POPULARITY
Gehören Mitochondrien zum Endomembransystem? Das Endomembransystem ist das Postnetzwerk der Zelle. Über dieses System stehen die verschiedenen Zellbestandteile miteinander in Kontakt und senden und empfangen Proteine, Fettsäuren und Stoffwechselprodukte. Der Austausch gelingt über sogenannte Transportvesikel, kleine kugelförmige Strukturen, die wie Pakete innerhalb der Zelle verschickt werden. Mitochondrien, die Kraftwerke unserer Zellen, zählen klassischerweise nicht zum Endomembransystem. Diese Ansicht wurde durch die Beobachtung mitochondrialer Vesikel jedoch in Frage gestellt. Mittlerweile werden die mitochondrialen Vesikel mit schweren Krankheiten wie Parkinson und Alzheimer in Verbindung gebracht. Manche Forschungsgruppen sehen in den mitochondrialen Vesikeln sogar den Ursprung des Endomembransystems unserer Zellen.
Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Die unter dem Einfluss von Organismen entstehenden Minerale können entweder lediglich ein Nebenprodukt des Metabolismus sein oder aber eine Funktion aufweisen, wofür ihre Eigenschaften und Morphologie gezielt vom Organismus gesteuert werden. Der erstere Fall der bioinduzierten Mineralisation wurde in dieser Arbeit bei der Fällung des Minerals Schwertmannit (Fe8O8(OH)6SO4) durch den Bakterienstamm Leptospirillum ferrooxidans angetroffen. Die ursprünglich als bio-spezifisch eingeschätzte Morphologie des Minerals konnte in abiotischen Experimenten unter geeigneten Bedingungen erhalten werden. Die in dieser Arbeit am Beispiel der calcitischen Brachiopodenschalen, Seeigelstacheln und Seeigelzähne untersuchten Produkte der gesteuerten Biomineralisation sind Kompositwerkstoffe, deren Eigenschaften aus der Kombination von weichen organischen und harten mineralischen Komponenten entstehen. Sie sind funktionsangepasste Strukturen, für die ein anorganischer Bildungsmechanismus nicht in Frage kommen kann. Die Bildung der Minerale und deren Eigenschaften wurden mit Hilfe von Rasterelektronenmikroskopie, Rückstreuelektronenbeugung, Transmissionselektronenmikroskopie, Röntgenbeugung, Mikrohärtenmessungen nach Vickers und Nanoindentation untersucht. Durch Messungen mit niedriger Beschleunigungsspannung konnte die laterale Auflösung der Rückstreuelektronenbeugung verbessert werden. Eine Verbesserung der Winkelgenauigkeit der Rückstreuelektronenbeugung wurde durch einen statistischen Ansatz erreicht. Durch vergleichende biotische und abiotische Syntheseexperimente wurde die Bildung von Schwertmannit durch Leptospirillum ferroooxidans als Prozess einer bioinduzierten Mineralisation identifiziert. Die abiotischen Synthesewege beinhalten sowohl zweiwertige als auch dreiwertige Eisenlösungen als Ausgangsmaterial und nutzen verschiedene Wege der Oxidation und/oder Präzipitation von Schwertmannit. Die so gefällten Proben zeigten unterschiedliche Morphologien des Minerals, worunter aber auch die "Igelmorphologie" zu finden war, die in der Literatur als mit Schwertmannit-Nadeln überwachsene Zellen angesehen worden war. Rietveld-Anpassungen des Röntgenbeugungsprofils des amorphen bis nanokristallinen Minerals zeigen, dass die Kristallitgröße anisotrop ist. Sie ist je nach Bildungsbedingungen 2-2.5 nm senkrecht und als 5-11 nm parallel zu Kanälen, die durch das Netzwerk von [FeO6]3- -Oktaedern in der Struktur gebildet werden. Die Untersuchungen des Aufbaus calcitischer Brachiopodenschalen zeigen, dass Brachiopodenschalen, je nach Spezies, aus bis zu drei distinkten Mikrostrukturen bestehen können: Kolumnare Schicht, faserige Schicht und Primärschicht. Die Mikrostruktur und Textur der kolumnaren Schicht kann durch einen kompetitiven Wachstumsprozess erklärt werden, der auch bei anorganischen Prozessen angetroffen werden kann. Eine Erklärung der Mikrostruktur der fasrigen Schicht und der Primärschicht ist hingegen nicht durch Prozesse, die aus anorganischen Systemen bekannt sind, möglich. Die Mikrostruktur der Primärschicht, die in dieser Arbeit erstmalig mit Hilfe von räumlich hochauflösender Rückstreuelektronenbeugung aufgeklärt wurde, ähnelt dendritischen Strukturen. Eine derartig stark verzahnte und hochwiderstandsfähige Mikrostruktur ist bisher bei keinem anderen einphasigen Material bekannt und wird durch einen Entstehungsprozess aus einem amorphen CaCO3 (ACC) Precursor erklärt, der seinerseits eine Agglomeration von ACC-gefüllten Vesikeln entstand. Die Vickerhärten der einzelnen Schichten in Brachiopodenschalen schwanken zwischen 200 und 520 HV (0.005/10) und sind damit deutlich härter als bei anorganisch geformtem Calcit (150-170 HV 0.005/10). Mikrostruktur, Textur und Anordnung der Schichten innerhalb von Brachiopodenschalen maximieren deren Bruchfestigkeit. Seeigel bilden Calcit mit einem starken Grad an kristallographischer Vorzugsorientierung. Diese Vorzugsorientierung ist bei Seeigelstacheln so hoch, dass diese hochporösen Konstrukte als Einkristalle bezeichnet werden. Eine genaue, räumlich aufgelöste Messung der Orientierung der Kristallite mit Hilfe von Rückstreuelektronenbeugungsmessungen mit hoher Winkelauflösung zeigten, dass es interne Verkippungen bis zu 0.5° gibt. Diese Verkippungen in Seeigelstacheln erlauben Rückschlüsse auf deren Bildung. Die räumlich aufgelöste chemische Analyse in Kombination mit räumlich aufgelöster mechanischer Charakterisierung zeigt, dass der Mg Gehalt (molares Mg/Ca Verhältnnis 1-6 %) in Seeigelstacheln nicht mit Nanohärte (4-4,5 GPa) und E-Modulus (50-80 GPa) korrelierbar ist. Die Nanhohärte von Seeigelstacheln liegt deutlich höher als bei anorganisch gebildetem Calcit (3.0 +/- 0.2,GPa), während deren E-Moduli ähnlich sind (70 +/- 5,GPa). Diese Arbeit untersucht erstmals die Mikrostruktur von Seeigelzähnen mit Rückstreuelektronenbeugung. Die Untersuchungen zeigen, dass die großen strukturellen Einheiten, Steinteil, lamellarer Nadel Komplex, Prismen, Primär-, Sekundär- und Karinarplatten, 3-5° gegeneinander verkippt sind. Diese Bereiche selbst sind wieder in Untereinheiten strukturiert, beispielsweise einzelne Platten, die 1-2° gegeneinander verkippt sind. Diese Untersuchungen zeigen jedoch auch, dass die Bereiche ineinandergreifen können und eine strikte Unterscheidung nicht immer möglich ist. Für dieses Material wird der Begriff des Kompositkristalls vorgeschlagen. Das molare Mg/Ca Verhältnis der untersuchten Seeigelzähne liegt bei 10-25 % und ist positiv mit der Nanohärte (4-8 GPa) korreliert. Die Kombination der Messung der präzisen kristallographischen Orientierung, mikrostrukturellen, chemischen und mechanischen Eigenschaften trägt zu einem tiefergehenden Verständnis des Selbstschärfungsmechanismuses der Seeigelzähne bei. So konnte beispielsweise der häufig diskutierte Einfluss der prominenten 104-Spaltfläche von Calcit ausgeschlossen werden.
Das Zytoskelett durchzieht als dicht verästeltes Netzwerk die Zelle und bestimmt deren Form und mechanische Festigkeit. Mit seiner Hilfe können sich Zellen teilen, Material aufnehmen und auf externe Einflüsse reagieren. Darüber hinaus dient es zum Transport von zellulären Strukturen wie Vesikeln und Mitochondrien. An der LMU forschen über dieses Zellskelett die Labore von Professor Michael Schleicher und Professor Manfred Schliwa, beide vom Adolf-Butenandt-Institut. Sie sind Teil des interdisziplinären Sonderforschungsbereichs „Dynamik und Regulation Zytoskelettabhängiger Bewegungsvorgänge“.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 12/19
Unter in vivo Bedingungen kann es in Zellen, die shear stress ausgesetzt sind (wie z.B. Endothel und Epithelzellen) ständig zu Rupturen der Plasmamembran kommen. Das sogenannte Membrane Resealing stellt die Fähigkeit von Zellen dar, auf eine solche Schädigung zu reagieren und die Membranintegrität durch schnelle Fusionsprozesse intrazellulärer Vesikel an Verletzungsstellen wiederherzustellen. Vielfach belegt ist hierbei die Beteiligung lysosomaler Vesikel sowie Enlargeosomen. In der vorliegenden Arbeit konnte erstmals eine Beteiligung ER-generierter Vesikel an diesen Reparaturprozessen der Zellmembran nachgewiesen werden. In verschiedenen experimentellen Ansätzen wurde eine Translokation von ER-Membranen an die geschädigten Areale der Zellmembran gezeigt. Eine Fusion der ER-Membranen mit der Zellmembran wurde durch den Nachweis luminaler Domänen transmembranöser ER-Proteine (CNX) sowie luminaler (löslicher) ER-Proteine (ERp57) an den Verletzungsstellen von Axonen des Rückenmarkes in vivo bestätigt. Durch die Blockade der am ERES freigesetzten COPII-Vesikel (Sar1) wurde der frühe sekretorische Transportweg vom ER zum Cis-Golgi-Netzwerk unterbunden. Damit einhergehend kam es zu einem verminderten Resealing der geschädigten Areale in der Zellmembran. Die Ergebnisse zeigen, dass die schnelle Freisetzung von ER-Vesikeln nach mechanischer Verletzung bzw. Schädigung der Plasmamembran durch bakterielle Toxine entscheidend an der Reparatur und Regenerierung geschädigter Zellen beteiligt ist. Nach mechanischer Schädigung kommt es auch zur Freisetzung von exozytotischen Vesikeln, sogenannten Mikropartikeln (MP), in den extrazellulären Raum. Bisher ist weitgehend unbekannt, wie die Homöostase der externalisierten MP koordiniert wird. In der vorliegenden Arbeit wurde unter in vitro- und in vivo-Bedingungen gezeigt, dass die extrazelluläre Konzentration der MP über die Clearance mittels verschiedener Endozytose-/Phagozytoseprozesse reguliert wird. An der Internalisierung dieser Vesikel ist der Class B Scavenger-Rezeptor CD36 beteiligt. Eine Blockade dieses Rezeptors in vitro zeigte eine deutliche Reduktion der Aufnahme von MP in phagozytosefähige Zellen. In vivo konnte eine CD36-abhängige Reduktion der MP-Aufnahme in verschiedenen Organen (vor allem Niere, Milz) in CD36-defizienten Tieren im Vergleich zu Kontrolltieren nachgewiesen werden. Des Weiteren wurden unter in vitro-Bedingungen Unterschiede bei der Internalisierung normaler und karzinomatöser MP nachgewiesen. Im Gegensatz zur zellulären Aufnahme von MP aus nicht-transformierten Zellen, wurden MP aus karzinomatösen Zellen nicht über Endozytose/Phagozytose internalisiert. Hingegen kam es hierbei zu einer Fusion von karzinomatösen MP mit der Membran der Akzeptorzelle, einem Mechanismus, der an der Transformation normaler Zellen in karzinomatöse Zellen beteiligt sein könnte. Insgesamt gesehen wurde hierdurch gezeigt, dass MP über Endozytose/Phagozytose in Zellen internalisiert werden, und dass dies organspezifisch über den Scavenger Rezeptor CD36 vermittelt wird.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 04/06
Podosomen sind aktinreiche Adhäsionsstrukturen, die vor allem in monozytären Zellen, aber auch in dendritischen Zellen, Osteoklasten, Endothelzellen oder glatten Muskelzel-len vorkommen. In primären humanen Makrophagen gibt es zwei Subpopulationen von Podosomen: größere, hochdynamische Precursor in der Peripherie sowie kleinere, sta-bilere Podosomen im Zellzentrum. Die Regulation der Podosomendynamik in der Zell-peripherie erfolgt durch das Mikrotubuli-basierte Motorprotein KIF1C, wahrscheinlich durch den Transport von Regulationsfaktoren. Ein Schwerpunkt der vorliegenden Ar-beit lag daher in der Identifizierung dieser Regulatoren. • Die Aufreinigung KIF1C-GFP positiver Vesikel mittels FACS ist grundsätzlich funk-tionell. Die Analyse zahlreicher Vesikel-assoziierter Proteine spricht weiter für die Hypothese, dass es sich bei der von KIF1C transportierten Fracht um vesikuläre Struk-turen handelt. Die Detektion zahlreicher unspezifischer Proteine zeigt jedoch auch, dass die Methode der Aufreinigung zukünftig noch verbessert werden muss. • RabGTPasen, die auch am Transport von Vesikeln beteiligt sind, haben oftmals eine ähnliche subzelluläre Lokalisation wie KIF1C. Vor allem zwischen Rab6a und KIF1C war ein häufiger und länger dauernder Kontakt in der Zellperipherie zu beobachten. Mittels GFP-Immunpräzipitation konnte eine Interaktion bestätigt werden. • Auf der Suche nach weiteren potentiellen Interaktionspartnern von KIF1C wurde das Protein HAX1 identifiziert. Sowohl in fixierten als auch in lebenden primären humanen Makrophagen konnte eine eindeutige Kolokalisation der Proteine in der Zellperipherie beobachtet werden. Bei Einsatz der Rigormutante von KIF1C (KIF1C-K103A) akku-mulierten beide Proteine am MTOC. Diese Ergebnisse lassen auf eine Interaktion zwi-schen KIF1C und HAX1 schließen. Das Motorprotein KIF9 lokalisiert vor allem an den stabileren Podosomen im Zentrum der Zelle. Bei der Ermittlung der Rolle von KIF9 hinsichtlich der Regulation dieser Po-dosomensubpopulation wurden folgende Erkenntnisse gewonnen: • Knock-down von KIF9 reduziert die Anzahl der Podosomen und inhibiert bei noch bestehenden Podosomen den Abbau extrazellulärer Matrix. Für KIF9 konnte demnach nicht nur eine Beteiligung an der Podosomenregulation sondern auch eine Rolle im Matrixabbau zugewiesen werden. • KIF9-GFP positive Vesikel assoziieren mit Mikrotubuli und kontaktieren mehrere Podosomen nacheinander. Dies spricht für eine direkte Verbindung von KIF9-vermitteltem, mikrotubuli-basiertem Transport mit Podosomen, die durch KIF9 regu-liert werden. • Durch Immunpräzipitationsversuche wurden Hinweise gefunden, dass KIF9 mögli-cherweise in unterschiedlichen Spleißvarianten oder verschieden phosphorylierten Zu-ständen existiert. • Als Interaktionspartner für KIF9 konnte Reggie-1 identifiziert werden. Durch knock-down von Reggie-1 und auch Reggie-2 konnte diesen Proteinen eine Beteiligung am Abbau extrazellulärer Matrix zugeschrieben werden. Die Teilung der Podosomen-Precursor sowie Auflösung der regulären Podosomen sind grundlegende Vorgänge. Unterschiede in der molekularen Zusammensetzung der Podo-somen-Subpopulationen waren bisher allerdings unbekannt. • Supervillin konnte als erstes Protein identifiziert werden, das differentiell an die unter-schiedlichen Subpopulationen lokalisiert. Dies zeigt zum ersten Mal eine unterschiedli-che molekulare Zusammensetzung der Podosomen-Subpopulationen. • Podosomen reichern Supervillin an, bevor diese sich auflösen. Überexpression von GFP-Supervillin führte außerdem zu einem Verlust von Podosomen, wohingegen shRNA-basierter knock-down die Lebensdauer verlängerte. Supervillin scheint somit eine Rolle in der Regulation von Podosomen zu spielen. • Die Myosin IIA-Bindedomäne ist sowohl für die Anzahl der Podosomen als auch für die differentielle Rekrutierung an die unterschiedlichen Subpopulationen essentiell. • Supervillin steht mit Myosin IIA und der phosphorylierten leichten Kette von Myosin in Verbindung und koppelt kontraktiles Myosin an Podosomen, was deren Auflösung auslöst. • Durch siRNA-basierten knock-down konnte gezeigt werden, dass Supervillin erst zu-sammen mit Myosin IIA und/oder Gelsolin die Effektivität der Podosomen hinsichtlich Matrixabbau beeinflusst. Die Podosomenanzahl hingegen war nicht verändert.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Die akute Pankreatitis beginnt in den exokrinen Azinuszellen des Pankreas und wird durch verschiedene, bisher nicht vollständig geklärte, intrazelluläre Vorgänge ausgelöst. Das Hormon Cholezystokinin stimuliert Signaltransduktionskaskaden, welche über eine Reorganisation des Aktinzytoskeletts zu einer akuten Organentzündung führen. In dieser Arbeit wurde untersucht, ob ein über das Enzym RhoA vermittelter intrazellulärer Signalweg zu Aktin-bindenden Proteinen im Pankreas diese Reaktion hervorruft und durch Cholezystokinin reguliert werden kann. Die Ergebnisse der vorliegenden Arbeit bringen den Nachweis der Existenz der im Folgenden beschriebenen Signaltransduktionskaskade in exokrinen Azinuszellen: RhoA führt über eine Aktivierung von ROCK II zu einer Phosphorylierung der Zieluntereinheit MYPT1 der Myosinphosphatase und somit zu einer Hemmung des Gesamtenzyms. Dadurch transloziert die sowohl in der Zytosol- als auch in der Zytoskelettfraktion vorkommende, unphosphorylierte Form MYPT1 vollständig ins Zytosol. Die Myosinphosphatase führt zu einer Dephosphorylierung der MLC von Myosin. Die fast vollständig in der Zytoskelettfraktion exprimierte phosphorylierte Form pMLC transloziert im dephosphorylierten Zustand ins Zytosol. Durch die Interaktion mit MYPT1 kann MLC zu einer Aktinmyosinkontraktion und somit zu einer Reorganisation des Aktinzytoskeletts führen. Über alternative Signalwege bewirkt RhoA eine Aktivierung von mDia, welches mittels Profilin zu einer Aktinpolymerisation führt. Über ROCK II wird eine Aktivierung der LIMK durch RhoA vermittelt. Dadurch wird Cofilin vermehrt phosphoryliert, wodurch die Depolymerisation der Aktinfilamente gehemmt wird. Durch eine dosis- und zeitabhängige Stimulation mit physiologischen und supraphysiologischen Dosierungen Cholezystokinin wird der Signalweg über RhoA gehemmt. Dadurch kann eine Kontraktion des Aktinzytoskeletts stattfinden und es zu einer Fusion von Vesikeln und zu einer Inhibierung des regulären Sekretionsmechanismus der Pankreaszellen kommen. Da die Hemmung von Aktin-modulierenden Proteinen eine bedeutende Rolle bei der Organfunktion und Entwicklung der akuten Pankreatitis spielt, trägt diese Arbeit dazu bei, sowohl die physiologischen als auch die pathophysiologischen Vorgänge innerhalb der Azinuszellen näher zu charakterisieren. Dies könnte zu einem besseren Verständnis der dieser Erkrankung zugrundeliegenden Mechanismen führen und somit einen therapeutischen Ansatz bei der akuten Pankreatitis darstellen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Makrophagen spielen innerhalb des zellulären unspezifischen Abwehrsystems eine wesentliche Rolle. Für die Ausübung ihrer Funktion sind dynamische Änderungen des Zytoskeletts sowie Aufnahmeprozesse wie Phago- und Pinozytose von entscheidender Bedeutung. Diese Prozesse werden u. a. von Rho-GTPasen und ihren Effektorproteinen reguliert. Zu diesen Effektorproteinen gehören die Proteine der WASp-Familie, die aus WASp, N-WASP und den drei WAVE-Isoformen besteht. In unserer Arbeitsgruppe konnten mittels eines pan-WAVE-Antikörpers Akkumulationen von WAVE an vesikulären Strukturen gezeigt werden (Dissertation B. Schell, 2003). Über eine Beteiligung von WAVE an der Regulation von Vesikeln ist jedoch bisher nichts bekannt. Deshalb beschäftigt sich diese Arbeit mit der Rolle und Funktion von WAVE im Rahmen der Vesikelbildung in Makrophagen. Mittels Färbungen gegen die verschiedenen WAVE-Isoformen konnte erstmals in J774- und primären Makrophagen gezeigt werden, dass WAVE1 an vesikulären Strukturen lokalisiert. Überexpressionen von WAVE1- und WAVE2-GFP bestätigten dieses Ergebnis. Darüber hinaus war es möglich, WAVE1 nach Stimulierung der Makrophagen durch chemoattraktive Stoffe wie fMLP und LPS an Vesikeln zu lokalisieren. Im Rahmen ihrer Rolle als Fresszellen sind Makrophagen insbesondere zu Phagozytose und Pinozytose befähigt. Da Vesikel gerade bei derartigen Prozessen auftreten, wurde untersucht, ob im Rahmen endozytotischer Vorgänge auch WAVE1-Vesikel vorkommen. Da es sich bei der Phagozytose um die Aktin-abhängige Internalisierung von Partikeln > 0,5 µm handelt, wurde ein Phagozytose-Assay mit latex-beads gewählt. Dabei werden von der Zelle Aktin-reiche Strukturen, sog. phagocytic cups, um den aufzunehmenden Partikel erzeugt. In den durchgeführten Experimenten wurde jedoch nur eine geringgradig gesteigerte Bildung von WAVE1-Vesikeln beobachtet. Eine Assoziation zwischen WAVE1 und den entstandenen phagocytic cups wurde dabei nicht festgestellt. Da die phagocytic cups auch nicht den gesuchten vesikulären Strukturen entsprachen, standen Phagozytose und phagocytic cups nicht im Fokus der weiteren Arbeit. Zur Stimulation der Pinozytose wurden sog. fluid phase marker wie z. B. Dextrane und Lysotracker verwendet. Damit konnte gezeigt werden, dass WAVE1-haltige Vesikel mit fluoreszenzmarkierten Dextranen in pinozytotischen Vesikeln kolokalisieren. Durch Verwendung von Lysotracker konnten die kolokalisierenden Vesikel sauren Kompartimenten im endosomallysosomalen Pathway, am ehesten Lysosomen entsprechend, zugeordnet werden. Endozytotische Vorgänge sind hochregulierte Prozesse. Da sich Makropinozytose sowie der anschließende Vesikeltransport entlang von Filamenten u. a. durch Manipulationen des Aktinund Mikrotubuli-Zytoskeletts inhibieren lässt, wurde der Einfluss des Aktin- bzw. Mikrotubuli- Zytoskeletts auf die WAVE1-Vesikel Bildung durch die Verwendung von Cytochalasin D und Nocodazol untersucht. Die Bildung von WAVE1-Vesikeln zeigte sich dabei unabhängig von der Manipulation sowohl des Aktin-Zytoskeletts als auch des Mikrotubuli-Netzwerkes. Im Gegensatz dazu steht die Bildung von Dextran-Vesikeln: diese konnte durch Zerstörung des Aktin- Zytoskeletts mittels Cytochalasin D reduziert werden. Damit konnte die in der Literatur beschriebene Aktin-Abhängigkeit von Dextran-Vesikeln bestätigt werden. Desweiteren scheint, wie erwartet, durch Zerstörung des Mikrotubuli-Netzwerkes mittels Nocodazol nicht die Aufnahme, sondern der intrazelluläre Transport der Dextran-Vesikel entlang von Filamenten inhibiert zu werden. WAVE1 stellt ein Multidomänenprotein dar. Um die Rolle der einzelnen Domänen von WAVE1 in Bezug auf die Bildung von WAVE1- und Dextran-Vesikel zu analysieren, wurden verschiedene Mutanten von WAVE1 als GST-Fusionsproteine in Makrophagen mikroinjiziert. Einen Effekt bezüglich der Bildung von Dextran-Vesikeln konnte mit der WA-Domäne von WAVE1 gezeigt werden. Dieses Resultat stimmt mit der zuvor beschriebenen Aktin- Abhängigkeit der Dextran-Vesikel überein. Die Konstrukte WAVE1-P ebenso wie WAVE1- PWA führten zu einer signifikanten Reduktion der Bildung von Dextran-Vesikeln. Dies lässt den Schluss zu, dass die Prolin-reiche Region eine essentielle Rolle in der Regulation sowohl von WAVE1- als auch Dextran-Vesikeln spielt. Zur Beschreibung eines möglichen Signalweges, der WAVE1- und Dextran-Vesikel beeinflusst, wurde nach Interaktionspartnern von WAVE1 gesucht. Mit NCK-1 und PAK-1 konnten in der Immunfluoreszenz zwei mit WAVE1 kolokalisierende Proteine gefunden werden. Transfektionsversuche lassen den Schluss zu, dass PAK1 die Bildung von WAVE1-Vesikeln beeinflusst. Weitere Experimente mit verschiedenen Mutanten von NCK-1 geben Hinweise auf einen Zusammenhang zwischen NCK-1 und WAVE1. Dabei scheinen vor allem die drei SH3- Domänen von NCK-1 einen Einfluss auf die Bildung der Dextran-Vesikel zu besitzen. WAVE1 wird durch die sog. mitogen activated protein kinase (MAPK) beeinflusst (Miki et al., 1999). Eine Phosphorylierung von WAVE1 durch die MAPK konnte in der vorliegenden Arbeit nicht nachgewiesen werden. Jedoch konnte durch Verwendung eines Inhibitors der MAPK ein deutlicher Einfluss sowohl auf die Bildung der WAVE1-Vesikel als auch auf die Bildung der Dextran-Vesikel gezeigt werden. Dies lässt den Schluss zu, dass die MAPK, ob direkt oder indirekt, eine wichtige Rolle im Rahmen der Bildung von WAVE1- und Dextran-Vesikeln spielt. Es konnte ein hypothetisches Modell eines Signalweges von WAVE1 erstellt werden: Phagozytotische Stimuli wie Dextrane aktivieren die GTPase Rac. Dies führt zur Rekrutierung und Aktivierung von Effektorproteinen wie PAK1 und NCK-1. Aktiviertes NCK-1 bindet WAVE1 und kann dieses seinerseits an die Plasmamembran rekrutieren. Dort könnten bspw. an der Zellfront WAVE1-abhängig membrane ruffles entstehen. Durch einen möglichen positiven feedback loop wird die Aufnahme von Dextran erleichtert. Aktiviertes PAK1 aktiviert die MAPK und beeinflusst WAVE1. Durch die Aktivierung von WAVE1, NCK-1 und PAK1 erfolgt die Bildung von WAVE1-Vesikeln. Diese WAVE1-Vesikel kolokalisieren im Laufe des endolysosomalen Pathway mit den internalisierten Dextran-Vesikeln und werden wahrscheinlich Lysosomen zur Degradierung zugeführt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Zusammensetzung und Arbeitsweise des Tic Komplexes ist noch ungeklärt. Tic110 ist die einzige von sieben Komponenten, die allgemein akzeptiert ist. Die Funktion und genaue Topologie des Proteins ist aber noch umstritten (Abb.3). Im Rahmen dieser Arbeit wurden verschiedene Experimente zur Klärung der Topologie und Funktion des Proteins durchgeführt. Zum Einen wurde über ein CD-Spektrum eine alpha-helikale Sekundärstruktur für Tic110 gezeigt. Proteasebehandlung sowohl von Vesikeln der inneren Hüllmembran als auch von intakten Chloroplasten lassen vermuten, dass Bereiche von Tic110 in den Intermembranraum zeigen. Auf der anderen Seite weisen Affinitätschromatographieversuche mit dem C-Terminus von Tic110 darauf hin, dass das Protein im Stroma mit HSP93 und HSP70 interagiert. Diese Ergebnisse lassen vermuten, dass ein Teil des C-Terminus in den Intermembranraum ragt und ein anderer Teil ins Stroma. Ob im C-Terminus amphiphile Helices ausgebildet werden können, muss geklärt werden. Mengenmäßig ist Tic110 prominenter in der inneren chloroplastidären Hüllmembran vorhanden als Tic20, der andere „Kandidat“ für die Pore des Tic Komplexes. Im Vergleich zur Menge von Toc75, der Pore der äusseren Hüllmembran, ist Tic110 in ähnlichen Mengen vorhanden. Tic110 ist also ein geeigneter Kandidat, an der Porenbildung beteiligt zu sein. Desweiteren wurden Interaktionspartner vom N-Terminus von Tic110 gesucht. Dabei wurde ein 32 kDa Protein gefunden, dass große Homologien zu sogenannten „short-chain“ Dehydrogenasen aufweist. In der vorliegenden Arbeit wurde über Importversuche und Immunpräzipitationsexperimente eine Zugehörigkeit des Proteins zum Tic Komplex gezeigt. Die Komponente wurde Tic32 genannt. Tic32 ist eine funktionelle Dehydrogenase, deren Beteiligung während des Importprozesses noch zu klären bleibt. T-DNA Insertionslinien von Tic32 ergaben, dass das Protein für die für die Plastidenentwicklung essentiell ist. Da mit Tic32 neben Tic55 und Tic62 nun schon die dritte Tic Komponente gefunden wurde, die Redox Charakteristika aufweist, wurden verschiedene Importexperimente durchgeführt. Dafür wurden zwei chloroplastidäre FNR-Isologe und zwei chloroplastidäre Fd-Isologe in Chloroplasten importiert, deren Redoxzustand vor der Importreaktion mit verschiedenen Metaboliten oder Redoxkomponenten beeinflusst wurde. Sowohl nach Behandlung der Chloroplasten mit HAR, deamino-NAD, Oxalacetat und Kaliumhexacyanoferrat nimmt die Importeffizienz der FNR L2 Form stark ab. Auch für die Ferredoxin-Isologe ließ sich ein unterschiedliches Importverhalten feststellen, wenn auch nicht so eindeutig wie für die FNR-Isologe. Dieser Regulationsmechanismus muß nun in weiteren Experimenten genauer untersucht werden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
In dieser Arbeit wurde gezeigt, dass die Zellen des Glomus caroticum der Ratte alle notwendigen Komponenten zur Biosynthese, Speicherung und Freisetzung von Dopamin und Histamin besitzen und diese Transmitter bei Hypoxie freisetzen können. Erstmals wurde hier Histamin als Transmitter im Glomus caroticum nachgewiesen: es wurde gezeigt, dass die Sensorzellen des Glomus caroticum das Histamin synthetisierende Enzym exprimieren. Die Speicherung von Histamin in Vesikeln erfolgt mit Hilfe eines vesikulären Monoamintransporters (VMAT2). Bisher bekannte immunhistochemische Ergebnisse über die Expression dieses Transportproteins in den Sensorzellen konnten bestätigt und mittels RT-PCR-Untersuchungen belegt werden. Ferner wurde nachgewiesen, dass die Sensorzellen auch über wichtige Komponenten des Exozytoseapparates verfügen. Darüber hinaus zeigten RT-PCR- Untersuchungen, dass im Glomus caroticum die mRNA der Histaminrezeptoren H1, H2 und H3 exprimiert wird. Die Menge an Histamin im Glomus caroticum wurde mittels Radioimmunoassay bestimmt. Im Glomus caroticum ist mehr Histamin enthalten als in anderen Geweben der Ratte, und die Menge an Histamin ist um ein Vielfaches größer als die Menge des im Glomus caroticum enthaltenen Dopamins. In vitro Experimente zeigten, dass die Freisetzung von Histamin aus dem Glomus caroticum durch Hypoxie verstärkt wird. Eine vermehrte Freisetzung bei Hypoxie konnte amperometrisch auch für Dopamin bestätigt werden. Es wurde hier zum ersten Mal beschrieben, dass ein Zelltyp zwei verschiedene Amine als Transmitter nutzt. Damit spielt sowohl Dopamin als auch Histamin eine wesentliche Rolle bei der Kontrolle der Sauerstoffversorgung des Organismus und, aufgrund der Lage des Glomus caroticum, besonders des Gehirns. Mit dem Nachweis von Expression und Aktivität des limitierenden Enzyms für die Tetrahydrobiopterin-Synthese wurde gezeigt, dass das Glomus caroticum sämtliche für die Dopaminsynthese notwendigen Schritte selbst durchführen kann. Damit erfüllt das Glomus caroticum die notwendigen Eigenschaften für eine erfolgreiche Autotransplantation in das Striatum bei Morbus Parkinson.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Der Großteil der in eukaryontischen Zellen ablaufenden chemischen Reaktionen finden in Zellkompartimenten statt, die durch Membranen eingeschlossen werden. SNARE-Proteine sind essentielle Komponenten für die Fusion von gleichartigen (homotypischen) als auch verschiedenartigen (heterotypischen) Membranen. SNAREs sind meist über eine C-terminale Transmembran-Domäne in der „Geber“-Membran verankert. N-terminale 60-70 Aminosäuren lange Hepta-Peptide (SNARE-Motiv) können über Coiled-Coil Formierung den Kontakt mit einem SNARE an der „Empfänger“-Membran herstellen (trans-SNARE Komplex). In der vorliegenden Arbeit wurden die Plasmamembran SNAREs SNC1 und SNC2 in Saccharomyces cerevisiae auf posttranslationale Modifikation durch Ubiquitin untersucht. Dabei stellte sich heraus, dass die Ubiquitylierung an mindestens zwei Lysinen im Substrat erfolgt. Die kovalente Verknüpfung erfolgt durch die Ubiquitin-Ligase RSP5. In Mutanten, die die Sekretion von SNC1/SNC2 zur Plasmamembran inhibieren (sec17-1, sec18-1, sed5-1 und sec1-1), liegen die SNAREs in nicht-modifizierter Form vor. In den Endozytose-Mutanten end3 und end4, die für die Invagination von endozytotischen Vesikeln defekt sind, akkumuliert ubiquityliertes SNC1 an der Plasmamembran. Die Ubiquitylierungs-Reaktion muß daher an der Plasmamembran erfolgen. Eine der Ubiquitylierungsstellen, Lysin-63, befindet sich in der Coiled-Coil-Domäne der SNAREs. Der Austausch des Lysins durch ein Arginin an dieser Stelle führt dazu, dass SNC1 nicht mehr in das Lumen der Vakuole lokalisiert wird. Stattdessen verbleibt das Protein in der Membran der Vakuole. Die zweite Ubiquitylierungsstelle konnte noch nicht identifiziert werden. Das Ubiquitin Bindeprotein DDI1 interagiert mit SNC1/SNC2, und beeinflußt die Verfügbarkeit des SNAREs für den trans-SNARE Komplex. Ob DDI1 über die interne UBA (ubiquitin-associated)-Domäne mit ubiquityliertem SNC1/SNC2 interagiert, ist noch unbekannt.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die vorliegende Arbeit hatte zum Ziel, (i) die regulatorische Funktion bestimmter integraler Membranproteine im Dictyostelium Zytoskelett und (ii) die biochemische Interaktion einer Kinase eines infektiösen Bakteriums mit Aktin aus der Wirtszelle genauer zu analysieren. (i) Die ubiquitären Mitglieder der CD36/LIMPII-Familie sind integrale Membranproteine, die als Lipidrezeptoren und Zelladhäsionsproteine in der Plasmamembran oder - mit bisher unbekannter Funktion - in Membranen endosomaler Vesikel vorkommen. In Dictyostelium discoideum führte die Inaktivierung eines lysosomalen Membranproteins aus dieser Gruppe zur Suppression des Phänotyps einer Profilin-minus Mutante. Im Zuge der vollständigen Sequenzierung des D. discoideum-Genoms konnte festgestellt werden, daß es neben diesem DdLmpA noch die beiden weiteren homologen Proteine DdLmpB und DdLmpC gibt. Da der Mechanismus der Suppression des Profilin-minus Phänotyps ungeklärt ist, wurden die beiden Isoformen im Rahmen der vorliegenden Arbeit genauer charakterisiert. Sowohl für DdLmpB wie auch für DdLmpC konnte die familientypische Membran-Topologie einer Haarnadelstruktur nachgewiesen werden. Dabei weist die zentrale, lumenale Domäne beider Proteine zahlreiche Glykosylierungen auf. Durch Immunofluoreszenz und Saccharosegradienten wurde die Lokalisation der drei Isoformen an endolysosomalen Vesikeln nachgewiesen. Es stellte sich dabei heraus, daß die drei DdLmp-Proteine in unterschiedlichen Vesikelpopulationen auftraten. Auch “pulse-chase“-Experimente mit TRITC-Dextran und nachfolgender Markierung der Vesikel mit DdLmp-spezifischen Antikörpern ergaben unterscheidbare Zeitmuster für die Rekrutierung der Membranproteine in Vesikeln. Die für DdLmpA oft beobachtete Kolokalisation mit Makropinosomen konnte z.B. für DdLmpB und DdLmpC nur selten festgestellt werden. Nach zahlreichen Versuchen und der Konstruktion von verschiedenen Vektoren konnte am Ende der praktischen Arbeiten eine DdLmpB-minus Mutante im Wildtyp-Hintergrund isoliert werden. (ii) Im zweiten Teil der Arbeit wurde die in der Literatur beschriebene Interaktion zwischen Aktin und der Kinase YopO, die durch Yersinia enterocolitica als Effektorprotein in die Wirtszelle transloziert wird, biochemisch genauer untersucht. Es konnte festgestellt werden, daß G-Aktin und nicht F-Aktin für die Aktiverung der YopO-Kinase verantwortlich ist. Dabei tritt Nichtmuskel-Aktin im Vergleich zum Muskel-Aktin als ein deutlich besserer Aktivator von YopO auf. Obwohl die aktivierte Kinase in vivo das Aktin-Zytoskelett beeinflußt, ist Aktin offensichtlich kein Substrat von YopO. Mittels Fluoreszenzspektroskopie konnte gezeigt werden, daß sowohl die native Kinase YopO als auch das durch Punktmutation inaktivierte YopO K269A die Polymerisierungskinetik von Aktin behindern. Für eine mutmaßliche Aktin-Binderegion von 20 Aminosäuren aus dem C-terminalen Ende konnte hingegen kein Effekt beobachtet werden. Der Einfluß von aktinbindenden Proteinen, aktinmodifizierenden Substanzen und YopO-bindenden GTPasen auf die Aktivierung der Kinase durch Aktin deutet darauf hin, dass die Aktivität der Kinase in der Wirtszelle nicht nur durch Aktin alleine, sondern auch durch weitere Zytoskelett-Komponenten reguliert wird.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Prion-Protein ist in seiner infektiösen Form für das Auftreten und die Übertragung von transmissiblen spongiformen Enzephalopathien verantwortlich. Diese Erkrankungen können bei Mensch und Tier auftreten, wobei die bekannteste tierische Form der „Rinderwahn“ bzw. BSE ist. Die häufigste Prion-Krankheit beim Menschen ist die Creutzfeldt-Jacob-Krankheit, deren neue Variante im Zusammenhang mit dem Auftreten von BSE steht. Die pathologische Form des Prion-Proteins (PrPSc) wird durch posttranslationale Umwandlung aus der apathogenen physiologischen Isoform PrPC gebildet. Dieses Protein wird vor allem in neuronalem Gewebe exprimiert und ist in allen Säugetieren hoch konserviert. Die Funktion des zellulären, apathogenen Prion-Proteins ist noch immer nicht geklärt, da Mäuse ohne dieses Protein gesund sind und keinen pathologischen Phänotyp haben. Daher müssen alternative experimentelle Ansätze unternommen werden, um zur Klärung der physiologischen Funktion beizutragen. In der vorliegenden Arbeit wurde deshalb mittels eines „Yeast-Two-Hybrid“-Screens nach Interaktoren des zellulären Prion-Proteins der Maus gesucht, welche in murinem Gehirn exprimiert werden. Es konnten in Hefe erfolgreich mehrere Proteine identifiziert werden, die bislang noch nicht als mögliche Interaktoren des zellulären Prion-Proteins beschrieben worden waren. Drei dieser Isolate wurden ausgesucht, um deren physiologische Interaktion mit PrP näher zu charakterisieren: Pint1, Synapsin Ib und Grb2. Mittels Copräzipitation konnte bestätigt werden, dass auch in Säugetierzellen eine physiologische Wechselwirkung zwischen den identifizierten Interaktoren und PrP auftritt. Das Protein Pint1 wurde bislang noch nicht beschrieben und besitzt eine hoch konservierte Aminosäureregion, die in Proteinfragmenten vom Menschen bis zum Wurm C. elegans zu finden ist. Die beiden anderen untersuchten Proteine sind beide an verschiedenen Wegen der zellulären Signaltransduktion beteiligt. Synapsin Ib ist mit synaptischen Vesikeln assoziiert, womit eine mögliche Verbindung zwischen der zellulären Funktion von PrPC und extrazellulären bzw. endokrinen Signalwegen besteht. Grb2 ist ein Adaptorprotein mit vielfältigen Aufgaben, vor allem der Kopplung von Membranrezeptoren mit intrazellulären Signalkaskaden. Durch den Nachweis einer Interaktion dieser beiden Proteine mit dem zellulären Prion-Protein konnte in der vorliegenden Arbeit erstmals ein physiologischer Zusammenhang zwischen PrPC und intrazellulären Signaltransduktionswegen gezeigt werden.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Lyme Borreliose ist die häufigste durch Zecken übertragene Infektionskrankheit des Menschen auf der Nordhemisphäre. Der Erreger Borrelia burgdorferi s. l. wird in drei humanpathogene Arten, B. burgdorferi s. s., B. garinii und B. afzelii unterteilt. Im Rahmen dieser Arbeit wurde die Struktur von Borrelia afzelii am Beispiel des Stamms PKo, dem Hautisolat eines Patienten, mit Hilfe elektronenmikroskopischer Methoden untersucht. Raster- und transmissionselektronenmikroskopische Untersuchungen an Borrelien des B. afzelii Stammes PKo wurden zur Aufklärung der Ultrastruktur der Borrelienzelle unter in vitro Kultur- Bedingungen durchgeführt. In Abhängigkeit vom Kulturalter zeigen die Borrelien starke strukturelle Veränderungen, die rasterelektronenmikroskopisch gut zu untersuchen sind. Während der log-Phase nimmt die Anzahl der Schraubenwindungen zu und somit auch die Länge der Borrelien. Gegen Ende der log- Phase verlieren die Borrelien ihre typische Schraubengestalt. Im Lichtmikroskop (Dunkelfeld) kann man gleichzeitig einen Verlust der Beweglichkeit beobachten. Allerdings bedeutet der Verlust der Beweglichkeit nicht wie bisher angenommen gleichzeitig den Tod der Borrelien, da sich nach dem Überimpfen in frisches Kulturmedium wieder bewegliche schraubenförmige Borrelien bilden. Die Untersuchungen zur Ultrastruktur der Borrelienzelle wurden an Borrelien aus der log-Phase der Kultur durchgeführt. Die Borrelienzellen sind zu diesem Zeitpunkt 10–20 µm lang und besitzen 3–9 Schraubenwindungen. Ultradünnschnitte zeigen, daß die Borrelien aus einem Protoplasmazylinder bestehen, der von einer 4 nm dünnen Zellmembran begrenzt wird. An ihn schließt sich im Abstand von 5 nm die Zellwand an. Die Borrelienzellen sind von einer äußeren Membran umgeben, die den periplasmatischen Raum umschließt. Diese Membran ist zu einem Tunnel aufgewölbt in dem die Endoflagellen liegen. An jedem Zellende befinden sich 7–9 Flagellenansatzstellen, die in der Längsachse der Borrelienzelle angeordnet sind. Jede der Flagellen inseriert nur an einem Zellende. Im mittleren Bereich der Borrelienzelle kommt es zu einer Überlappung der Flagellen der beiden Zellenden. Die Überlappungsregion ist jedoch nur undeutlich abzugrenzen. Auf Grund dieser Untersuchungen konnte ein detailliertes, maßstabsgetreues Modell einer Borrelienzelle rekonstruiert werden. Ein weiteres Untersuchungsziel war die Aufklärung der Lokalisation wichtiger immundominanter Proteine. Mit Hilfe von Immun-Gold-Markierungen konnte durch hochauflösende Rasterelektronenmikroskopie gezeigt werden, daß die Proteine p17 (Osp17), p35 (Osp35) und p58 (Osp58) auf der Oberfläche der äußeren Membran der Borrelienzelle lokalisiert sind. Durch die Optimierung der Markierungsmethode konnte das Signal so weit gesteigert werden, daß die gleichmäßige Verteilung dieser Proteine über die gesamte Zelloberfläche dargestellt werden konnte. Auf Grund ihrer Lokalisation auf der Oberfläche der Borrelienzelle kommen diese Proteine grundsätzlich als Vakzinekandidaten in Frage. Die Lokalisation typspezifischer und konservierter Epitope der beiden immunologisch heterogenen Oberflächenproteine OspA und OspC konnte durch Immun-Gold-Markierungen mit Hilfe typspezifischer und breitreaktiver monoklonaler Antikörper nachgewiesen werden. Typspezifische und konservierte Epitope beider Proteine befinden sich auf der Oberfläche der äußeren Membran. Die Lokalisation breitreaktiver Epitope von OspA und OspC auf der Oberfläche der Borrelienzelle läßt den Einsatz dieser Proteine als Impfantigene auch im europäischen Raum erfolgversprechend erscheinen. Des weiteren konnte im Rahmen dieser Arbeit eine Methode entwickelt werden, die es erlaubt kokkoide Morphotypen der Borrelienzelle zu erzeugen. Durch die Inkubation von Borrelien in Aqua dest. gelingt es innerhalb weniger Minuten auf reproduzierbare Weise diese Formvarianten der Borrelien zu erzeugen. Mittels Vitalfärbungen konnte gezeigt werden, daß es sich bei den kokkoiden Morphotypen um lebende Formvarianten der Borrelienzelle handelt. Diese Formvarianten sind nicht kultivierbar. Nach dem Überführen in Kulturmedium sind nach 4–5 Tagen nur noch schraubenförmige Borrelienzellen zu beobachten. Bei den kokkoiden Morphotypen handelt sich um eine kugelförmige Anschwellung der äußeren Membran in der sich der Protoplasmazylinder in engen Windungen aufrollt. Der vom aufgerollten Protoplasmazylinder umgebene Raum ist weitgehend strukturlos. Die Flagellen befinden sich auf der von der äußeren Membran abgewandten Seite es Protoplasmazylinders. Die Rekonstruktion von Serienultradünnschnitten ergab, daß diese kokkoiden Morphotypen jeweils von einer einzelnen Borrelienzelle gebildet werden; Protoplasmazylinder, Zellwand und äußere Membran bleiben intakt. Darüber hinaus konnte am Beispiel von Osp17, Osp35 und OspC gezeigt werden, daß die Oberflächenproteine der schraubenförmigen Borrelienzelle auch bei den kokkoiden Morphotypen auf der Oberfläche lokalisiert sind. Diese drei Proteine sind auch auf den kokkoiden Morphotypen gleichmäßig über die gesamte Oberfläche verteilt. Allerdings kommt es bei der Bildung der kokkoiden Morphotypen im Vergleich zu den schraubenförmigen Borrelienzellen zu einer deutlichen Reduktion der Oberfläche. Diese Formvarianten besitzen somit nur eine reduzierte Angriffsfläche für die Antikörper des Wirts. Sie stellen also möglicherweise Formen dar, die es den Borrelien ermöglichen dem Abwehrsystem des Wirts auszuweichen. Außerdem wurde die Adhäsion von Borrelien zweier unterschiedlicher Spezies an humane Astrozyten untersucht. Dafür wurde außer dem bereits erwähnten B. afzelii Stamm PKo der B. garinii Stamm PBi eingesetzt. Hierbei handelt es sich um ein Isolat aus dem Liquor eines Patienten. In einem über 24 Std. Zeitdauer durchgeführten Koinkubationsversuch konnte mittels Lichtmikroskopie gezeigt werden, daß beide Stämme an die Astrozyten adhärieren. Borrelien des B. afzelii Stamms PKo adhärieren jedoch insgesamt weit häufiger als solche des B. garinii Stamms PBi. Bei den rasterelektronenmikroskopischen Untersuchungen zeigte sich, daß eine Vielzahl von Borrelien beider Stämme mit den Zellausläufern am Rand der Astrozyten und auf deren Oberfläche in Kontakt treten. Die Fähigkeit der Borrelien an die Astrozyten zu adhärieren spielt möglicherweise eine Rolle beim Übertritt von der Blutbahn ins Gehirn. Eine deutlich Reaktion der Astrozyten auf den Kontakt mit den Borrelien in Form von Oberflächenveränderungen ist nicht zu erkennen. Bei beiden Stämmen können im Rahmen der rasterelektronenmikroskopischen Untersuchungen Borrelien gefunden werden, die in die Zellen eindringen. Dieses Eindringen kann mit Hilfe von Ultradünnschnitten durch die Koinkubationspräparate im TEM bestätigt werden. Hierbei konnten Borrelien sowohl in Vesikeln, als auch frei im Zytoplasma derAstrozyten gefunden werden. Die intrazellulär liegenden Borrelien waren auch nach 24 Std. noch intakt. Es sind keine Degenerationsformen zu erkennen. Durch das Eindringen in die Astrozyten gelingt es den Borrelien möglicherweise über längere Zeit im Wirt zu überdauern.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die vorliegende Arbeit beschäftigt sich mit den molekularen Grundlagen polaren Wachstums im phytopathogenen Basidiomycet Ustilago maydis. Zunächst wurde die zelluläre Rolle des t-SNAREs Yup1 analysiert. Ein temperatursensitiver Defekt im yup1-Gen hatte zu Störungen in der Zelltrennung und im polaren Wachstum von Sporidien geführt. Mutante Zellen bildeten dabei lange verzweigte Ketten aus verdickten Zellen. Die Lokalisation eines Yup1-GFPFusionsproteins auf beweglichen Organellen hatte zum Aufstellen eines spekulativen Modells geführt, bei dem Yup1 auf Endosomen die Fusion mit ankommenden endozytotischen Vesikeln vermittelt. Eine erstmalige Charakterisierung der Endozytose von U. maydis in dieser Arbeit zeigte, dass es sich bei den mit Yup1-GFP markierten, schnellen Organellen tatsächlich um frühe Endosomen handelte. Diese akkumulierten Zellzyklus-abhängig an Regionen aktiven Wachstums in BSDs. Die Akkumulation früher Endosomen im Apex von Hyphen war für das Spitzenwachstum erforderlich. In yup1ts-Zellen war bei restriktiver Temperatur eine gestörte Endozytose zu beobachten. Dieser Zusammenhang zwischen Zellmorphologie und polarer Sekretion einerseits und Endozytose andererseits deutete darauf hin, dass Membranrecycling über frühe Endosomen entscheidend am polaren Wachstum von U. maydis-Zellen im Speziellen und pilzlichen Hyphen im Allgemeinen mitwirkt. Mittels des Yup1-GFP-Fusionsproteins konnten die molekularen Grundlagen der beobachteten Bewegung von Endosomen untersucht werden. Es wurde gezeigt, dass sich frühe Endosomen entlang von MT bewegen. Für diese Bewegung war in erster Linie das Kinesin Kin3 verantwortlich. Dieses Molekül ist ein neues Mitglied der Unc104/KIF1-Familie von Kinesin-ähnlichen molekularen Motoren und bewegt als solches vermutlich in Richtung der plus-Enden von MT. Gelfiltrationsexperimente legten nahe, dass Kin3 in der Zelle als Monomer vorliegt. Die N-terminale Motordomäne zeigte in vitro eine MTstimulierte ATPase Aktivität. Ein Kin3-GFP-Fusionsprotein lokalisierte in schnell beweglichen Flecken, die im Bewegungsverhalten den frühen Endosomen glichen. Ein Kin3-YFP-Fusionsprotein bewegte entlang von MT und kolokalisierte zudem mit einem Yup1-CFP-Fusionsprotein auf Endosomen. Die Deletion von kin3 führte zu einer starken Reduzierung der Endosomenbewegung. Die in vivo-Untersuchung der MT-Dynamik im Δkin3-Stamm ergab, dass der Großteil der Endosomen in Akkumulationen an den minus-Enden der MT konzentriert war. Entsprechend führte die Überexpression von kin3 zu einer verstärkten Konzentration der Endosomen an den plus-Enden von MT. Die Zellform einzelner Sporidien war im kin3-Deletionsstamm nicht verändert. Allerdings trennten sich die Zellen nach der Teilung wie in der yup1ts-Mutante nicht voneinander. Dieser Trennungsdefekt und ein verändertes Knospungsmuster führten zur Bildung von großen Baum-ähnlichen Zellaggregaten. Im Hyphenstadium führte die Deletion von kin3 außerdem zu einer deutlichen Störung des polaren Wachstums. Die nach Deletion von kin3 beobachtete Restbewegung der Endosomen beruhte fast ausschließlich auf der Aktivität des zytoplasmatischen Dyneins von U. maydis. Das konventionelle Kinesin von U. maydis, Kin2, zeigte ebenfalls einen Einfluss auf die Organisation und Position endosomaler Akkumulationen, obwohl es vermutlich nicht direkt am Transport einzelner Endosomen beteiligt ist. Die präsentierten Daten zeigen, dass Endosomen MT- und Zellzyklus-abhängig organisiert sind. Die Position der BSDs korrelierte dabei mit Funktionen der Endosomen bei der Zelltrennung, in der Bestimmung des Knospungsmusters und beim polaren Wachstum. Da die MT während des Knospenwachstums unipolar ausgerichtet sind, nutzt die U. maydis-Zelle das Wechselspiel des plus-Motors Kin3 und des minus-Motors Dynein, um die Endosomen Zellzyklus-abhängig an den plus- oder minus-Enden der MT zu akkumulieren.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
In der vorliegenden Arbeit wurde die Funktion ausgesuchter Aminosäuren in der archaealen Protonenpumpe Bacteriorhodopsin (BR) bei der Entstehung der zweidimensional kristallinen Purpurmembran (PM) in Halobacterium salinarum untersucht. Mittels gerichteter Mutagenese wurden aromatische Gruppen (W12, Y64, W80) gegen andere Reste ausgetauscht und die mutierten Gene homolog exprimiert. Die Tryptophanmutationen hatten dabei eine drastische Störung der PM-Bildung zur Folge, was auf wichtige Wechselwirkungen mit Lipidmolekülen schließen ließ. Insbesondere der Tryptophanrest W80, der mit dem Phythanylrest eines Glykolipids im Zentrum des Trimers wechselwirkt, zeigte seine essentielle Bedeutung für die PM-Bildung. Eine Abhängigkeit der PM-Bildung von der vorhandenen BR-Menge und Wachstumsphase konnte beim Wildtyp (WT) ausgeschlossen werden. Gefrierbruchelektronenmikroskopische Aufnahmen von ganzen Zellen zeigten bei der Mutante BR-W12I zahlreiche kleinere kristalline Bereiche auf der Oberfläche, während die Zellen mit BR-W80I nahezu keine geordneten Flächen aufwiesen. Mit Hilfe von Rotationsdiffusionsmessungen in Vesikeln und Elektronenspinresonanz(ESR)-Spektroskopie von spinmarkierten Cysteinmutanten wurde eine Zunahme der Mobilität der markierten Seitenketten und des mittleren Abstands der BR-Moleküle nachgewiesen. Lichtinduzierte Proteinvernetzung zeigte eine deutliche Auflockerung der kristallinen Struktur der mutierten BR-Moleküle in der Zellmembran, vor allem bei BR-W80I. Die Funktion von BR als Protonenpumpe wurde durch die Mutationen nicht beeinträchtigt, ebenso wurde keine durch die PM bewirkte höhere Photophosphorylierungsrate in den Zellen nachgewiesen, weshalb eine Begünstigung dieser Prozesse als Erklärung für die in vivo- Kristallisation ausgeschlossen wurde. Der Einfluß der Mutationen auf die spektroskopischen Eigenschaften war vergleichsweise gering. Jedoch bot die Abnahme der Lichtadaptationsfähigkeit und Zunahme des Anteils an inaktiven 9- und 11-cis-Retinalisomeren in lichtadaptierten Proben eine plausible Erklärung für die Bildung der kristallinen PM. Die Bildung des 9-cis-Isomeren führt zur Spaltung der Bindung zwischen Retinal und dem Protein. Dies wurde durch Belichtung von Zellen mit BR-W80I nachgewiesen, die innerhalb weniger Stunden ihren aktiven Chromophor in BR verloren. Demnach wird durch die kristalline Anordnung von BR die thermoreversible Isomerisierung von all-trans- zu 13-cis-Retinal so stark bevorzugt, dass die funktionelle Stabilität des Proteins gewährleistet ist. Dies erklärt den evolutionären Vorteil des kristallinen Form des BR als Purpurmembran. Das Vorkommen von zweidimensionalen Kristallen von Halorhodopsin (HR) mit hexagonaler Ordnung im Überexpressionsstamm D2 wurde mittels Gefrierbruchelektronenmikroskopie nachgewiesen. Eine ähnliche Anordnung wurde in 3D-Kristallen gefunden, die im Rahmen dieser Arbeit durch Aufreinigung des Proteins und Kristallisation in kubischen Lipidphasen erhalten wurden (Kolbe et al., 2000). Damit wurde gezeigt, dass in den 3D-Kristallen von HR die gleiche Anordnung wie in der Zellmembran auftreten kann. Dies ließ auch auf eine physiologische Relevanz des Palmitatmoleküls schließen, das im Innern des HR-Trimers in der Kristallstruktur gefunden wurde. Die Affinität dieser Fettsäure zu HR wurde durch Markierung der Zellen mit 3H-Palmitat untersucht. Aus diesen Experimenten ging hervor, dass die Affinität der Palmitinsäure zu HR im Vergleich zu BR nicht höher ist. Eine BR-Mutante, die in einer nichtkristallinen Anordnung vorlag, wurde als Kontrolle verwendet. Es wurde ein Vektor konstruiert, der die Klonierung und homologe Expression von Genen für lösliche Proteine als Fusionsprotein am C-terminus von BR ermöglicht. Dies wurde mit dem Gen für das Ferredoxin von H. salinarum erfolgreich durchgeführt. Die rasche Aufreinigung der entstandenen PM mittels Zentrifugation in einem Saccharosedichtegradienten führte zu einer einfachen Abtrennung von einem Großteil anderer Proteine. Durch Einführung spezifischer Proteaseschnittstellen wurde auch eine Spaltung des Fusionsproteins ermöglicht. Die Koexpression löslicher Proteine mit BR in der PM bietet enorme Vorteile aufgrund der hohen Expressionsrate des Bacterioopsingens (bop), der Induzierbarkeit des bop-Promoters, die einfache Aufreinigung und der Möglichkeit zur Expression von Mutanten von essentiellen Genen ohne deren vorherige Deletion. Die Eignung dieses Systems für die einfache Isolierung von löslichen Proteinen als Fusionsprotein mit BR wurde im Rahmen dieser Arbeit bestätigt.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Das Kraftmikroskop hat sich in vieler Hinsicht als effizientes Gerät für Untersuchungen und Manipulationen auf molekularer Ebene erwiesen. Dabei wird selbst unter physiologischen Bedingungen eine Auflösung erreicht, die Proteinsubstrukturen erkennen läßt. Als Kraftspektroskop kann es mechanische Eigenschaften wie Dehnungsverhalten und Reißfestigkeit einzelner Moleküle, die zwischen der Sensorfeder und der Unterlage eingespannt werden, untersuchen. Sogar die Bindungskräfte zwischen einem Molekül am Kraftsensor und einem anderen am Substrat können mittels Kraftspektroskopie mit etwa 3 pN Genauigkeit ermittelt werden. Von besonderem Interesse solcher Untersuchungen sind Moleküle mit spezifischer Affinität nach dem Schlüssel-Schloß-Prinzip, wie Rezeptor-Ligand- Systeme und Adhäsionsmoleküle. Bisher waren hauptsächlich wasserlösliche Moleküle solchen Messungen zugänglich. Bindungen zwischen amphiphilen Proteinen oder Membranproteinen zu messen, die durch hydrophobe Wechselwirkungen in der Membran verankert sind, erfordert neue Konzepte. Diesen Molekülen gilt das Augenmerk dieser Arbeit. Da die Verankerung in sogenanten „supported bi-layern“ und Vesikeln nicht immer zum gewünschten Erfolg führt, wird hier eine ungewöhnliche, aber sehr natürliche Alternative vorgestellt: Das Adhäsionsmolekül wird nicht aufwendig isoliert und der Meßmethode zugänglich gemacht, sondern bleibt in seiner natürlichen Umgebung, der Zelle, wohingegen die Methode angepasst wird. Dies ist durch die Befestigung einer Zelle am Kraftsensor eines Kraftspektroskopes geglückt und es gelang damit erstmals die Adhäsionskraft eines einzelnen Adhäsionsmoleküls in einer lebenden Zelle zu messen. So einfach diese Methode beschrieben ist, so viele Unwägbarkeiten treten dabei durch die hohe Komplexität der Zelle und der Zelloberfläche im Besonderen auf. Daher wird einleitend eine grobe Einführung in die Funktionen und den Aufbau einer Zelle und die üblichen Meßmethoden im Bereich der Zelladhäsionsmessung vorgestellt. Die Beschreibung der Meßmethode und der Umrüstung des Kraftmikroskopes zum Zelladhäsionskraftspektroskop sind durch technische Details im Anhang vervollständigt. Etwas aufwendig ist die Zusammenstellung der Daten, Theorien und Annahmen zum Aufbau eines semi-empirischen Modells zur Beschreibung der Adhäsionskraftmeßkurven beim Trennen adhärierender Zellen, auf der Basis vieler unabhängiger Einzelmolekülbindungen. Mit dem Zelladhäsionkraftspektroskop wurden dafür die Youngs-Moduli und die viskoelastischen Kelvin-Modell-Parameter verschiedener Zellen in dem eigens entwickelten „visko-elastic-response-mode“ vermessen. Ebenso wurden die Einflüsse der Zellkontaktkraft und der Kontaktzeit, sowie der Zuggeschwindigkeit auf die Zelladhäsionsantwort studiert und in Formeln gefaßt. Das Modell simuliert diese Meßdaten in guter Übereinstimmung und gibt dadurch einen Einblick in die physikalischen Randbedingungen für das einzelne Adhäsionsmolekül während solcher Experimente unter Berücksichtigung des zelltypischen Phänomens der Tetherbildung. Insbesondere kann damit die Bindungsdichte bei Adhäsionen auf verschiedenen Oberflächen berechnet werden. Demnach schließt eine Epithelzelle etwa vier Bindungen pro Quadratmikrometer mit einer Glasoberfläche, zwei mit einer anderen Epithelzelle und nur 0,8 mit einer passivierten Oberfläche. Mit kraftspektroskopischen Messungen der Adhäsionskräfte bei der Einnistung eines Trophoblasten in die Gebärmutter an einem naturnahen Laborsystem kann eine andersartige - mit dem Modell unabhängiger Bindungen nicht beschreibbare - Wechselwirkung identifiziert werden. Die Meßergebnisse deuten auf einen kooperativen Prozeß der molekularen Adhäsionsinselbildung hin. Kontrollmessungen an funktionalisierten Oberflächen erhärten diese Hypothese. Mit ersten Ergebnissen von Adhäsionsmessungen zwischen Knochenzellen und potentiellen Implantatoberflächen wird neben dem Einfluß der Oberflächenbeschaffenheit auch der des Meßmediums nachweisbar, wodurch die Generalität dieser Methode verdeutlicht wird. Im letzten Kapitel über die Interaktionen einzelner Zellen wird anhand der induzierten Lektinwechselwirkung zwischen roten Blutkörperchen die prinzipielle Möglichkeit der Zelladhäsionskraftspektroskopie Einzelmolekülereignisse zu vermessen nachgewiesen. Die dafür nötigen geringsten Kontaktkräfte von unter 40 pN, konnten durch extrem weiche Kraftsensoren (