- und Ethanolgabe in Konzentrationen von 7 g/kg Ellagsäure, 3 g/kg Chlorophyllin oder 10 g/kg Vitamin E. Bei alleiniger NNK-Gabe reduzierten alle drei Substanzen in der Reihenfolge Chlorophyllin (-41%, p Vitamin E ( 33%, p Ellagsäure (-22%; n.s.) die HPB-Addukte in der Leber. In der Lunge reduzierte nur Vitamin E signifikant die HPB-Adduktlevel (-25%, p
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 09/19
Die beiden tabakspezifischen Nitrosamine (TSNA) 4 (Methylnitrosamino) 1-(3 pyridyl)-1-butanon (NNK) und N'-Nitrosonornicotin (NNN) sind kanzerogene Inhaltstoffe des Tabakrauchs. NNK erzeugt im Tierversuch vor allem Tumoren in Lunge, Leber, Bauchspeicheldrüse und der Nasenhöhle. NNN führt dagegen zu Ösophagustumoren, aber auch zu Tumoren der Nasenhöhle. Unter metabolischer Aktivierung bilden beide TSNA eine reaktive Zwischenstufe, die mit Biomolekülen reagiert und nach Hydrolyse 4-Hydroxy-(3-pyridyl)-1-butanon (HPB) abspaltet. Nach Extraktion und Derivatisierung kann das HPB mit hoher Nachweisempfindlichkeit mittels Gaschromatographie/Massenspektrometrie (GC/MS) bestimmt werden. Eine andere Quelle für diese Addukte stellt das Myosmin dar. Zwar ist es auch ein Nebenbestandteil der Alkaloidfraktion des Tabaks, aber unabhängig davon kommt es in einer Vielzahl von Nahrungsmitteln vor und kann in Plasma und Speichel des Menschen nachgewiesen werden. Myosmin bildet im sauren Milieu durch Nitrosierung bzw. Peroxidierung ebenfalls HPB-Addukte. Ähnliche Bedingungen liegen in der unteren Speiseröhre bei einer Refluxerkrankung vor. Bei einem Teil der Patienten kommt es zu einer Metaplasie der Speiseröhrenschleimhaut, dem Barrett-Ösophagus, der ein Präkanzerose darstellt, und aus dem sich pro Jahr bei 1-2% der Patienten ein ösophageales Adenokarzinoms (EAC) entwickelt. Das EAC zeigt vor allem in westlichen Industriestaaten eine stark steigende Inzidenzrate. Hauptrisikofaktoren für die Entstehung eines EAC sind neben dem Barrett-Ösophagus das männliche Geschlecht, Übergewicht und eine gemüse-/obstarme Ernährung bzw. der übermäßige Verzehr von tierischen Fetten. Ziel der vorliegenden Arbeit war die Untersuchung der Rolle von HPB-abspaltenden DNA-Addukten in Biopsien der unteren Speiseröhre für das Krankheitsbild, insbesondere der Sequenz Reflux, gastroösophageale Refluxkrankheit (GERD), Barrett, EAC und der mögliche Beitrag des Rauchens und der Myosminbelastung durch die Ernährung. Im Rahmen einer endoskopischen Untersuchung erhielten wir von nüchternen Patienten zwei Biopsien der Ösophagusschleimhaut oral and aboral der magennahen Läsion für die Bestimmung der DNA-Addukte und eine Blutprobe zur Bestimmung der Myosmin- und Cotininkonzentration. Zusätzlich wurden die Teilnehmer gebeten einen Fragebogen zu Lebens- und Ernährungsgewohnheiten auszufüllen. Vorrangiges Ziel war zunächst die Verbesserung der bestehenden analytischen Methoden. Bei der Bestimmung der Plasmakonzentration der Nicotinoide konnte durch Verwendung einer Mischpolymer-Festphase der Zeit- und Materialaufwand deutlich reduziert werden. Insgesamt nahmen 92 Patienten an der Studie teil, wobei von 84 Teilnehmern auch die HPB-Addukte und Plasmakonzentrationen bestimmt werden konnten. Die Konzentration der HPB-Addukte in Schleimhautbiopsien der unteren Speiseröhre war mit 4,75 pmol/mg deutlich höher als zuvor berichtete Adduktlevel von Gewebeproben, die im Rahmen von Autopsien gewonnen worden waren und auch untere Schichten der Ösophaguswand einschlossen. Insgesamt ergab sich keine Abhängigkeit der Adduktkonzentration vom Geschlecht oder Rauchstatus. In der Sequenz Reflux, GERD, Barrett, EAC zeigten Patienten mit Reflux eine deutliche Tendenz zu höheren Werten. Bei Patienten, die häufig unter Sodbrennen leiden, war die Konzentration der HPB-Addukte gegenüber symptomfreien Patienten signifikant erhöht. Diese Ergebnisse stützen die Hypothese der Bildung von HPB-Addukten aus Myosmin in der unteren Speiseröhre. Hinsichtlich der Ernährungsgewohnheiten zeigten sich wenige Auffälligkeiten. Lediglich bei häufigem Verzehr von scharfen Speisen und nusshaltigen Lebensmitteln und bei regelmäßigem Alkoholkonsum zeigte sich eine Tendenz zu höheren Adduktwerten. Beim Milchkonsum verhielt es sich umgekehrt, der häufigere Verzehr führte zu einer Erniedrigung der HPB-Konzentration an der DNA. Die Myosminkonzentration im Plasma der nüchternen Patienten hatte aufgrund der anzunehmenden kurzen Halbwertszeit von Myosmin nur eine geringe Aussagekraft. Es bestand keine Korrelation mit den HPB-Addukten und auch keine Abhängigkeit vom Rauchstatus, während regelmäßiger Alkoholkonsum die Konzentration von Myosmin signifikant erhöhte.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Isolobal-Analogie ist ein nützliches Konzept zur Systematisierung metallierter Phosphor-Verbindungen, aber auch zur Synthesestrategie bzw. Abschätzung von Reaktivitätspotentialen isolobaler Fragmente. Im ersten Teil der Arbeit werden neue Beispiele von mono- bzw. dimetallierten Phosphonium-Salzen, nämlich Mono- und Dimanganiophosphonium-Salze mit dem 17-VE-Komplexfragment Cp’Mn(CO)(NO) vorgestellt. Aus 1a,b lassen sich mit Ph2PH die Monomanganiophosphonium-Salze [{Cp'Mn(CO)(NO)}PPh2H] +X- (X = BF4 -, PF6 -) (2a,b) darstellen. Diese werden mit Hilfe von DABCO zum Monomanganiophosphan 3 deprotoniert, das allerdings so instabil ist, daß es nicht in reiner Form isoliert werden kann. Seine Existenz läßt sich aber durch chemische Reaktionen indirekt nachweisen. So wird 3 mit MeI bzw. MeSO3CF3 am Phosphor zum methylierten Monomanganiophosphonium- Salz 4 umgesetzt. Das methylierte Manganiophosphoniumsalz 4 konnte auf zweierlei Weise erhalten werden: es entsteht sowohl mit Methyliodid als auch mit Trifluorsulfonsäuremethylester als Methylierungsmittel aus 3. Die direkte Methylierung mit MeI ist dabei vorzuziehen, da keine Base eingesetzt werden muß. Aus 3 läßt sich durch Metallierung mit CpFe(CO)2Cl auch ein bisher unbekanntes heterodimetalliertes Ferriomanganiophosphonium-Salz in Form von 8 synthetisieren. Die für die Darstellung von Diferriophosphonium-Salzen gängige Silylmethode aus FpCl und Ph2PSiMe3 läßt sich nicht auf Mangan übertragen, weil ein geeignetes Mangan-Edukt mit einem Halogeno-Liganden fehlt. Stattdessen muß man von dem metallorganischen Salz [{Cp'Mn(CO)(NO)}PPh2H]BF4 mit demausgesprochen harten Anion BF4 - als Edukt ausgehen, dieses deprotonieren und mit dem Epoxid C6H10O zu 7 umsetzen. Dies hat zur Folge, daß Dimanganiophosphonium-Salze präparativ aufwendiger dargestellt werden müssen, da letztlich zwei Syntheseschritte notwendig sind. Eine große Schwierigkeit ist dabei die Produktisolierung, da die zunächst eingesetzte Base DBU nur äußerst schlecht abgetrennt werden kann. Bei Verwendung der festen Base DABCO konnte diese durch mehrmaliges Waschen mit n-Hexan/CH2Cl2 vollständig entfernt werden und 7 sauber erhalten werden. Eine Übersicht der bisher behandelten Reaktionen mit dem Metallorest CpMn(CO)NO ist in Schema 1 wiedergegeben.Im zweiten Teil der Arbeit wird die Lewis-Basen-Aktivität von stark reduzierten Carbonyl-Ferraten untersucht. Es wurde hauptsächlich das phosphansubstituierte Eisen-Salz K2[Fe(CO)3PPh3] eingesetzt und mit verschiedenen metallorganischen Lewissäuren umgesetzt. Neben den erwarteten Produkten wurden auch einige überraschende Ergebnisse erzielt (Schema 2). Der η2-Digold-Komplex 9 entsteht durch Umsetzung von K2[Fe(CO)3PPh3] mit zwei Äquivalenten Ph3PAuCl wobei wegen der bei Gold(I) ausgeprägten d10-d10-Wechselwirkung - von Schmidbaur auch Aurophilie genannt - eine Au-Au-Bindung entsteht, die mit dem nucleophilen Eisenatom eine Dreiringstruktur ausbildet. Die Bildung von 9 stellt eine metallassoziierte Kopplungsreaktion für Au(I)-Ionen dar. Eine analoge Kopplungsreaktion wird beobachtet, wenn K2[Fe(CO)3PPh3] mit Ph2SbCl zum Distiban-Komplex 13 umgesetzt wird. Das dabei im Sinne einer "Wurtz-Reaktion" gebildete Tetraphenyldistiban koordiniert einfach einzähnig an das metallorganische Komplexfragment in trans-Position zum Phosphanliganden; bisher waren in der Literatur nur zweifach verbrückende Distiban-Liganden bekannt. Eine Umsetzung mit dem gruppenhomologen Diphenylchlorarsan scheiterte, da es nach o.g. Literaturvorschriften nicht genügend rein dargestellt werden konnte. Als Hauptprodukt fiel stets Ph2AsBr an. Dessen analoge Umsetzung führte nicht zum erwarteten Ergebnis, da sich der Eisenkomplex zersetzte. Dagegen führte die Reaktion von K2[Fe(CO)3PPh3] mit dem Stiboran Me3SbCl2 zum erwarteten Komplex 15, in dem mit PPh3 und SbMe3 zwei gruppenhomologe Liganden gleichzeitig in trans-Position am trigonal-bipyramidalen Eisenzentrum gebunden sind (Schema 2). Wird K2[Fe(CO)3PPh3] mit Ph2SnCl2 umgesetzt, so entsteheneinerseits die labilen Komplexe 16 und 17, die sich nicht isolieren lassen, andererseits völlig überraschend nach einiger Zeit das thermodynamisch stabile Distannoxan-Derivat 18. Diese literaturbekannte Verbindung wurde aus Ph2SnCl2 und gängigen Basen über hydrolytische Teilreaktionen hergestellt. Hier übernimmt offensichtlich das Carbonylferrat diese Basenfunktion; offenbar sind bei dieser Langzeitreaktion H2O-Spuren nicht ganz auszuschließen. Das Säure-Base-Addukt 18 ist auf eine hydrolytische Konkurrenzreaktion mit den Basen THF und [Fe(CO)3(PPh3)]2- zurückzuführen, bei der der zuerst entstehende Komplex 16 gespalten wird und mit der stärkeren Base [Fe(CO)3(PPh3)]2- das Hydrolyse- Produkt 18 liefert.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war es, durch die Untersuchung verschiedener Cisplatinanaloga zum einen Substanzen zu finden, die aufgrund ihrer cytotoxischen Wirkung antitumoraktiv sein könnten. Zum anderen sollte durch den Vergleich cytotoxischer und weniger cytotoxischer Verbindungen untersucht werden, ob die Aufnahme in die Zellen, die Bindung an DNA und den damit verbundenen Sekundärstrukturveränderungen, die Reparatur der DNA-Addukte und die koordinative Bindung von Proteinen an DNA über die Platinkomplexe die Cytotoxizität beeinflussen. Die Cytotoxizitätsuntersuchungen haben gezeigt, dass zwar viele der untersuchten Verbindungen [(1a), (8), (11), (12) und (13)] als inaktiv einzustufen sind, einige aber zeigten eine leichte [(9), (10), (14) und (15)] bis starke cytotoxische Wirkung (16). Da alle untersuchten Cisplatinanaloga Chelatliganden aufweisen, führt eine Verbrückung der Aminliganden allein nicht zu einer Erhöhung der Cytotoxizität. Die Verknüpfung zweier cis-Platineinheiten führte überwiegend zu geringen Cytotoxizitäten. Für die untersuchten Alkyl-bis-ethylendiaminplatin( II)-Verbindungen (11) – (14) nahm die cytotoxische Wirkung mit dem Abstand der Platinsphären zu. Die schwache Wirkung der Bisplatinkomplexe ist wahrscheinlich überwiegend auf die DMSO-Solvolyse zurückzuführen, die auch die Cytotoxizität von Cisplatin stark vermindert. Dementsprechend zeigten der wasserlösliche Platin(IV)-Komplexe (9) eine stärkere Cytotoxizität als der analoge Platin(II)-Komplex (8). Andererseits war der Chelatkomplex (16) des sterisch anspruchsvollen Anilin-4Hisochinolin-liganden trotz der Solvolyse in DMSO am wirkungsvollsten. Durch den Vergleich der unterschiedlichen Platinkomplexe konnte gezeigt werden, dass eine eingeschränkte Korrelation zwischen Zellaufnahme, der Bindung an zelluläre DNA und der Cytotoxizität existiert, dass aber beide Prozesse nicht allein ausschlaggebend für die großen Unterschiede in der Wirkung der verschiedenen Komplexe sein können. Eigenschaften, die die Zellaufnahme verbessern, wie z.B. die erhöhte Lipophilie mit zunehmender Länge der Alkylkette in den Alkyl-bis-ethylendiaminplatin(II)-Verbindungen (11) – (14), könnten die Cytotoxizität positiv beeinflussen. Die Vergleiche der Platinkomplexe haben zudem gezeigt, dass sich weder anhand der Platinmenge in den Zellen, noch anhand der Adduktmenge an zellulärer DNA auf die zu erwartende oder resultierende Cytotoxizität der jeweiligen Verbindung schließen läßt. So gibt es z.B. Verbindungen, die zwar vermehrt in die Zellen aufgenommen werden oder mehr DNA-Addukte bilden und dennoch weniger cytotoxisch sind, als Komplexe, die in geringerem Maße in den Zellen bzw. an DNA gebunden sind. Ebensowenig läßt sich anhand der Cytotoxizität auf die Komplexmenge in den Zellen bzw. an zellulärer DNA schließen. Die unterschiedlichen Veränderungen der DNA-Sekundärstruktur und die Kinetiken der Interstrangverknüpfungen ermöglichen Rückschlüsse auf die Art der Addukte der jeweiligen Komplexe. So verlangsamt die Solvolyse in DMSO die Ausbildung bifunktionaler Addukte innerhalb einer Platinsphäre. Die Bisplatinverbindungen [(8), (9), (11), (12), (13) und (14)] drillen aufgrund von ligandenvermittelten bifunktionalen Addukten die DNA dennoch teilweise schneller als Cisplatin (1) auf und bilden mehr Interstrangverknüpfungen aus als Cisplatin (1). Da die meisten dieser Bisplatinverbindungen [(8), (11), (12) und (13)] aber in L1210 Zellen nur wenig cytotoxisch waren, kann daraus die Schlußfolgerung gezogen werden, dass weder das Ausbilden von mehr Interstrangverknüpfungen noch stärkeres Aufdrillen der DNA für die Cytotoxizität der Platinkomplexe verantwortlich ist. Nachdem auch die Verkürzung durch nicht-periodische Biegungen der DNA sowohl bei inaktiven oder wenig cytotoxischen Verbindungen [(10), (11) und (15)] als auch bei dem wirkungsvollen Cisplatin (1) beobachtet wurde, sind DNA-Biegungen an sich auch nicht ausreichend als Erklärung für die Cytotoxiziät. Eine Möglichkeit wäre, dass lokales Aufschmelzen der DNAStränge bzw. eine erhöhte Flexibiltät der DNA,133 die mit den angewendeten Methoden nicht detektiert werden können, die Wirkung der Addukte zusätzlich moduliert. Eine Sonderstellung nehmen die Platin(IV)-Verbindungen (9) und (10) ein, da sie DNA-Strangbrüche erzeugen. DNA-Strangbrüche stellen einen zusätzlichen Schaden neben dem eigentlichen Platinaddukt dar und könnten evtl. über einen anderen Mechanismus zum Zelltod führen. Als weitere Ursache für die unterschiedlichen cytotoxischen Wirkungen der Platinkomplexe wurde auch die Reparatur der DNA-Addukte in vitro untersucht. Dabei waren die Unterschiede in der Reparatur der Platinaddukte an DNA geringer als das Auflösungsvermögen des DNA-Reparatursynthesetests. Eventuelle Unterschiede in der Reparatur der Platinkomplexe sind auf jeden Fall so gering, dass sie nicht für die deutlichen Cytotoxizitätsunterschiede verantwortlich gemacht werden können. Es muß allerdings eingeschränkt werden, dass zwar prinzipiell die Reparaturenzyme alle untersuchten Addukte gleich effizient reparieren können, aber die tatsächliche Reparatur in Zellen durch Transkriptions- gekoppelte Reparatur oder induzierte Reparaturaktivität dominiert werden könnnte. Während der Behandlung von platinierter DNA mit Zellextrakten wurden ein Teil der an die DNA Addukte gebundenen Proteine über ein Platinatom koordinativ mit der DNA verknüpft. Dabei wurden die meisten DNA-Proteinquervernetzungen für inaktive Komplexe gefunden. Dabei handelt es sich um die tetrafunktionalen Bisplatinkomplexe und Platin(II)-Komplexe nach der Solvolyse in DMSO mit Ausnahme von Anilin-4H-isochinolinplatin(II) (16). Offenbar führt die größere Zahl freier Bindungsstellen zu mehr koordinativen Verknüpfungen von Proteinen an DNA. Aus den gewonnenen Erkenntnissen wurde zur Erklärung der unterschiedlichen Cytotoxizität der verschiedenen Komplexe folgendes Modell vorgeschlagen: Cisplatinanaloga bilden zuerst monofunktionale Addukte aus. Eine koordinative Bindung von Proteinen kann die Weiterreaktion zu bifunktionalen DNA-Addukten verhindern. Die monofunktionalen Addukte werden entweder toleriert oder repariert und sind dementsprechend nicht cytotoxisch. Wenigstens ein Teil der bifunktionalen Addukte wirkt dagegen, wahrscheinlich auch über induzierte Veränderungen der DNA-Sekundärstruktur, cytotoxisch. Die langsame Ausbildung von bifunktionalen DNA-Addukten bzw. eine größere Zahl von DNAProteinquervernetzungen vermindert dementsprechend die Cytotoxizität. Je schneller sich also bifunktionale DNA-Addukte ausbilden bzw. je höher der Anteil an bifunktionalen Addukten ist, umso cytotoxischer ist der entsprechende Platinkomplex. Das in dieser Arbeit beschriebene Anilin-4H-isochinolinplatin(II) (16) ist ein vielversprechender Kandidat für die Tumortherpie, da es keine DNA-Proteinquervernetzungen ausbildet, deutliche Unterschiede in den induzierten DNA-Sekundärstrukturveränderungen zu Cisplatin (1) zeigt und stark cytotoxisch wirkt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Hauptteil dieser Arbeit werden Synthese und Charakterisierung neuer Azidverbindungen des Elementes Bor beschrieben. Anhand der Azidierung von Catecholborchlorid konnte gezeigt werden, daß sich das kommerziell erhältliche Me3SiN3 am besten für den Aufbau von Boraziden eignet. Durch die Reaktion von 9-BBN-Cl mit Me3SiN3 sollte 9-BBN-N3 (7) dargestellt werden. Dabei zeigte sich jedoch, daß es unter Eliminierung von N2 überraschenderweise zur Bildung des Umlagerungsproduktes 8 kommt. Um die Bildung von 8 zu verstehen, wurde die Reaktion 11B NMR spektroskopisch bei tiefen Temperaturen untersucht. Dabei konnte gezeigt werden, daß sich bei Temperaturen unter −30 °C zuerst das erwartete 9-BBN-N3 (7) bildet, welches bei höheren Temperaturen unter N2-Abspaltung zu 8 weiterreagiert. Für die Bildung von 8 wurde ein „Synchronmechanismus“ vorgeschlagen, bei dem das α-N Atom der Azidgruppe des intermediär gebildeten 9-BBN-N3 (7) zunächst an das Boratom eines weiteren 9-BBN-N3 (7) Moleküls koordiniert. Gleichzeitig kommt es, unter Eliminierung von N2 zur Bildung einer B−N Bindung. Ein zweiter denkbarer Mechanismus („Iminoboranmechanismus“) fordert das Entstehen eines zyklischen Iminoborans, welches sich durch Addition eines 9-BBN-N3 (7) Moleküls stabilisiert. In einem großen Teil dieser Arbeit wurde eine Reihe von Boraziden mit elektronenziehenden Substituenten untersucht. Dabei wurde zunächst das bereits in der Literatur beschriebene (BF2N3)3 (10) durch Reaktion von BF3 mit Me3SiN3 dargestellt und schwingungs- und NMR-112 spektroskopisch charakterisiert. Es konnte gezeigt werden, daß 10 bereits in Lösung als Trimer vorliegt. Dies ist mit den quantenmechanischen Studien im Einklang, welche zeigen, daß die Trimerisierung von BF2N3 (→ (BF2N3)3) gegenüber der Dimerisierung [→ (BF2N3)2] sowie der Dismutierung (→ BF3, B(N3)3) bevorzugt ist. Einen weiteren elektronenziehenden Substituenten stellt die Pentafluorphenylgruppe (C6F5) dar. Es konnten alle möglichen Kombinationen Pentafluorphenyl-substituierter Borazide sowie deren Pyridin-Addukte synthetisiert und vollständig charakterisiert werden, wobei neue oligomere Festkörperstrukturen erhalten wurden. (C6F5)2BCl [(C6F5)2BN3]2 Me3SiN3 Py [Ph4P][N3] [PPh4][(C6F5)2B(N3)2] 11a 12 13 - Me3SiCl (C6F5)2BN3 Py . Es konnte gezeigt werden, daß sich (C6F5)2BN3 (11) im Festkörper unter Ausbildung von Dimeren [(C6F5)2BN3)]2 (11a) stabilisiert. Somit kann 11a als erstes Beispiel eines substituierten N,N´-Diazo-diazadiboratacyclobutans angesehen werden. Durch Reaktion mit Pyridin oder [Ph4P][N3] konnten 12 und 13 erhalten werden. Im Gegensatz zu 11a, liegt C6F5B(N3)2 (14) im Feststoff als Trimer [C6F5B(N3)2]3 (14a) vor. C6F5BCl2 [C6F5B(N3)2]3 - Me3SiCl Me3SiN3 C6F5B(N3)2 [Ph4P][N3] Py [Ph4P][C6F5B(N3)3] C6F5B(N3)2 Py . 14a 14 15 > 35-37 °C < 35-37 °C An dem Beispiel von 14a konnte der Unterschied von verbrückenden und terminalen Azidgruppen in einem Molekül untersucht werden. Wie durch Ramanspektroskopie gezeigt werden konnte, dissoziiert 14a bei seinem Schmelzpunkt 35−37 °C reversibel in seine Monomere 14. Durch Umsetzungen mit Pyridin und [Ph4P][N3] wurden das Pyridin-Addukt 15 und das Pentafluorphenyltriazidoborat 16 erhalten. Da die Pentafluorphenyl-substituierten Borazide 11a und 14a im Festkörper oligomer vorliegen, wurde der Einfluß der schwächer elektronenziehenden o-Difluorphenyl- und o- Fluorphenyl Substituenten (RF = 2,6-F2C6H3, 2-FC6H4) auf die Struktur der Borazide (RF)2BN3 (23, 24) und RFB(N3)2 (26, 27) untersucht. Die für die den Aufbau der Borazide benötigten nicht beschriebenen Ausgangsverbindungen (RF)2BCl (19, 20) und RFBCl2 (21, 22) wurden durch Reaktion von (RF)2SnMe2 (17, 18) mit BCl3 erhalten. Dabei konnte gezeigt werden, daß (2,6-F2C6H3)2BN3 (23) wie 11a im Festkörper als Dimer vorliegt. Aufgrund von ramanspektroskopischen Untersuchungen, wurde auch für 2,6-F2C6H3B(N3)2 (26) eine oligomere Struktur vorausgesagt. Im Gegensatz dazu ist die 2-FC6H4-Gruppe zu wenig elektronegativ, sodaß (2-FC6H4)2BN3 (24) und 2-FC6H4B(N3)2 (27) keine Oligomerisierungstendenzen zeigen. Ein weiteres im Festkörper monomer vorliegendes Azid ist 2,4,6- [(CF3)3C6H2]2BN3 (25). In diesem Fall verhindern sperrige Nonafluormesityl-Substituenten eine Oligomerisierung. Die hochenergetischen Bortriazid-Addukte B(N3)3·Chin (42), [B(N3)3]2·Pyr (43) sowie das Tetraazidoborat [B(N3)4]− als Li[B(N3)4] (44) und [tmpH2][B(N3)4] (46) konnten synthetisiert und vollständig charakterisiert werden. Im Fall von 46 wurde das [B(N3)4]− Anion in einem neuen Weg aus tmpB(N3)2 und HN3 dargestellt. Begleitend zu den experimentellen Untersuchungen wurden auch quantenmechanische Rechnungen durchgeführt, die gute Übereinstimmung mit den experimentell erhaltenen Daten zeigen. Die starke Lewis-Säure (C6F5)3B (32) wurde in einer Eintopfreaktion aus C6F5Li und BCl3 in Hexan bei −78 °C in guten Ausbeuten erhalten. Die alternative Literatursynthese aus C6F5MgBr und BF3·OEt2 in Diethylether liefert eine ganze Reihe an Nebenprodukten, von denen [(C6F5)2BOH]3 (33a) und (C6F5)2BOEt (34) isoliert und charakterisiert werden konnten. 32 bildet mit einer Reihe von ausgewählten Stickstoffdonoren stabile 1:1 Additionsverbindungen, wobei die Addukte 37−41 vollständig charakterisiert werden konnten. Durch Reaktion von 32 mit [Me4N][N3] wurde 35 als letztes noch fehlendes Glied in der Serie der Pentafluorphenyl substituierten Azidoborate dargestellt. Es konnte gezeigt werden, daß in 38 entgegen der Basizität Cyanamid über den Nitril- Stickstoff koordiniert. Weiterhin konnte gezeigt werden, daß 11B sowie 19F NMR Spektroskopie einen guten Hinweis auf die B−N Bindungsstärke liefern. Dabei zeigt sich der Trend, daß eine schwache B−N Koordination (lange B−N Bindung) einen Tieffeldshift sowohl im 11B als auch im 19F NMR Spektrum, im Vergleich einem Hochfeldshift bei einer starken B−N Bindung (kurze B−N Bindung), bewirkt. Im letzten Teil dieser Arbeit wurden Synthese, Charakterisierung und Untersuchungen zur elektrophilen Fluorierungskapazität von [(ClCN)3F][BF4] (50) beschrieben. Aus quantenmechanischen Berechnungen wurde ein FPDEB3LYP Wert (Fluorine Plus Detachment Energy) von 226.8 kcal mol−1 erhalten, welcher zeigt, daß 50 ein starkes oxidatives Fluorierungsmittel darstellt. Dies wurde qualitativ anhand der Fluorierung ausgewählter Aromaten experimentell bestätigt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war es, Arsen- bzw. Antimonverbindungen zu synthetisieren und zu charakterisieren, die Chemiker aufgrund allgemeiner Erfahrungen als instabil bzw. explosiv bezeichnen würden. Dabei wurden vier verschiedene Schwerpunkte gesetzt. (a) binäre Arsenazide und Antimonazide (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 (a) binäre Arsenazide und Antimonazide Die binären Arsenazid- und Antimonazid-Verbindungen M(N3)3, M(N3)4 + , M(N3)4 – , M(N3)5 und M(N3)6 – (M = As, Sb) wurden durch Reaktion der entsprechenden Chlorid-Verbindungen mit TMS-N3 oder aktiviertem NaN3 synthetisiert. Die Verbindungen wurden als reine Substanzen bzw. als Salze isoliert. Die Isolation der reinen Pentaazide gelang aufgrund der extremen Explosivität nicht. Die Strukturen und Normalschwingungen aller binären Verbindungen wurden auf B3LYP-Niveau berechnet. Die kationischen Spezies zeigen S4-Symmetrie, die monomeren M(N3)4 – -Anionen und die neutralen M(N3)5-Spezies Cs-Symmetrie, die dimeren [M(N3)4 – ]2-Anionen S2-Symmetrie und die M(N3)6 – -Anionen S6-Symmetrie. Abbildung 46 zeigt die berechneten Strukturen und die explosiven Eigenschaften der Verbindungen. Die berechneten durchschnittlichen M-N-Bindungslängen steigen in der Reihenfolge M(N3)4 + < M(N3)5 < M(N3)3 < M(N3)4 – < M(N3)6 – . Die N-N-Bindungslängen innerhalb der Azidgruppen zeigen eine ähnliche Tendenz. Die kationischen Verbindungen zeigen die längsten N -N - und die kürzesten N -N -Bindungslängen (Konnektivität: M–N –N –N ) gefolgt von den Neutral-verbindungen und den anionischen Spezies. Dementsprechend ist die Bindungsordnung zwischen dem N und N -Stickstoffatom (vgl. Lewisformel III, Schema 1) für die kationischen Azidverbidungen am höchsten und für die anionischen am geringsten. Diese Tendenzen stimmen gut mit den experimentell bestimmten und berechneten Schwingungsdaten für die Azidgruppen überein.Die ionischen Verbindungen werden durch voluminöse Gegenionen im Kristall stabilisiert. Die relativen kurzen N -N -Bindungslängen erklären dennoch die gesteigerte Explosivität der kationischen Verbindungen gegenüber den anionischen Spezies. Eine Eliminierung von N2 ist aufgrund dieser kurzen N -N -Bindungslängen erleichtert. Die neutralen Triazide sind außerordentlich explosiv und die Pentaazide zersetzen sich aufgrund des extrem hohen Stickstoffgehalts spontan. Es gelang erstmals eine Arsenazidverbindung durch Röntgenstrukturanalyse zu charakterisieren. Die Struktur des As(N3)6 – -Anions wurde als desses PPh4 + - und Py-H + -Salz geklärt. Das Arsenatom ist von sechs Stickstoffatomen oktaedrisch umgeben. Das Anion zeigt im Kristall zentrosymmetrische S2-Symmetrie. Die experimentell bestimmten Struktur-parameter stimmen mit den auf B3LYP-Niveau berechneten gut überein. Abbildung 47 zeigt die Molekülstruktur des As(N3)– -Anions. Die 14 N-NMR-Spektren aller Verbindungen zeigen drei Resonanzen für die nichtäquivalenten Stickstoffatome der kovalent gebundenen Azide. In den 75 As- bzw. 121 Sb-NMR-Spektren konnten nur im Falle der Hexaazidoanionen Resonanzen aufgelöst werden, da diese Kerne nur in hochsymmetrischer Umgebung aufgrund ihres hohen Quadrupolmoments detektiert werden können. (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon Gemischte Halogen- bzw. Halogen/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) konnten bisher nicht isoliert werden, da diese Verbindungen leicht in die jeweiligen Trihalogenide bzw. Pseudohalogenide dismutieren. Deratige Dismutierungen wurden in dieser Arbeit bei Reaktionen von MX3 (M =As, Sb; X = F, Br, I) mit azidübertragenden Reagentien beobachtet. Gemischte Halogen/Azid-Verbindungen von Arsen und Antimon konnten nur im Falle des Chlorids eindeutig isoliert werden. Die Dismutierungsneigung ist aufgrund der chemischen Ähnlichkeit von Chlorid und Azid am geringsten. SbCl(N3)2 wurde durch Reaktion von SbCl3 und zwei Äquivalenten NaN3 synthetisiert. SbCl2N3 konnte nur in Gegenwart von Pyridin als Lewis-Base kristallisiert werden, wobei das Lewis-Säure-Base-Addukt SbCl2N3 · 2 Pyridin entstand. Eine gemischte Chlorid/Azid-Verbindung von Arsen konnte ebenfalls in Gegenwart von Pyridin als Lewis-Base isoliert werden. Es wurde die Verbindung AsCl(N3)2 · 2 Pyridin durch Röntgenstrukturanalyse eindeutig charakterisiert. Abbildung 48 zeigt die Molekülstruktur von SbCl(N3)2. Die Molekülstrukturen der beiden anderen gemischten Chlorid/Azid-Verbindung von Arsen und Antimon sind in Kap. 3.2.4 abgebildet. Die Zentralatome sind in Übereinstimmung mit dem VSEPR-Konzept in SbCl(N3)2 Ψ -tetraedrisch, in AsCl(N3)2 · Pyridin Ψ -trigonal-bipyramidal, und in SbCl2N3 · 2 Pyridin Ψ -toktaedrisch umgeben. Die Schwingungsspektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen Banden bei 216 cm –1 und 139 cm –1 (As) und 166 cm –1 und 109 cm –1 (Sb). Diese Banden werden den Streck- bzw. Deformationsschwingung der M-NPy-Bindungen (M = As, Sb) zugeordnet. Die 14 N-NMR-Spektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, breite Resonanzen bei einer chemischen Verschiebung von δ = –164 ppm (As) und –157 ppm (Sb). Diese Resonanzen werden den Stickstoffatomen der Pyridinmoleküle zugeordnet. Sie sind im Vergleich zu freiem Pyridin deutlich verschoben (–63 ppm). Es folgt, dass die Addukte ebenso in Lösung stabil sind. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. In AsCl(N3)2 · Pyridin werden 0.20 Elektronen vom Pyridin auf AsCl(N3)2 übertragen und in SbCl2N3 · 2 Pyridin 0.27 Elektronen von den beiden Pyridinmolekülen auf SbCl2N3. Die Wechselwirkung pro Molekül Pyridin ist damit im Vergleich zu AsCl(N3)2 · Pyridin schwächer. Dieses Ergebnis spiegelt sich in den experimentell bestimmten M-NPy-Bindungslängen wieder. (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 Die Isolation der binären Spezies As(N3)5 und Sb(N3)5 gelang aufgrund der spontanen Explosionen nicht. Daher wurden die Verbindungen in situ durch Reaktion von AsF5 bzw. SbF5 mit TMS-N3 dargestellt und mit Lewis-Basen stabilisiert. Die Verbindungen As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) wurden auf diese Weise synthetisiert. Die Verbindungen sind bei Raumtemperatur stabil, explodieren jedoch heftig bei Reibung oder höheren Temperaturen. Die Strukturen und Normalschwingungen wurden auf B3LYP-Niveau berechnet. Die Zentralatome sind jeweils okatedrisch von sechs Stickstoffatomen umgeben. Fünf stammen dabei von Azidliganden und eines von der jeweiligen Lewis-Base. In Abbildung 49 ist die Struktur von As(N3)5 · N2H4 abgebildet. Die berechneten Strukturen der anderen Addukte sind in Kap. 3.3.5 zu finden. Die Schwingungsspektren zeigen alle Schwingungen die auf kovalent gebundene Azide schließen lassen. Zusätzlich sind im Bereich von 111 cm –1 bis 430 cm –1 Banden ersichtlich, die den Streck- bzw. Deformationsschwingungen der M-NLB-Bindungen zugeordnet werden. Die 14 N-NMR-Spektren von As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, Signale, die den Stickstoffatomen der jeweiligen Lewis-Basen zugeordnet werden. Diese Resonanzen sind im Vergleich zu den Resonanzen der freien N-Basen deutlich verschoben. Es folgt, dass die Addukte ebenso in Lösung stabil sind. Aufgrund der 14 N-NMR-Spektren von As(N3)5 · NCNH2 bzw. Sb(N3)5 · NCNH2 kann gefolgert werden, dass die Cyanamid-Verbindungen über die Cyanid-Einheiten an die Zentralatome koordinieren. Die 75 As- bzw. 121 Sb-NMR-Spektren belegen eine oktaedrische Koordination an den Zentral-atomen. Es konnten für alle Addukte Resonanzen in den Spektren detektiert werden. Die Bindungsdissoziationsenthalpien für die Dissoziation der Addukte gemäß Gleichung 25 wurden quantenmechanisch berechnet. M(N3)5 · LB → M(N3)5 + LB (25) (M = As,Sb; LB = Pyridin, NH3, N2H4 und NH2CN) Die Bindungsdissoziationsenthalpie ist ein Maß für die As- bzw. Sb-NLB-Bindungsstärke dieser Addukte. Die Stabilität der Addukte steigt in der Reihenfolge NH2CN < Pyridin < NH3 < N2H4 und As(N3)5 < Sb(N3)5. Die Bindungsdissoziationsenthalpien stimmen qualitativ gut mit den berechneten As- bzw. Sb-NLB-Bindungslängen überein. Die schwächsten Cyanamid-Addukte zeigen die längsten As- bzw. Sb-NLB-Bindungslängen, die stärksten Hydrazin-Addukte zeigen die kürzesten. (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 AsCl5 ist aufgrund der d-Blockkontraktion und der damit verbundenen geringer Abschirmung der hohen Kernladung sehr instabil. Addukte von AsCl5 wurden ebenso wenige beschrieben. SbCl5 hingegen ist stabil. In dieser Arbeit wurde das Koordinationsverhalten schwacher Lewis-Basen gegenüber MCl5 (M = As, Sb) sowohl experimentell als auch theoretisch untersucht. Die Verbindungen MCl5 · LB (M = As, Sb; LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) wurden auf B3LYP-Niveau berechnet, die Verbindungen SbCl5 · LB (LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) und AsCl5 · NCI konnten synthetisiert werden. Strukturen, die ein lokales Minimum (NIMAG = 0) aufweisen, wurden für alle Addukte berechnet. Die Übereinstimmung der berechneten Strukturparameter für SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 mit den durch Röntgenstrukturanalyse bestimmten Bindungs-längen und -winkel ist außerordentlich gut. Abbildung 50 zeigt die Molekülstruktur des 2:1 Addukts SbCl5 · NCCN · SbCl5. Die Strukturen zeigen eine sechsfache Koordination mit nahezu idealer oktaedrischer Umgebung an den Zentralatomen. Sie sind umgeben von fünf Chloratomen und jeweils einem Stickstoffatom der entsprechenden Lewis-Basen. Die Ramanspektren zeigen bei ca. 200 cm –1 Banden für die ν SbN-Streckschwingungen und von 83 cm –1 bis 134 cm –1 Banden für die δ SbN-Deformationsschwingungen. Die ν CN-Streckschwingungen der Addukte ergeben Banden zwischen 2187 cm –1 und 2352 cm –1 und sind damit um 18 - 76 cm –1 zu höheren Wellenzahlen im Vergleich zu den freien Cyaniden verschoben. Die 14 N-NMR-Spektren zeigen deutlich verschobene Resonanzen der Stickstoffatome im Vergleich zu den freien Lewis-Basen. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation dieser schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. Die Wechselwirkung der Lewis-Base Dicyan mit SbCl5 ist geringer als die Wechselwirkung von ClCN mit SbCl5. Basierend auf quantenmechanischen Rechnungen (B3LYP) wurde die Bindungs-dissoziationsenthalpien, die der thermodynamische Stabilität der Addukte entspricht, aller Addukte bestimmt. Die Stabilität steigt in der Reihenfolge (CN)2 < ClCN < BrCN < ICN < NH2CN < Pyridin und AsCl5 < SbCl5. Ferner wurden in dieser Arbeit die Molekülstrukturen der Verbindungen [NEt4][SbCl6], [PPh4][SbCl4] · CHCl3 (Kap. 3.1.7), [NH4][SbCl6] (Kap. 3.6.3) und[NMe4]2[As4O2Cl10] (Kap. 3.5.3) durch Röntgenstrukturanalyse gelöst. Das As4O2Cl10 2– -Anion weist eine ungewöhnliche Struktur auf. Das Anion besitzt im Kristall D2h-Symmetrie, in denen vier Arsenatome und zwei Sauerstoffatome coplanar angeornet sind. Jedes Arsenatom weist eine lokale Ψ -oktaedrische Geometrie auf, in denen es von vier Chloratomen in nicht-äquivalenten äquatorialen Positionen (zwei verbrückende- und zwei terminalen Chloratome) und einem stereochemischen aktivem Elektronenpaar in trans Position zu dem axial verbrückendem Sauerstoffatom umgeben ist. Die Bindungssituation dieses Anions wurde durch NBO-Analyse geklärt. Die verbrückenden Chloratome übertragen jeweils eine Ladung von 0.374 Elektronen auf eine Cl2As-O-AsCl2-Einheit. Dabei sind hauptsächlich Wechselwirkungen der s-LP´s der verbrückenden Chloratome mit den antibindenden σ∗-Orbitalen der As-Clterm.-Bindungen erkennbar. Diese Wechselwirkungen spiegeln sich in den relativ langen As-Clterm.-Bindungen (2.219(1) Å) wieder. Ein weiters Ziel dieser Arbeit war die Synthese und strukturelle Charakterisierung von Azid-Komplexen der Metalle Palladium und Platin. Die Palladiumazid-Komplexe L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) wurden erstmalig synthetisiert und eindeutig mittels IR-, Raman- und 14 N-NMR-Spektroskopie charakterisiert. Die Ergebnisse dieser spektroskopischen Untersuchungen deuten auf trans-stehende Azidliganden. Diese Ergebnisse konnten teilweise durch Röntgenstrukturanalyse bestätigt werden. Ferner wurden die von Beck et al. synthetisierten Palladiumazid-Komplexe L2Pd(N3)2 (L = PPh3, AsPh3) strukturell charaktersisiert. Ähnlich wie in L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) sind die Azidgruppen trans zueinander angeordnet. Die Struktur von Pd(PPh3)2(N3)2 ist hier als Beispiel angegeben (Abbildung 51). In dem gemischt valenten Chlorid/Azid-Komplex [AsPh4]2[Pd2(N3)4Cl2] liegen die Pd(N3)2Cl – -Anionen als azidverbrückte Dimere vor, die einen planaren Pd2N2-Ring ausbilden. Desweiteren wurden in vorliegender Arbeit die binären Palladiumazid- und Platinazid- Anionen Pd(N3)4 2– , Pt(N3)4 2– und Pt(N3)6 2– strukturell charakterisiert. Auftretende Probleme bezüglich N-N-Abständen innerhalb der Azid-Einheiten konnten durch quantenmechanische Rechnungen auf HF- und B3LYP-Niveau gelöst werden. Die Tetraazid-Anionen weisen im Kristall beinahe ideale C4h-Symmetrie, und das Hexaazid-Anion annähernd ideale S6- Symmetrie auf. Für die Tetraazid-Anionen resultiert dadurch eine molekulare Struktur, die dem eines "Windrades" sehr ähnlich ist (vgl. Kap. 3.7.7). Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 45 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Originalarbeiten als Literaturstelle angegeben.
Die metallorganischen Lewissäuren (OC)5Re+ und Cp(OC)(Ph3P)Ru+ bilden Addukte mit den O- bzw. N-Donoren H2O, EtOH, THF, Aceton, CH3CN, Carbonsäureester, NCCH2CO2Me, BrCH2CO2Me, γ-Valerolacton, δ-Valerolactam, ε-Caprolactam, Benzophenonimin. Der chirale Ethanolkomplex [Cp(OC)(Ph3P)Ru(HOEt)]+BF4− kristallisiert als Enantiomerenpaar SRuSO und RRuRO und die Röntgenstrukturanalyse zeigt eine Wasserstoffbrücke zwischen dem Sauerstoffatom des koordinierten Ethanol und dem Tetrafluoroborat-Anion.