Podcasts about ph dom

  • 2PODCASTS
  • 4EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Oct 20, 2005LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about ph dom

Latest podcast episodes about ph dom

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Regulation podosomaler Adhäsionen in Makrophagen durch Cofilin-regulatorische Signalwege

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19

Play Episode Listen Later Oct 20, 2005


Podosomen sind ein prominenter Teil des Aktinzytoskelettes primärer humaner Makrophagen und wahrscheinlich essentiell für Adhäsion, Matrixverdau und gerichtete Migration. In der vorliegenden Arbeit wurde die Regulation dieser Strukturen untersucht. Es konnte zunächst gezeigt werden, dass Monozyten Podosomen nicht nur auf starren, künstlichen Oberflächen wie Glas-Deckgläschen ausbilden, sondern auch auf einem Monolayer aus Endothelzellen. Dies unterscheidet sie klar von anderen Adhäsionsstrukturen wie z.B. focal adhesions. Auch in verschiedenen Zelllinien, unter anderem in Krebszellen, ließen sich podosomale Strukturen nachweisen bzw. induzieren. Diese Befunde sind Hinweis einerseits auf die physiologische Relevanz von Podosomen und andererseits auf eine wahrscheinlich weite Verbreitung dieser Strukturen in verschiedenen Zelltypen. Podosomen sind hochdynamische Strukturen mit einer Halbwertszeit von 2-12 Minuten, das heißt, es werden permanent Podosomen abgebaut und neu gebildet. Dazu ist die Polymerisation und Depolymerisation von filamentösem (F-)Aktin notwendig. Regulationsmechanismen F-Aktin-aufbauender Wege sind gut untersucht und bekannt, weshalb in der vorliegenden Arbeit F-Aktin-abbauende Wege untersucht wurden. Ein wichtiger Regulator des Aktinzytoskelettes ist Cofilin, das die Depolymerisierung von Aktinfilamenten beschleunigt und unter anderem durch Phosphorylierung am Serin-3 inaktiviert werden kann. Folgende Ergebnisse sprechen für eine wichtige Rolle von Cofilin in der Podosomen-Regulation: Es konnte eine spezifische Lokalisation von Cofilin und phosphoryliertem Cofilin in der Aktin-reichen Podosomen-Kernstruktur nachgewiesen werden. Im Western Blot zeigte sich eine Korrelation des Grades der Cofilin-Phosphorylierung mit der Podosomenanzahl. Durch Mikroinjektion eines kurzen Peptids, welches die Cofilin-Phosphorylierung inhibiert, sowie durch Transfektion von Cofilin-siRNA konnte die Podosomen-Bildung reduziert werden. Die am besten untersuchten Cofilin-Kinasen sind die LIM-Kinasen 1 und 2. Mittels RT-PCR war in unserer Arbeitsgruppe bereits die Expression von LIMK1 in Makrophagen nachgewiesen worden. Auch Ergebnisse im Western Blot sowie in DNA-Arrays weisen auf LIMK1 als dominante Isoform in Makrophagen hin. In fixierten Präparaten konnte allerdings weder mit kommerziell erhältlichen noch mit einem selbst hergestellten, gegen die LIM-Domänen von LIMK1 gerichteten Antikörper eine spezifische Lokalisation von LIMK1 an Podosomen nachgewiesen werden. Mittels Nucleofection wurden deshalb verschiedene LIM-Kinase-Konstrukte transfiziert und überexprimiert. Dabei bestätigten sich die Ergebnisse der Antikörperfärbungen, keines der Konstrukte war in Podosomen zu finden. Alle Konstrukte mit Kinase-Aktivität führten zum raschen Krampfen und Ablösen der Zellen, wobei die Adhäsionsfläche bis zuletzt mit Podosomen bedeckt war. Im Gegensatz zu den Befunden aus der Transfektion war durch Mikroinjektion der konstitutiv aktiven Kinase-Domäne von LIMK1 eine deutliche Reduktion der Podosomen-Bildung zu erzielen. Hier können konzentrationsabhängige Effekte eine Rolle spielen. Als Gegenspieler der LIM-Kinasen wurden die Phosphatasen PP1 und PP2A beschrieben. Eine spezifische Lokalisation von PP2A an Podosomen war jedoch nicht nachzuweisen, zudem hatte eine Inhibition der beiden Phosphatasen keinen Effekt auf die Podosomenbildung oder den Podosomenabbau. Dies spricht gegen eine Beteiligung von PP1 oder PP2A an der Podosomenregulation. LIM-Kinasen selbst können durch Effektoren der Rho-GTPasen Rho, Rac und Cdc42 reguliert werden. So aktiviert der Rho-Effektor ROCK LIMK1 und LIMK2. Der ROCK-Inhibitor Y?27632 führte zu einer Störung der Podosomen-Verteilung, auch die Podosomen-Neubildung wurde stark inhibiert. Dies spricht für eine Beteiligung von ROCK an der Podosomenregulation. Auch Rac und Cdc42 können durch die gemeinsamen Effektoren der PAK-Familie eine Aktivierung von LIMK1 bewirken, dabei sind PAK1 und PAK4 die am besten untersuchten Isoformen. Die Transfektion verschiedener PAK1- und PAK4-Konstrukte führte jeweils zu einer Reduktion der Podosomen-Anzahl, unabhängig von der Kinase-Aktivität des Konstruktes. Die Kinase-inaktive PAK4-Mutante führte zu einer Reduktion des F-Aktin mit kleinen Podosomen, während die konstitutiv-aktive PAK4-Mutante große Podosomen mit vermehrtem F-Aktin bewirkte. Weitere Arbeiten zur Untersuchung vor allem von PAK4 in unserer Arbeitsgruppe konnten diese Ergebnisse bestätigen und quantifizieren sowie weitere Interaktionspartner nachweisen. Eine weitere Regulationsmöglichkeit von Cofilin ist die Bindung des second messengers PIP2, welcher unter anderem durch Isoformen der Phospholipase C (PLC) hydrolysiert werden kann. Die Mikroinjektion zweier Peptide, die laut Literatur zu einer PIP2-Inhibition bzw. einer Steigerung des PIP2-Abbaus führen, hatte keinen Einfluss auf Podosomen. Durch Transfektion der PH-Domäne von PLCd1, welche als PIP2-Sensor eingesetzt werden kann, konnte jedoch eine teilweise Lokalisation von PIP2 an Podosomen gefunden werden. Mit spezifischen Antikörpern konnte zudem eine Lokalisation von PLCb1 im Aktin-reichen Podosomenkern und von PLCb2 in der podosomalen Ringstruktur nachgewiesen werden, PLCb3 zeigte keine spezifische Lokalisation. Auch ein PLCb2-Konstrukt reicherte sich nach Transfektion in der podosomalen Ringstruktur an. Der PLC-Inhibitor U-73122 führte zu einem kompletten Verschwinden der Podosomen mit nachfolgender Ablösung der Zellen. Aufgrund dieses Befundes und der spezifischen Lokalisation ist von einer Beteiligung der PLCb1 und PLCb2 in der Podosomen-Regulation auszugehen. Im Rahmen der vorliegenden Arbeit konnten somit wichtige Effektoren der podosomalen Aktinregulation identifiziert werden: Cofilin als direkter Interaktionspartner von Aktin, LIMK1 als Cofilin-Regulator sowie ROCK und PAK als upstream-Regulatoren in der Signalkaskade. Darüber hinaus scheinen PLCb1 und PLCb2, möglicherweise über PIP2, ebenfalls an der Podosomen-Regulation beteiligt zu sein. Dies legt die Grundlage für weitere Untersuchungen über die molekularen Mechanismen der podosomalen Aktinregulation.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Biochemische Analysen zur Funktion und Regulation von Cytohesin-1 in humanen T-Zellen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later May 13, 2002


Die Integrinrezeptor-vermittelte Zelladhäsion wird durch intrazelluläre Signalkaskaden kontrolliert. Cytohesin-1 ist ein integrinbindendes Protein und ein Guanin-Nukleotid- Austauschfaktor (GEF). Dieser aktiviert das b2-Integrin LFA-1 und induziert dessen Bindung an ICAM-1. Cytohesin-1 enthält eine PH-Domäne, diese ist an der funktionalen Regulation des Proteins beteiligt und vermittelt die Membranrekrutierung über Phosphatidylinositol- (3,4,5)-trisphosphat, dem Produkt der Phosphatidylinositol-3-Kinase. Die Phosphoinositidvermittelte Membranbindung wird primär von der PH-Domäne bewirkt, jedoch wird diese Funktion von der carboxyterminalen polybasischen c-Domäne gestützt. In der vorliegenden Studie wurde gezeigt, daß ein Serin/Threonin-Motiv innerhalb dieser c-Domäne durch gereinigte PKCd in vitro und in vivo nach Phorbolesterstimulierung phosphoryliert wird. Biochemische und funktionale Analysen zeigten, daß phosphoryliertes Cytohesin-1 mit dem Aktinzytoskelett assoziiert. Weiterhin konnte gezeigt werden, daß durch Phosphorylierung von Cytohesin-1 der Guanin-Nukleotid-Austausch an ARF1 in vitro reguliert wird. ARF-Proteine sind entscheidend an der Zytoskelettreorganisation beteiligt, die während Zelladhäsionsprozessen stattfindet. In Zellen zeigte sich, daß die LFA-1-abhängige Zelladhäsion an ICAM-1 durch phosphoryliertes Cytohesin-1 drastisch gesteigert wird. Zusammengefaßt zeigen diese Erkenntnisse, daß intrazelluläre Signalkaskaden über Phosphatidylinositol-3-Kinase und Protein-Kinase-C in Cytohesin-1 als funktionalem Integrator münden. Cytohesin-1 reguliert über diese Prozesse die b2-Integrin-vermittelte Zelladhäsion von T-Lymphozyten.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ein Protein für neue Aufgaben: die cytosolische PH-Domäne des Cytohesin-1 als Paratop und als Substrat für Translokationen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 20, 2001


6.1. Die PH-Domäne als Paratop Die Pleckstrin-homologe (PH-) Domäne des humanen Cytohesin-1 besteht aus einem Proteingerüst sowie vier längeren Loops. Von diesen weisen drei in eine Richtung und bilden eine komplexe, flexible Oberflächenstruktur aus. Sollte man diese Oberflächenstruktur durch Mutation der Loops als Bindungstasche (Paratop) für Epitope von Schlüsselmolekülen etablieren können, wäre ein breiter Einsatz der PH-Domäne als Wirkstoff oder spezifisches Nachweisreagenz interessant, zumal sie sich in E. coli mit hohen Ausbeuten cytoplasmatisch löslich exprimieren läßt. In dieser Arbeit konnte gezeigt werden, daß sich die drei Loops verändern lassen, ohne daß die PH-Domäne ihre Struktur verliert; von daher eignet sich die PH-Domäne als Proteingerüst. Sie wurde insgesamt in 29 Aminosäurepositionen mit einem neuartigen Verfahren gewichtet randomisiert, indem an jeder Position die Wildtyp-Aminosäure bevorzugt wird. In Anbetracht der Zahl randomisierter Positionen sollte damit gegenüber einer ungewichteten Randomisierung kein Verlust an Komplexität für die Bibliothek zu befürchten sein, durch den möglichen Erhalt lokaler und nicht lokaler Wechselwirkungen aber die Zahl stabiler (damit exprimierbarer und selektierbarer) Mutanten deutlich erhöht werden. Die Randomisierung erfolgte dabei mit drei Oligodesoxynukleotiden, die in den randomisierten Positionen jeweils eine definierte Basenverteilung aufweisen. Zur Klonierung einer Bibliothek wurden sie im dazu entwickelten Verfahren der „asymmetrischen PCR-Reaktion“ eingesetzt und daraufhin zu einem in drei Segmenten randomisierten DNA-Fragment assembliert. Mit dieser Strategie konnten 6 · 107 Mutanten erzeugt werden. (Aus deutlich kleineren Bibliotheken anderer Proteine ließen sich bereits bindende Mutanten isolieren.) Die randomisierten Mutanten der PH-Domäne wurden im phage-display-Verfahren zur Selektion gegen drei Zielsubstanzen eingesetzt. Danach konnten ausschließlich Deletionsmutanten und Mutanten mit stop-Codons nachgewiesen werden, die keine Expression von PH-Domänen erlauben. Zurückgeführt wird dieses Ergebnis auf die schlechten Transporteigenschaften der PH-Domäne bei der Translokation in das Periplasma von E. coli, weshalb nicht auf bindende Paratope aus der Bibliothek selektiert werden konnte. Nach Verbesserung der Translokationseigenschaften von PH-Domänen sollte sich das phage-display-Verfahren zur Selektion bindender Mutanten fortsetzen lassen. 6.2. Die PH-Domäne als Substrat für Translokationen Die im phage-display-Verfahren eingesetzten M13-Bakteriophagen assemblieren in der inneren Membran von E. coli. Dies setzt die Translokation der mit dem g3-Protein fusionierten PH-Domäne in das Periplasma voraus. Die geringe periplasmatische Expression bei mehrheitlich aberranten Prozessierungen im Bereich des Signalpeptids und die geringe Darstellung auf der Phagenoberfläche veranlaßten zur Translokationsoptimierung der PH-Domäne. Während der allgemeine sekretorische Transportmechanismus von E. coli durch die beteiligten Membranproteine strukturell und funktionell gut verstanden ist, sind die Eigenschaften und Voraussetzungen für die Translokation von Substratproteinen (mit Signalpeptid als Präprotein bezeichnet) bislang weniger gut charakterisiert. Der „translokationskompetente“ Zustand beschreibt die Präproteine nur phänomenologisch. Für die schlechte Translokation wurden mehrere biochemische und biophysikalische Eigenschaften der PH-Domäne in Betracht gezogen und verschiedene Mutanten hergestellt, die demzufolge eine verbesserte Translokationseigenschaft aufweisen sollten. Dabei erwies sich weder die Verringerung der thermodynamischen Stabilität noch das engineering ausgewählter, spezifischer Sequenzelemente als translokationsbegünstigend. Wird dagegen durch Einführung neuer N- und C-Termini sowie der Verbrükkung der ursprünglichen Termini mit einem Linker die Topologie verändert, können bei zwei dieser sogenannten Circularpermutanten bis zu 30-fach höhere Expressionsausbeuten im Periplasma erzielt werden. Die Circularpermutation wurde damit erstmalig erfolgreich im rationalen Proteindesign angewendet. Die vorliegenden Ergebnisse legen nahe, daß die Mutanten der PH-Domäne vor der Translokation in einem nativ-ähnlichen Zustand gefaltet vorliegen und zur Translokation entfaltet werden müssen. Das in dieser Arbeit vorgeschlagene „Kräftemodell“ erklärt die verbesserte Translokation der Circularpermutanten CP X.6. gegenüber dem Wildtyp. Danach ist die maximale Kraft zur Entfaltung des Proteins die translokationslimitierende Größe, was sich mit Hilfe von Einzelmolekül-Kraft-Spektroskopie weiter untersuchen ließe. Wie sich die Mutationen an der PH-Domäne bei weiteren Transportprozessen auswirken, wurde beim mitochondrialen Import analysiert. Die untersuchten Mutanten zeigten unabhängig von ihrer thermodynamischen Stabilität und ihrer periplasmatischen Expression eine Unterbrechung des Imports. Ursache dafür ist eine Peptidsequenz von 27 Aminosäuren, die sich mit Hilfe der Circularpermutanten eindeutig identifizieren läßt. Sie führt bei der Circularpermutante CP 2.6. zu einer stabilen Expression im Intermembranraum und beim Wildtyp sowie bei der Circularpermutante CP 2.7. zu einem Verharren in der inneren Membran. Bei Mitochondrien konnte zuvor noch nie eine importunterbrechende Peptidsequenz nachgewiesen werden. Sie sollte sich zur stabilen Expression von Proteinen im Intermembranraum einsetzen lassen. In der (modellierten) Raumstruktur der PH-Domäne interagieren 19 der 27 Aminosäuren in einem Faltblatt/turn/Faltblatt-Motiv. Sie könnten als stabile Subdomäne den Import unterbrechen. Diese Interpretation ergänzt ein Modell zur Translokation von Präproteinen, wonach das Präprotein vom Intermembranraum schrittweise durch die innere Membran (bzw. den TIM-Komplex) in die Matrix diffundiert und dort arretiert wird. Dadurch wird die Rückdiffusion verhindert. Die Unterbrechung des weiteren Imports währt solange, bis aufgrund des thermodyamischen Gleichgewichts die Peptidsequenz vor der Membran entfaltet vorliegt und dann in die Matrix diffundieren kann. Ergänzende Experimente zum mitochondrialen Import sind in Vorbereitung. In dieser Arbeit konnte die PH-Domäne mit ihren Mutanten somit als Substrat für die Untersuchung von Transportprozessen etabliert werden. Die zukünftige Anwendung dieser Mutanten auf weitere Transportsysteme liegt dabei auf der Hand. Die Bibliothek randomisierter PH-Domäne wird in Kooperation mit anderen Arbeitskreisen zur Selektion spezifisch bindender und inhibierender Mutanten eingesetzt.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Charakterisierung der funktionalen Rolle von Cytohesin-1 in der LFA-1-vermittelten T-Zell-Adhäsion

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Feb 1, 2001


Das Leukocyten-spezifische Integrin LFA-1 spielt eine wichtige Rolle bei der Immunantwort, durch die Vermittlung dynamischer Zell-Zell- bzw. Zell-Matrix-Interaktionen. Die kontrollierte Adhäsion bzw. Deadhäsion von Leukocyten bedarf einer spezifischen Regulation des LFA-1-Integrins und die Aufklärung der molekularen Grundlagen dieser Vorgänge ist von großem Interesse. Cytohesin-1 war unmittelbar vor Beginn dieser Arbeit als cytoplasmatischer Regulationsfaktor der durch LFA-1 vermittelten Zelladhäsion identifiziert worden und seine spezifische Interaktion mit der cytoplasmatischen Domäne von CD18 konnte in vitro dokumentiert werden. Im Rahmen dieser Arbeit gelang es zunächst, die Assoziation von Cytohesin-1 und LFA-1 auch endogen, im intakten Zellverband, mittels Kolokalisationsstudien in der lymphoblastoiden B-Zellinie LCL-721, zu demonstrieren. Ferner konnte mit Hilfe von Mutationsanalysen die, für die Interaktion kritische Region in der cytoplasmatischen Domäne von CD18 lokalisiert werden. Sie befindet sich im aminoterminalen Bereich und umfaßt die Aminosäuren WKA(723 - 725). Die Mutation dieser Aminosäurereste nach TRG resultierte in einem vollständigen Interaktionsverlust mit Cytohesin-1. Die Inhibition der Cytohesin-1/CD18-Bindung konnte dabei sowohl durch Protein-Protein-Interaktionsanalysen in Hefe als auch durch biochemische Bindungsstudien in vitro dokumentiert werden, wobei jeweils Fusionsproteine der cytoplasmatischen Domäne von CD18 charakterisiert wurden. Funktionale Analysen der WKA(723-725)-Region von CD18 ergaben, daß die Mutation von WKA(723-725) nach TRG im intakten LFA-1-Molekül eine signifikante Reduktion der Integrin- Aktivität zur Folge hatte. Sowohl T-Zellklone als auch nicht hämatopoetische Zellen, wie HeLa, wiesen nach Expression von LFA-1(TRG), mit Hilfe rekombinanter Vaccinia- Viren, eine stark reduzierte Adhäsionsfähigkeit an immobilisiertes ICAM-1 auf. Ferner ergaben funktionale Studien mit HeLa-Zellen, die LFA-1 stabil exprimierten, daß Cytohesin-1 nur dann eine gesteigerte Adhäsion dieser Zellen an ICAM-1 induzierte, wenn sie Wildtyp-LFA-1 exprimierten. HeLa-Zellen, die LFA-1(TRG) exprimierten, ließen sich durch Cytohesin-1 zu keiner verstärkten Adhäsion aktivieren. Diese Ergebnisse demonstrierten die Bedeutsamkeit der Cytohesin-1/CD18-Interaktion für eine effiziente, durch LFA-1 vermittelte Zelladhäsion. Unklar war jedoch der Mechanismus, durch den Cytohesin-1 die Integrin/Liganden-Bindung regulierte. Studien mit dem Reporterantikörper 24 ließen darauf schließen, daß Cytohesin-1 durch die Bindung an CD18 eine Konformationsänderung in der extrazellulären Domäne des LFA-1-Integrins induzieren konnte, die möglicherweise die Affinität des Rezeptors modulierte. Diese Modulation der LFA-1-Konformation schien jedoch nicht hinreichend für eine stabile Bindung an ICAM-1 zu sein, wie eingehendere Analysen von Dr. W. Kolanus zeigten. Vielmehr erforderte eine effiziente Zelladhäsion zusätzlich die Guaninnukleotid-Austauschfunktion (GEF-Funktion) von Cytohesin-1, da die GEF-defekte Punktmutante, Cytohesin-1(E157K), nicht mehr in der Lage war, die Adhäsion von Jurkat E6-Zellen an ICAM-1 stabil zu induzieren. Biochemische Interaktionsstudien konnten dabei zeigen, daß die Mutante weiterhin fähig war, die cytoplasmatische Domäne von CD18 zu binden. Diese und weitere Ergebnisse von Dr. W. Nagel, die einen Zusammenhang zwischen der GEF-Funktion von Cytohesin-1 und dem „Spreading“ von adhärenten Jurkat E6-Zellen aufzeigten, legen die Vermutung nahe, daß Cytohesin-1 durch einen dualen Mechanismus in die LFA-1-Regulation involviert ist. Sowohl die direkte Interaktion von Cytohesin-1 und dem Integrin als auch seine GEF-Funktion stellen essentielle Faktoren für eine stabile Zelladhäsion, die durch LFA-1 vermittelt wird, dar. Welche funktionalen Mechanismen dabei durch den Guaninnukleotid-Austausch und der damit verbundenen Aktivierung einer GTPase induziert werden, ist noch unklar. Primär wäre eine Modulation des Aktin-Cytoskelettes und eine damit verbundene erhöhte laterale Mobilität der Integrine denkbar, die eine verstärkte Rezeptormultimerisierung und dadurch eine Aviditätsänderung des Integrins ermöglicht. Weitere Studien dieser Arbeit analysierten die Regulation von Cytohesin-1 selbst. Es konnte gezeigt werden, daß PI3-Kinase in die Kontrolle der Cytohesin-1-Funktion involviert war. Die Überexpression einer konstitutiv aktiven Form dieser Kinase (P110*) führte zu einer gesteigerten Adhäsion von Jurkat E6-Zellen an ICAM-1. Eine Inkubation dieser Zellen mit dem PI3-Kinase-spezifischen Inhibitor Wortmannin resultierte dagegen in einer signifikanten Reduktion der Zelladhäsion. Weitere funktionale Analysen, die die Zelladhäsion von Jurkat E6-Zellen nach Koexpression von P110* und der PH-Domäne von Cytohesin-1 untersuchten, sowie eingehendere Studien von Dr. W. Nagel, ermöglichten die Entwicklung eines Modells zur Regulation von Cytohesin- 1. Demzufolge führt die Aktivierung der PI3-Kinase zu einer verstärkten Rekrutierung von Cytohesin-1 an die Plasmamembran. Als Rekrutierungsmodul fungiert dabei die PHDomäne, die durch Bindung von PtdIns(3,4,5)P3, einem Produkt der PI3-Kinase, die Assoziation mit der Membran gewährleistet. Die Rekrutierung von Cytohesin-1 an die Plasmamembran führt zur Aktivierung von LFA-1 und der damit verbundenen stabilen Zelladhäsion an ICAM-1.