POPULARITY
Der Inhalt auf einen Blick: 00:00: Auswachsen in Dortmund 07:20: Umzug nach Bayern 13:37: Dortmund vs. Nürnberg 16:12: Die fünf Favoriten von Dortmund 24:27: Konkurrenz und Patriotismus 30:00: Vergleich: Multikulturalität Dortmund und Nürnberg
Der Inhalt auf einen Blick: 00:00: Auswachsen in Dortmund 07:20: Umzug nach Bayern 13:37: Dortmund vs. Nürnberg 16:12: Die fünf Favoriten von Dortmund 24:27: Konkurrenz und Patriotismus 30:00: Vergleich: Multikulturalität Dortmund und Nürnberg
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 15/19
Jedes Jahr erleiden weltweit circa 22 Menschen pro eine Million Einwohner eine Querschnittslähmung, die bei den Betroffenen zu dauerhaften Behinderungen und erheblichen Einschränkungen im Alltag führt. Die schwerwiegenden Defizite nach einer Querschnittslähmung, darunter Lähmungen und chronischer Schmerz, sind darauf zurückzuführen, dass geschädigte Axone im Rückenmark kaum regenerieren und es auch nur in geringem Ausmaß zur funktionellen Reorganisation der noch erhaltenen Nervenverbindungen kommt. Im Unterschied zum peripheren Nervensystem, wo zerstörte Nervenfasern erfolgreich regenerieren, ist die axonale Regenerationskapazität des zentralen Nervensystems (ZNS) spärlich ausgeprägt. Zwar konnte durch intensive Forschung im Verlauf der letzten Jahrzehnte eine Anzahl von „extrinsischen“ wachstumshemmenden Molekülen von Gliazellen und der extrazellulären Matrix des ZNS identifiziert werden. Es gibt jedoch zunehmend Hinweise darauf, dass zahlreiche dieser „extrinsischen“ Signale letztlich in „intrinsische“ Signalwege der Neuronen selbst einmünden um schließlich die Transkription neuronaler Gene zu verändern. Einer der interessantesten intrinsischen Regulatoren axonaler Regeneration ist der Transkriptionsfaktor ´Signal transducer and activator of transcription 3´ (STAT3). In dieser Arbeit habe ich mithilfe moderner In-vivo-Mikroskopie sowie viraler Gentherapie in Spinalganglien genetisch veränderter Mäuse zum ersten Mal die entscheidende Rolle von STAT3 in der intrinsischen Regulation axonaler Regeneration in vivo identifizieren können. So konnte nachgewiesen werden, dass die nur rudimentär ausgeprägte Regeneration der zentralen Fortsätze der Neuronen in den Spinalganglien mit einer fehlenden Induktion von STAT3 in den entsprechenden Ganglien einhergeht. Durch Überexpression von STAT3 mittels rekombinanter Adeno-assoziierter Viren in zervikalen Spinalganglien konnte zwei Tage nach Läsion das Auswachsen von Axonen sowie das Aussprießen von Kollateralen um mehr als das Vierfache gesteigert werden. Darüber hinaus konnte mittels repetitiver Multiphotonenmikroskopie einzelner fluoreszenzmarkierter Axone gezeigt werden, dass die Überexpression von STAT3 nur in der Frühphase (2-4 Tage) die axonale Wachstumsgeschwindigkeit erhöhen konnte, nicht aber zu einem späteren Zeitpunkt (4-10 Tage) nach Läsion. Um die Hypothese zu überprüfen, dass die fehlende Aufrechterhaltung des axonalen Wachstums durch Kontakt der aussprossenden Axone mit einem zunehmend inhibitorischen ZNS-Milieu bedingt ist, wurde die Überexpression von STAT3 zusätzlich mit der Applikation von Chondroitinase ABC, einem Enzym, das die inhibitorischen Moleküle der glialen Narbe neutralisieren kann, kombiniert. Dabei konnte ich zeigen, dass das durchschnittliche Wachstum von Axonen um mehr als das Zweifache gesteigert werden konnte. Aus den Ergebnissen meiner Versuche konnte ich mehrere Schlussfolgerungen ziehen: Erstens konnte ich STAT3 als effektiven Initiator axonalen Wachstums nach Rückenmarksläsion identifizieren. Zweitens wurde nachgewiesen, dass STAT3 selektiv Wachstum in der frühen Phase reguliert, nicht jedoch zu späteren Zeitpunkten. Daraus folgt, dass das axonale Regenerationsprogramm aus mindestens zwei verschiedenen, molekular distinkten Phasen besteht. Mit STAT3 wurde zum ersten Mal ein phasenspezifischer Regulator der axonalen Regeneration entdeckt. Abschließend konnte gezeigt werden, dass synergistische Therapien - wie hier durch die Kombination von STAT3 und Chondroitinase ABC belegt wurde - axonales Wachstum zusätzlich verbessern. Die gewonnenen Einblicke in die Mechanismen axonaler Regeneration geben Grund zur Hoffnung, dass in der Zukunft effektive Kombinationstherapien für Querschnittsgelähmte entwickelt werden können.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Das Epstein-Barr Virus (EBV) infiziert ruhende primäre humane B-Zellen und indu-ziert deren unbegrenzte Proliferation. Dieser Prozess der Wachstumstransformation stellt ein Modellsystem dar, das die pathogenen Mechanismen in der Tumorentsteh-ung widerspiegelt. Die Epstein-Barr Virus nukleären Antigene 3A und 3C (EBNA-3A und EBNA-3C) werden in Publikationen aus dem Zeitraum von 1993 bis 1996 als essentiell für den Prozess der B-Zellimmortalisierung eingestuft. In dieser Arbeit wurde mit einer neuen Technologie, der Maxi-EBV Methode, die Rolle der EBNA-3A und -3C Proteine erneut untersucht. Sowohl mit EBNA-3A negativen als auch mit EBNA-3C negativen Viren konnten erstmals Kulturen von infizierten B-Zellen etabliert werden. Während sich aus EBNA-3A negativen B-Zellkulturen Langzeitkulturen etablieren ließen, starben EBNA-3C negative B-Zellkulturen in der Regel nach 40-70 Tagen ab. Die Effizienz der B-Zellimmortalisierung von EBNA-3A negativen Viren war im Vergleich zur Wildtyp infizierten B-Zellen 24-fach, die der EBNA-3C negativen Viren 140-fach erniedrigt. Sowohl EBNA-3A negative, als auch EBNA-3C negative LCLs sind in ihrer Viabilität eingeschränkt, weisen jedoch unveränderte Zellteilungsraten auf. Die weitere Charakterisierung der EBNA-3A negativen LCLs ergab, dass diese eine Variante des viralen LMP1-Proteins exprimieren. Offen blieb, ob diese Variante das Auswachsen der EBNA-3A negativen B-Zellkulturen begünstigt hat. In der Folge wurden die EBNA-3A negativen LCLs zur Identifizierung von EBNA-3A-Zielgenen eingesetzt und zahlreiche aktivierte und reprimierte Kandidatengene identifiziert. Eines dieser Kandidatengene, Matrix-Metalloproteinase 7 (MMP-7), das durch EBNA-3A induziert wird, wurde im Rahmen dieser Arbeit validiert. Auch mit EBNA-3C negative Viren konnten wider Erwarten LCLs erzeugt werden, die für einen begrenzten Zeitraum in Kultur gehalten werden können. Aus dem Material eines Spenders war es auch möglich, EBNA-3C negative Langzeitkulturen zu etablieren. Die Mehrzahl der EBNA-3C negativen infizierten B-Zellkulturen durchlaufen jedoch zwischen Tag 40 und 70 eine Krise und sterben. Mit der Generierung eines konditionalen EBNA-3C Systems, durch Transfektion eines Tetrazyklin-regulierbaren EBNA-3C Expressionsvektors in frisch isolierte primäre B-Zellen und anschließender Infektion mit EBNA-3C negativen Viren, wurde ein neuer Weg geschaffen, um EBNA-3C-Funktionen zu untersuchen. Dieses 2-Schrittsystem kann nun im Prinzip für jede Virusmutante eingesetzt werden.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 01/19
Im Verlaufe der zellulären Reifung wandern (migrieren) unreife Nervenzellen von der Germinalschicht in ihre Zielschicht, in der sie nach dem Auswachsen von Dendriten synaptische Verbindungen bilden. Diese Reifungsprozesse gehen mit Anstiegen der intrazellulären Kalziumkonzentration, sogenannten Kalziumsignalen, einher. Während die Neurotransmitter GABA und Glyzin Nervenzellen des adulten Gehirns hyperpolarisieren und dadurch Aktivität hemmen, depolarisieren sie paradoxerweise unreife Nervenzellen und rufen dadurch Kalziumsignale hervor. In der vorliegenden Arbeit wurden die Rolle und der Mechanismus dieser Signale während der Nervenzellreifung mit Hilfe hochauflösender Kalzium- und Chloridfluoreszenzmessungen in Gehirnschnitten und in Zebrafischlarven untersucht. Es zeigte sich, dass GABA im Kleinhirn robuste Kalziumsignale sowohl in Körnerzellen während und nach Vollendung der Migration als auch in Purkinjezellen in einer Phase starken dendritischen Wachstums und ausgeprägter Synapsenbildung hervorruft. Als Mechanismus konnte in unreifen Nervenzellen ein Chloridausstrom identifiziert werden, der zu einer Depolarisation mit nachfolgender Aktivierung spannungsabhängiger Kalziumkanäle führt. Im Gegensatz dazu ruft GABA in reifen Nervenzellen einen Chlorideinstrom und dadurch eine Hemmung von Aktivität durch eine Hyperpolarisation der Zellmembran hervor. Neben der Untersuchung in Gehirnschnitten gelang in der vorliegenden Arbeit erstmals der Nachweis GABA-vermittelter Kalziumsignale in intakten Lebewesen. Dabei evozierten GABA und Glyzin Kalziumsignale in Rückenmarksneuronen von Zebrafischlarven zu einem Zeitpunkt, zu dem sie die ersten koordinierten Schwimmbewegungen vollzogen. Insgesamt zeigte sich, dass GABA, im Gegensatz zu seiner hemmenden Wirkung im adulten Gehirn, in unreifen Nervenzellen, die sich in einer Phase dramatischer morphologischer und funktioneller Veränderungen befinden, Kalziumsignale hervorruft. In Anbetracht der Bedeutung von Kalziumsignalen für die Reifung des Gehirns sprechen diese Ergebnisse für eine Rolle von GABA als trophischer Faktor.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Neurotrophine sind für die Entwicklung und Funktion des Nervensystems von Wirbeltieren unabdingbar. Sie entfalten ihre vielfältigen Funktionen über zwei Typen von Transmembranrezeptoren. Einerseits binden sie an die Trk-Rezeptoren, andererseits an den Neurotrophinrezeptor p75NTR. Obwohl p75NTR der erste klonierte Neurotrophinrezeptor war, wird die Wirkungsweise von Trk-Rezeptoren heute besser verstanden als von p75NTR. Erstens besitzen Trk-Rezeptoren als Rezeptortyrosinkinasen im Gegensatz zu p75NTR eine intrinsische enzymatische Aktivität, was die Aufklärung ihrer Signaltransduktionsmechanismen bedeutend erleichtert hat. Zweitens vermitteln Trk-Rezeptoren die klassische trophische Funktion der Neurotrophine, p75NTR hingegen neuartige Funktionen von Neurotrophinen, die zuvor noch nicht bekannt waren. Diese nicht-klassischen Funktionen, wie beispielsweise die Zelltod auslösende Wirkung von NGF, werden erst seit den letzten Jahren untersucht. Drittens konnte die Funktion der Trk-Rezeptoren in vollständigen Deletionsmutanten der Maus analysiert werden, wohingegen von p75NTR erst seit kurzem ein vollständiger Knockout existiert. In unserem Labor war nämlich gefunden worden, dass eine Spleißvariante von p75NTR in der bereits beschriebenen Deletionsmutante noch exprimiert wird. Am Beginn dieser Doktorarbeit stand die nähere Charakterisierung dieser Spleißvariante im Vordergrund. Um ihre physiologische Relevanz zu klären, wurde zunächst versucht, die Spleißvariante als endogenes Protein zu detektieren. Dies gelang in Kulturen aus primären Schwannzellen. Wie zudem gezeigt wurde, ist diese Rezeptorisoform in einer in unserem Labor generierten Deletionsmutante von p75NTR nicht mehr vorhanden. Darüber hinaus wurde ein erheblich stärkerer Schwannzellphänotyp in der neuen Deletionsmutante gefunden im Vergleich zur bereits beschriebenen. Letztere stellt somit einen Hypomorph dar. Die Funktion von p75NTR konnte nunmehr erstmals mit Hilfe eines vollständigen Knockouts untersucht werden. Wurde p75NTR zunächst lediglich eine die Trk-Rezeptoren modulierende Funktion zugeschrieben, war bei Beginn dieser Doktorarbeit in mehreren Ansätzen gezeigt worden, dass p75NTR unabhängig von den Trk-Rezeptoren eigenständige Signalaktivität besitzt, die zudem derjenigen der Trk-Rezeptoren entgegengerichtet sein kann. Für eine detaillierte molekulare Analyse der Funktion von p75NTR ist ein In-vitro-Assay unverzichtbar. Ein zentrales Ziel dieser Arbeit war deshalb die Etablierung eines solchen Assays. Ein In-vitro-Assay für p75NTR unter Verwendung der vollständigen Deletionsmutante konnte in cerebellären Körnerzellen etabliert werden. Aktivierung von p75NTR mit NGF führt zu einer Erhöhung der RhoA-Aktivität. Darüber hinaus konnte gezeigt werden, dass auch TNFR, wie p75NTR ein Mitglied der TNFR-Überfamilie, RhoA aktiviert, obgleich mit einer klar unterschiedlichen Kinetik. Die TNFa-vermittelte Regulation von RhoA hemmte das Auswachsen von Neuriten. Im cerebellären Kultursystem konnte jedoch kein Effekt von NGF auf das Neuritenwachstum festgestellt werden. Weil Rho aber auch die Transkription steuern kann, wurde die Wirkung von NGF auf das Genexpressionsmuster von Körnerzellen mit einem ‘Gene-Profiling’-Experiment analysiert. Es wurden 69 Gene, die durch NGF entweder hoch- oder hinunterreguliert werden und zum Teil ‘Cluster’ bilden, gefunden. Mit Hilfe der vollständigen Deletionsmutante wurden bisher GAP-5 und GluR2 als neue Zielgene von p75NTR identifiziert. GluR2 kodiert für eine der vier AMPA-Rezeptor-Untereinheiten und spielt eine zentrale Rolle für die synaptische Plastizität. Da in einem unabhängigen Ansatz ein Defekt bei der Ausprägung von hippocampalem LTD (‘long term depression’), einer Form von synaptischer Plastizität, im vollständigen Knockout von p75NTR gefunden worden war, wurde der weitere Schwerpunkt dieser Arbeit auf den AMPA-Rezeptor gelegt. Die weitere Untersuchung aller AMPA-Rezeptor-Untereinheiten im Hippocampus ergab, dass neben GluR2 auch GluR3 ein Zielgen von p75NTR ist und dass zudem GluR2 wie auch GluR3, jedoch nicht GluR1 und GluR4, in vivo im p75NTR-Knockout im Vergleich zum Wildtyp in ihrer Expression signifikant verändert sind. Diese Befunde legen eine veränderte Stöchiometrie des AMPA-Rezeptors im p75NTR-Knockout nahe und liefern einen Erklärungsansatz für das veränderte LTD in der p75NTR-Deletionsmutante. Zudem erweitern sie das Konzept der Bedeutung von Neurotrophinen für die synaptische Plastizität im Allgemeinen und der von p75NTR im Speziellen.