POPULARITY
Wer Brockhaus hört, denkt an das berühmte Lexikon. Doch Caspar Brockhaus winkt ab: "Die Verbindungen sind so lange her, dass man den Verwandtschaftsgrad heute nicht mehr berechnen kann", sagt der CEO der gleichnamigen Industriegruppe. Denn das eine Familienunternehmen presste Wissen in Bücher, das andere formt seit seiner Gründung 1864 die Zukunft aus Stahl.Der 39-jährige Harvard-Absolvent übernahm 2009 mitten in der Finanzkrise die Führung des Unternehmens. "Die Merkel-Jahre haben viele Probleme der deutschen Industrie verschleiert, vor allem durch eine starke Entwicklung in China", sagt er. Heute steht Brockhaus für eine neue Generation von Industriellen, die den Spagat zwischen Tradition und Transformation wagen.Seine Unternehmensgruppe investiert aktuell 2,2 Millionen Euro in eine Wasserstoff-Elektrolyseanlage - bewusst ohne staatliche Unterstützung. Die angebotenen Fördergelder von 65.000 Euro lehnte Brockhaus ab. "Das ist es nicht wert, wollen wir gar nicht haben, weil der Papierkram plus die Auflagen, die damit einher kommen, es nicht wert sind", sagt Brockhaus pragmatisch.Als Branchenpionier kompensiert das Unternehmen seit 2019 seinen kompletten CO2-Ausstoß. Besonders die geplante CO2-Bepreisung sieht der Unternehmer kritisch: "Wenn ich bei 70 Prozent Wareneinsatz einen Wettbewerbsnachteil durch CO2-Bepreisung erfahre, kann ich den nicht mehr kompensieren", argumentiert er.Wenn Industriegiganten wie Thyssenkrupp, Volkswagen, Bosch, ZF, Schaeffler und BASF Probleme haben, "sind das nicht alles nur schlechte Manager und schlechte CEOs", betont der Unternehmer. "Wer behauptet, Deutschland könne das Weltklima alleine retten, ist minderbemittelt", fügt er nachdrücklich hinzu. "Wenn wir als Showcase für die Welt scheitern, werden wir keinen Nachahmer finden."Trotz aller Herausforderungen bleibt der Unternehmer Optimist: "Ich glaube, wir brauchen in Deutschland einfach nur einen Tritt in den Allerwertesten, um uns endlich mal wieder auf die Wirtschaft und die Industrie zu besinnen", sagt er. Mit Standorten in Deutschland und Polen demonstriert sein Unternehmen, dass traditionelle Industrie und Innovation sich nicht ausschließen müssen."Stahl ist das Rückgrat der Industrie, nicht nur in Deutschland, sondern überall auf der Welt", betont Brockhaus. Seine detaillierte Vision für die Zukunft des Unternehmens teilt der Unternehmer ausführlich in der aktuellen Folge des Wirtschaftspodcasts "So techt Deutschland".Sie haben Fragen für Frauke Holzmeier und Andreas Laukat? Dann schreiben Sie eine E-Mail an sotechtdeutschland@ntv.de Unsere allgemeinen Datenschutzrichtlinien finden Sie unter https://datenschutz.ad-alliance.de/podcast.htmlAlle Rabattcodes und Infos zu unseren Werbepartnern finden Sie hier: https://linktr.ee/sotechtdeutschlandUnsere allgemeinen Datenschutzrichtlinien finden Sie unter https://art19.com/privacy. Die Datenschutzrichtlinien für Kalifornien sind unter https://art19.com/privacy#do-not-sell-my-info abrufbar.
Willst du deine kreative Befähigung beschleunigen? Schließe dich 1.000+ Entdeckern an und erhalte kostenfreien Zugang zu bewährten Prinzipien für Wachstum, die du so nirgendwo findest. ➞ https://simonrilling.com/newsletter Hast du Fragen, wie du ein Leben führen kannst, das du liebst? Nimm einfach hier Kontakt mit mir auf: ➞ https://www.facebook.com/rilling ➞ https://www.linkedin.com/in/simonrilling ➞ https://twitter.com/simon_rilling ➞ https://www.instagram.com/simon.rilling ----------------------------------------------------------------------------- — MEIN GAST — Patrik Baab war bis vor kurzem Lehrbeauftragter für Journalismus, insbesondere investigative Berichterstattung, verlor jedoch später aufgrund seiner Forschungen im Donbass seine Lehraufträge an der Christian-Albrechts-Universität zu Kiel und an der HMKW in Berlin. Er ist dagegen erfolgreich vorgegangen.
Ein Standpunkt von Thomas Röper.Eine russische Menschenrechts-NGO hat eine Recherche veröffentlicht, die Kamala Harris und Tim Walz, den Spitzenkandidaten bei der anstehenden US-Wahl, vorwirft, in den Handel mit Kindern zur sexuellen Ausbeutung verstrickt zu sein.Bei den US-Demokraten gibt es eine Strömung, die sich für die Legalisierung von Pädophilie einsetzt und dazu auch Gesetze beschließt. Darüber habe ich vor einigen Tagen mit allen Quellen berichtet und angekündigt, einen weiteren Artikel zu veröffentlichen, der die Rolle von Kamala Harris und Tim Walz dabei beleuchtet.Nun hat die russische NGO Fonds zur Bekämpfung der Repression, die sich für Menschenrechte einsetzt, eine neue Recherche veröffentlicht. Ich kenne die Chefin des Fonds Mira Terada schon einige Zeit und veröffentliche auch einige ihrer Recherchen. Hier , hier und hier finden Sie Beispiele für Recherchen der russischen NGO zu Kindesmissbrauch, die ich früher übersetzt habe.... hier weiterlesen: https://apolut.net/die-verbindungen-von-kamala-harris-und-tim-walz-in-paedophile-netzwerke-von-thomas-roeper+++Ihnen gefällt unser Programm? Machen wir uns gemeinsam im Rahmen einer „digitalen finanziellen Selbstverteidigung“ unabhängig vom Bankensystem und unterstützen Sie uns bitte mit Bitcoin: https://apolut.net/unterstuetzen#bitcoinzahlungInformationen zu weiteren Unterstützungsmöglichkeiten finden Sie hier: https://apolut.net/unterstuetzen/+++Bitte empfehlen Sie uns weiter und teilen Sie gerne unsere Inhalte. Sie haben hiermit unser Einverständnis, unsere Beiträge in Ihren eigenen Kanälen auf Social-Media- und Video-Plattformen zu teilen bzw. hochzuladen und zu veröffentlichen.+++Apolut ist auch als kostenlose App für Android- und iOS-Geräte verfügbar! Über unsere Homepage kommen Sie zu den Stores von Apple und Huawei. Hier der Link: https://apolut.net/app/Die apolut-App steht auch zum Download (als sogenannte Standalone- oder APK-App) auf unserer Homepage zur Verfügung. Mit diesem Link können Sie die App auf Ihr Smartphone herunterladen: https://apolut.net/apolut_app.apk+++Abonnieren Sie jetzt den apolut-Newsletter: https://apolut.net/newsletter/+++Unterstützung für apolut kann auch als Kleidung getragen werden! Hier der Link zu unserem Fan-Shop: https://harlekinshop.com/pages/apolut+++Website und Social Media:Website: https://apolut.netOdysee: https://odysee.com/@apolut:aRumble: https://rumble.com/ApolutX/Twitter: https://x.com/apolut_netInstagram: https://www.instagram.com/apolut_net/Gettr: https://gettr.com/user/apolut_netTelegram: https://t.me/s/apolutYouTube: https://www.youtube.com/@apolut.creativesTikTok: https://www.tiktok.com/@apolut.creatives Hosted on Acast. See acast.com/privacy for more information.
In dieser Folge sprechen wir mit dem angehenden Ernährungswissenschaftler Christian Neuhaus über seinen YouTube-Kanal Hirnfleischersatz und seine Kritik zu bestimmten Videos und Aussagen von Niko Rittenau. Wenn ihr Kommentare schreibt, dann bleibt bitte sachlich und greift keine Personen persönlich an. Christians YouTube-Kanal: https://www.youtube.com/@Hirnfleischersatz Quellen und ergänzender Kommentar von Christian: Die antagonistische Pleiotropie (AP) habe ich im Podcast nicht so gut erklärt. Daher hier noch mal etwas ausführlicher für Interessierte (Quellen sind in der Videobeschreibung). Abkürzungen: LM-E: Lebensmittel, welche wir in der Evolution gegessen haben AP: antagonistische Pleiotropie Warum habe ich es angebracht? In der Philosophie hat der die Beweispflicht, der eine Aussage trifft (Russell's Teapot). Niko meint, Veganer hätten die Beweispflicht zu zeigen, dass das Weglassen von Lebensmitteln, die wir in der Evolution gegessen haben (LM-E), sicher ist. Da es zu dem Weglassen von LM-E wenige Daten gibt, würde das eine Supplementation oder den Konsum von LM-E bedeuten. Jedoch spricht AP gegen die Beweislastverschiebung: Ich würde sagen, dass man besonders bei LM-E Daten im höheren Alter haben sollte. Ich nutze es nur, um zu zeigen, dass die Beweislast immer noch bei der Person mit der Aussage liegt, besonders wenn es etwas ist, was wir in der Evolution gemacht haben. Das Argument ist nur wirksam, wenn es keine oder unzureichende Daten zum Thema gibt, so wie es bei vielen Carninutrients der Fall ist. Herleitung: AP besagt, dass Gene eine positive Wirkung früh im Leben und eine negative Wirkung später im Leben haben. Die Gene werden nicht von LM-E geändert, aber die Expression der AP-Gene kann durch LM-E gesteigert werden. Deswegen haben LM-E ein höheres Risiko, schnelleren Altern zu verursachen. Aber das ist nur eine Theorie! Evolution ist auch nur eine Theorie. AP ist die leitende und einzige evolutionäre Theorie des Alterns. AP wurde in jedem Gen gefunden, welches die Lebenserwartung verlängert (aus ethischen Gründen nicht im Menschen). Aber dann ist das doch auf kurze Sicht (für die Fortpflanzung) besser!? Jein. Die Umstände der Evolution und heute sind anders. Manche damaligen Fortpflanzungsnachteile interessieren uns heute nicht: Hungerperioden, die Verfügbarkeit von Kalorien und moderne Medizin machen einige Krankheiten irrelevant. Andererseits können wir die Schäden des Alterns heute nicht so gut vermeiden. Wenn wir Daten bis zur Fortpflanzung (und ein paar Jahre darüber hinaus) haben, ist das Risiko eines Schadens im Alter geringer, weil kein Risiko der Aktivierung von AP-Genen besteht. Entstehung: Notwendige Verknüpfung und eine Maximierung des Nachwuchses Wenn man das schnellere Altern von mehr Fitness in jungen Jahren nicht trennen kann, wird sich eine Balance für Altern und Fitness einstellen, sodass der Organismus möglichst viele Nachkommen bekommt. Nicht notwendige Verknüpfung: Ressourcen Sparen Bei manchen Genen sollte es kein Problem sein, ein Gen zu haben, das den Part des schnelleren Alterns weglässt. Jedoch hat das schnellere Altern auch Vorteile in der Evolution gehabt. Der 'Threshold of Chaos' (so effiziente Reproduktion und ein so hohes Alter, dass die Ressourcen ausgehen und die Population ausstirbt) wird später erreicht. Die Verbindungen werden geschaffen, da sonst ein Organismus durch Mutation des Alterungs-Gens die Fitness steigert und sich Gene durchsetzen, welche den 'Threshold of Chaos' wieder überschreiten lassen. In diesem Fall gingen die Gene wieder verloren, und die Population wird durch eine andere Population ersetzt, bis AP auftritt. Is antagonistic pleiotropy ubiquitous in aging biology? Aussage, dass es jedes Gen betrifft, das die Lebenserwartung verlängert. https://pubmed.ncbi.nlm.nih.gov/30524730/ Entstehung von Antagonistic Pleiotropy https://link.springer.com/article/10.1134/S0006297919120058 Antagonistische Pleiotropie – erstes Paper. Ich weiß nicht, wie viel davon im Podcast vorkommt, aber ich finde es interessant. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1558-5646.1957.tb02911.x drei Meta-Analysen, welche Eier-Konsum mit mehr ACM in Verbindungen gebracht haben. Linearer Effekt des Eikonsums auf ACM (8 % pro 3,5 Eier die Woche). Aber bei der Subgruppen-Analyse (Figure 8) mit gesunden Personen kein signifikanter Effekt, jedoch gleiche Effektstärke, was ein Powerproblem sein könnte. (Das war bei 3,5 Eiern pro Woche. Niko empfiehlt das Vierfache.) Keine Heterogenität angegeben. CVD-Risiko bei der gesunden Subgruppe aber signifikant größer, 11 % pro 3,5 Eier pro Woche.https://jamanetwork.com/journals/jama/fullarticle/2728487#joi190019f1 Lineare Regression hatte ein 2 % höheres ACM Risiko pro Ei die Woche. Jedoch keine Association bei dem Vergleich Highest to lowest. https://pubmed.ncbi.nlm.nih.gov/35396834/#:~:text=Higher%20egg%20consumption%20was%20not,part%20of%20a%20healthy%20diet Meta-Analyse mit 60 g Eiern pro Tag und einem exponentiellen Risiko für ACM. Sehr heterogen.https://www.sciencedirect.com/science/article/pii/S0002916522049206?via%3Dihub ------------------------------------------------------------------------ Dominiks Buch zur pflanzenbasierten Sporternährung im UTB-Verlag: https://www.utb.de/doi/book/10.36198/9783838560328 Dieser Podcast wird unterstützt von der Firma Watson Nutrition. Die Firma bietet als einzige umfassend laborgeprüfte Nahrungsergänzungsmittel für eine optimierte Nährstoffversorgung. Zum Angebot zählen Multi-Supplemente, Mono-Supplemente, Sportsupplemente wie Kreatin oder auch Proteinriegel-, Shakes und essenzielle Aminosäuren Mit dem Code veganperformance erhältst du 5 % Rabatt auf deine Bestellung. Mit dem Code veganperformance10 erhältst du sogar einmalig 10 % Rabatt auf eine Bestellung. Zur Firmenwebseite: Watson Nutrition
Nachdem die NPD 2003 nicht verboten wird, wächst die Partei. Die Verbindungen zu militanten Neonazis sind kein Geheimnis. Und dennoch ahnt kaum jemand, was Deutschland ein paar Jahre später schwer erschüttern und schließlich zu einem zweiten NPD-Verbotsverfahren führen wird. Der Druck ist groß. Ein weiteres Mal soll das Parteiverbotsverfahren nicht scheitern. Dafür sorgen soll er: Rechtsprofessor Christoph Möllers. Er schreibt mit seinem Team einen neuen Verbotsantrag. Sie sind zuversichtlich, dass es dieses Mal ausreicht für ein Verbot der Partei. Und tatsächlich: Das Bundesverfassungsgericht erklärt die NPD für verfassungsfeindlich. Doch verboten wird die NPD trotzdem nicht. Warum? Und was würde es für ein mögliches Verbotsverfahren gegen die AfD bedeuten, dass ein Parteiverbot kein "Gesinnungsverbot" ist, wie die Verfassungsrichter damals feststellen? Host: Christine Auerbach Reporter: Thies Marsen Uns erreicht Ihr über die Mailadresse: dieEntscheidung@br.de. Schickt uns Eure Fragen, Kommentare oder Themenvorschläge. Unsere Podcast-Empfehlung: Die Justizreporter*innen. Das ist der Jura-Podcast der ARD-Rechtsredaktion direkt aus Karlsruhe. Erfahrene Journalistinnen und Journalisten informieren Euch über die wichtigsten Gerichtsentscheidungen am Bundesverfassungsgericht, am Bundesgerichtshof, dem EuGH und dem europäischen Gerichtshof für Menschenrechte - und zwar so, dass jeder es versteht. https://www.ardaudiothek.de/sendung/die-justizreporter-innen/72290090/
Ein Vortrag von Historiker Israel YuvalModeration: Sibylle Salewski **********Pessach und Ostern liegen fast immer nahe beieinander. Was haben diese beiden Feste gemeinsam? Wie haben sich jüdische und christliche Bräuche gegenseitig beeinflusst? Ein Vortrag des Historikers Israel Yuval Israel Yuval ist Professor für jüdische Geschichte an der Hebräischen Universität in Jerusalem. Sein Vortrag hat den Titel "Jüdisch-christliche Nachbarschaft in der Gestaltung der heiligen Zeit". Er hat ihn am 12. November 2023 an der Goethe-Universität Frankfurt am Main gehalten auf der Jahreskonferenz des Projekts "Synagogengedenkbuch Hessen". Veranstaltet wurde die Konferenz vom Buber-Rosenzweig-Institut für jüdische Geistes- und Kulturgeschichte der Moderne und Gegenwart und mehreren Partnern. ********** Schlagworte: +++ Religion +++ Pessach +++ Ostern +++ Bräuche +++ Hebräische Universität Jerusalem +++ Tradition +++ Christentum +++ Feiertage**********Den Artikel zum Stück findet ihr hier.**********Ihr könnt uns auch auf diesen Kanälen folgen: Tiktok und Instagram.
Die Verbindungen der Familie Mann zur Tschechoslowakei wurden erst vor nicht allzu langer Zeit gründlicher erforscht. So half etwa der Präsident der Tschechoslowakei Tomáš Garrigue Masaryk nach der Emigration Heinrich Manns aktiv und finanziell dabei, die Bibliothek und das Archiv aus der Münchener Wohnung ins Ausland zu schaffen. 1936 erhielten Thomas und Heinrich Mann die Tschechoslowakische Staatsbürgerschaft. In den Abhandlungen zu den weit über diese zwei soeben genannten Tatsachen hinausreichenden Beziehungen der Manns zu dem Intellektuellen an der Spitze des jungen Staates, den viele Tschechen respektvoll als Papa Masaryk bezeichneten, steht immer geschrieben, dass Heinrich Mann, Masaryk 1924 kennen gelernt hatte. Und genau diese erste Begegnung schilderte er für die Vossische Zeitung vom 1. Februar 1924. Neben seinem Eindruck vom Präsidenten als Person beschreibt er auch die Gespräche über das Verhältnis von Deutschland zu Frankreich. Da Masaryk von Paris aus die Exilregierung der Tschechoslowakei während des Ersten Weltkriegs anführte, dort den unabhängigen Staat verhandelte und stets beste Beziehungen zu französischen Politikern pflegte, verwundert es nicht, dass seine Position sich deutlich abhebt von der in der deutschen Presse propagierten Sichtweise, der Hauptschuldige an der Ruhrbesetzung sei Poincaré. Paula Rosa Leu war zusammen mit Heinrich Mann zu Besuch auf dem Landsitz des tschechoslowakischen Präsidenten in Lány.
Putins Krieg gegen die Ukraine ist auch eine Katastrophe für Wissenschaftlerinnen und Wissenschaftler. Die Verbindungen deutscher Forschungsinstitute nach Russland wurden gekappt – eine Tragödie für alle, erklärt Sandra Dahlke, Direktorin vom neuen „Netzwerk Osteuropa“, im Gespräch mit SWR2.
Wie kann es sein, dass die Hamas-Unterstützer aus Katar auch Hauptsponsor des FC Bayern waren? Die Verbindungen, welche zu diesem Deal geführt haben, reichen bis in höchste politische Kreise. Nach NIUS-Informationen war Christoph Heusgen, Ex-Botschafter Deutschlands bei der UN und langjähriger Berater von Angela Merkel, daran beteiligt, den Deal zwischen den Bayern und den Scheichs einzufädeln. Das geschah dank enger Freundschaft seiner Ehefrau zu Steinmeiers Sprecherin Sawsan Chebli. Sie war es, die für Heusgen und den FC Bayern ein Schutz-Statement von Steinmeier beschaffte und nach NIUS-Informationen sogar formulierte, um den Deal zwischen den Terror-Scheichs und dem Rekordmeister abzusichern. Achtung, Reichelt! wagt einen Blick in den Sumpf der Terror-Scheichs und deren Verbindungen in Deutschland. 03:00 Frank-Walter Steinmeier & der Katar-Clan 04:30 Steinmeier schützte den Bayern-Deal! 06:50 Christoph Heusgen und die Scheichs 09:52 Sawsan Chebil & der Katar-Clan 12:25 Der FC Bayern und die Blutscheichs
Im nächsten Jahr will Finnland entlang der 1340 Kilometer langen Grenze zu Russland "robuste Zäune mit echter Barrierewirkung" errichten. Der reguläre Grenzverkehr ist schon zum Erliegen gekommen. Die Verbindungen werden gekappt, was einige bedauern.Von Michael Frantzenwww.deutschlandfunkkultur.de, WeltzeitDirekter Link zur Audiodatei
Heute in unserem Japan-Podcast: Japan wird zum Spitzenreiter der Coronainfektionen, Vereinigungskirche hat engere Verbindungen als erwartet, das Aus der hübschen Bier-Mädchen und viel Geld, um Japan grüner zu machen. Zusätzlich gibt es zur Feier unserer 200. Folge ein Gewinnspiel mit Preisen von KSM Anime, Ginza Berlin und Japanische Lebensart.
Ein Kommentar von Peter Haisenko, Betreiber des Portals wwww.anderweltonline.com.Warum wird in Mariupol so verbissen gekämpft? Warum ist der Raketenangriff auf den Bahnhof in Kramatorsk so schnell aus den Medien verschwunden? Warum schweigen die USA über US-Bürger, die in der Ukraine umgekommen sind? Wie viele NATO-Soldaten sind wirklich aktiv auf Seiten Kiews innerhalb der Ukraine? Die westliche „Berichterstattung“ über die russische Operation muss mindestens als lückenhaft bezeichnet werden.Als zu Beginn der russischen Operation in der Ukraine über das ganze Land verstreute Ziele angegriffen wurden, erschien das willkürlich bis unverständlich. Dann wurde sichtbar, dass es sich bei diesen Zielen um Standorte von Biolaboren handelt, die von westlichen Staaten dort installiert und betrieben worden sind. Die Panik in Washington war groß, dass aufgedeckt wird, was dort tatsächlich gemacht wurde. Die Verbindungen von Präsident Biden und seinem Sohn Hunter zu den Biolaboren und ihrer Finanzierung schlagen in den USA bereits hohe Wellen, werden aber hier kaum erwähnt. Kein Wunder, denn gesicherte Dokumente belegen, dass auch deutsche Akteure in den Betrieb dieser Biolabore verwickelt sind.Die Konzentration der Asow-Brigaden auf Mariupol erscheint schwer zu erklären. Schließlich ist diese Hafenstadt am Asowschen Meer sehr schnell von der Außenwelt abgeschnitten worden. Auch der Zugang vom Meer ist unter russischer Kontrolle, weil er durch die Straße von Kertsch führt. Die Soldaten von Kiew sind eingekesselt und von Nachschub abgeschnitten. Einen strategischen Grund für die verbissenen Kämpfe dort gibt es also nicht. Jeder Vernunftbegabte müsste kapitulieren, auch um Leben von Zivilisten zu schonen. Das Gegenteil ist der Fall. Die Asow-Verbände nutzen Zivilisten als Schutzschilde und sorgen so dafür, dass es schwere Schäden und viele Tote in der ganzen Stadt gibt. Mittlerweile sind sie weitgehend aus der Stadt vertrieben und haben sich auf das Gelände des großen Stahlwerks am Stadtrand „Asovstahl“ zurückgezogen. Das tun sie in dem Bewusstsein, dass Russland diese wichtige Industrieanlage nicht beschießen und zerstören will. Was aber ist besonders an dieser Anlage?...weiterlesen hier: https://apolut.net/ukraine-fuer-die-nato-wird-es-explosiv-von-peter-haisenko/+++Apolut ist auch als kostenlose App für Android- und iOS-Geräte verfügbar! Über unsere Homepage kommen Sie zu den Stores von Apple und Huawei. Hier der Link: https://apolut.net/app/Die apolut-App steht auch zum Download (als sogenannte Standalone- oder APK-App) auf unserer Homepage zur Verfügung. Mit diesem Link können Sie die App auf Ihr Smartphone herunterladen: https://apolut.net/apolut_app.apk+++Abonnieren Sie jetzt den apolut-Newsletter: https://apolut.net/newsletter/+++Ihnen gefällt unser Programm? Informationen zu Unterstützungsmöglichkeiten finden Sie hier: https://apolut.net/unterstuetzen/+++Unterstützung für apolut kann auch als Kleidung getragen werden! Hier der Link zu unserem Fan-Shop: https://harlekinshop.com/pages/apolut+++Website und Social Media:Website: https://apolut.net/Odysee: https://odysee.com/@apolut:aRumble: https://rumble.com/ApolutInstagram: https://www.instagram.com/apolut_net/Gettr: https://gettr.com/user/apolut_netTelegram: https://t.me/s/apolutFacebook: https://www.facebook.com/apolut/Soundcloud: https://soundcloud.com/apolut Our GDPR privacy policy was updated on August 8, 2022. Visit acast.com/privacy for more information.
Auf Retreats passieren Dinge, die nur schwer zu beschreiben sind. Es ist magisch und irgendwie nicht ganz von dieser Welt. Die Verbindungen, die hier zu dir selbst und zu anderen entstehen, sind unglaublich tief, roh und pur. Tauche ein in die Magie von Retreats beim Lioness Online Tantra Retreat! Infos und Buchung: https://teresaamann.com/lioness-tantra-retreat Let's connect: www.instagram.com/teresaamann_
Wer kennt es nicht: Ein Impuls, eine Reaktion und die Konsequenz folgt. Muster, die uns aus der Vergangenheit einholen und es uns immer wieder unnötig schwer machen, die Ziele zu erreichen, die wir erreichen wollen. Die Verbindungen zu knüpfen, die uns so wichtig sind und die Fähigkeiten zu erlernen, die wir schon lange erlernen wollten. Aber muss das so bleiben? Sind Emotionen einfach da oder können wir sie aktiv bestimmen? Und wenn das so ist, welche unfassbaren Chancen würde das für dein Leben bringen? Genau diesen Fragen und emotionalen Höhen und Tiefen im Leben schauen wir uns heute gemeinsam an und dazu habe ich wieder einen unfassbar tollen Menschen im Interview zu Gast. Er heißt Markus Paul und ist selbständiger Coach, Trainer und Key Note Speaker für emotionale Intelligenz. Er bringt Menschen die Fähigkeit des bewussten Umgangs mit Emotionen bei. Mit dem Ergebnis Druck, Stress sowie Konflikte zu reduzieren, das Selbstbewusstsein zu stärken und mentale Gesundheit und Führungskompetenz zu entwickeln. Ich freue mich wahnsinnig ihn dabei haben zu dürfen und wünsche dir ganz viel Spaß und freudige Emotionen bei dieser heutigen Podcastfolge. Und natürlich findest du alle wichtigen und weiteren Informationen zu Markus in den Shownotes, um mit ihm in Kontakt zu treten.Und wenn dir diese Folge gefallen, gib ihr unbedingt 5 Stern und teile sie mit Menschen, von denen du glaubst, dass sie genauso viel mitnehmen konnten wie du. Teile mir auch gerne deine größten AHA Momente und verlinke mich dazu gerne in einem Kommentar: @sina.feuerer oder gibt mir direktes Feedback. Ich würde mich sehr darüber freuen weiter mit dir wachsen zu können und wenn du für dich 30 Tage lang einen täglichen Impuls & Inspiration hättest um mehr in die Umsetzung zu kommen, sodass du stolz Tag für Tag dir mehr auf die Schulter klopfen kannst, dann ist die #30DaysOfPerformanceInspirationChallenge etwas für dich. Wenn du sie haben willst, komm auf meinen Instakanal @sina.feuerer und hol dir gratis die 30 Tages Challenge.Ich freue mich schon auf dich und wünsche dir einen wundervollen Tag.Stay strong and let it burnDeine Sina
Wer kennt es nicht: Ein Impuls, eine Reaktion und die Konsequenz folgt. Muster, die uns aus der Vergangenheit einholen und es uns immer wieder unnötig schwer machen, die Ziele zu erreichen, die wir erreichen wollen. Die Verbindungen zu knüpfen, die uns so wichtig sind und die Fähigkeiten zu erlernen, die wir schon lange erlernen wollten. Aber muss das so bleiben? Sind Emotionen einfach da oder können wir sie aktiv bestimmen? Und wenn das so ist, welche unfassbaren Chancen würde das für dein Leben bringen? Genau diesen Fragen und emotionalen Höhen und Tiefen im Leben schauen wir uns heute gemeinsam an und dazu habe ich wieder einen unfassbar tollen Menschen im Interview zu Gast. Er heißt Markus Paul und ist selbständiger Coach, Trainer und Key Note Speaker für emotionale Intelligenz. Er bringt Menschen die Fähigkeit des bewussten Umgangs mit Emotionen bei. Mit dem Ergebnis Druck, Stress sowie Konflikte zu reduzieren, das Selbstbewusstsein zu stärken und mentale Gesundheit und Führungskompetenz zu entwickeln. Ich freue mich wahnsinnig ihn dabei haben zu dürfen und wünsche dir ganz viel Spaß und freudige Emotionen bei dieser heutigen Podcastfolge. Und natürlich findest du alle wichtigen und weiteren Informationen zu Markus in den Shownotes, um mit ihm in Kontakt zu treten.Und wenn dir diese Folge gefallen, gib ihr unbedingt 5 Stern und teile sie mit Menschen, von denen du glaubst, dass sie genauso viel mitnehmen konnten wie du. Teile mir auch gerne deine größten AHA Momente und verlinke mich dazu gerne in einem Kommentar: @sina.feuerer oder gibt mir direktes Feedback. Ich würde mich sehr darüber freuen weiter mit dir wachsen zu können und wenn du für dich 30 Tage lang einen täglichen Impuls & Inspiration hättest um mehr in die Umsetzung zu kommen, sodass du stolz Tag für Tag dir mehr auf die Schulter klopfen kannst, dann ist die #30DaysOfPerformanceInspirationChallenge etwas für dich. Wenn du sie haben willst, komm auf meinen Instakanal @sina.feuerer und hol dir gratis die 30 Tages Challenge.Ich freue mich schon auf dich und wünsche dir einen wundervollen Tag.Stay strong and let it burnDeine Sina
✘ Werbung: https://www.Whisky.de/shop/ Teespring ► https://unterblog.creator-spring.com/ Der Kanal Ultralativ hat eine bemerkenswerte #Grafik über miteinander verbundene #YouTube-Kanäle erstellt. Auch der UnterBlog ist dabei. Die Verbindungen wurden über die Programmierschnittstelle von YouTube ausgelesen und beziehen sich auf gegenseitige #Abonnements und #Verlinkungen. Es ergeben sich interessente #Cluster und noch interessantere Verbindungen. Meine Gesellschaftliche Positionierung ► https://youtu.be/gTp5uSFsj8k Kanal Ultralativ ► https://www.youtube.com/c/Ultralativ Download Grafik ► https://mediafire.com/view/3lzlr0hawbb7ukj/YouTube_DE_Netzwerk_2021.png/file Grundlagenvid Ultralativ ► https://youtu.be/jXb-zSPjhPI ARD Volontäre ► https://meedia.de/2020/11/05/ard-volontaere-wuerden-mit-absoluter-mehrheit-die-gruenen-waehlen/ NZZ ► https://nzz.ch/international/ard-und-zdf-links-der-mitte-beliebter-ld.1508430
In Winterthur und Umgebung sind besonders viele Freikirchen und fromme Christen aktiv. Ist die Gegend eine Art «Bibelgürtel der Schweiz» – analog zu den frommen Gebieten im mittleren Westen der USA? Eine christliche Privatschule, eine eigene Wohnsiedlung, Seminarräume, ein eigenes Kongresszentrum: Die Dichte an Freikirchen scheint in Winterthur und Umgebung besonders hoch zu sein. Die Verbindungen reichen bis in die Politik hinein. Die Evangelische Allianz Winterthur EAW, ein Dachverband von Freikirchen, Sozialwerken und Vereinen, sieht sich als «gesellschaftsrelevant» und will «Gottes Liebe in der Stadt erlebbar» machen. Warum sind Freikirchen in Winterthur so präsent und aktiv sind? Wie einflussreich sind sie? Und welche Vorurteile über Freikirchen stimmen heute noch? Weitere Themen: - Soziales Engagement, im Namen Gottes - Den Menschen christliche Perspektiven vermitteln - Fromm, missionarisch, sektiererisch - stimmen die Vorurteile noch?
Wegen der Serie von Mord- und Bombendrohungen ist im Fall NSU 2.0 ein Verdächtiger in Haft. Die Verbindungen zu deutschen Sicherheitsbehörden bleiben undeutlich.
Jede Woche neue Videos auf dem SAXOPHONE CHANNEL! Texauszug von LeFreQue.com : Reiner Klang beginnt mit besserer Stimmung LefreQue-Klangbrücken verbessern die Stimmung und Leistung aller Holz- und Blechblasinstrumente. Wir glauben, dass ein reiner Klang der Schlüssel zur Freude am Musizieren ist. Ein reiner Klang beginnt mit einer besseren Stimmung. Die meisten Blasinstrumente bestehen aus zwei oder mehr Segmenten (z. B. Mundstück/Hörer, Kopfgelenk/Korpus/Fußgelenk usw.) Die Verbindungen zwischen diesen Segmenten beeinflussen die Klangqualität Ihres Instruments. LefreQue bietet einen revolutionären Weg, diesen akustischen Einfluss zu überwinden. Wir wollen allen Bläsern helfen, ihren besten Klang zu erzeugen. Wie das geht? LefreQue überbrückt den frequenzabhängigen Widerstand der Fugen, so dass sich Ihr Ton frei durch das Material des Instruments bewegen kann. Mit der richtigen Materialkombination und Größe für Ihr spezifisches Instrument wird der Effekt phänomenal sein. Unsere Produktlinie ist für alle Blasinstrumente geeignet und befähigt alle Spielstärken, vom Anfänger bis zum Profi der Spitzenklasse. Was wir unseren Kunden versprechen Reinere Obertöne Genaue Stimmung Klare Ansprache Weiche Intervalle Räumliche Projektion Erweiterte Dynamik Eine immer größer werdende Anzahl von Profis der Spitzenklasse bestätigt die Vorteile der LefreQue-Schallbrücken voll und ganz. Darunter Emmanuel Pahud (Flöte), Steven Mead (Euphonium), Bryan Lynch (Trompete), Melton Tuba Quartet (Tuba), Kim Laskovski (Fagott), Rupert Gratz (Tuba), Evan Tate (Saxophon) und viele mehr. Eine umfangreiche Übersicht finden Sie unter unseren Künstlern. Über uns Von unserem Hauptsitz und unserer Produktionsstätte in Holland aus liefern wir unsere revolutionären Klangbrücken in die ganze Welt. LefreQue ist ein privat geführtes, innovatives Unternehmen, mit einer informellen Kultur. Wir haben einen starken Fokus auf Kundenbedürfnisse und Service. Hans Kuijt gründete das Unternehmen im Jahr 2008. Er schloss sein Studium am Amsterdamer Konservatorium mit Auszeichnung ab und spielt sowohl Flöte als auch Saxophon. In seinem Bestreben, seine professionelle Leistung ständig zu verbessern, erfand Hans die Klangbrücke. Nach drei Jahren Prototyping wurde 2011 der erste lefreQue-Schallsteg auf den Markt gebracht. Wir werden unsere Forschung und Entwicklung fortsetzen, um unsere Produktlinie zu verbessern und zu erweitern. Jeder sollte die Möglichkeit haben, Spaß am Musizieren zu haben, unabhängig von Alter, Niveau, Hintergrund oder finanzieller Situation. Es ist unser Ziel, dazu beizutragen, genau das zu erreichen. Das ist auch der Grund, warum wir in die Entwicklung eines Tutorials lefreQue für Kinder und Anfänger investiert haben. Nach umfangreichen Recherchen haben wir uns für einen hochtechnologischen und dennoch erschwinglichen Verbundwerkstoff entschieden. Die Eigenschaften dieses Produkts eignen sich besonders gut für Lernzwecke. Es bietet genau die Kombination von Vorteilen, die Anfänger brauchen, um ihr erstes Blasinstrument zu beherrschen. Das Tutorial lefreQue verbessert das genaue Stimmen und macht praktisch alle Einsteiger-Blasinstrumente leichter handhabbar. Seine Verwendung beschleunigt den Fortschritt und sorgt für mehr Spaß und größere Begeisterung. Das Tutorial LefreQue ist jetzt verfügbar. Übersetzt mit www.DeepL.com/Translator (kostenlose Version) Wenn du Fragen hast, schreibt es unten in den Kommentar Bereich. Du kannst auch allgemeine Fragen zur Musik, Jazz, Saxophon Reparatur, Improvisation und so weiter stellen. Ich freue mich auf dein Feedback! Die #DailySaxophone Show! gibt dir jeden Tag (oder fast jeden Tag) eine neue Aufgabe zum Üben. Wir machen Übungen für die Technik, Sound, Ansatz, Improvisation und alle Themen rund um das Saxophon. http://saxvideotraining.com http://saxbrig.de #saxbrigblog EMAIL: info@saxvideotraining.com MESSENGER: m.me/saxbrig HIER KÖNNT IHR BERND NOCH FINDEN HOME: http://berndsax.com INSTAGRAM: https:
What the dilly, yo? Lil' Mariu$ & S-to-da-Ammo stellen sich zusammen mit Gast (Young) Tri$tan die Fragen, die die Welt bewegen: Ist Basketball das fünfte Element von Hip-Hop? Ist Hip-Hop Teil der NBA und wer hat eigentlich wen wie stark beeinflusst? Wir keepen it real und lassen in dieser Episode NBA-Spieler rappen, Rapper Basketball spielen und klären ganz nebenbei, wie Hip-Hop (für uns) klingen muss. Check dat, homiez! Die Verbindungen und Wechselwirkungen zwischen Basketball- und Hip-Hop-Kultur reichen mittlerweile mehr als 40 Jahre zurück. Fat Joe zieht im Musik-Video Stephon Marbury auf dem Freiplatz ab, Dame Dolla rappt neben dem Basketball-Spielen (und das gar nicht mal so schlecht), MCs tragen NBA-Jerseys und Jordan-Sneaker und dann war da ja auch noch die Sache mit den Cornrows, Baggys, Tattoos und David Stern. Wir arbeiten in dieser Folge genüsslich auf, wie eines zum anderen führte und das Andere wiederum das Eine gepusht hat und hören nebenbei richtig viel gute (und schlechte) Musik. Zudem: Welche Hip-Hop-Epoche war die Beste? Wie klingt doper Hip-Hop und was ist für uns Trash? Gibt es einen Konflikt zwischen Oldschool-Heads und 2020s-Rap? Welcher NBA-Spieler ist der beste Wortakrobat und vor allem: Wer zum Geier hat Steve Francis ein Mikro in die Hand gedrückt? Das und vieles mehr in schlanken 195 Minuten – yep, fo’shizzle! Ach ja: Alle Tracks, die wir während des Pods anteasern, findet ihr natürlich in voller Pracht in unserer Spotify-Playlist (einfach den QR-Code im Episodenbild scannen). Bei Nackenschmerzen fragt am besten euren lokalen Arzt und Platten-Dealer. -> t1p.de/hip-hop-und-die-nba Dickes Shoutout fürs Outro geht raus an Pimf und Shogoon! Track: Pimf & Shogoon „Courtside“. Checkt die beiden auf Twitter (@pimfyo / @shogoon_one), Spotify oder noch besser in eurem Record-Store! _____________________________ Für mehr Infos und Bonus-Content checkt unsere WEBSITE. Alle Hörmöglichkeiten und Social-Media-Links findet ihr HIER. Tauscht euch mit uns und anderen aus - im FORUM. Wir freuen uns riesig über eine Bewertung bei iTUNES.
Wenns ums Ganze geht, kann eine Information über Sieg oder Niederlage entscheiden. Gesprächspartner in dieser Folge ist Bennet Poniewaz, deutscher Meister im Beachvolleyball 2019 und Consultant bei der SIEVERS-GROUP. Sowohl im Profisport als auch bei der Unternehmensplanung kommt es bei wichtigen Entscheidungen auf eines an: sich selbst und sein Umfeld genau zu kennen. Die Themen im Einzelnen: + Leistungsüberwachung, Echtzeit- & Performance-Analysen – im Trainingslager und im Unternehmen + „Data everywhere“: Die Verbindungen zwischen den Daten zu sehen, ist der Schlüssel zum Sieg – und das in allen Bereichen + Der Weg zur Meisterschaft: Was die Wirtschaft vom Spitzensport lernen kann
Eine Gefahr für die nationale Sicherheit sei TikTok - deshalb wollte US-Präsident Donald Trump die Plattform verbieten, wenn sie in chinesischer Hand bleibt. Jetzt zeichnet sich ein Deal ab: ein neues US-Unternehmen mit dem Namen "TikTok Global" soll die Plattform übernehmen. Doch ein genauer Blick zeigt: Die Verbindungen nach China bleiben. Warum dann dieser Deal? Und was sagt er uns über die Zukunft des Internets?
Die Verbindungen zwischen Erbrecht und Familienrecht liegen auf der Hand; immer wieder gibt es Überschneidungen. Wie es der Zufall so will, dürfte ich kürzlich Rechtsanwältin Sylvia Schodruch kennenlernen, die das übliche Scheidungsgeschehen mit einem völlig anderen Konzept angeht. Ich finde das sehr erfrischend und absolut lohnend, sich dieser Denkweise zu öffnen. Doch höre selbst... Weitere Informationen und den Kontakt zu Sylvia findest Du über die folgenden Kanäle: HOMEPAGE: www.paragraphensylvia.de EMAIL: look@paragraphensylvia.de PODCAST rund um das Entscheiden bei UPSPEAK: https://www.upspeak.de/de/sylviaschodruch INSTA https://www.instagram.com/1asylvia/?hl=de FB privat https://www.facebook.com/sylvia.schodruch GUTE MINUTE https://www.facebook.com/sylvia.schodruch/media_set?set=a.2627715903915388&type=3 FB Fanpage https://www.facebook.com/Schodruch.Sylvia.Recht.Hennef/ Facebookgruppe Trennung als Chance https://www.facebook.com/groups/paragraphensylvia/about/ YOUTUBE https://www.youtube.com/watch?v=eisXTDiSb1c&list=PLU8lCPyZMsinOpqWT_wrXR8xzfPnCqPiz Sylvias EBOOKS: Erste Hilfe in Familiensachen https://www.paragraphensylvia.de/lp-erste-hilfe-ebook/ Einfach glücklich entscheiden https://www.paragraphensylvia.de/lp-gluecklich-ent-scheiden-ebook/ Aufklärung mit der Paragraphensylvia https://www.paragraphensylvia.de/aufklaerung-mit-der-paragraphensylvia-e-book/ Sylvias BUCH: ENT-SCHEIDEN MACHT GLÜCKLICH https://amzn.to/2MngQHD HÖRBUCH: https://elopage.com/s/paragraphensylvia/glueckliche-trennungskinder-hoerbuch GRATISGESPRÄCH vereinbaren:https://paragraphensylvia.youcanbook.me/ ________________________________________________________ Weitere Informationen rund ums Erbrecht findest Du über meine Webseite unter www.leonie-lehrmann.de. Für Fragen, Anregungen oder Kritik stehe ich Dir gerne zur Verfügung. Schreib mir einfach an info@leonie-lehrmann.de.
Freudenrausch - Meine tägliche Dosis Freude, Glück & Inspiration
Ja, alles geschieht zur richtigen Zeit, am richtigen Ort, mit den richtigen Personen. Nichts ist umsonst. Manchmal wirkt das auf den ersten Blick überhaupt nicht so. Manchmal nicht einmal auf den zweiten oder dritten, aber irgendwann wird es klar. Spätestens dann ist jede Begegnung, jeder Satz, jedes gelesene Buch, jede Erfahrung ein kleines oder großes Wunder. Die Verbindung mit den verschiedensten Menschen zu spüren, zu sehen, wo ich selbst stehe und zu erkennen, dass wir zumindest an der ein oder anderen Stelle am selben Punkt stehen, ist wahrhaft erfüllend. Was für ein Glück das komplexe, verwobene Netz des großen Ganzen hier und da erkennen zu dürfen. Wunder willkommen.
Die Lean Prinzipien lassen sich auf allen Ebenen eines Produktes anwenden. Serial Entrepreneur, Lean Startup, Smarter Entwickeln, Lean Production sind Geschwister, da sie alle die gleichen Prinzipien umsetzen. Es sind aber sehr ungleiche Geschwister, weil sie sehr unterschiedlich umgesetzt werden. Die Verbindungen und Unterschiede sind spannend.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06
Die Entwicklung und die Erforschung von Sterol-Biosynthese-Inhibitoren ist ein wichtiges Thema in der pharmazeutischen Chemie. Durch die Verwendung eines Ganzzell-Assays konnte eine Reihe von Inhibitoren im Post-Lanosterol-Abschnitt der Cholesterol-Biosynthese charakterisiert werden. Darunter waren Inhibitoren der Oxidosqualencylase, der delta24-Reduktase, der delta8/7-Isomerase und der 7-Dehydrocholesterolreduktase. Diese Substanzen zeichneten sich durch zum Teil nanomolare IC50-Werte, gemessen an der Gesamt-Cholesterol-Neubildung aus, sowie durch eine hohe Selektivität. Die Verbindungen könnten als molekulares Werkzeug zur Erforschung von Cholesterol-Biosynthese induzierten Pathogenesen eingesetzt werden oder aber als Adjuvans in der Chemotherapie. Durch die Neuentwicklung eines Ganzzell-Screening-Assays für den Post-Lanosterol-Abschnitt der Ergosterol-Biosynthese war es nun auch möglich, Verbindungen auf ihre antimykotische Aktivität zu testen. Dabei konnte EMC120B12 als neuer Inhibitor der C14-Demethylase identifiziert werden. In Candida krusei bildeten sich unter dessen Zugabe bis dato unbekannte Sterole. Diese konnten als Derivate von 14-Methylergosta-8,24(28)-dien-3beta,6alpha-diol identifiziert werden. Ebenso wurde eine IC50-Wert-Bestimmung, gemessen an der Gesamt-Ergosterol-Neubildung durch Einbau von nicht-radioaktiven 13C-Acetat in Ergosterol etabliert. Des Weiteren wurden neue Methoden für die moderne Spurenanalytik entwickelt. Das Kernstück dabei war die Entwicklung einer Methode zur Bestimmung von Nicotin und Coffein in Schokolade mittels Dampfraum-Festphasenmikroextraktion (HS-SPME) gekoppelt mit einem Gaschromatographie-Tandemmassenspektrie Gerät (GC-MS/MS). Dabei konnte zum ersten Mal Nicotin in Schokolade nachgewiesen werden (230-1590 ng/kg). Die gleichzeitige Mitbestimmung des bereits bekannten Inhaltsstoffes Coffein (420-2780 mg/kg) war trotz der hohen Konzentrationsunterschiede möglich.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
In dieser Arbeit werden Ester der Borsäure und von Arylboronsäuren mit Diolen, Methylglycosiden und Glycosen vorgestellt. Die Verbindungen werden durch NMR-Spektroskopie und Einkristallröntgenstrukturanalyse charakterisiert. DFT-Rechnungen werden unterstützend eingesetzt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In dieser Arbeit wird das Komplexbildungsverhalten von myo-, neo- und scyllo-Inosit in wässrig-alkalischer Lösung beschrieben. Molekülstrukturen kristallin erhaltener Verbindungen werden mit Hilfe der Einkristall-Röntgenstrukturanalyse bestimmt. Die Reaktionslösungen und Kristalle werden, wo möglich, NMR-spektroskopisch untersucht. Es gelingt, eine Reihe von neuartigen homo- wie heteroleptischen Inositolatokomplexen zu charakterisieren. Homoleptische scyllo-Inositolato-cuprate(II) und -ferrate(III) wurden hergestellt und als Alkali-Salze strukturell bestimmt. Kupfer(II) koordiniert quadratisch-planar an zwei scyllo-Inosit-Einheiten unter Ausbildung von Bis(diolato)-Komplexen. Mit Eisen(III) wurde ein vierkerniger Alkoxo-Eisencluster mit sieben scyllo-Inosit-Einheiten isoliert. myo-Inosit bildet bereitwillig homoleptische Koordinationsverbindungen mit Kupfer(II), Eisen(III) und weiteren Metallen, kristallin konnte jedoch nur ein Mangan(IV)-Komplex erhalten werden. Darin wird ein Mangan(IV)-Ion von zwei myo-Inosit-Liganden in der fünffach axialen Sessel-Konformation oktaedrisch koordiniert. Mit Eisen werden Polyeisen-Oxocluster gebildet. Die Alkalimetall-Verbindungen des scyllo-Inosits wurden strukturell untersucht. Bei der Natriumverbindung gibt eine signifikante Verkleinerung des Torsionswinkels an den bindenden Sauerstoffatomen Hinweise auf eine stärkere koordinative Wechselwirkung. Neue Salze des scyllo-Inositdiborats wurden strukturell charakterisiert. Im Komplex-Anion wird der scyllo-Inosit in seiner all-axialen Konformation von zwei Boratomen je dreifach koordiniert. Die vierte Koordinationsstelle der tetraedrischen Borumgebung wird durch eine Hydroxogruppe besetzt. Die Probleme, die sich durch die Speziesvielfalt ergeben, konnten durch Einschränkung der Koordinationssphäre am Zentralmetall mittels stickstoffhaltiger, chelatisierender Hilfsliganden gemindert werden. Es wurden zahlreiche Versuche mit Edukten, die nur an eine Diolato- oder Triolato-Funktion des Inosits binden können, durchgeführt. Heteroleptische Inositolato-Komplexe wurden mit den Zentralmetallen Cadmium(II), Cobalt(III), Kupfer(II), Nickel(II) und Palladium(II) mit verschiedenen Hilfsliganden (en, tren, dien) kristallin erhalten und strukturell bestimmt. Mit Cd-tren gelang die Strukturbestimmung zweier Neutralkomplexe mit scyllo-Inosit, wobei entweder ein oder zwei Cd(tren)-Einheiten koordinieren. Kupfer(II) bildet mit dem Hilfsliganden Ethylendiamin (en) heteroleptische scyllo-Inositolato-Komplexe mit einer [4+1]-Koordination. Ein Wassermolekül in etwas weiterem Abstand vervollständigt die Koordination am Kupfer. Es wurden die elektroneutralen Spezies mit einem und zwei gegenüberliegenden Kupferatomen isoliert. Die umfangreiche Koordinationschemie des Cobalts wurde um einige heteroleptische Inositolato-Komplexe bereichert. Mit dem Zweitliganden Tris(2-aminoethyl)-amin (tren) wurden sowohl die monometallierten trans-Diolato-Komplexkationen mit scyllo-Inosit als auch mit myo-Inosit strukturell charakterisiert. Die 13C-NMR-Spektren der beiden Verbindungen zeigen anschaulich, wie sich Koordination und Symmetrieabbau auf die Anzahl der Signale und die chemische Verschiebung auswirken. Mit dem Co(en)2-Fragment wurden die Verbindungen von scyllo-Inosit sowohl mit einem Cobalt-Ion als auch mit zwei gegenüberliegenden Metall-Fragmenten strukturell bestimmt. Als erste heteroleptische Verbindung des scyllo-Inosits in all-axialer Konformation mit stickstoffhaltigem Zweitligand wurde das neutrale Komplexmolekül [{(dien)Co}2(scyllo-InsH−6)] kristallin erhalten. Das 13C-NMR-Spektrum der Mutterlösung zeigt eine Hochfeldverschiebung der Inosit-Signale, ein starker Hinweis auf eine Sessel-Sessel-Inversion. Mit Ni-tren wurden fast identisch kristallisierende Neutralkomplexe mit zwei gegenüberliegend koordinierenden Ni(tren)-Fragmenten an scyllo- und myo-Inosit erhalten. Pd-en erweist sich auch mit Inositen als guter Komplexbildner. Dipalladium-Komplexe mit scyllo- und myo-Inosit wurden aus Komplexgemischen in Lösung kristallisiert. Das Komplexgleichgewicht im System Pd-en/scyllo-Inosit wurde 13C-NMR-spektroskopisch untersucht, die Signale der einzelnen Spezies konnten zugeordnet und die Komplexverteilung in Lösung bei verschiedenen Pd-en:scyllo-Inosit-Verhältnissen beobachtet werden. Es liegt immer ein Gemisch unterschiedlich palladierter Inosite vor. Die Optimierung einer neo-Inosit-Synthesevorschrift war Voraussetzung für die Untersuchungen von neo-Inositolato-Komplexen. Es gelang erstmals, eine Koordinationsverbindung mit neo-Inosit strukturell zu untersuchen. Zwei Pd(en)-Fragmente koordinieren dabei an cis-Diolato-Funktionen des neo-Inosits. Homoleptische Komplexe mit neo-Inosit wurden bisher nicht kristallin erhalten. Dihydroxo-μ-oxo-1,3-bis{2’-(dimethylamino)ethyl}-hexahydropyrimidin-dipalladium(II) bindet an drei benachbarte Hydroxylgruppen unter Bildung mehrkerniger Komplexe. Das mittlere Sauerstoffatom verbrückt dabei zwei Palladiumatome. Die Verbindungen von scyllo- und myo-Inosit mit jeweils zwei Dipalladium-Fragmenten wurden strukturell charakterisiert. Der CIS („coordination induced shift“) des am verbrückenden Sauerstoff bindenden Kohlenstoffs ist in der scyllo-Inosit-Verbindung mit 27,8 ppm außerordentlich groß. scyllo-Inosit erweist sich als vielseitiger Ligand, der sowohl trans-1,2-Diolato- als auch syn-axiale 1,3,5-Triolato-Komplexe bildet. Auf Grund seines recht starren Ringgerüsts und der hohen Inversions-Energie zur all-axialen Form wird bei Metallen, die einen kleinen Ionenradius haben und somit einen möglichst kleinen Diolato-Torsionswinkel bevorzugen oder deren Komplexbildungsenergie die für die Ringinversion nötige Energie nicht kompensiert, keine Koordination beobachtet. Die auf Grund der axialen Hydroxyl-Gruppe an C2 geringere Symmetrie des myo-Inosits führt zu vielfältigen, nur geringfügig unterschiedlichen Koordinationsmöglichkeiten. myo-Inositolato-Komplexe zeigen daher geringe Kristallisationsbereitschaft. In kristallin erhaltenen Komplexen mit Diolato-Koordination binden die Zentralmetallatome stets an trans-Diolato-Funktionen. In Lösung werden weitere Koordinationsmuster gefunden. Für neo-Inosit reichen die Untersuchungen noch nicht für ein umfassenderes Bild aus. Die untersuchten Inosite zeigen vielfältige Koordinationsmöglichkeiten, die mit abnehmender Inosit-Symmetrie deutlich zunehmen. Auch in den Mutterlösungen, aus denen Kristalle erhalten wurden, liegt meist eine Vielzahl an Komplexspezies ohne signifikante Bevorzugung eines bestimmten Bindungsmusters vor, was NMR-spektroskopisch gezeigt werden kann. Eine Ursache liegt in den geringen chemischen und geometrischen Unterschieden der einzelnen Hydroxylgruppen. Lösungen mit wenigen Komplexspezies wurden dort gefunden, wo die Speziesvielfalt auf Grund geometrischer Faktoren auf wenige Komplexe beschränkt ist.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In dieser Arbeit werden die ersten Kohlenhydratverbindungen von Rhenium(V) und Rhenium(VI) beschrieben, die durch ein- und zweidimensionale NMR-Spektroskopie in Lösung und durch Einkristall-Röntgenstrukturanalyse untersucht wurden. Es werden zwei Synthesewege für die Darstellung von Rhenium(VI)-Kohlenhydrat-Ver-bindungen vorgestellt (Schema 2.1). Durch Reduktion von ReVII2O7 mit PPh3 konnte der Komplex [{ReVIO(AnErytH−2)}2(µ-O)2(µ-MeOH)] (4) dargestellt werden. Die beiden Komplexe [{(µ-O){ReVIO(MeO)(Me-α-D-Lyxf 2,3H−2)}}2{(µ-O){ReVIO(Me-α-D-Lyxf 2,3H−2)}2}] (5) und [(µ-O){ReVIOCl(AnErytH−2) · MeOH}2] (6) entstanden bei der Oxidation von [ReVOCl4]− mit Sauerstoff. Dabei zeigt sich die starke Oxophilie des stark Lewis-sauren ReVI. Die Metallatome sind über Oxobrücken verknüpft und kommen sich so nahe, dass wie bei 4 Metall-Metall-Wechselwirkungen entstehen können. Der Komplex ist aus zwei [ReVIO2(AnErytH−2)]-Einheiten aufgebaut. Dieser Aufbau ähnelt 6, bei der zwei [ReVIOCl(AnErytH−2)]+-Einheiten über einen O2−-Liganden verbunden sind. Das gleiche Verknüpfungsmuster besitzt die tetranukleare Verbindung 5. Hier sind vier [ReVIO(Me-α-D-Lyxf2,3H−2)]2+-Fragmente mit O2−-Liganden verbunden, wobei an den terminalen Ein-heiten Methanolat koordiniert. Diese Verbindungsklasse ist in erster Linie von wissenschaftlichem Interesse. Ihre hohe Oxidationsempfindlichkeit und hydrolytische Instabilität erlauben keine Verwendung in der Nuklearmedizin. Die Komplexe konnten alle ohne einen Hilfsliganden stabilisiert wer-den. Dies gelang auch bei dem ReV-oxalat-Komplex [(ReVOCl3)2(Ox)]2− (1) und der ReV-kojinat-Verbindung [ReVOCl3(KojiH−1)]− (2). Dabei koordinieren Oxalat und Kojisäure trans zum apicalen Sauerstoff und substituieren ein Chloratom des Eduktes [ReVOCl4]−. Eine formale Re-Re-Doppelbindung besitzt der binukleare Komplex [{ReV(MeO)2Cl2}2 (µ-O)(µ-MeO)]− (3), wobei sich die Metallatome bis auf 2.46 Å nahe kommen. Eingehender wurden die ReV-Komplexe untersucht, bei denen ein Hilfsligand das Kohlen-hydrat-[ReVO]3+-Fragment stabilisiert. Die drei Strukturmuster sind in Abbildung 4.1 aufgeführt. Zusammenfassung 69 OReOONNNNNNBReOOONNN+_IReOOOClNN Abbildung 4.1: Die drei Strukturmuster der heteroleptischen ReV-Komplexe 8–20 (außer 18) mit den Hilfsliganden phen, tpb und dien. Mit phen als Hilfsligand konnten die Komplexe [ReVOCl(phen)(cis-1,2-CptdH−2)] (8), [ReVOCl(phen)(AnErytH−2)] (9), [ReVOCl(phen)(trans-1,2-ChxdH−2)] (10) und [ReVOCl(phen)(Xylt2,3H−2)] (11) röntgenkristallographisch untersucht werden. Die orangen Verbindungen sind gut zugänglich; [ReVOCl4]− wurde in Methanol unter Zugabe von phen und dem Kohlenhydrat umgesetzt. Die entstandenen Komplexe waren bei zu langer Sauerstoffexposition instabil, was auf die Substitutionsstelle des Chlorids zurück-zuführen ist. Durch eine formale Substitution von Chlorid und phen mit dem dreizähnigen tpb-Liganden verbesserte sich die Stabilität der tpb-Komplexe [ReVO(tpb)(AnErytH−2)] (13), [ReVO(tpb)(Me-β-D-Galp3,4H−2)] (14), [ReVO(tpb)(D-Thre2,3H−2)] (15) und [ReVO(tpb)(Eryt1,2H−2)] (16) im Vergleich zu den phen-Komplexen. Ein weiterer Grund für die Oxidationsstabilität der neutralen Verbindungen ist der Chelateffekt. Nachteilig ist ihre schlechte Wasserlöslichkeit. Zur Synthese dieser blauen Substanzen wurde eine me-thanolische Suspension aus [ReVO(tpb)Cl2], dem Kohlenhydrat und der Base Triethylamin zwei Stunden lang unter Rückfluß bei 80 °C gerührt. Auffällig bei 14 ist der niedrige Tor-sionswinkel der chelatisierenden Diol-Einheit mit 32.5 °. Daraus ergibt sich eine Abwei-chung von 23.7 ° im Vergleich zum C3–O3–O4–C4-Torsionswinkel des freien Galactopy-ranosids. Dies ist bisher die größte beobachtete Erniedrigung eines Torsionswinkels einer komplexierenden Diol-Einheit in Pyranosiden. Die Synthese der Rhenium(V)-dien-Kohlenhydrat-Verbindungen ähnelt der Darstellung der phen-Komplexe. Eine methanolische Suspension aus [ReVO2I(PPh3)2], dem Kohlenhydrat-Liganden und dien musste eine Stunde bei Raumtemperatur gerührt werden. Es entstanden rosa Kristalle mit der Summenformel [ReVO(dien)(AnErytH−2)]I (17), [ReVO(dien)(Me-α-D-Manp2,3H−2)]I (19) und [ReVO(dien)(Me-β-D-Galp3,4H−2)]I (20). Weiterhin wurde ein Adenosin-Komplex mit der postulierten Zusammensetzung [ReVO(dien)(AdoH−2)]I (21) synthetisiert. Die Verbindungen zeichnen sich durch ihre 70 Zusammenfassung Wasserlöslichkeit, ihre Oxidations- und Hydrolysestabilität (bei Raumtemperatur bis zu einer Woche) und durch ihre schnelle Präparation aus. Es gelang, die Mannopyranosid-Verbindung 19 und den Adenosin-Komplex 21 mit Hilfe der HPLC zu charakterisieren. Damit wurde die analytische Basis für die Synthese von radioaktiven Rhenium(V)-Kohlen-hydrat-Verbindungen gelegt. Auf der Grundlage der Darstellungsvorschriften der dien-Verbindungen wurden, ausgehend von 188ReVIIO4−, die radioaktiven Ionen [188ReVO(dien)(Me-α-D-Manp2,3H−2)]+ von (22) und [188ReVO(dien)(AdoH−2)]+ von (23) synthetisiert. Ihre Existenz konnte mit der HPLC-Chromatographie nachgewiesen werden. Nuklearmedizinische Anwendungen dieser radioaktiven Verbindungen werden zurzeit untersucht. Bei den Reaktionen von polyfunktionellen Kohlenhydraten mit Rhenium(V)-Verbindungen sind viele isomere Formen von Oxorhenium(V)-Komplexen möglich. Bei den in dieser Arbeit vorgestellten Verbindungen werden die anti/syn-Isomere beschrieben, in denen der Ligand um 180° um die äquatoriale Ebene gedreht ist. Während die phen-Komplexe empfindlich gegenüber Sauerstoff reagierten, zeichneten sich die Rhenium-Komplexe mit tpb und dien durch ihre kinetische Inertheit aus. Unter dem Aspekt der Synthese stabiler Rhenium(V)-Kohlenhydrat-Verbindungen hat sich das „3 + 2“- dem „2 + 2“-Konzept als überlegen erwiesen. Aufgrund ihrer Stabilität in Lösung können aussagekräftige NMR-Spektren der Oxo-rhenium(V)-Komplexen erhalten werden. Die Resonanzen der Kohlenstoffatome, die an die koordinierenden Sauerstoffe gebunden sind, verschieben sich durch die Komplexierung um bis zu 31.4 ins Tieffeld. Die dem Rhenium(V) nahen Wasserstoffe (H–C–O–Re) erfahren eine Tieffeldverschiebung von bis zu 1.9. Die Zuordnung der Resonanzen zu ein-zelnen Atomen erfolgte mit Hilfe der 2D-NMR-Spektroskopie. Der Erkenntnisgewinn aus der Verzahnung von struktureller Aufklärung und den Reso-nanzverschiebungen in den 1H- und 13C-Spektren führt dazu, dass schon auf Basis von NMR-Verschiebungen zuverlässige Aussagen über die Koordination des Kohlenhydrates an Rhenium(V) getroffen werden können.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In dieser Arbeit werden neue Kohlenhydrat-Komplexe mit Palladium(II) und Kupfer(II) beschrieben. Die Verbindungen mit Palladium(II) werden durch ein- und zweidimensionale NMR-Spektroskopie in Lösung und durch Einkristall-Röntgenstrukturanalyse identifiziert, während Verbindungen von Kupfer(II) durch ihre Redoxstabilität in Lösung und Einkristall- Röntgenstrukturanalysen charakterisiert werden. Besonderes Augenmerk wird in dieser Arbeit auf Metallkomplexe mit reduzierenden Zuckern gelegt, denn hier existierten noch keine strukturell charakterisierten Komplexe mit Kupfer(II) oder Palladium(II). Strenge Regeln für die Koordination von Zuckeralkoholen in Pd-en konnten mit Hilfe der 13C-NMR-Spektroskopie ausgearbeitet werden. Hierbei wurde zum ersten Mal eine Koordination von zwei Pd(en)-Fragmenten in einer Threit-Teilstruktur bei der Verbindung mit dem Zucker-alkohol Xylit 1 röntgenstrukturanalytisch nachgewiesen. Es wurden Lösungen von Palladium(II) mit reduzierenden Zuckern stabilisiert. Dabei wurde die Röntgenstruktur der in Pd-en entstehenden Metall-koordinierten Verbindungen von rac-Mannose 2, D-Arabinose 3, D-Ribose 4, D-Glucose 5 und D-Galactose 6 aufgeklärt. Die Strukturen 3–6 sind die ersten Kristallstrukturen von Metall-Komplexen dieser reduzierenden Zucker. Auch konnte das erste Mal ein Metallkomplex mit einem reduzierenden Zucker in der Pyranose-Form strukturell charakterisiert werden. Die Lösungen dieser Zucker in Pd-en wurden mit Hilfe der zweidimensionalen NMR-Spektroskopie untersucht und der Anteil von den jeweiligen verschiedenen vorhandenen Konfigurationen der Zucker in Lösung bestimmt. Neue [(RNH2)2Pd(OH)2]-Reagenzien wurden synthetisiert, wobei die beiden Amin- Liganden im Gegensatz zum bisher untersuchten [(en)Pd(OH)2] durch keine Alkylbrücke verbunden sind. Ihre Koordination an Polyole wurde mit Hilfe der Röntgenstrukturanalyse charakterisiert, wobei Strukturen von Pd-NH3 mit Erythrit 7 und von Pd-MeNH2 mit Dulcit 8 bestimmt wurden. NMR-spektroskopische Untersuchungen zeigten, dass die Anbindung an Zuckeralkohole analog dem Pd-en erfolgt. Dies ist jedoch nicht mehr der Fall, wenn der Platz für die Anbindung an Kohlenhydrate geringer ist. So konnte gezeigt werden, dass der sterische Anspruch der [(RNH2)2Pd(OH)2]-Reagenzien in der Reihe Pd-en ≈ Pd-NH3 < Pd-MeNH2 < Pd-iPrNH2 deutlich steigt. Während reduzierende Zucker stets an zwei Pd(en)-Fragmente anbinden, binden sie meist nur einmal an Pd(iPrNH2)2-Fragmente an. Dabei erfolgt die Koordination stets über O1 und O2. Dieser steigende Platzbedarf zeigt sich auch in Komplexen mit Cyclodextrinen. Hier konnten erstmals heteroleptische Metall-Komplexe von Cyclodextrinen mit Palladium(II) strukturell charakterisiert werden. Sowohl mit α-Cyclodextrin und Pd-NH3 bzw. Pd-iPrNH2 als auch mit γ-Cyclodextrin und Pd-iPrNH2 (Strukturen 9–11) erhält man Strukturen, bei denen jede zweite Anhydroglucose-Einheit an Palladium anbindet, wobei die nicht-koordinierenden Hydroxy-Gruppen O2-H und O3-H intramolekulare Wasserstoffbrückenbindungen zu den deprotonierten Alkoxy-O-Atomen benachbarter Anhydroglucose-Einheiten ausbilden. 13CNMR- Spektren ergaben hier für Pd-en und Pd-NH3 in Lösung Gemische, die auf Spezies hinweisen, bei denen mehr als jede zweite Anhydroglucose-Einheit an Palladium koordiniert. In Lösungen mit Pd-iPrNH2 wurden lediglich die kristallisierten Spezies gefunden. Beim Versuch, ungewöhnliche Polyol-Strukturen mit Palladium-Zweikernkomplexen zu stabilisieren, wurden die neuen Komplexe Dihydroxy-µ-oxo-[1,3-bis(2’-(dimethylamino)- ethyl)-hexahydropyrimidin]-dipalladium(II), Dihydroxy-µ-oxo-[1,3-bis(2’-(dimethylamino)- ethyl)-imidazolidin]-dipalladium(II), Tetrahydroxy-[N,N´-bis(2-(dimethylamino)ethyl)-α,α´- diamino-p-xylol]-dipalladium(II) und Tetrahydroxy-[N,N´-bis(2-(dimethylamino)ethyl)-α,α´- diamino-m-xylol]-dipalladium(II) hergestellt. Die ersten beiden aufgeführten Komplexe stabilisieren Polyolato-Komplexe mit Palladium(II) in einer Pd2-µ-Triolato(3−)-Koordination, wobei jeweils die Verbindungen mit Dulcit [(C12H28N4)2Pd4(DulcH−6)] ⋅ 2 Cl ⋅ 16 H2O (12) bzw. [(C11H26N4)2Pd4(DulcH−6)] ⋅ 2 Cl ⋅ 16 H2O (14) strukturell charakterisiert wurden. Die langsame Oxidation von Galactose in Lösungen des erstgenannten Komplexes führte zur Kristallisation des Galactonsäure-Komplexes [(C12H28N4)2Pd4(Gal1AH−6)] ⋅ 2 Cl ⋅ 16 H2O (13). 13CNMR- spektroskopische Untersuchungen zeigten, dass Dihydroxy-µ-oxo-[1,3-bis(2’- (dimethylamino)-ethyl)-hexahydropyrimidin]-dipalladium(II) und Dihydroxy-µ-oxo-[1,3- bis(2’-(dimethylamino)-ethyl)-imidazolidin]-dipalladium(II) an reduzierende Zucker an den Atomen O1–O3 in ihrer Pyranose-Form anbinden, und dass hier stets eine Hauptspezies entsteht. Das an das mittlere verbrückende O-Atom gebundene C-Atom zeichnet sich im 13CNMR- Spektrum durch CIS-Werte von über 20 aus. Bei Diolato-Koordination beobachtet man lediglich CIS-Werte von ca. 10. Die hier gebildeten Komplexe sind unzersetzt löslich in Wasser und bei Raumtemperatur mehrere Stunden stabil. Die beiden oben aufgeführten Xylol- Komplexe bewirken eine Bisdiolato-Koordination der Polyole, wie man an den Strukturen der p-Xylol-Verbindung mit Ethylenglykol [(C16H30N4)Pd2(EthgH−2)2] ⋅ 11 H2O (15) und an der Struktur der m-Xylol-Verbindung mit Dulcit [(C16H30N4)2Pd4(Dulc2,3,4,5H−4)2] ⋅ 18 H2O (16) erkennen kann. Daher koordiniert auch nicht ein Polyol-Molekül an die beiden Pd-Atome eines Xylol-Liganden, sondern an Pd-Atome zweier verschiedener Liganden. Mit der Aufklärung der Struktur von Dulcit in Cu-en 17 konnte das noch fehlende Glied in der Reihe homoleptischer und heteroleptischer Komplexe von Kupfer(II) mit Erythrit und Dulcit charakterisiert werden. Hierbei koordinieren ähnlich wie beim Pd-en zwei Cu(en)- Fragmente an das Tetraolat in der Erythrit-Teilstruktur. Erstmals wurden Lösungen von Kupfer(II) und reduzierenden Zuckern so stabilisiert, dass Kristallstrukturen von Koordinationsverbindungen aus diesen Lösungen beschrieben werden konnten. Mit den Amin-Liganden Ethylendiamin und Ammoniak konnten trinukleare Komplexe mit D-Lyxose kristallisiert und ihre Strukturen 18 bzw. 19 beschrieben werden. Dabei wurde der erste Polyol-Komplex aus Schweizers Reagenz beschrieben. Bei allen Kupfer- Komplexen zeigt sich hierbei eine Stabilität von Cu2-µ-Triolato(3−)-Fragmenten. Die Strukturen von zwei Cu7-Clustern wurden mit den reduzierenden Zuckern D-Mannose 20 und DRibose 22 und den Hilfsliganden Ethylendiamin bzw. Hydroxyethyl-ethylendiamin bestimmt, wobei hier die Amin-Hilfsliganden teilweise am anomeren C-Atom N-glycosidisch anbinden. Ein Cu5-Cluster 21 konnte mit Mannose und Cu(OH)2 im stark alkalischen Medium ohne Zugabe eines Amins hergestellt und strukturell charakterisiert werden. Bei all diesen ClusternGibt man N,N´-Bis(2-(dimethylamino)ethyl)-α,α´-diamino-p-xylol zu Suspensionen aus Cu(OH)2 und Xylit, so erhält man Kristalle eines Cu18-Clusters 23, der in seinem Torus zwei Aceton-Moleküle eingelagert hat. Auch hier sind wieder eckenverknüpfte Cu3O3-Sechsecke charakteristisch für die Struktur. Eine unerwartete Reaktion wurde mit demselben Liganden bei Zugabe von D-Ribose gefunden. Hierbei entstand aus dem N-Alkyl-N´,N´- dimethylethylendiamin-Fragment, der D-Ribose bzw. ihren Abbauprodukten und aus Kupfer( II) eine Verbindung 24, die als Amin-Liganden cis-4,5-Dihydroxy-1,3-bis(2’- (dimethylamino)ethyl)-imidazolidin enthält. D-Ribose liegt dabei in der 1C4-Form vor, weil sie so über die O-Atome O1–O3 in der optimalen cis-cis-äquatorial-axial-äquatorial Konfiguration an das Cu2-µ-Triolato(3−)-Fragment koordinieren kann. Der trikationische Kupfer-Zweikernkomplex Diaqua-µ-hydroxy-[3,6-Bis(2’-pyridyl)- pyridazin]-dikupfer(II) ergibt mit Luftsauerstoff durch Reduktion mit einem reduzierenden Zucker eine für Kupfer(II) sehr ungewöhnliche Struktur 25 mit einer µ4-Peroxy-Einheit. Mit dem Liganden 1,4-Bis(2´-aminoethyl)-piperazin erhält man bei Zugabe von Kupfer(II) bei offenem Stehen an der Luft einen für Kupfer ungewöhnlich gebundenen Carbonat-Komplex 26, bei dem der Carbonat-Ligand über zwei O-Atome an das Kupfer bindet und somit ein Vierring entsteht. sind zwei über ein Kupfer-Atom eckenverknüpfte Cu3O3-Sechsecke vorhanden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Wie die im Rahmen dieser Arbeit röntgenographisch charakterisierten Verbindungen 1–3 zeigen, sind mit Blei(II) und Nucleosiden sowohl anionische Bis-diolato-plumbate(II) wie der Adenosin-Komplex K2[Pb(AdoH- 2)2] · 11 H2O (1) als auch koordinations polymere Blei(II)- diolat-Komplexe zugänglich. In den Adenosin- und Cytidin- Diolat(2- )-Komplexen [Pb(AdoH- 2)] · H2O (2) und [Pb(CytH- 2)]2 · 9 H2O (3) werden zwei unterschiedliche Verknüpfungsmuster der Blei(II)-diolat-Einheiten über Pb2O2-Vierringe verwirklicht. Der polymere Aufbau des Adenosinats 2 läßt sich als eindimensionaler Ausschnitt aus der orthorhombischen PbO-Struktur beschreiben; in dem Cytidinosat 3 bildet das Koordinationspolymer dagegen eine ungewöhnliche schraubenartige Struktur aus. Mit Blei(II) und a- oder b-Cyclodextrin als Liganden sind neben mehrkernigen Polyolat- Komplexen auch mehrkernige anionische Polyolato-plumbate(II) zugänglich. In den Kristallen von 5, 6, 9, 11–17 baut das cyclische Oligosaccharid als zwölf- bzw. vierzehnfach deprotonierter Ligand mit Blei(II)-Ionen sandwichartige Zwölf- bzw. Vierzehnkernkomplexe auf. Die zwei Cyclodextrinato-plumbate(II) Ca7[Pb7(b-CDH-14)2] · 53.41 H2O (4) und Na2[Na2Pb10(a-CDH-12)2] · 29.2 H2O (7) zeigen, daß zusammen mit Blei(II) auch andere Ionen mit vergleichbaren Ionenradien in die Doppeltori eingebaut werden können. In Na2[Na2Pb10(a-CDH-12)2] · 29.2 H2O (7) und [Pb12(a-CDH-12)2] · Li2(bdc) · 20 H2O (10) werden die Doppeltori über Alkali-Ionen zu einem dreidimensionalen Netzwerk verknüpft. Im Rahmen dieser Arbeit konnten erstmals Blei(II)-Cyclodextrinat-Einlagerungskomplexe mit verschiedenen aromatischen Gästen strukturell charakterisiert werden. Die Verbindungen 11– 17 sind isotyp zu dem entsprechendem freien Wirt [Pb12(a-CDH-12)2] · 21 H2O (6) bzw. [Pb14(b-CDH-14)2] · 18 H2O (5). Dagegen zeigt das Blei(II)-Cyclodextrinato-plumbat(II) Pb[Pb12(a-CDH-12)2] · (bdc) · 35 H2O (9) ein für Cyclodextrin-Strukturen völlig neuartiges Verknüpfungsmuster: über ein dreizehntes Blei(II)-Atom werden die Doppeltori zu endlosen eindimensionalen Koordinationspolymeren verknüpft. Die Strukturen von 9–14 belegen, daß in Blei(II)-a-CD-Komplexe sowohl anionische Gäste wie Biphenyl-4,4’-dicarboxylat als auch ungeladene, unpolare Gäste wie Benzol oder 1-substituierte bzw. 1,4-disubstituierte Benzol-Derivate eingelagert werden können. In 9 und 10 bildet das eingelagerte Biphenyl-4,4’-dicarboxylat zwei verschiedene Wasserstoffbrückenbindungssyteme zu den O6-Hydroxy-Funktionen des Wirtkomplexes aus. Für Blei(II) und b-CD wurde die Einlagerung unpolarer Gäste wie Benzol, Toluol und Ferrocen beobachtet. Während in den a-CD-Komplexen des Typs [Pb12(a-CDH-12 )2] · Ar (mit Ar = Benzol, Toluol, p-Xylol, Chlorbenzol) 11–14 die eingelagerten Aromaten die erwartete Orientierung orthogonal zur Blei-Ebene zeigen, weisen die Gäste Benzol und Toluol in den b-CD-bis-Aryl-Komplexen [Pb14(b-CDH-14)2] · (Toluol)2 · 22 H2O (15) und [Pb14(b-CDH-14)2] · (Benzol)2 · 24 H2O (16) eine ungewöhnliche Orientierung parallel zur Blei(II)-Ebene auf. In [Pb14(b-CDH-14)2] · (FeCp2) · 23 H2O (17) wurden für den Gast-Komplex Ferrocen zwei symmetrie unabhängige Lagen bestimmt, die unterschiedliche Orientierungen gegenüber der Blei(II)-Ebene einnehmen. Eine der Ferrocen-Lagen ist senkrecht zur Blei-Ebene ausgerichtet, während die andere Ferrocen-Lage im Inneren des Doppeltorus fast parallel zur Blei- Ebene liegt. Das eingelagerte Ferrocen zeigt wie freies Ferrocen ekliptische Konformation. Durch die Ausbildung der sandwichartigen Blei( II)-Cyclodextrin-Komplexe wird in allen vorgestellten Strukturen eine head-to-head-Anordnung der Cyclodextrinringe erzwungen. Die Packung der Doppeltori in den a-CD-Komplexe 10-14 kann als channel-type beschrieben werden. Entlang der b-Achse existieren aufgrund der Stapelung der Doppeltori endlose Kanäle, wobei die entlang [001] gestapelten Schichten gegeneinander verschoben sind. In den b-CD-Komplexen 15-17 tritt ein ähnliches Packungs muster auf, allerdings sind hierbei sowohl die Doppeltori-Stapel als auch die Blei-Ebenen gegeneinander verkippt. Die Packung der Blei( II)-b-CD-Stränge in dem Blei(II)-plumbat 9 entspricht dem herringbone-type. Mit racemischen a-Hydroxycarbonsäuren bilden Zinn( II) und Blei(II) 1:1-Komplexe durch Koordination des Metallzentrums über ein O-Atom der Carboxylatgruppe und das a- Hydroxy-O-Atom unter Bildung von Chelatfünfringen aus. 18–21 besitzen im Kristall ein- oder zweidimensionalen polymeren Aufbau. Während 18 und 20 Koordinationspolymere bilden, werden in [Sn(rac-mal)]2 (19) die Zinn( II)-malat-Dimere über lange Sn–O-Kontakte sowie durch intermolekulare Wasserstoffbrückenbindungen zwischen den Hydroxy-HAtomen und den jeweils nicht an Zinn(II) koordinierenden Carboxylat-O-Atomen zu Doppelsträngen verknüpft. In [Pb(rac-mal)] · 2 H2O (18) und [Sn(rac-lacH- 1)] (20) erfolgt dagegen die Bildung von Koordinations polymeren durch inversionssymmetrische, planare M2O2- Vierringe, dabei koordiniert jede a-Hydroxycarbonsäure an je drei Metall-Zentren. In dem Dihydrat 18 werden die Blei-malat(2-)Stränge über Wasserstoffbrückenbindungen zu entlang [100] verlaufenden Schichten verknüpft. In dem kristallwasserfreien [SnCl(amyg)] (21) bestehen zwischen den O2-Hydroxy-H-Atomen und Carboxylat-O-Atomen intermolekulare Wasserstoffbrückenbindungen; durch lange Sn–Cl-Kontakte werden gewellte Schichten aus Sn2Cl2-Vierringen aufgebaut. Der Cluster Sn6(OMe)3(O)4Cl (22) kann als ein Zwischenprodukt der Hydrolyse von Dimethoxy-Zinn(II) angesehen werden. Er besteht aus einem adamantanartigen Sn6O4-Gerüst sowie dreifach verbrückenden Methoxygruppen. Bei Einbeziehung des freien Elektronenpaars ergibt sich verzerrt trigonal-bipyramidale Koordination am Zinn(II).
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Diese Arbeitet gliedert sich in vier Themengebiete: - Darstellung neuartiger Magnesiumphosphandiide aus Metallierungsreaktionen von Dibutylmagnesium und Tri(isopropyl)silylphosphan - Reaktion von Dimethylcarbonat mit den entsprechenden Erdalkalimetall-bis[bis- (trimethylsilyl)phosphaniden] und –bis[tri(isopropyl)silylphosphandiiden] zu Erdalkalimetall-bis(2-phosphaethinolaten) - Synthese von Calciumdiketonatkomplexen durch Metallierungsreaktionen von (thf)2Ca[N(SiMe3)2]2 und 2,2,6,6-Tetramethylheptan-3,5-dion - Metathesereaktionen von Kalium-trialkylsilylphosphaniden und Cp´´2YCl2Li(thf)2 zu phosphanylsubstituierten Yttrocenen Im Rahmen dieser Arbeit konnten neuartige Erdalkalimetallphosphandiide synthetisiert werden. Durch Metallierungsreaktionen von Dibutylmagnesium und Tri(isopropyl)silylphosphan erhält man abhängig vom Lösemittel unterschiedliche Käfigverbindungen (Gl. 5.1.): In Abwesenheit eines Donorlösungsmittels bildet sich ein hexagonales Mg6P6-Prisma, das durch zwei Magnesium-bis(phosphanid)-Einheiten überkappt ist. Wenn stöchiometrisch THF zugegeben wird, werden die Phosphanideinheiten durch die Donoren ersetzt, das Strukturprinzip bleibt aber erhalten. Der im Vergleich zum Phosphanid geringere sterische Anspruch des THF führt zu einer Bindungsverlängerung auf durchschnittlich 253 pm im Ring. Die hexagonal-prismatische Struktur ist bevorzugt, wenn Donorliganden im Unterschuß vorliegen, bei Überschuß hingegen ist die verzerrt-kubische Struktur günstiger. Bei Reaktionsführung in Ethern wie THF oder DME bildet sich eine Heterocubanstruktur aus, die erste dieser Art bei Magnesiumphosphandiiden. Die Verwendung des Chelatbildners führt dabei nicht zum Vierring Mg2P2, das Würfelgerüst ist begünstigt. Abbildung 20: Kugelstabmodell von 6 Eine Magnesium-Phosphorbindungslänge beträgt hier durchschnittlich 254 pm. Spektroskopisch unterscheiden sich diese Verbindungen mit Ausnahme von 4 wenig und reihen sich in die bisher publizierten Daten ein. So liegen die 31 P-NMR-Verschiebungen von 4 bei 31 P = -265.0, -266.8 und -331.2. Die entsprechenden Verschiebungen von 5, 6 und 7 liegen zwischen 31 P = -327.1 und -331.6 Bei der Reaktivität gegenüber Dimethylcarbonat verhalten sich die Erdalkalimetall-bis[ bis(trimethylsilyl)phosphanide] analog den bereits untersuchten Alkalimetall-verbindungen. Unter Abspaltung von Methyl(trimethylsilyl)ether und Erdalkalimetallmethanolat bilden sich Kohlenstoff-Phosphordreifachbindungssysteme (Gl. (5.2.) Hexakis(magnesium-triisopropylsilylphosphandiid) verhält sich in der Reaktivität ähnlich und führt zur entsprechenden Magnesiumverbindung. 31 P-NMR-spektroskopisch zeigen diese Verbindungen analoge Eigenschaften wie die Alkalimetallverbindungen. Die Verschiebungen liegen zwischen 31 P = -362.3 und –373.2. Die Verbindungen sind äußerst oxidationsempfindlich und zersetzen sich sofort beim Trocknen im Hochvakuum und langsam in etherischer Lösung. Auch Temperaturerhöhung über 0°C führt zu langsamer Zersetzung. Zur genaueren Untersuchung der Struktur konnte von Tris(dimethoxyethan-O,O´)calcium- bis(2-phosphaethinolat) 12 eine Röntgenstrukturanalyse durchgeführt werden. Das Calciumatom ist von drei DME-Liganden koordiniert. Die Ca-O-Abstände variieren zwischen 234 pm zu den OCP-Anionen und 244 bis 255 pm zu den Ether-Liganden. Die C-P- Bindungslänge hat einen Wert von 157.5 pm und liegt damit zwischen einer Doppel- und einer Dreifachbindung. Bei der versuchten Kristallisation von Strontium-bis(2- phosphaethinolat) 13 konnte das dimere Bis(1,2-dimethoxyethan-O,O´)strontium-2,6- bis(methoxy)-3,5-diphospha-1,7-dioxaheptatrienid-4-olat 18 mittels Röntgenstrukturanaylse identifiziert werden: Abbildung 21: Kugelstabmodell von 18 Verbindung 18 entsteht in einer Reaktion von 13 mit noch vorhandenem Überschuß an Dimethylcarbonat. Jedes Strontiumatom ist verzerrt oktaedrisch koordiniert. Die Sr-O-Abstände liegen zwischen 249 pm zu den Anionenfragmenten und 268.9 pm zu den DME-Sauerstoffatomen. Die C-P-Bindungen liegen mit einer Länge von ca. 180 pm zwischen Einfach- und Doppelbindungen, ebenso wie die C-O-Bindungen an Position 3 und 7. Diese Bindungslängen weisen auf eine Delokalisation der negativen Ladungen hin. Durch Metallierungsreaktionen von (thf)2Ca[N(SiMe3)2]2 23 mit 2,2,6,6-Tetramethylheptan-3,5- dion („H-tmhd“) konnten neue, bisher unbekannte Diketonate dargestellt werden. Je nach Stöchiometrie entsteht entweder ein Dimer oder ein Monomer (Gl. 5.3.):(thf)2 Ca(5.3.) Die Strukturen dieser beiden Verbindungen konnten mittels Röntgenstrukturanalyse aufgeklärt werden. Dabei zeigt sich, daß hier durch die Verbrückung eine Bindungsverlängerung von Ca-N von 238 pm bei 24 auf 247 bzw. 251 pm bei 25 und eine Stauchung des O-Ca-O-Winkels um 9° stattfindet. Durch Metallierungsreaktionen mit verschiedenen Alkoholen konnten die entsprechenden Alkoholate dargestellt werden. Abhängig vom sterischen Anspruch der Alkohole dismutieren diese Alkohole allerdings zum Teil zum literaturbekannten [Ca(tmhd)2]3. 25 und die Alkoholate Ca2tmhd3OR 26 und 27, die sich aus der Reaktion mit R-1-Phenylethanol und 2,6- Di(tertbutyl)phenol ergeben, wurden auf ihre katalytische Aktivität bezüglich der Polymerisation von L-Lactid und -Caprolacton untersucht. Dabei stellte sich 27 als inaktiv heraus, was auf den sperrigen Alkoholatrest zurückzuführen ist, der einen Ligandenaustausch verhindert. 25 und 26 zeigten hingegen gute katalytische Aktivität, wobei man bei Verwendung von 25 zu Polymeren mit hohen Molekülmassen gelangt. 26 führt zur Ausbildung von sogenannten lebenden Polymeren. Das weitere Hauptaugenmerk dieser Arbeit richtete sich auf die Synthese und strukturelle Charakterisierung von Yttriumphosphaniden. Da sich diese Verbindungsklasse durch äußerst hohe Reaktivität auszeichnet, musste ein Ligandensystem gewählt werden, welches das Metallzentrum abschirmt und gute Kristallisationseigenschaften aufweist. Mit dem 1,3- Bis(trimethylsilyl)cyclopentadienyl-liganden („Cp´´ “) stand uns ein solche Schutzgruppe zur Verfügung. Dadurch konnten Röntgenstrukturanalysen dieser Phosphanide des Typs Cp´´2YP(H)SiR3(thf) und Cp´´2Y[P(H)SiR3]2M(L) angefertigt werden, die sich durch Metatheseraktionen von Kalium-trialkylsilylphosphaniden und Cp´´2YCl2Li(thf)2 darstellen lassen. Die entstandenen Phosphanide zeichnen sich durch äußerste Empfindlichkeit aus. Innerhalb von wenigen Tagen zersetzen sie sich selbst in aromatischen Kohlenwasserstoffen, Trocknen im Hochvakuum führt zu sofortiger Zersetzung. Schema 15: Bildungsmechanismus der Yttriumphosphanide Die Länge der Yttrium-Phosphorbindung hängt von den Koordinationszahlen ab: Sie variiert von 277 pm bei (Tetrahydrofuran-O)yttrium-bis[1,3-bis(trimethylsilyl)cyclopentadienid]- tri(tertbutylsilyl)phosphanid 45 über 284 pm bei (Tetrahydrofuran-O)lithium-bis[- tri(isopropyl)silylphosphanyl]-bis[1,3-bis(trimethylsilyl)cyclopentadienyl]yttriat 46 bis 285 pm bei der analogen Kaliumverbindung 51. Die Wasserstoffatome stehen bei 46 und 51 zueinander trans. Außerdem weisen diese Verbindungen äußerst interessante NMR- Eigenschaften auf. So erhält man z.B. im 31 P-NMR-Spektrum ein Spinsystem AA´MM´X beim Kaliumyttriat 52. | 31 P = -234.8 Abbildung 22: 31 P-NMR-Spektrum von 52 Die Bandbreite der Verschiebungen im 31 P-NMR-Spektrum reicht von = -188 für das monosubstituierte 50 über = -241.3 für das Kaliumyttriat 51 bis hin zu = -251 bei 46. Bei 46 ist eine Lithium-Phosphorkopplung erkennbar. Im 29 Si{1 H}-NMR erhält man je nach Grad der Substitution Dubletts von Dubletts für 50 oder Multipletts für die AA´MX-Spinsysteme von 46 und 51. Durch Einsatz von (dme)LiPH2 und stöchiometrischer Zugabe von TMEDA gelangt man schließlich zu einer Verbindung des Typs Cp´´2Y(PH2)2Li2(tmeda)2Cl mit einem annähernd planaren sechsgliedrigen zentralen Strukturfragment. Dieser Strukturtyp ist bisher einzigartig in der Organoyttriumchemie. Abbildung 22: Kugelstabmodell von 56 Bis(tetramethylethylendiamin-N,N´)dilithium-(-chloro)-bis(-phosphanido)-bis[1,3-bis(tri-methylsilyl) cyclopentadienyl]yttriat 56 ist äußerst empfindlich und zersetzt sich in wenigen Tagen in aromatischen Kohlenwasserstoffen. Die Yttrium-Phosphorbindungen haben eine durchschnittliche Länge von 285 pm, die Lithium-Phosphorbindungen von 259 pm. Der YP2Li2Cl-Ring ist nahezu planar. Nur das Chloratom ragt leicht aus dieser Ebene heraus. Die Bindungssituation lässt sich als zwei 2e3c-Bindungen beschreiben. Die spektroskopischen Eigenschaften sind ähnlich zu denen von 46 und 51. Im 31 P-NMR-Spektrum erhält man ein AA´M2M´2X-Spinsystem. Die Yttrium-Phosphor-Kopplung hat jedoch einen um ca. 40 Hz kleineren Wert verglichen mit den anderen beiden Verbindungen.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
1. Durch N-Alkylierung können sowohl 2,8- als auch 3,9-Dibenzo[b,g][1,5]naphthyridin- 6,12-dione (Epindolidione) löslich gemacht werden. Als Methylierungsagens bewährte sich besonders p-Toluolsulfonsäuremethylester in Kombination mit der Base Kaliumcarbonat. N H N H O O R R R' R' N N O O R R Alkyl Alkyl R' R' Base Alkylierungsagens 1.1. Die als Nebenprodukt entstehenden monoalkylierten Verbindungen können säulenchromatographisch von den Dialkylderivaten abgetrennt werden und zeichnen sich durch um 12 nm kürzerwellige Emissionsmaxima und kleinere Stokes-Verschiebungen gegenüber den Dialkylepindolidionen aus. 1.2. Die alkylierten Verbindungen absorbieren im Bereich 457-494 nm und emittieren bei 464-528 nm. Sie weisen sehr hohe Fluoreszenzquantenausbeuten von bis zu 98 % auf. 1.3. Photostabilitätsmessungen von N,N-Dimethyl-dibenzo[b,g][1,5]naphthyridin-6,12-dion (32d) und N,N-Dibutyl-dibenzo[b,g][1,5]naphthyridin-6,12-dion (32b) ergeben gute Resultate. 1.4. CV-Messungen von N,N-Dimethyl-dibenzo[b,g][1,5]naphthyridin-6,12-dion (32d) und 2,8,N,N-Tetramethyl-dibenzo[b,g][1,5]naphthyridin-6,12-dion (32e) zeigen, dass die Verbindungen leicht reduziert werden können (E1 Red = -1.17 für 32d und E1 Red = -1.22 für 32e). Werden sie in OLEDs eingesetzt, kann Aluminium statt der empfindlichen Calciumkathode verwendet werden. 1.5. Es konnten OLEDs mit 32d und 32e als Emitter gebaut werden, die intensive grüne Emission aufweisen. 1.6. Mittels Suzuki-Kupplung gelingt es neue 2,8- und 3,9-Aryl substituierte Epindolidione herzustellen wie z. B. 34a. 1.7. Die 3,9-Isomere absorbieren und emittieren kürzerwellig als die in 2,8-Stellung substituierten Verbindungen und weisen geringere Fluoreszenzquantenausbeuten auf. 2. Neben der Chlorierung von Dibenzo[b,g][1,5]naphthyridin-6,12-dion (27a) mittels Phosphoroxychlorid unter Zugabe von Kaliumcarbonat gelingt durch Schwefelung mit Phosphorpentasulfid und anschließender Methylierung der Zugang zu den Dibenzo[b,g][1,5]naphthyridinen (Epindolinen). 2.1. Verbindung 69 kann mit aliphatischen und aromatischen Stickstoffnucleophilen mit Quecksilberdichlorid als Katalysator zu 6,12-Diaminoepindolinen umgesetzt werden wie z. B. mit Butylamin zu 70a und mit Anilin zu 70b. Die Verbindungen absorbieren im Bereich von 481-547 nm und emittieren bei 506-571 nm. Hier zeichnet sich N,N’-Dibutyl-dibenzo[b,g][1,5]naphthyridin-6,12-diamin 70a durch eine hohe Fluoreszenzquantenausbeute aus, während die mit aromatischen Aminen substituierten Epindoline nur schwach oder gar nicht fluoreszieren. 2.2. Über die Kumada-Kupplung kann Verbindung 69 mit Arylmagnesiumbromiden umgesetzt werden wie z.B. mit Phenylmagnesiumbromid zu 74a. 2.3. Die Dichlorverbindung 58 lässt sich unter Suzuki-Bedingungen mit Arylboronsäuren kuppeln wie z.B. mit Thienylboronsäure zu 74e. 2.4. Unter Palladiumkatalyse können Alkinyltrialkylstannane mit der Dichlorverbindung 58 zur Reaktion gebracht werden (Stille-Kupplung). Hier muss darauf geachtet werden, dass die Temperatur von 100 °C nicht überschritten wird, da sonst Zersetzung eintritt. 2.5. Die Absorptionsmaxima der Aryl substituierten Epindoline liegen bei 476-553 nm, die Fluoreszenzmaxima bei 523-645 nm. Die Verbindungen weisen große Stokes- Verschiebungen auf. Dies kann auf eine Verdrillung zwischen dem Epindolingrundkörper und den Arylsubstituenten im Grundzustand zurückgeführt werden, die durch AM1-Rechnungen und Röntgenstrukturen belegt werden kann. Verbindung 74e besitzt in dieser Verbindungsreihe die größte Stokes-Verschiebung von 81 nm (2800 cm-1). 3. N-Lithiumhexamethyldisilazan addiert an die N-methylierten Imidazolylbenzonitrile 87 und 89 und man erhält nach der Umsetzung mit Trimethylchlorsilan die persilylierten Amidine 91b und 90. Diese lassen sich mit Vinamidiniumsalzen zu Pyrimidine wie z. B. 93b und 94a kondensieren. Diese Synthese eignet sich auch, um mit bifunktionellen Vinamidiniumsalzen dichromophore Systeme aufzubauen wie z. B. Verbindung 94c. 3.1. Die farblosen bis gelben Verbindungen fluoreszieren intensiv blau bis türkis und haben sehr hohe Fluoreszenzquantenausbeuten von bis zu 100 %. Sie weisen außerdem eine starke Emissionssolvatochromie auf. Der Solvatochromieumfang von z. B. Verbindung 94c beträgt für das Lösungsmittelpaar Toluol/Dimethylsulfoxid 68 nm (3130 cm-1). Neben der hohen Fluoreszenzquantenausbeute zeichnen sich die Verbindungen durch außerordentlich große Stokes-Verschiebungen von bis zu 144 nm (7820 cm-1) und gute Photostabilitäten aus. 4. Es können durch Kondensation verschiedener Trialdehyde 95, 96, 97, 98 und 128 mit aromatischen 1,2-Diketonen und Ammoniumacetat in Eisessig sternförmige trichromophore Imidazole aufgebaut werden. 4.1. Die fünf Verbindungsklassen 113, 115, 119, 124 und 126 zeichnen sich durch große molare Absorptionskoeffizienten, große Stokes-Verschiebungen und mäßige bis hohe Fluoreszenzquantenausbeuten aus. Die Verbindungsklasse 124 weist die kleinsten Fluoreszenzquantenausbeuten auf, da die Intensität der Fluoreszenz durch TICT-Zustände abgeschwächt wird. In den Absorptionsspektren aber noch stärker ausgeprägt in den Fluoreszenzspektren der Verbindungsklassen 115 und 119 ist eine positive Solvatochromie feststellbar. Für die Verbindungsklasse 124 findet man nur eine Solvatochromie in der Fluoreszenz. HRS-Messungen von Verbindung 119b bei einer Fundamentalwellenlänge von 1500 nm ergeben eine molare Hyperpolarisierbarkeit β von 28.8⋅10-30 esu, ein im Vergleich mit p- Nitroanilin β1500 = 18⋅10-30 esu guter Wert.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ziel dieser Arbeit war es, Arsen- bzw. Antimonverbindungen zu synthetisieren und zu charakterisieren, die Chemiker aufgrund allgemeiner Erfahrungen als instabil bzw. explosiv bezeichnen würden. Dabei wurden vier verschiedene Schwerpunkte gesetzt. (a) binäre Arsenazide und Antimonazide (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 (a) binäre Arsenazide und Antimonazide Die binären Arsenazid- und Antimonazid-Verbindungen M(N3)3, M(N3)4 + , M(N3)4 – , M(N3)5 und M(N3)6 – (M = As, Sb) wurden durch Reaktion der entsprechenden Chlorid-Verbindungen mit TMS-N3 oder aktiviertem NaN3 synthetisiert. Die Verbindungen wurden als reine Substanzen bzw. als Salze isoliert. Die Isolation der reinen Pentaazide gelang aufgrund der extremen Explosivität nicht. Die Strukturen und Normalschwingungen aller binären Verbindungen wurden auf B3LYP-Niveau berechnet. Die kationischen Spezies zeigen S4-Symmetrie, die monomeren M(N3)4 – -Anionen und die neutralen M(N3)5-Spezies Cs-Symmetrie, die dimeren [M(N3)4 – ]2-Anionen S2-Symmetrie und die M(N3)6 – -Anionen S6-Symmetrie. Abbildung 46 zeigt die berechneten Strukturen und die explosiven Eigenschaften der Verbindungen. Die berechneten durchschnittlichen M-N-Bindungslängen steigen in der Reihenfolge M(N3)4 + < M(N3)5 < M(N3)3 < M(N3)4 – < M(N3)6 – . Die N-N-Bindungslängen innerhalb der Azidgruppen zeigen eine ähnliche Tendenz. Die kationischen Verbindungen zeigen die längsten N -N - und die kürzesten N -N -Bindungslängen (Konnektivität: M–N –N –N ) gefolgt von den Neutral-verbindungen und den anionischen Spezies. Dementsprechend ist die Bindungsordnung zwischen dem N und N -Stickstoffatom (vgl. Lewisformel III, Schema 1) für die kationischen Azidverbidungen am höchsten und für die anionischen am geringsten. Diese Tendenzen stimmen gut mit den experimentell bestimmten und berechneten Schwingungsdaten für die Azidgruppen überein.Die ionischen Verbindungen werden durch voluminöse Gegenionen im Kristall stabilisiert. Die relativen kurzen N -N -Bindungslängen erklären dennoch die gesteigerte Explosivität der kationischen Verbindungen gegenüber den anionischen Spezies. Eine Eliminierung von N2 ist aufgrund dieser kurzen N -N -Bindungslängen erleichtert. Die neutralen Triazide sind außerordentlich explosiv und die Pentaazide zersetzen sich aufgrund des extrem hohen Stickstoffgehalts spontan. Es gelang erstmals eine Arsenazidverbindung durch Röntgenstrukturanalyse zu charakterisieren. Die Struktur des As(N3)6 – -Anions wurde als desses PPh4 + - und Py-H + -Salz geklärt. Das Arsenatom ist von sechs Stickstoffatomen oktaedrisch umgeben. Das Anion zeigt im Kristall zentrosymmetrische S2-Symmetrie. Die experimentell bestimmten Struktur-parameter stimmen mit den auf B3LYP-Niveau berechneten gut überein. Abbildung 47 zeigt die Molekülstruktur des As(N3)– -Anions. Die 14 N-NMR-Spektren aller Verbindungen zeigen drei Resonanzen für die nichtäquivalenten Stickstoffatome der kovalent gebundenen Azide. In den 75 As- bzw. 121 Sb-NMR-Spektren konnten nur im Falle der Hexaazidoanionen Resonanzen aufgelöst werden, da diese Kerne nur in hochsymmetrischer Umgebung aufgrund ihres hohen Quadrupolmoments detektiert werden können. (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon Gemischte Halogen- bzw. Halogen/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) konnten bisher nicht isoliert werden, da diese Verbindungen leicht in die jeweiligen Trihalogenide bzw. Pseudohalogenide dismutieren. Deratige Dismutierungen wurden in dieser Arbeit bei Reaktionen von MX3 (M =As, Sb; X = F, Br, I) mit azidübertragenden Reagentien beobachtet. Gemischte Halogen/Azid-Verbindungen von Arsen und Antimon konnten nur im Falle des Chlorids eindeutig isoliert werden. Die Dismutierungsneigung ist aufgrund der chemischen Ähnlichkeit von Chlorid und Azid am geringsten. SbCl(N3)2 wurde durch Reaktion von SbCl3 und zwei Äquivalenten NaN3 synthetisiert. SbCl2N3 konnte nur in Gegenwart von Pyridin als Lewis-Base kristallisiert werden, wobei das Lewis-Säure-Base-Addukt SbCl2N3 · 2 Pyridin entstand. Eine gemischte Chlorid/Azid-Verbindung von Arsen konnte ebenfalls in Gegenwart von Pyridin als Lewis-Base isoliert werden. Es wurde die Verbindung AsCl(N3)2 · 2 Pyridin durch Röntgenstrukturanalyse eindeutig charakterisiert. Abbildung 48 zeigt die Molekülstruktur von SbCl(N3)2. Die Molekülstrukturen der beiden anderen gemischten Chlorid/Azid-Verbindung von Arsen und Antimon sind in Kap. 3.2.4 abgebildet. Die Zentralatome sind in Übereinstimmung mit dem VSEPR-Konzept in SbCl(N3)2 Ψ -tetraedrisch, in AsCl(N3)2 · Pyridin Ψ -trigonal-bipyramidal, und in SbCl2N3 · 2 Pyridin Ψ -toktaedrisch umgeben. Die Schwingungsspektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen Banden bei 216 cm –1 und 139 cm –1 (As) und 166 cm –1 und 109 cm –1 (Sb). Diese Banden werden den Streck- bzw. Deformationsschwingung der M-NPy-Bindungen (M = As, Sb) zugeordnet. Die 14 N-NMR-Spektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, breite Resonanzen bei einer chemischen Verschiebung von δ = –164 ppm (As) und –157 ppm (Sb). Diese Resonanzen werden den Stickstoffatomen der Pyridinmoleküle zugeordnet. Sie sind im Vergleich zu freiem Pyridin deutlich verschoben (–63 ppm). Es folgt, dass die Addukte ebenso in Lösung stabil sind. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. In AsCl(N3)2 · Pyridin werden 0.20 Elektronen vom Pyridin auf AsCl(N3)2 übertragen und in SbCl2N3 · 2 Pyridin 0.27 Elektronen von den beiden Pyridinmolekülen auf SbCl2N3. Die Wechselwirkung pro Molekül Pyridin ist damit im Vergleich zu AsCl(N3)2 · Pyridin schwächer. Dieses Ergebnis spiegelt sich in den experimentell bestimmten M-NPy-Bindungslängen wieder. (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 Die Isolation der binären Spezies As(N3)5 und Sb(N3)5 gelang aufgrund der spontanen Explosionen nicht. Daher wurden die Verbindungen in situ durch Reaktion von AsF5 bzw. SbF5 mit TMS-N3 dargestellt und mit Lewis-Basen stabilisiert. Die Verbindungen As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) wurden auf diese Weise synthetisiert. Die Verbindungen sind bei Raumtemperatur stabil, explodieren jedoch heftig bei Reibung oder höheren Temperaturen. Die Strukturen und Normalschwingungen wurden auf B3LYP-Niveau berechnet. Die Zentralatome sind jeweils okatedrisch von sechs Stickstoffatomen umgeben. Fünf stammen dabei von Azidliganden und eines von der jeweiligen Lewis-Base. In Abbildung 49 ist die Struktur von As(N3)5 · N2H4 abgebildet. Die berechneten Strukturen der anderen Addukte sind in Kap. 3.3.5 zu finden. Die Schwingungsspektren zeigen alle Schwingungen die auf kovalent gebundene Azide schließen lassen. Zusätzlich sind im Bereich von 111 cm –1 bis 430 cm –1 Banden ersichtlich, die den Streck- bzw. Deformationsschwingungen der M-NLB-Bindungen zugeordnet werden. Die 14 N-NMR-Spektren von As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, Signale, die den Stickstoffatomen der jeweiligen Lewis-Basen zugeordnet werden. Diese Resonanzen sind im Vergleich zu den Resonanzen der freien N-Basen deutlich verschoben. Es folgt, dass die Addukte ebenso in Lösung stabil sind. Aufgrund der 14 N-NMR-Spektren von As(N3)5 · NCNH2 bzw. Sb(N3)5 · NCNH2 kann gefolgert werden, dass die Cyanamid-Verbindungen über die Cyanid-Einheiten an die Zentralatome koordinieren. Die 75 As- bzw. 121 Sb-NMR-Spektren belegen eine oktaedrische Koordination an den Zentral-atomen. Es konnten für alle Addukte Resonanzen in den Spektren detektiert werden. Die Bindungsdissoziationsenthalpien für die Dissoziation der Addukte gemäß Gleichung 25 wurden quantenmechanisch berechnet. M(N3)5 · LB → M(N3)5 + LB (25) (M = As,Sb; LB = Pyridin, NH3, N2H4 und NH2CN) Die Bindungsdissoziationsenthalpie ist ein Maß für die As- bzw. Sb-NLB-Bindungsstärke dieser Addukte. Die Stabilität der Addukte steigt in der Reihenfolge NH2CN < Pyridin < NH3 < N2H4 und As(N3)5 < Sb(N3)5. Die Bindungsdissoziationsenthalpien stimmen qualitativ gut mit den berechneten As- bzw. Sb-NLB-Bindungslängen überein. Die schwächsten Cyanamid-Addukte zeigen die längsten As- bzw. Sb-NLB-Bindungslängen, die stärksten Hydrazin-Addukte zeigen die kürzesten. (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 AsCl5 ist aufgrund der d-Blockkontraktion und der damit verbundenen geringer Abschirmung der hohen Kernladung sehr instabil. Addukte von AsCl5 wurden ebenso wenige beschrieben. SbCl5 hingegen ist stabil. In dieser Arbeit wurde das Koordinationsverhalten schwacher Lewis-Basen gegenüber MCl5 (M = As, Sb) sowohl experimentell als auch theoretisch untersucht. Die Verbindungen MCl5 · LB (M = As, Sb; LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) wurden auf B3LYP-Niveau berechnet, die Verbindungen SbCl5 · LB (LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) und AsCl5 · NCI konnten synthetisiert werden. Strukturen, die ein lokales Minimum (NIMAG = 0) aufweisen, wurden für alle Addukte berechnet. Die Übereinstimmung der berechneten Strukturparameter für SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 mit den durch Röntgenstrukturanalyse bestimmten Bindungs-längen und -winkel ist außerordentlich gut. Abbildung 50 zeigt die Molekülstruktur des 2:1 Addukts SbCl5 · NCCN · SbCl5. Die Strukturen zeigen eine sechsfache Koordination mit nahezu idealer oktaedrischer Umgebung an den Zentralatomen. Sie sind umgeben von fünf Chloratomen und jeweils einem Stickstoffatom der entsprechenden Lewis-Basen. Die Ramanspektren zeigen bei ca. 200 cm –1 Banden für die ν SbN-Streckschwingungen und von 83 cm –1 bis 134 cm –1 Banden für die δ SbN-Deformationsschwingungen. Die ν CN-Streckschwingungen der Addukte ergeben Banden zwischen 2187 cm –1 und 2352 cm –1 und sind damit um 18 - 76 cm –1 zu höheren Wellenzahlen im Vergleich zu den freien Cyaniden verschoben. Die 14 N-NMR-Spektren zeigen deutlich verschobene Resonanzen der Stickstoffatome im Vergleich zu den freien Lewis-Basen. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation dieser schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. Die Wechselwirkung der Lewis-Base Dicyan mit SbCl5 ist geringer als die Wechselwirkung von ClCN mit SbCl5. Basierend auf quantenmechanischen Rechnungen (B3LYP) wurde die Bindungs-dissoziationsenthalpien, die der thermodynamische Stabilität der Addukte entspricht, aller Addukte bestimmt. Die Stabilität steigt in der Reihenfolge (CN)2 < ClCN < BrCN < ICN < NH2CN < Pyridin und AsCl5 < SbCl5. Ferner wurden in dieser Arbeit die Molekülstrukturen der Verbindungen [NEt4][SbCl6], [PPh4][SbCl4] · CHCl3 (Kap. 3.1.7), [NH4][SbCl6] (Kap. 3.6.3) und[NMe4]2[As4O2Cl10] (Kap. 3.5.3) durch Röntgenstrukturanalyse gelöst. Das As4O2Cl10 2– -Anion weist eine ungewöhnliche Struktur auf. Das Anion besitzt im Kristall D2h-Symmetrie, in denen vier Arsenatome und zwei Sauerstoffatome coplanar angeornet sind. Jedes Arsenatom weist eine lokale Ψ -oktaedrische Geometrie auf, in denen es von vier Chloratomen in nicht-äquivalenten äquatorialen Positionen (zwei verbrückende- und zwei terminalen Chloratome) und einem stereochemischen aktivem Elektronenpaar in trans Position zu dem axial verbrückendem Sauerstoffatom umgeben ist. Die Bindungssituation dieses Anions wurde durch NBO-Analyse geklärt. Die verbrückenden Chloratome übertragen jeweils eine Ladung von 0.374 Elektronen auf eine Cl2As-O-AsCl2-Einheit. Dabei sind hauptsächlich Wechselwirkungen der s-LP´s der verbrückenden Chloratome mit den antibindenden σ∗-Orbitalen der As-Clterm.-Bindungen erkennbar. Diese Wechselwirkungen spiegeln sich in den relativ langen As-Clterm.-Bindungen (2.219(1) Å) wieder. Ein weiters Ziel dieser Arbeit war die Synthese und strukturelle Charakterisierung von Azid-Komplexen der Metalle Palladium und Platin. Die Palladiumazid-Komplexe L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) wurden erstmalig synthetisiert und eindeutig mittels IR-, Raman- und 14 N-NMR-Spektroskopie charakterisiert. Die Ergebnisse dieser spektroskopischen Untersuchungen deuten auf trans-stehende Azidliganden. Diese Ergebnisse konnten teilweise durch Röntgenstrukturanalyse bestätigt werden. Ferner wurden die von Beck et al. synthetisierten Palladiumazid-Komplexe L2Pd(N3)2 (L = PPh3, AsPh3) strukturell charaktersisiert. Ähnlich wie in L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) sind die Azidgruppen trans zueinander angeordnet. Die Struktur von Pd(PPh3)2(N3)2 ist hier als Beispiel angegeben (Abbildung 51). In dem gemischt valenten Chlorid/Azid-Komplex [AsPh4]2[Pd2(N3)4Cl2] liegen die Pd(N3)2Cl – -Anionen als azidverbrückte Dimere vor, die einen planaren Pd2N2-Ring ausbilden. Desweiteren wurden in vorliegender Arbeit die binären Palladiumazid- und Platinazid- Anionen Pd(N3)4 2– , Pt(N3)4 2– und Pt(N3)6 2– strukturell charakterisiert. Auftretende Probleme bezüglich N-N-Abständen innerhalb der Azid-Einheiten konnten durch quantenmechanische Rechnungen auf HF- und B3LYP-Niveau gelöst werden. Die Tetraazid-Anionen weisen im Kristall beinahe ideale C4h-Symmetrie, und das Hexaazid-Anion annähernd ideale S6- Symmetrie auf. Für die Tetraazid-Anionen resultiert dadurch eine molekulare Struktur, die dem eines "Windrades" sehr ähnlich ist (vgl. Kap. 3.7.7). Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 45 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Originalarbeiten als Literaturstelle angegeben.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Gegensatz zu den Alkalimetall-pentoliden erweckt das Gebiet der Erdalkalimetallbis( pentolide) erst seit einigen Jahren das Interesse einiger Arbeitsgruppen. Westerhausen et al. konnten vor einigen Jahren bei der Umsetzung von Diphenylbutadiin mit Calcium- und Strontium-bis[bis(trimethylsilyl)phosphanid] die Bildung von Erdalkalimetall-bis(phospholid) nachweisen. Ein alternativer Weg nutzt die Metallierung von 1-Chlor-substituierten Pentolen durch Erdalkalimetalle zu Nutze. Ebenso wie den Erdalkalimetall-bis(pentoliden) wird den metallorganischen Verbindungen der schweren Erdalkalimetalle mit Erdalkalimetall- Kohlenstoffatom-σ-Bindungen seit einigen Jahren starkes Interesse entgegen gebracht. Die meisten Vertreter dieser Substanzklasse zeichnen sich durch ihr schlechtes Löslichkeitsverhalten in aromatischen und aliphatischen Kohlenwasserstoffen aus. Zudem ist noch kein allgemeines Syntheseprinzip zur Darstellung von Verbindungen aller schweren Erdalkalimetalle bekannt. Den Verbindungen dieser Klasse kommt ein hohes Maß an Reaktivität sowie Oxidations- und Hydrolyseempfindlichkeit zu, was ihre Synthese und Handhabung erschwert. Trotzdem gewähren diese Verbindungen einen interessanten Einblick in die metallorganische Chemie der zweiten Hauptgruppe. Die vorliegende Arbeit gliedert sich in drei Themengebiete. Im ersten Teil beschäftigten wir uns mit der Erweiterung des Spektrums der Alkalimetall- und Erdalkalimetall-pentolide, dabei lag unser Hauptinteresse in der Synthese und Strukturaufklärung von Metall-Pentoliden der Elemente Phosphor bis Antimon, wobei die Synthesen und Strukturaufklärungen des ersten Kalium-Stibolids und des Barium-Phospholids gelangen. Ein weiteres Ziel lag in der Untersuchung der Transmetallierung von Dialkylzink- Verbindungen mit aktivierten Erdalkalimetallen. Das Hauptaugenmerk auf eine mögliche Synthese von metallorganischen Verbindungen mit Erdalkalimetall-Kohlenstoff-σ-Bindungen gerichtet, gelang die Charakterisierung einer ganzen Reihe von Erdalkalimetall-bis(zinkaten). Zuletzt beschäftigten wir uns mit dem Einsatz der von uns dargestellten Erdalkalimetallbis( zinkate) in Metallierungsreaktionen gegenüber CH-acider Verbindungen. Zur Darstellung der Alkalimetall- und Erdalkalimetall-pentolide wählten wir als Edukte die 1- Chlor-substituierten Pentole. Diese Verbindungen sind durch Transmetallierung entsprechender Zirconacyclopentadiene mit Penteltrichlorid leicht zugänglich. Die Umsetzung der 1-Chlor-substituierten Pentole mit Metallen der 1. bzw. 2. Hauptgruppe führt in einem ersten Reaktionsschritt zu den entsprechenden Dipentolylen. Bis zu dieser Stufe zeigt die Reaktion eine nur geringfügige Abhängigkeit vom eingesetzten Metall. Die Reduktion von Octaethyldiphospholyl 5 und Octaethyldistibolyl 7 mit Kaliummetall in THF führt zur Bildung von Kalium-2,3,4,5-tetraethylphospholid 8 und Semi(tetrahydrofuran- O)biskalium–bis(2,3,4,5-tetraethylstibolid) 9. Das Reaktionsschema 4.1 verdeutlicht die Darstellung anschaulich.Die Verbindungen zeichen sich durch die Ausbildung ungewöhnlicher Festkörperstrukturen aus. Verbindung 8 kristallisiert in einer hochsymmetrischen polymeren Kettenstruktur. Jedes Kaliumatom liegt zwischen zwei parallelen Phospholid-Liganden. Aufgrund der geringen endocyclischen Bindungslängendifferenz ∆ [∆ = d(C2C3) – d(C3C4)] von nur 2,6 pm, liegt bei den Pentoliden ein weitgehend aromatisches Anion vor, das an Kaliumkationen η5- gebunden vorliegt. Im Vergleich dazu weist die analoge Stibolid-Verbindung 9 eine völlig andere Festkörperstruktur auf. Verbindung 9 bildet ebenfalls Ketten aus, in denen Kalium-Kationen und Stibolid-Anionen alternierend auftreten, jedoch beobachtet man wie in Abbildung 4.1 wiedergegeben drei kristallographisch und chemisch unterschiedliche Metallzentren. K1 liegt zwischen zwei parallelen Stibolidanionen, an K3 ist ein THF-Ligand gebunden und erzwingt eine nichtparallele Anordnung der benachbarten Stibolidsubstituenten, wohingegen K2 engen Kontakt zur benachbarten Kette zeigt, was zur Ausbildung einer gewellten Schichtstruktur führt.Auch hier sind die Heterocyclen eindeutig η5 an die Metallzentren koordiniert. Die K-Sb- Abstände innerhalb der einzelnen Ketten weisen durchschnittlich 352 pm auf, während der KSb- Kontakt zwischen den Ketten 362 pm beträgt. Bei den Umsetzungen der 1-Chlor-substituierten Pentole mit den schweren Erdalkalimetallen Magnesium, Calcium, Strontium und Barium isolierten wir abhängig vom Metallzentrum vier unterschiedliche Produkte. Ebenso wie bei den Alkalimetallen konnte bei allen Erdalkalimetallen in einem ersten Schritt die Bildung der Dipentolyle nachgewiesen werden. Während Strontium und Barium die Pentel-Pentel-Bildung der entsprechenden Dipentolyle unter Bildung von Erdalkalimetall-bis(pentoliden) reduktiv spaltet [vgl. Reaktionsschema 4.3], gelingt diese Reaktion mit den leichteren Homologen Calcium und Magnesium nicht. Erst der Zusatz der stöchiometrischen Menge Metalldichlorid führt zur Bildung der heteroleptischen Magnesium- und Calcium-pentolidchloride [vgl. Reaktionsschema 4.2]. Um den Einfluß der Erdalkalimetallatomgröße auf die Reaktion detaillierter beschreiben zu können, wurden die Kristallstrukturen der dimerem Verbindungen von (Tetrahydrofuran- O)magnesium-2,3,4,5,-tetraethyl-λ3-phospholidchlorid 10 und Bis(tetrahydrofuran- O)calcium-2,3,4,5,-tetraethyl-λ3-phospholidchlorid 13 bestimmt. Alle heterocyclischen Liganden sind η5 an die Metallatome koordiniert. Die Abstände der Magnesiumatome zu den Ringkohlenstoffatomen liegen im Bereich von 247 bis 249 pm, für die vergleichbare Calcium- Verbindung im weiten Bereich von 277 bis 287 pm. Der Metall-Phosphor-Abstand beträgt für Verbindung 10 262 pm, für 13 findet man Werte von 295 bzw. 297 pm.Die Umsetzung von 5, 6 und 7 mit einem Überschuß von Strontium oder Barium führt durch Bruch der Pentel-Pentel-Bindung zur Bildung der Erdalkalimetall-bis(pentolide). Während die Barium-Verbindungen (20, 21, 22) ohne neutralen Co-Liganden am Metallatom kristallisieren, verbleibt bei den Strontium-Verbindungen (16, 17, 18) ein THF-Molekül in der Koordinationssphäre des Metallzentrums. Die von Verbindung 20 angefertigte Röntgenstrukturanalyse zeigt jedes Bariumatom an zwei Phospholid-Anionen η5-koordiniert, während zwei weitere Phospholid-Liganden über die Phosphoratome σ-gebunden auftreten wobei ein eindimensionaler Strang gebildet wird. Die η5-koordinierten Phospholid-Liganden sind gegeneinnader verkippt, der daraus resultierende Winkel zwischen den Zentren der Ringe und dem Metallzentrum beträgt 142°. Die Abstände der Metallzentren zu den Ringkohlenstoffatomen liegen aufgrund der Winkelung im weiten Bereich von 306 bis 318 pm. Die Ba-P-Abstände zu den Heteroatomen der η5-koordinierten Heterocyclen nehmen Werte von 324 und 329 pm an und sind ungefähr 20 pm kürzer als die Kontakte zu den η1- gebundenen Phosphoratomen. Neben den Erdalkalimetall-pentoliden mit η5-gebundenen Heterocylen beschäftigten wir uns mit der Transmetallierung von Bis(trimethylsilylmethyl)zink durch aktivierte Erdalkalimetalle zur Darstellung von Verbindungem mit Metall-Kohlenstoff-σ-Bindungen. Wir konnten zeigen, dass destilliertes Calcium und Strontium nur in THF mit Bis(trimethylsilylmethyl)zink zu den Erdalkalimetall-bis[tris(trimethylsilylmethyl)zinkaten] reagieren, während Barium reaktiv genug ist, um sowohl in THF als auch in Toluol und Heptan das entsprechende Zinkat zu bilden. Eine Übersicht über die Reaktionen ist in Reaktionsschema 4.4 wiedergegeben.Von großem Interesse waren die Bindungsverhältnisse der Erdalkalimetallbis[ tris(trimethylsilylmethyl)zinkate]. Zur Klärung dieser Frage wurden die Röntgenstrukturanalysen der Verbindungen 24, 25, 26 und 27 angefertigt. In allen Verbindungen ist das Erdalkalimetall an vier verbrückende Methylen-Gruppen gebunden. Je nach Lösemittel wird die Koordinationssphäre der Metallzentren durch als Lewis-Basen wirkende Lösemittel-Moleküle ergänzt. Die Erdalkalimetall-Kohlenstoff-Zink- Bindungsverhältnisse lassen sich als Zwei-Elektronen-Drei-Zentren-Bindungen beschreiben. Die gefundenen Erdalkalimetall-Kohlenstoff-Abstände sind durchschnittlich 20 pm länger als die berechneten Werte der entsprechenden Dimethylerdalkalimetall-Verbindungen. Zu einem interessanten Ergebnis führte die Transmetallierung von solvensfreiem Bariumbis[ tris(trimethylsilylmethyl)zinkat] mit einem Überschuss an Barium und gleichzeitiger Ultraschall-Behandlung. Aus der roten Reaktionslösung konnten wir Dibarium- {bis[bis(trimethylsilylmethyl)zink]-tris(trimethylsilylmethanido)zinkat} 30 isolieren. Die Verbindung ist in mehrfacher Hinsicht interessant. Die Festkörperstruktur der dimeren Verbindung 30 weist als Grundgerüst einen Ba4Zn2C6-Käfig auf, der als verzerrter Doppelwürfel mit einer gemeinsamen Ba2C2-Fläche vorliegt. Das Strukturmodell von 30 ist in Abbildung 4.2 anschaulich dargestellt. Die Ba-C-Abstände innerhalb des flächenverknüpften Doppelwürfels liegen im Bereich von 283 bis 320 pm. Die Koordinationssphären der Metallzentren werden durch agostische Bindungen zu Methylen-Gruppen ergänzt. Verbindung 30 ist das bisher zweite strukturell untersuchte geminal biszinkierte Alkan. Die gefundenen Zink-Kohlenstoff-Abstände liegen im Bereich von 206 bis 215 pm. Sowohl diese großen Koordinationszahlen als auch die teilweise auf benachbarten Atomen lokalisierten anionischen Ladungen führen zu diesen großen Zn-C-Abständen, die Aufweitung im Vergleich zu entsprechenden Dialkylzinkverbindungen liegt bei etwa 20 pm. Durch den Einsatz der von uns synthetisierten Erdalkalimetallbis[ tris(trimethylsilylmethyl)zinkate] in Metallierungsreaktionen mit CH-aciden Verbindungen konnte eine Reihe neuartiger Verbindungen dargestellt werden. Bei der Umsetzung der THF-Addukte der Erdalkalimetall-bis(zinkate) von Calcium, Strontium und Barium mit 2,3-Bis(trimethylsilyl)-2,3-dicarba-nido-hexaboran konnten wir die entsprechenden Erdalkalimetall-bis(carborate) isolieren. Bei der Metallierung ist jeweils nur ein Trimethylsilylmethyl-Substituent aktiv, auch eine Folgereaktion der Carborate mit gebildetem Bis(trimethylsilymethyl)zink wurde nicht beobachtet. Diese Syntheseroute bietet eine Alternative zu der bisher genutzten Methathese von Alkalimetall-Carboraten mit Erdalkalimetall-dihalogeniden. Die von Verbindung 32 und 33 angefertigten Röntgenstrukturanalysen zeigen unterschiedliche Koordination der Carborat-Liganden an die Metallzentren. Ein Ligand koordiniert über zwei hydridische Wasserstoffatome an das Erdalkalimetall. Die Bindungsverhältnisse können als Metall-H-B2-Vier-Zentren-Bindung beschrieben werden. Die Sr-H-Abstände in 32 liegen bei 269 und 262 pm, in Verbindung 33 wurden Ba-HAbstände von annähernd 290 pm gefunden. Unterschiedlich ist die Koordination des zweiten Liganden. Verbindung 32 zeigt die Bindung über ein Brückenwasserstoffatom, sowie über jeweils ein Bor- und ein Kohlenstoffatom. Die homologe, dimere Barium-Verbindung 33 koordiniert ebenfalls über ein Brückenwasserstoffatom sowie über die beiden Kohlenstoffatome. Durch Metallierung von Triisopropylsilylphosphan und –arsan eröffnet sich von der Verbindungsklasse der Erdalkalimetall-bis(zinkate) aus ein Zugang zu neuartigen Erdalkalimetall-zinkaten. So führt die Umsetzung des Calcium-Derivats 24 mit drei Äquivalenten Triisopropylsilylphosphan zur Bildung von Tris(tetrahydrofuran-O)calcium- [1,3-bis(triisopropylsilylphosphanyl)-1,3-bis(trimethylsilylmethyl)-2-triisopropylsilyl-1,3- dizinka-2-phosphapropandiid] 34. Das von drei THF-Liganden und den drei Phosphoratomen des dreizähnigen Liganden verzerrt oktaedrisch umgebenes Calciumatom weist Ca-PAbstände von 292 bis 296 pm auf. Aus der von Verbindung 34 abgetrennten Mutterlauge kann man durch erneutes Kühlen Bis[tris(tetrahydrofuran-O)calcium]-tris(µ- triisopropylsilylphosphanid)-tris(triisopropylsilylphosphanyl)zinkat 35 isoliern. Verbindung 35 kristallisiert als getrenntes Ionenpaar. Das binukleare Kation entspricht einer trigonalen Bipyramide mit den Calciumatomen in den apikalen Positionen. Drei THF-Liganden pro Calciumatom vervollständigen die verzerrt oktaedrische Umgebung der Metallzentren. Die Ca-P-Bindungslängen innerhalb des Bicyclus variieren von 294 bis 302 pm. Das Zinkatom im Tris(triisopropylsilylphosphanyl)zinkat-Anion ist trigonal planar umgeben. Die Zn-PAbstände liegen im Bereich von 231 bis 238 pm. Bei der Umsetzung von 24 mit Triisopropylsilylarsan konnten wir Tetrakis(tetrahydrofuran- O)calcium-[1,3-bis(triisopropylsilylarsanyl)-2,4-bis(triisopropylsilyl)-1,3-dizinka-2,4-diarsacyclobutandiid] 37 isolieren. Das zentrale Strukturelement ist ein Zn2As2-Viering mit zwei terminalen Arsanyl-Substituenten an den Zinkatomen. Das Calciumatom ist über die endocyclischen Arsanyl-Gruppen koordiniert, die gefundenen Ca-As-Bindungsabstände betragen 295 und 300 pm. Die endocyclischen Zn-As-Bindungslängen sind im Vergleich zu den terminalen Arsanyl-Liganden um 5 pm länger. Eine Überblick über die Reaktionen von Calcium-bis(zinkat) 24 mit primären Pentelen bietet Reaktionsschema 4.6. Bei der Umsetzung des Strontium-Derivats 25 mit Triisopropylsilylphosphan isoliert man das zu den Calcium-Verbindungen 34 und 35 verschiedene Bis(tetrahydrofuran-O)strontiumbis[ bis(triisopropylsilylphosphanyl)(trimethylsilylmethyl)zinkat] 36. Durch den Ersatz der vier verbrückenden Trimethylsilylmethyl-Substituenten von 25 durch Triisopropylsilylphosphanyl-Reste erhält man ein von vier Phosphoratomen quadratisch planar umgebenes Strontiumatom. Die oktaedrische Umgebung wird durch zwei THFLiganden in den apikalen Positionen vervollständigt. Die Strontium-Phosphor- Bindungslängen bewegen sich im Bereich von 308 bis 313 pm. Die Reaktion ist ebenfalls in Schema 4.6 aufgeführt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ein Ziel dieser Arbeit war es, die Zugänglichkeit von geminalen Bis(alkylzink)imiden zu untersuchen. Verbindungen des Typs (RZn)2NR´ wurden bereits in der Literatur[33][34] als Polymerisationskatalysator erwähnt, jedoch nicht strukturell erfasst. In Kapitel 2.1 ist die Zinkierung primärer Amine mit Dimethyl- und Diethylzink beschrieben. Sowohl in Lösung als auch im Feststoff erhält man nach Gleichung 37 dimere Alkylzinkamide des Typs [RZnN(H)R´]2. Während [MeZnN(H)SiiPr3]2 1 und [EtZnN(H)SiiPr3]2 2 solvensfrei mit seltenen, dreifach koordinierten Zinkatomen isoliert werden konnten, ist an das zentrale [MeZnN(H)Ad]2-Fragment bei Verbindung 4 ein Molekül Adamantylamin sowie ein Molekül THF mit einer außergewöhnlich langen Zn-O-Bindung (240 pm) angelagert. Daraus ergibt sich eine unterschiedliche koordinative Umgebung der beiden Zinkatome bei 4. 2 R´NH2 + R´ 2 ZnR2 - 2 CH4 R´= iPr3Si R = Me (1), Et (2) Zn NH NH Zn R R R´ R´= Adamantyl R = Me (4); *AdNH2; *THF Gleichung 37. Zinkierung primärer Amine zu dimeren Alkylzink-amiden des Typs [RZnN(H)R´]2. Vor allem Komplex 4 zeigt, dass Dimethylzink weder in der Lage ist, den Adamantylamidsubstituenten noch den koordinierten Adamantylaminliganden, selbst unter drastischen Bedingungen wie hoher Temperatur, zu metallieren. Die bis heute noch nicht strukturell charakterisierten Bis(alkylzink)imide lassen sich nach unseren Untersuchungen nicht durch Zinkierung primärer Amine erhalten und stehen somit nicht im Einklang mit dem in der Literatur beschriebenen Polymerisationskatalysator N,N-Bis(ethylzink)-tert-butylimid[33] oder mit den Bis(alkylzink)-trialkylsilylimiden.[34] Mit Zink-bis[κ2-N,N´-chlorzink-N-trimethylsilylamino-diphenylphosphoranyl]methandiid 5 konnte das erste Bis(halogenzink)methandiid strukturell charakterisiert werden. Im Gegensatz zu dem bisher als einzigen über Röntgenstruktur untersuchten, tetrameren Bis(alkylzink)- methandiid [(2-Pyridyl)(SiMe3)CZn]4 [50] kann man 5 auch als Zink-silylamid auffassen, da eine Umlagerung die Koordination zweier Zinkatome an das Methandiidkohlenstoffatom verhindert. In Kapitel 2.2 sind Synthese, Struktur und Reaktivität der 2-Aminomethylpyridinzinkdihalogenide beschrieben. Da Zinkhalogenide oft als Katalysatoren in der organischen Synthese eingesetzt werden, sind deren koordinative Umgebung und Eigenschaften von besonderem Interesse. Durch Addition von Zink(II)chlorid an Aminomethylpyridin erhält man nach Gleichung 38 Aminomethylpyridinzinkchlorid 6, während die schwereren Zinkhalogenide in Form von Bis(aminomethylpyridin)zinkbromid 7 bzw. –iodid 8 anfallen und als getrennte Ionenpaare [(AMP)2ZnX]+ X- (X = Br (7), I (8)) beschrieben werden können. Durch Abspaltung eines Liganden erhält man im Fall des Bromids 2-Aminomethylpyridinzinkbromid 9. Die Verbindungen 6 bis 9 reagieren mit Aceton unter Wasserabspaltung und hohen Ausbeuten leicht zu den entsprechenden Propylidenkomplexen 10 bis 12. Um den linearen Zusammenhang zwischen Zn-N-Bindungslängen und R-Zn-R´- Bindungswinkeln in Verbindungen des Typs (L)2ZnRR´ zu untersuchen, wurden die Molekülstrukturen von 9, 10 und 12 bestimmt. Die Verbindungen weisen die kleinsten bis heute bestimmten Winkel (115°) auf und fügen sich mit ihren sehr kurzen Zn-N-Bindungslängen von 205 pm in die genannte Beziehung ein. Die dargestellten TMEDAKomplexe von ClZnCH2SiMe3 14 und ClZntBu 15 reihen sich ebenso ein. Die Reaktion von 10 mit Lithium-methanid ergibt Methylzink-2-azabenzylidenaminopropan-2- id 13 und zeigt, dass der Aminomethylpyridinligand leicht durch eine Base in α-Stellung zum Ring deprotoniert werden kann. In Kapitel 2.3 wird eine neuartige, oxidative Kohlenstoff-Kohlenstoff-Kupplung bei der Umsetzung von (Trialkylsilyl)(2-pyridylmethyl)aminen mit Dialkylzinkverbindungen beschrieben (Gleichung 39). Es gelang den Reaktionsmechanismus dieser ungewöhnlichen metallorganischen Reaktion aufzuklären und die Zwischenstufen strukturell zu charakterisieren. Im Gegensatz zur Reaktion von 1,4-Di(tert-butyl)-1,4-diazabutadien (DAB) mit Dialkylzink,[89][90][91][92] bei der ebenfalls eine C-C-Kupplung zu beobachten ist, lässt sich ein radikalischer Reaktionsweg von uns ausschließen. Bei der Umsetzung von (Trialkylsilyl)(2-pyridylmethyl)aminen 16 mit Dialkylzink erhält man bei R.T. zunächst dimeres Alkylzink-2-pyridylmethyl(tert-butyldimethylsilyl)amid 17, das beim Erhitzen mit einem Überschuss R´2Zn zu dem C-C-Kupplungsprodukt 18 weiterreagiert. Im Verlauf dieser Reaktion beobachtet man die äquimolare Abscheidung von elementarem Zink und die Abspaltung von Methangas. Die C-C-gekuppelte Spezies weist einen sehr kurzen, nicht bindenden Zn⋅⋅⋅Zn-Abstand (272 pm) sowie eine neue, relativ lange C-C-Bindung (157 bzw. 160 pm, abhängig vom sterischen Anspruch der Reste) auf. Durch die Knüpfung der neuen Bindung ergeben sich zwei chirale Zentren im Molekül, wobei ausschließlich ein Gemisch der (S,S)- und (R,R)-Enantiomeren erhalten wird und nie die meso-Form. Beide Zinkatome sind tetraedrisch umgeben. Zur Aufklärung des Mechanismus wurden die entsprechenden Benzylderivate (E = CH, Gleichung 39) dargestellt. Dies gelang bis auf Typ O und P, die C-C-gekuppelte Spezies. Die Notwendigkeit des Pyridylstickstoffs bei der C-C-Kupplung kann mit Zwischenverbindung O aus Gleichung 39 erklärt werden, denn nur über das Zink-bisamid kann es zur oxidativen Kupplung der Kohlenstoffatome kommen. Untersucht man den Zusammenhang der Größe der Reste in Bezug auf die Kupplungsreaktion, so kann man keinen Einfluss bei Variation der Alkylgruppen (R) am Siliciumatom erkennen. Eine Vergrößerung der am Zink gebundenen Gruppen (R´) zeigt dagegen eine Abnahme der Reaktionsgeschwindigkeit bis hin zum Ausbleiben der C-C-Kupplung bei R´ = C(SiMe3)3. Bis(methylzink)-1,2-dipyridyl-1,2-bis(tert-butyldimethylsilylamido)ethan 18 ist ein in jeder Hinsicht ungewöhnlicher, binuclearer Komplex. Bei Reaktionen mit Verbindungen des Typs R´EH2, beschrieben in Kapitel 2.4, zeigen sich in Abhängigkeit der Acidität der Protonen unterschiedliche Reaktionsarten. Mit Triisopropylsilylphosphan und –arsan wird das Gruppe-15 Atom durch ein Methylzinkfragment unter Abgabe von Methan zinkiert (Gleichung 40). Da überraschenderweise zusätzlich die vierzähnige Aminobase vom Phosphan protoniert wird, erhält man den dreikernigen Komplex 25, bei dem zwei Zn-Atome vierfach und eines zweifach koordiniert ist. Dieser Komplex stellt das erste Beispiel für ein zweifach koordiniertes Zinkatom in einem Phosphandiid dar. Der P-Zn-P-Winkel weicht mit 154° stark von der, bei Koordinationszahl 2 zu erwartenden Linearität, wie bei den Bisamiden und Bismethaniden[99][101][133][134] ab. Wie auch bei Ausgangsverbindung 18 erhält man ein Gemisch der (S,S)- und (R,R)-Enantiomeren, jedoch nicht die meso-Form. Durch die eingeschränkte freie Drehbarkeit der großen Reste und einer unterschiedlichen magnetischen Umgebung zeigt sich für die Chemischen Verschiebungen der beiden Methylgruppen am Silicium ein bemerkenswert großer Unterschied von 20 ppm im 13C{1H}-NMR-Spektrum. Setzt man 18 mit Methanol, Isopropanol oder Acetamid um, kann man die Protolyse zu dem metallfreien Liganden 27 beobachten. Allerdings werden die N-Si-Bindungen durch MeOH und iPrOH ebenfalls angegriffen, so dass die Protolyse mit Acetamid vorzuziehen ist. Das entstandene Enantiomerengemisch aus (S,S)- und (R,R)-Form kann durch Belichten teilweise in die meso-Form 29 überführt werden. Da es sich bei den Verbindungen um AA´XX´-Systeme handelt, erhält man für die Protonen des Brückenkopfs ein Signal höherer Ordnung im 1HNMR- Spektrum. Die Bindung zwischen den chiralen Zentren ist bei den beiden Diastereomeren sowie dem H2O-Addukt der (S,S)-Form mit ca. 156 pm relativ lang. Lässt man die meso-Form 29 mit Dimethylzink reagieren, so gelangt man wieder zu der (S,S)- und (R,R)- Form von 18. Eine Darstellung der meso-Form des binuklearen Komplexes ist nicht möglich. Mit dem in der Reihe am wenigsten sauren Anilin (PhNH2) führt eine ungewöhnliche C-NAktivierung zu einem Austausch der [NSiMe2 tBu]2-- gegen eine [NPh]2--Gruppe. Mittels Isotopenmarkierung konnte gezeigt werden, dass nicht die Si-N-, sondern die C-N-Bindung aktiviert und der Anilinstickstoff quantitativ über eine nukleophile Substitutionsreaktion in die neu entstehende Verbindung Bis(methylzink)-1,2-dipyridyl-1,2-bis(phenylamido)ethan 30 eingebaut wird. Der Komplex 30 weist mit 8,2 Hz eine bemerkenswert große 3J(15N15N)- Kopplung auf. Durch einen Deuterierungsversuch kann ein Eliminierungs-Additions- Mechanismus ausgeschlossen werden. Die Protolyse von 30 mit Acetamid führt zu isotopenmarkiertem, metallfreiem 1,2-Dipyridyl-1,2-di(phenylamino)ethan 31. In Kapitel 2.5 wird die Reaktion von 2-Aminomethylpyridin mit Dimethylzink beschrieben. Während bei R.T. nur die Metallierung zu 2-(Amidomethyl)pyridyl-zinkmethanid 32 beobachtet wird, kommt es bei höherer Temperatur oder langen Reaktionszeiten unter Abscheidung von Zinkmetall zur oxidativen C-C-Kupplung und anschließender C-NAktivierung nach Gleichung 41. Bei dem entstandenem Diazacyclohexanderivat 34 wurden zwei C-C- und zwei C-N-Bindungen neu geknüpft. Durch Protolyse des Reaktionsgemisches gelang mit (Z)-1-Amino-1,2-di(2-pyridyl)ethen 33 die Isolierung eines durch Eliminierungsreaktion entstandenen primären Enamins. Bei allen drei Derivaten konnte die Struktur durch Röntgenstrukturanalyse aufgeklärt werden. Während 32 als Trimeres kristallisiert, in Lösung jedoch sowohl dimer als auch trimer vorliegt, handelt es sich bei 33 um ein primäres Enamin und somit um eine strukturell kaum charakterisierte Verbindungsklasse. Die neue C=C-Bindung ist extrem kurz (130 pm), der Abstand zwischen dem C- und dem N-Atom des Amins mit 138 pm etwas länger als eine gewöhnliche C=N-Doppelbindung. Die Planarität des Moleküls wird durch die ausgebildeten Wasserstoffbrücken der Enaminform erzwungen. Ein Gleichgewicht mit dem Imin wird nicht beobachtet. Das sesselförmige Diazayclohexanderivat 34 kristallisiert als vierkerniger Komplex mit vier- und fünffach koordinierten Zinkatomen. Die gefundene, koordinative Zn- N(py)-Bindung zählt mit 246 pm zu den längsten ihrer Art. Die neu geknüpften C-NBindungen entsprechen mit 147 pm den Erwartungen, während die gekuppelte C-C-Bindung mit 157 pm wiederum etwas länger als eine normale C-C-Einfachbindung ist.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Ziel dieser Arbeit war die Charakterisierung und Synthese neuer Halogen- und Pseudohalogenverbindungen und die Untersuchung mit Hilfe von quanten– mechanischen Rechnungen. Im Folgenden sind kurz die Ergebnisse der in den Kapiteln C, D und E vorgestellten Arbeiten zusammengefasst. Die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung sind in Tabelle F1 aufgeführt. In der letzten Spalte sind die Literaturstellen der bereits veröffentlichten Arbeiten angegeben. Durch die Ergebnisse im Rahmen dieser Dissertation konnten neue Erkenntnisse über den Zusammenhang von Struktur und chemischer Bindung der untersuchten Verbindungen gewonnen werden. Des Weiteren konnten mit Hilfe quantenmechanischer Rechnungen neue Erkenntnisse über den Zusammenhang zwischen Stabilität, Ladungsverteilung und Reaktionsverhalten der verschiedensten Halogen und Pseudohalogenverbindungen gewonnen werden. Dabei konnte gezeigt werden, dass die Kombination von experimentellen Methoden, wie Schwingungsspektroskopie, NMR-Spektroskopie und Röntgenbeugung, mit quantenmechanischen Rechnungen ein hervorragendes Mittel ist, um die chemische Bindung von Halogen und Pseudohalogenverbindungen zu beschreiben. Dies konnte eindrucksvoll in den Studien zu den Thiazylhalogeniden, Triazinpseudohalogenverbindungen und Halogencyan-Addukten gezeigt werden. In Tabelle F2 sind die in dieser Arbeit mit quantenmechanischen Rechnungen charakterisierten Verbindungen aufgeführt. F1 Thiazylhalogenide (Kapitel C) Erstmals konnte die Struktur des NSCl2 –-Anions (Thiazyldichloridanion), dass zu einer neuen Klasse sehr labiler ternärer Anionen des Typs NSX2 – (X = Halogen) gehört, durch Röntgenbeugung an Einkristallen gelöst werden. Bisher wurde keine Verbindung, die das „nackte“ Anion enthält, strukturell charakterisiert. Bei der theoretischen Untersuchung des Cl–-Acceptorverhaltens und der Thermodynamik von NSCl wiesen ab-initio-(CCSD(T))- und Dichtefunktional- Rechnungen (B3LYP) auf einen barrierefreien Angriff des Cl–-Anions auf das NSCl- Molekül hin, welcher zur Bildung des NSCl2 –-Anions führt. Diese Reaktion stellt eine exotherme Lewis-Base-Lewis-Säure-Reaktion dar mit einer berechneten molaren Enthalpie von ∆H298 = –124.6 kJ mol–1, die zu einem Ladungstransfer von QCT = 0.385e (B3LYP/6-311+G(3df)) führt. Die Auswertung der IR- und Raman-Spektren ergab in Kombination mit den Ergebnissen von quantenmechanischen Rechnungen, dass die Cl-Atome sehr schwach an ein fast als SN+-Ion vorliegendes Kation gebunden sind. Die hervorstechenden strukturellen Besonderheiten des NSCl2 – lassen sich mit einfachen, qualitativen MO- und VB-Betrachtungen erklären: Die NSCl-Bindung kann als neuartige Vier-Elektronen-Drei-Zentren-Bindung, die die S-Cl-σ-Bindung mit der S-N-π-Bindung verknüpft, aufgefasst werden. Es gibt zwei solcher Vier-Elektronen-Drei-Zentren-Bindungen. In den umfassenden Studien zu den NSX2 –-Anionen (X = F, Cl, Br, I) wurde festgestellt: (i) durch Cl–/F–-Austausch ist es möglich das NSF2 – aus NSCl2 – in Lösung zu bilden; (ii) die Bildung von NSBrCl– im Festkörper und Lösung und die Bildung von NSBr2 – im Festkörper konnte nachgewiesen werden, wobei diese Verbindungen sehr instabil sind und sehr schnell weiterreagieren; (iii) die NSX2 –-Salze (X = Br, I) zerfallen unter Bildung von S4N4 bzw. polymeren (SN)x in Abhängigkeit von den Reaktionsbedingungen; (iv) die Polarität des Lösemittels besitzt einen großen Einfluss auf den Zerfall von Thiazyldichlorid und die Zerfallsprodukte. Die quantenmechanischen Rechnungen zu den NSX2 –-Anionen ergaben: (i) Alle betrachteten Verbindungen sind bezüglich der Bildungsreaktion thermodynamisch stabil. (ii) Alle Reaktionen sind exotherm, wobei die Fluor-Spezies erwartungsgemäß die kleinsten freien Reaktionsenthalpien und die Iod- Spezies die größten besitzen. (iii) Überraschend niedrig ist im Vergleich zu den Halogenen die freie molare Reaktionsenthalpie für die Bildung von NSH2 –. (iv) Alle NSXY–-Verbindungen repräsentieren hoch-polarisierte Moleküle, wobei die Polarisation der S-N- bzw. S-X-Bindung von den FVerbindungen zu den I-Verbindungen abnimmt. Die Bildungsreaktion (NSX + Y–) entspricht einer Donor-Acceptor-(charge transfer)-Reaktion, die barrierefrei verläuft. (v) Im Einklang mit den berechneten Strukturdaten (lange S-X- bzw. S-YBindungslängen, kurze S-N-Bindungen) zeigt die Elektronendichteverteilung in der NSCl-Ebene viel Elektronendichte zwischen der S-N-Bindung und nur wenig zwischen der S-Cl-Bindung. Dies deutet daraufhin, dass die ionischen Verbindungen NSX2 – bzw. NSXY– am besten als NS+ X– Y– mit schwachen kovalenten S-X- bzw. S-YWechselwirkungen beschrieben werden sollten (s.o.). (vi) Die Bindungssituation in den NSX2 –-Verbindungen lässt sich durch zwei Vier-Elektronen-Drei-Zentren-Bindungen mit „geschwächten“ S-X- und S-Y-σ-Bindungen und „geschwächten“ S-N-πx- und πy-Bindungen beschreiben. Die zunehmende Schwächung der Vier-Elektronen-Drei- Zentren-Bindungen ist durch die geringer werdende Überlappung in der Reihe F > Cl > Br > I (F: S-X-σ-S-N-π-Orbital; I: reines S-N-π-Orbital) zu erklären (siehe Abbildung C9). (vii) Die N-S-X-Winkel sind vom Halogen wenig beeinflusst und liegen bei 113 bis 115°. Der X-S-X-Winkel nimmt von X = H zu X = Br kontinuierlich von 77.4° auf 112.7° (B3LYP) zu. Aus den Ergebnissen der Umsetzung des NSCl2 –-Anions mit verschiedensten Übergangsmetallkomplexen kann folgendes geschlossen werden: (i) die Chloro-Liganden des NSCl2 –-Anions sind, wie schon aus den Rechnungen und Strukturdaten in Kapitel C1 hervorgeht, sehr schwach an den Schwefel gebunden, wodurch eine Cl–-Abstraktion begünstigt wird; (ii) keiner der verwendeten Übergangsmetallkomplexe ist in der Lage, das NSCl2 –-Anion ohne Zersetzung zu stabilisieren; (iii) die Reaktion mit Übergangsmetallchloriden forciert je nach Reaktionsbedingungen die Zersetzung des NSCl2 –-Anions zu NSCl/(NSCl)3, S2N2, S3N2 2–, S4N4 und Cl2. F2 Pseudohalogenchemie des s-Triazins (Kapitel D) Bei der Untersuchung des Reaktionsverhaltens der Pseudohalogenverbindungen MX (mit M = K, Na, Ag; X = NNN, OCN, CNO, SCN und SeCN) mit 2,4,6–Trichloro– 1,3,5–triazin (Cyanurchlorid) zeigte sich, dass (i) nur die Azide und Thiocyanate geeignet sind, das Cyanurchlorid im Sinne einer nucleophilen Substitution anzugreifen. (ii) die Bildung der analogen Selenocyanate und Cyanate bzw. der entsprechenden Iso-Verbindungen nicht beobachtet werden konnte. (iii) die Isocyanate 35 und 36 nur über die ein- bzw. zweifachsubstituierten Amine, durch Reaktion mit Oxalylchlorid oder Phosgen unter Abspaltung von Salzsäure und Kohlenmonoxid, dargestellt werden können. (iv) die Darstellung des Triisocyanatotriazins aus Melamin nicht gelang, da für diese Reaktion elektronenziehende Substituenten am Triazinring nötig sind. Die Verbindungen 26[60b], 35, und 36 konnten mit Hilfe der Schwingungsspektroskopie, der NMR-Spektroskopie und anhand von Einkristallröntgenstrukturanalysen charakterisiert werden. (v) die nucleophile Substitution der verbleibenden Chloratome in 35 und 36 durch Umsetzung mit anderen Pseudohalogeniden (z.B. LiN3, Na/K-N3, - NCO, -SCN, -CN) nicht möglich ist, da die Isocyanate durch ihre elektronenschiebenden Eigenschaften den Triazinring deaktivieren und somit eine weitere nucleophile Substitution am Ring verhindern. Bei der Reaktion von 2,4,6–Triazido–1,3,5–triazin (26) mit Triphenylphosphan in verschiedenen molaren Verhältnissen konnten die Verbindungen 29, 31 und 32 mit Hilfe der Schwingungsspektroskopie, der NMR-Spektroskopie und der Röntgenbeugung eindeutig charakterisiert werden (Gleichung F1). Des Weiteren konnten die Verbindungen 27 und 28, die in Lösung im Gleichgewicht mit 31 und 32 vorliegen, anhand ihrer 31P-NMR-Resonanzen nachgewiesen werden. Alle drei Stufen der Reaktion von 2,4,6–Triazido–1,3,5–triazin mit Triphenylphosphan repräsentieren exotherme Reaktionen. Nur für die Verbindungen 27 und 28 kann in Lösung ein Gleichgewicht zwischen dem Tetrazol- und dem Azidisomer gefunden werden. Die experimentelle Beobachtung des Azid-Tetrazol-Gleichgewichtes 27 a 31 und 28 a 32, im Gegensatz zu 26 a TR1 (ohne PPh3-Gruppen, Abbildung D1), kann durch die thermodynamische Stabilisierung des Tetrazolisomers nach der Einführung der Triphenylphosphangruppe erklärt werden (Abbildung D5). Aus den Rechnungen und den Experimenten ergab sich: (i) eine relativ große Aktivierungsbarriere für die Cyclisierung von ca. 20 bis 25 kcal mol–1, die mit der ungünstigen elektrostatischen Abstoßung zwischen dem terminalen Stickstoff der Azidgruppe und dem Stickstoffatom im Ring und ebenso durch das Abwinkeln der Azidgruppe erklärt werden kann. (ii) dass die Einführung von Triphenylphosphangruppen zu stärker polarisierten C-N-Bindungen im Ring und zu einem Ladungstransfer in das Triazinringsystem führt. (iii) der orbitalkontrollierte Ringschluß wird durch einen nicht unerheblichen Ladungstransfer in den Tetrazolring begleitet und stabilisiert so thermodynamisch das Tetrazolisomer. Diese Ladungsumverteilung erklärt die wichtige Rolle der Triphenylphosphangruppen bei der Ringschlussreaktion, da sie als gute Elektronendonatoren gelten. F3 Pseudohalogenchemie von P-N-Verbindungen (Kapitel E) Bei der Untersuchung des Reaktionsverhaltens von Trimethylsilyltriphenylphosphanimin mit den Halogen-Pseudohalogenverbindungen ClCN, BrCN und ICN zeigte sich, (i) dass es nur für die Reaktion mit ICN möglich ist das Addukt im Festkörper zu stabilisieren; (ii) dass das ClCN-Addukt spontan zu Ph3PNCN und ClSiMe3 zerfällt; (iii) dass das BrCN-Addukt zwar etwas stabiler ist, jedoch auch langsam zu Ph3PNCN und BrSiMe3 zerfällt; (iv) dass die Zugabe von KF oder eine Temperaturerhöhung zur sofortigen Bildung von Ph3PNCN führt. Das ICN-Molekül ist aufgrund der Wechselwirkungen mit dem N-Atom der Ph3PNSiMe3-Einheit leicht gewinkelt (ca. 176°). Die VB-Betrachtung der NBOAnalyse ergibt, dass es weder am I- noch am P-Atom zu nennenswerten d-Orbital- Erweiterungen kommt. Bei der Untersuchung der Donor-Acceptor-Wechselwirkungen zeigten sich schwache Wechselwirkungen zwischen den beiden freien Elektronenpaaren (p-AOs) des N-Atoms der Ph3PNSiMe3-Einheit mit dem leeren antibindenden σ*-Orbital des ICN-Fragmentes. Die Untersuchung des Reaktionsverhaltens verschiedenster Pseudohalogenidverbindungen MX (M = K, Na, Li, Ag; X = N3, SCN, OCN, SeCN, CNO) mit Hexachlorocyclotriphosphazen in unterschiedlichen Lösungsmitteln zeigte, dass nur die Azid- und Isothiocyanat-Verbindungen gebildet werden. Die Einkristall- Röntgenstrukturanalyse von Hexaisothiocyanatocyclotriphosphazen zeigte, dass der (PN)3-Ring abgewinkelt ist. Bei der Reaktion von KN3 mit Triphenylphosphan, [PN(Cl)2]3 und Kronenether in peroxidhaltigem THF kristallisierte interessanterweise nicht das erwartete Staudingerprodukt aus, sondern der Kronenetherkomplex [K([18]krone–6)(N3)- (OPPh3)]. Die Umsetzung mit KOCN, KSCN und KSeCN führte ebenfalls zu den analogen Kronenetherkomplexen.