Podcasts about die komponente

  • 3PODCASTS
  • 3EPISODES
  • 13mAVG DURATION
  • ?INFREQUENT EPISODES
  • Jul 30, 2018LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about die komponente

Happy Angular - Kompaktes Angular Wissen zum Mitnehmen
Komponente - Bausteine deiner Webanwendung

Happy Angular - Kompaktes Angular Wissen zum Mitnehmen

Play Episode Listen Later Jul 30, 2018 13:47


Als ersten Grundbaustein in Angular schauen wir uns heute die Komponente an. Die Komponente ist ein elementarer Baustein und definiert den Inhalt deiner Anwendung. Jede Komponente besteht aus zwei Bestandteile: Template und Logik. Das Template beantwortet mit einer HTML Datei die Frage, wie einen Komponente aussehen soll. Das Verhalten und der Inhalt wird durch eine TypeScript Klasse definiert (Logik). Es gibt grundsätzlich zwei Arten, wie eine Komponente verwendet werden kann: Wiederverwendbar und spezifisch. In einer wiederverwendbaren Komponente wird das Aussehen und Verhalten festgelegt und der Inhalt von außen mit Hilfe von Inputs gesetzt. In einer spezifischen Komponente wird darüber hinaus auch der Inhalt definiert.

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Experimente zur Wachstumskinetik dekagonaler Quasikristalle

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Play Episode Listen Later Nov 20, 2006


In dieser Arbeit wurde das Wachstumsverhalten dekagonaler Quasikristalle untersucht. Zur besseren Vergleichbarkeit wurden die Experimente mit Schmelzen der Zusammensetzung Al77Co6Ni17 durchgeführt, aus welcher dekagonale Einkristalle mit einer durchschnittlichen Zusammensetzung von d-Al72Co9Ni19 gewonnen werden können. Zusätzlich wurden in dem verwandten ternären System Al-Co-Cu Züchtungsexperimente durchgeführt. Dort zeigt die dekagonale Phase der Zusammensetzung d-Al67.5Co20.0Cu12.3 ebenfalls ein kinetisch gehemmtes Wachstumsverhalten entlang der quasiperiodischen Orientierungen. Für die Ziehgeschwindigkeit bei der Züchtung von Einkristallen sind noch engere Grenzen gesetzt, als es im System d-Al-Co-Ni der Fall ist. In beiden untersuchten Systemen können die quasikristallinen Phasen nur aus Al-reichen, nichtstöchiometrischen Schmelzen gezüchtet werden, wobei sich die einzelnen Experimente über eine Dauer von mehreren Wochen erstreckten. Dies machte die Neukonstruktion einer UHV-gedichteten Wachstumskammer notwendig, um die Schmelzen vor Oxidation zu schützen. Eine freie Schmelzenoberfläche stellt für alle Wachstums- und Kinetikexperimente eine Grundvoraussetzung dar. Aus den schon vor Beginn dieser Arbeit weitgehend beherrschten Bedingungen für die CZOCHRALSKI-Züchtung ist die ausgeprägte Wachstumsaniosotropie von dekagonalen AlCoNi-Einkristallen bekannt. Dabei beobachtet man eine hohe Wachstumsgeschwindigkeit entlang der Orientierung der zehnzähligen, periodischen Achse [00001], während das laterale Wachstum entlang der zweizähligen, quasiperiodischen Richtungen [10000] und [10-100] kinetisch gehemmt ist. An den gezüchteten Einkristallen kann das Auftreten von Flächen fünf unterschiedlicher kristallographischer Formen {h1h2h3h4h5} beobachtet werden: Das Pinakoid {00001}, das dekagonale (Haupt-) Prisma {10000} und (Neben-) Prisma {10-100}, sowie zwei dekagonale Dipyramiden {0-1-101} und {10-102}. Die am Kristallmantel beobachteten Facetten dieser Formen sind das Ergebnis von Wachstumsprozessen an der Dreiphasenkoexistenzlinie und lassen keine Rückschlüsse auf das Wachstum zu, weil sie nicht repräsentativ für das Zweiphasengleichgewicht an der Wachstumsfront sind. Den Flächen der beiden dekagonalen Dipyramiden {0-1-101} und {10-102} galt jedoch besonderes Interesse. Sie stellen die morphologische Entsprechung so genannter inclined net planes dar. Dabei handelt es sich um bezüglich der periodischen Achse [00001] geneigte Netzebenen des Quasikristalls, welche die beiden widersprüchlichen Ordnungsprinzipien der Translationsperiodizität und die Quasiperiodizität miteinander verbinden. Ihre Bedeutung ist aus Röntgenbeugungsexperimenten bekannt, wobei bisher unklar war, ob sie eine Bedeutung für das Wachstum von dekagonalen Quasikristallen haben. Die Experimente dieser Arbeit sind in zwei Gruppen untergliedert: a. Experimente zur Morphologie gezüchteter dekagonaler Quasikristalle b. Experimente zur Wachstumskinetik dekagonaler Quasikristalle Zu den unter Punkt a. genannten Experimenten gehörten CZOCHRALSKI-Züchtungsexperimente in den ternären Systemen d-Al-Co-Ni und d-Al-Co-Cu und Substratexperimente unter Verwendung großvolumiger d-AlCoNi-Keime, sowie ein Kugelwachstumsexperiment. Die unter Punkt b. aufgeführten Experimente zur Wachstumskinetik beinhalteten die CZOCHRALSKI-Abreißexperimente und ergänzend Kontaktwinkelmessungen zur Bestimmung der Oberflächenenergie orientierter Quasikristalloberflächen. Mit den CZOCHRALSKI -Züchtungsexperimenten wurde in einer Reihe von konventionellen Züchtungsexperimenten das Wachstum und die Morphologie dekagonaler Quasikristalle untersucht. Dabei war die Morphologie der Zweiphasengrenze l-s von besonderem Interesse. Hier wurde das Wachstum von Einkristallen in definierten Orientierungen [h1h2h3h4h5] durch ein schnelles Trennen des Kristalls von der Schmelze unterbrochen und ex situ untersucht, welche kristallographischen Formen {h1h2h3h4h5} an der Zweiphasengrenzfläche l-s morphologisch auftreten. In den Züchtungsexperimenten parallel der zehnzähligen Achse [00001] zeigt der wachsende Kristall einen rotationssymmetrischen, dekaprismatischen Habitus. An der Dreiphasengrenze v-l-s werden Flächen der Form des dekagonalen (Haupt-) Prismas {10000 und in geringerer Größe Flächen der Form des dekagonalen (Neben-) Prismas {10-100} gebildet, welche die dekaprismatische Wachstumsmorphologie bestimmen. Diese Flächen entstehen trotz der durch die Kristall- und Tiegelrotation in dem thermischen Feld aufgeprägten Rotationssymmetrie und bleiben gegenüber der bestehenden Unterkühlung stabil. Die Wachstumsfront konnte durch das schnelle Trennen des in [00001]-Orientierung gezüchteten Kristalls von der Schmelze (Dekantieren) nicht konserviert werden. In jedem Fall kristallisierte an der ehemaligen Wachstumsfront anhaftende Restschmelze unter Bildung dekagonaler (Hohl-) Nadeln aus, womit eine großflächige Beobachtung der Zweiphasengrenze l-s in dieser Experimentserie nicht möglich war. Im Fall der Züchtung parallel der beiden zweizähligen, symmetrisch nicht äquivalenten Achsen [10000] bzw. [10-100] wird die Zweiphasengrenzfläche immer von der zehnzähligen Achse [00001] und der weiteren zweizähligen Achse [10-100] bzw. [10000] aufgespannt. Dabei zeigt sich sehr deutlich die Anisotropie der Wachstumsgeschwindigkeiten der periodischen und aperiodischen Kristallorientierungen mit der Ausbildung eines ovalen Kristallquerschnittes, wobei die schnellwachsende zehnzählige Achse die lange Halbachse und eine zweizählige Achse die kurze Halbachse des Ovals bilden. Die jeweilige Dreiphasenkoexistenzlinie am Meniskus ist in der [00001]-Richtung nicht facettiert, d.h. hier wird das Wachstum durch den rotationssymmetrischen Verlauf der Isothermen an der Schmelzenoberfläche begrenzt. Im Gegensatz dazu bildet der Kristall senkrecht zu der Richtung der zweizähligen Achse Flächen der Form des dekagonalen (Haupt-) Prismas {10000} aus. Nach dem Dekantieren der Grenzfläche l-s beobachtet man für jede der zweizähligen Züchtungsrichtungen eine individuelle Morphologie der ehemaligen Wachstumsfront. Für die Züchtungsrichtung parallel der [10000]-Orientierung zeigt sich eine singuläre Fläche (10000), die senkrecht zur Ziehrichtung verläuft als Wachstumsfläche am der Zweiphasengrenze l-s. Im Fall der Züchtungsrichtung parallel der [10-100]-Orientierung zeigt sich ein anderes Bild: Die Zweiphasengrenze l-s ist in einzelne, um ±18° gegen die Ziehrichtung verkippte Flächen der Form des dekagonalen (Haupt-) Prismas {10000} zerfallen, sodass deren Einhüllende die Wachstumsfläche (10-100) bildet. Aus der Bildung einer facettierten Wachstumsfront in diesen Orientierungen erkennt man, dass das Wachstum hier über atomar glatte Grenzflächen erfolgt. In diesem Fall sind den parallelen Verschiebungsgeschwindigkeiten beider Orientierungen kinetische Grenzen gesetzt. Bei der Züchtung entlang der geneigten Kristallorientierungen der dekagonalen Dipyramiden [0-1-101] und [10-102] beobachtet man die Bildung einer Wachstumsmorphologie, die ebenfalls nicht mehr rotationssymmetrisch ist, aber entsprechend der Symmetrie der Kristallklasse 10/m 2/m 2/m eine Spiegelsymmetrie enthält. An der Dreiphasengrenzlinie v-l-s zeigen die Kristalle eine deutliche Querschnittszunahme in der Orientierung der zehnzähligen Komponente [00001] und sind dort durch das thermische Feld scharf begrenzt. Der übrige Umfang wird von Flächen der Form {10000} begrenzt. Nach dem Trennen des Kristalls von der Schmelze erkennt man für beide Kristallorientierungen eine komplex zusammengesetzte Zweiphasengrenzfläche l-s. Die Komponente der schnellwachsenden, zehnzähligen Orientierung [00001] ist in dekagonale Nadeln zerfallen während die Komponente senkrecht dazu von Flächen des dekagonalen (Haupt-) Prismas {10000} gebildet wird, welche wiederum die Wachstumsfläche darstellen. Die einzelnen Flächen {10000} sind dabei um 36° gegeneinander orientiert. Die {10000}-Flächen besitzen keine Komponente parallel zu der ausgedehnten Schmelzenoberfläche und folgen demnach keinem Isothermenverlauf, woraus vor der facettierten Grenzfläche l-s deutliche Unterkühlungen entstehen. Für die Züchtung parallel der Orientierung [10-102] sind die Segmente der {10000}-Flächen um 18° im Vergleich mit der Anordnung für die Orientierung parallel [0-1-101] verdreht angeordnet. Die Substratexperimente stellten einen Ansatz dar, um mit einer an das schnelle Trennen des Kristalls von der Schmelze gekoppelten stark beschleunigten Kristallrotation die an der Wachstumsfront anhaftende Restschmelze vor dem Erstarren abzuschleudern. Dazu wurden massive Keime eingesetzt, die eine großflächige Zweiphasengrenze l-s nach einer nur geringen Wachstumsdistanz bereitstellen. Hier musste erkannt werden, dass es prinzipiell nicht möglich ist, einen Flüssigkeitsfilm, der den Kristall benetzt, restlos von einer Grenzfläche durch Abschleudern zu entfernen. In einigen Fällen konnte die anhaftende Restschmelze aus einigen Bereichen der Zweiphasengrenze l-s vor deren Erstarren entfernt werden, sodass die ehemaligen Wachstumsfront ex situ untersucht werden konnte. Im Fall der Züchtungsrichtung parallel der zehnzählige Achse [00001] konnte so nachgewiesen werden, dass das Wachstum nicht über ebenmäßige Flächen erfolgt. Die Wachstumsfront stellt sich als eine gleichmäßig gekrümmte Fläche dar, die dem Verlauf der Schmelzpunktisothermen folgt. Als Ergebnis kann man den Schluss ziehen, dass das Wachstum entlang der [00001]-Orientierung über eine atomar raue Grenzfläche erfolgt, was unter wachstumskinetischen Gesichtspunkten höhere Ziehgeschwindigkeiten ermöglicht. Die Identifizierung des kinetischen Limits des Wachstums in dieser Orientierung ist durch die einsetzenden Effekte der konstitutionellen Unterkühlung verdeckt. Die Züchtung großer dekagonaler AlCoCu-Quasikristalle gelang im Rahmen dieser Arbeit erstmals. Frühere Experimente unter Nutzung der spontanen Keimbildung blieben erfolglos. Es kann angenommen werden, dass in diesem System eine größere Keimbildungsarbeit zur Bildung der festen Phase aufgewendet werden muss, als in dem ternären System Al-Co-Ni der Fall ist. Mit der Bildung der festen Phase bricht die Unterkühlung zusammen und es resultiert ein polykristallines Wachstum. In den Züchtungsexperimenten unter Verwendung [00001]-orientierter d-AlCoNi-Keime war zu beobachten, dass der zuvor beschriebene Effekt später einsetze und eine zunächst dekaprismatische Wachstumsmorphologie zunehmend an struktureller Perfektion verlor. Erst der Wechsel der Züchtungsrichtung zu den langsamwachsenden, zweizähligen Orientierungen [10000] und [10-100] führte zu einem kontrollierbaren, einkristallinen Wachstum. Auch hier zeigte die dekantierte Wachstumsfront, dass als Wachstumsfläche an der Zweiphasengrenze l-s allein Flächen der Form des dekagonalen (Haupt-) Prismas {10000} auftreten. Das gemeinsame Ergebnis aller Studien zur Züchtung von dekagonalen Quasikristallen nach dem CZOCHRALSKI-Verfahren ist das Auftreten des dekagonalen (Haupt-) Prismas {10000} als Wachstumsfläche an der Zweiphasengrenze l-s. Auch können an der Peripherie der Kristalle außer den beiden bekannten Formen der dekagonalen Dipyramide keine weiteren Flächen geneigter Formen beobachtet werden. Das Kugelwachstumsexperiment bot die Möglichkeit, das Wachstum aller symmetrisch nicht äquivalenten Kristallorientierungen einer Kristallart an einem sphärisch präparierten Individuum zu beobachten. Dieses experimentell aufwändige Experiment wurde erstmals in der beschriebenen Art in einem intermetallischen System realisiert. Nach dem Experiment konnte auf der Kugeloberfläche das Auftreten von Flächen nachgewiesen werden, die den beiden Formen des dekagonalen Prismas {10000} sowie {10-100} zugeordnet werden können. Sie sind das Ergebnis von Wachtumsprozessen an der Zweiphasengrenze l-s und stellen somit Wachstumsflächen dar. Das Auftreten von Flächen genegter Formen konnte nicht beobachtet werden. Da weite Bereiche der Kugeloberfläche von Oxiden bedeckt und somit einer detaillierten Beobachtung unzugänglich waren, ist ihre Nichtexistenz jedoch noch nicht hinreichend bewiesen. Mit den CZOCHRALSKI-Abreißexperimenten wurde die maximale flächenspezifische Kristallisationsgeschwindigkeit von dekagonalen AlCoNi-Quasikristallen bestimmt. Dazu konnte die Grundidee CZOCHRALSKIS verfolgt und an die Besonderheiten inkongruenter Schmelzen in einem Multikomponentensystem angepasst werden. Das Limit für die Kristallisationsgeschwindigkeit parallel der zehnzähligen Achse [00001] ist derart hoch, dass noch vor dem (kinetisch bedingten) Abreißen des Kristalls von der Schmelze die Effekte der konstitutionellen Unterkühlung einsetzen. Es entstehen Störungen an der Wachstumsfront, unter denen unrealistisch hohe Ziehgeschwindigkeiten möglich werden, die jedoch nicht mehr zu einer defektarmen Kristallzüchtung führen. Die maximale Kristallisationsgeschwindigkeit kann in dieser Orientierung nach dieser Methode nicht bestimmt werden, weil die Grenzen der konstitutionellen Unterkühlung überschritten werden, bevor das wachstumskinetische Limit erreicht ist. In den symmetrisch nicht äquivalenten, zweizähligen Kristallorientierungen [10000] und [10-100] wurden für jede Orientierung mehrere Abreißereignisse unter verschiedenen erhöhten Ziehgeschwindigkeiten vz+ durchgeführt und die Zeit t bis zum Abriss des Kristalls von der Schmelze gemessen. Die gewonnenen t(vz)-Werte zeigen einen linearen Zusammenhang zwischen der Ziehgeschwindigkeit vz und der reziproken Zeit t bis zum Trennen von Kristall und Schmelze auf, wobei die t(vz)-Werte für die [10000]-Orientierung eine deutlich größere Streuung zeigen als für die [10-100]-Orientierung. Die ermittelten Werte lassen keinen signifikanten Unterschied für die maximale Kristallisationsgeschwindigkeit vkr der beiden Kristallorientierungen [10000] und [10-100] erkennen. Als Ursache für das weniger gut reproduzierbare Abreißverhalten der singulären Grenzfläche (10000) wurde eine mechanische Ursache angenommen, die anhand eines einfachen Modellexperimentes (Benetzungsexperiment) überprüft wurde. Für modellhafte Nachbildungen der singulären Grenzfläche (10000) und der komplexen Grenzfläche {10-100} wurde die Reproduzierbarkeit des Abreißverhaltens bei verschiedenen Fehlorientierungen untersucht. Dazu wurden zylindrische Prüfkörper von gleichem Durchmesser hergestellt, wobei die Grenzfläche l-s im Fall der (10000)-Fläche eine ebene, parallel zur Oberfläche der Testschmelze orientierte Fläche darstellte. Die Grenzfläche l-s im Fall der komplexen (10-100)-Fläche, die aus gegeneinander orientierten Segmenten von Flächen der Form {10000} aufgebaut ist, wurde aus zwei eben Flächen, deren Flächennormalen um +18° bzw. -18° gegen die Oberfläche der Testschmelze geneigt sind, dargestellt. Dabei konnte festgestellt werden, dass sich das Abreißverhalten der komplexen Grenzfläche {10-100} als invariant gegenüber Fehlorientierungen erwiesen hat. Eine singuläre, parallel zur Schmelzenoberfläche orientierte Grenzfläche {10000} zeigt dagegen eine schlechte Reproduzierbarkeit der einzelnen Abreißereignisse. Mit diesem Ergebnis kann die breite Streuung der Experimente für die (10000)-Grenzfläche erklärt werden. Die Bestimmung der Oberflächenenergie von präparierten (00001)-, (10000)- und (10-100)-Oberflächen dekagonaler AlCoNi-Quasikristalle erfolgte über Kontaktwinkelmessungen. Mit den Testflüssigkeiten Wasser und Dijodmethan konnten die polare und die dispersive Komponente der Oberflächenenergie getrennt voneinander bestimmt werden. Die Kontaktwinkelmessungen mussten unter Umgebungsbedingungen erfolgen, d.h. die Quasikristalloberflächen befanden sich nicht im thermodynamischen Gleichgewicht mit ihrer eigenen Schmelze. Dabei wurden Ergebnisse gewonnen, die die Aussagen aus den Kinetikexperimenten ergänzen. Es wurde für die (10000)-Oberfläche eine geringere Oberflächenenergie als für die (10-100)-Oberfläche gefunden. Nach der klassischen Theorie des Kristallwachstums bedeutet eine geringe Oberflächenenergie, dass das Wachstum über eine atomar glatte Phasengrenze geschieht. Daraus resultiert eine geringe parallele Verschiebungsgeschwindigkeit der betreffenden Fläche, womit für die Flächen des dekagonalen (Haupt-) Prismas eine geringere parallele Verschiebungsgeschwindigkeit als für die Flächen des dekagonalen (Neben-) Prismas {10-100} erklärt werden kann. Diese Annahme wird durch die Beobachtungen bezüglich des Auftretens von Flächen der Form {10-100} in dem Kugelwachstumsexperiment bestätigt. Sie treten im Anfangsstadium des weiteren Wachstums auf der Kugeloberfläche noch auf, wachsen schneller und verschwinden folglich aus der Morphologie. Die in dieser experimentellen Arbeit gewonnenen Ergebnisse können kein theoretisches Modell zum Verständnis des quasikristallinen Wachstum liefern. Vielmehr lassen sich die beobachteten Wachstumsphänomene mit den theoretischen Vorstellungen des Wachstums periodischer Kristalle hinreichend gut erklären. Es bleibt die Frage offen, wie groß der Einfluss der quasiperiodischen Ordnung auf das (Quasi-) Kristallwachstum ist oder ob die beobachteten Phänomene nicht einzig ein Resultat der komplexen Struktur dieser intermetallischen Legierungen sind.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Die Zusammensetzung und Arbeitsweise des Tic Komplexes ist noch ungeklärt. Tic110 ist die einzige von sieben Komponenten, die allgemein akzeptiert ist. Die Funktion und genaue Topologie des Proteins ist aber noch umstritten (Abb.3). Im Rahmen dieser Arbeit wurden verschiedene Experimente zur Klärung der Topologie und Funktion des Proteins durchgeführt. Zum Einen wurde über ein CD-Spektrum eine alpha-helikale Sekundärstruktur für Tic110 gezeigt. Proteasebehandlung sowohl von Vesikeln der inneren Hüllmembran als auch von intakten Chloroplasten lassen vermuten, dass Bereiche von Tic110 in den Intermembranraum zeigen. Auf der anderen Seite weisen Affinitätschromatographieversuche mit dem C-Terminus von Tic110 darauf hin, dass das Protein im Stroma mit HSP93 und HSP70 interagiert. Diese Ergebnisse lassen vermuten, dass ein Teil des C-Terminus in den Intermembranraum ragt und ein anderer Teil ins Stroma. Ob im C-Terminus amphiphile Helices ausgebildet werden können, muss geklärt werden. Mengenmäßig ist Tic110 prominenter in der inneren chloroplastidären Hüllmembran vorhanden als Tic20, der andere „Kandidat“ für die Pore des Tic Komplexes. Im Vergleich zur Menge von Toc75, der Pore der äusseren Hüllmembran, ist Tic110 in ähnlichen Mengen vorhanden. Tic110 ist also ein geeigneter Kandidat, an der Porenbildung beteiligt zu sein. Desweiteren wurden Interaktionspartner vom N-Terminus von Tic110 gesucht. Dabei wurde ein 32 kDa Protein gefunden, dass große Homologien zu sogenannten „short-chain“ Dehydrogenasen aufweist. In der vorliegenden Arbeit wurde über Importversuche und Immunpräzipitationsexperimente eine Zugehörigkeit des Proteins zum Tic Komplex gezeigt. Die Komponente wurde Tic32 genannt. Tic32 ist eine funktionelle Dehydrogenase, deren Beteiligung während des Importprozesses noch zu klären bleibt. T-DNA Insertionslinien von Tic32 ergaben, dass das Protein für die für die Plastidenentwicklung essentiell ist. Da mit Tic32 neben Tic55 und Tic62 nun schon die dritte Tic Komponente gefunden wurde, die Redox Charakteristika aufweist, wurden verschiedene Importexperimente durchgeführt. Dafür wurden zwei chloroplastidäre FNR-Isologe und zwei chloroplastidäre Fd-Isologe in Chloroplasten importiert, deren Redoxzustand vor der Importreaktion mit verschiedenen Metaboliten oder Redoxkomponenten beeinflusst wurde. Sowohl nach Behandlung der Chloroplasten mit HAR, deamino-NAD, Oxalacetat und Kaliumhexacyanoferrat nimmt die Importeffizienz der FNR L2 Form stark ab. Auch für die Ferredoxin-Isologe ließ sich ein unterschiedliches Importverhalten feststellen, wenn auch nicht so eindeutig wie für die FNR-Isologe. Dieser Regulationsmechanismus muß nun in weiteren Experimenten genauer untersucht werden.