POPULARITY
Pflanzen nutzen Fotosynthese, um Licht in Energie umzuwandeln. Technische Prozesse wie die Fotovoltaik erzeugen mithilfe desselben Prinzips elektrische Energie. Doch was geschieht mit Licht und Materie, wenn diese aufeinander treffen? Um dies herauszufinden, setzt der Freiburger Physiker Prof. Dr. Frank Stienkemeier Moleküle so genannten Femtosekunden-Laserstrahlen aus. Diese senden ultraschnelle Lichtpulse aus, die eine Dauer von einem Billiardstel einer Sekunde haben.
Pflanzen nutzen Fotosynthese, um Licht in Energie umzuwandeln. Technische Prozesse wie die Fotovoltaik erzeugen mithilfe desselben Prinzips elektrische Energie. Doch was geschieht mit Licht und Materie, wenn diese aufeinander treffen? Um dies herauszufinden, setzt der Freiburger Physiker Prof. Dr. Frank Stienkemeier Moleküle so genannten Femtosekunden-Laserstrahlen aus. Diese senden ultraschnelle Lichtpulse aus, die eine Dauer von einem Billiardstel einer Sekunde haben.
Schwerpunkt: Thomas Pfeifer vom Max-Planck-Institut für Kernphysik nutzt Lichtpulse, die nicht einmal eine billiardstel Sekunde andauern, um Atome und Moleküle zu untersuchen || Nachrichten: Blick ins Innere von Uranus und Neptun | Weltraummission Kepler vermutlich vor dem Aus | Fundamentale Eigenschaften des seltensten natürlichen Elements gemessen || Veranstaltungen: Bremen | Bayreuth | Augsburg
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Die schnellsten bekannten lichtinduzierten Prozesse in der Natur treten auf einer Zeitskala von wenigen Femtosekunden (fs) oder sogar auf einigen hundert Attosekunden (as) auf. Um diese ultraschnellen Licht-Materie-Wechelwirkungen aufzulösen und zu erforschen, sind Lichtpulse von wenigen optischen Zyklen vom extrem Ultravioletten (XUV) bis hin zum Infraroten (IR) erforderlich. Deren Erzeugung stellt schon seit Jahren eine Herausforderung dar und stößt auf breites Interesse für Anwendungen in Physik, Chemie und Medizin. Im ersten Teil dieser Dissertation wird die vielversprechende Methodik der nichtkollinearen optisch parametrischen Verstärkung gestreckter Lichtpulse (NOPCPA) für die Generierung von „few-cycle“ Lichtpulsen im Sichtbaren (Vis) und nahen IR (NIR) mit Pulsdauern von 5- 8 fs Halbwertsbreite erheblich weiterentwickelt. Grundlegende parametrische Einflüsse, wie die Existenz einer parametrisch induzierten Phase und die Generierung von optisch parametrischer Fluoreszenz (OPF), werden sowohl durch theoretische Analysen und numerische Simulationen, als auch durch konkrete Experimente erforscht. Experimentell werden im Rahmen dieser Arbeit „few-cycle“ Lichtpulse mit einer Pulsdauer von 7.9 fs, 130 mJ Energie, bei 805 nm Zentralwellenlänge und einem sehr hohen, „seed“-Puls limitierten Vorpuls-Kontrast von 11 und 8 Größenordnungen bei 30 ps und ca. 3 ps erzielt. Diese stellen derzeit die leistungsstärksten „few-cycle“ Lichtpulse weltweit dar und es werden durch diese Arbeit und Kooperationen neue Experimente in der Hochfeld-Physik realisiert. Zum Einen, ist es mit dem hier beschriebenen Breitbandpulsverstärker gelungen, "quasimonoenergetische" Elektronen mit Energien mit bis zu 50 MeV zu beschleunigen. Dazu wird der Lichtpuls zu relativistischen Intensitäten von mehreren 1019 W/cm2 in einen Helium- Gasjet fokussiert. Die Elektronen zeigen einen stark reduzierten niederenergetischen Elektronenhintergrund, verglichen mit Beschleunigung durch längere Lichtpulse. Zum Anderen, wurde XUV-Licht bis zur 20. Harmonischen des generierten Lichtpulses aus dem Breitbandpulsverstärker durch dessen „sub-cycle“ Wechselwirkung mit Festkörperoberflächen erzeugt. Die Erzeugung von solchen kohärenten hohen Harmonischen verspricht den Bau von kompakteren XUV-Strahlungsquellen, die as-Pulsdauern mit hohen Photonenflüssen XUVAnrege/ XUV-Abfrage Experimente kombinieren würden. Im Rahmen dieser Arbeit werden darüber hinaus neue, erweiterte Konzepte für noch breitbandigeres NOPCPA über eine Oktave entwickelt und charakterisiert, die die Verwendung von zwei Pumppulsen in einer NOPCPA Stufe und die Verwendung von zwei verschiedenen Pumpwellenlängen in zwei aufeinanderfolgenden NOPCPA Stufen beinhalten. Im zweiten Teil dieser Dissertation werden breitbandige Weißlicht-Spektren und mittels NOPCPA spektral abstimmbare, ultrakurze Lichtpulse verwendet um ein weltweit einzigartiges transientes Absorptionsspektrometer mit Vielkanaldetektion zu realisieren. Dieser neue Anrege-Abfrage Aufbau kombiniert eine sehr breitbandige UV-Vis-NIR Abfrage mit einer hohen Zeitauflösung von 40 fs und hoher Sensitivität für die transiente Änderung der optischen Dichte von weniger als 10-4. Damit ist es in dieser Dissertation zum ersten Mal gelungen den photoinduzierten Ladungstransfer im konjugierten Polymer Polythiophen und in hybriden Polythiophen/Silizium Solarzellen in Echtzeit aufzulösen. Dabei wird eine seit mehreren Dekaden geführte kontroverse Debatte über die Natur der primären Photoanregung in organischen Halbleitern aufgelöst: Exzitonen dissoziieren mit 140 fs Zeitkonstante zu Polaronen (Ladungsträger). Entscheidende Parameter (z.B. strukturelle Ordnung, Ladungsträgermobilität) für die Effizienz der Generierung und Extraktion von freien Ladungsträgern können bestimmt werden, was fundamentales Verständnis für die Optimierung von organischer und hybrider Photovoltaik für zukünftige nachhaltige Energiequellen beisteuert. Weitere Ultrakurzzeit-Experimente an neuartigen organischen Solarzellen sind hier begonnen und aufgezeigt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die vorliegende Arbeit behandelt die experimentell umsetzbare Implementierung von Molekularem Quantencomputing, wie es in der Arbeitsgruppe um R. de Vivie-Riedle entwickelt wurde. Dieses Konzept beruht auf Laser-vermittelter Kontrolle intramolekularer Schwingungsdynamik. So fungieren ausgewählte Normalmoden eines polyatomaren Moleküls als Quanteninformationseinheiten (Qubits), wobei die Information in den Schwingungseigenzuständen kodiert wird. Diese lässt sich durch kurze geformte infrarote Lichtpulse, die als logische Gatter operieren, kontrolliert manipulieren. Für die Prozessoreinheit wird Mangan-pentacarbonyl-bromid (MnBr(CO)5) gewählt und ein Zwei-Qubit-System mit den beiden stärksten IR-aktiven CO-Streckschwingungen (2000 cm^{-1} bzw. 2050 cm^{-1}) definiert. In den quantenmechanischen Untersuchungen wird das System durch seine Schwingungseigenfunktionen repräsentiert. Das zugrunde liegende Modell ergibt sich durch sorgfältige Anpassung an neueste spektroskopische Daten des MnBr(CO)5. Ein dafür im Rahmen dieser Arbeit entwickeltes komplexes Optimierungsverfahren ermöglicht die effiziente Konstruktion des Modells. Einen Schwerpunkt bildet die Berechnung und Untersuchung eines universellen Satzes globaler Quantengatter bestehend aus den Operationen NOT, CNOT, Π und Hadamard. Diese werden mit einem "multi-target-Optimal-Control"-Algorithmus optimiert, der die simultane Optimierung der relevanten Übergänge des jeweiligen Gatters unter Berücksichtigung aller berechneten Eigenfunktionen erlaubt. Schalteffizienz und Struktur des resultierenden Laserfelds hängen dabei maßgeblich von der gewählten Pulsdauer ab. Durch die individuelle Wahl einer günstigen Dauer (5 ps - 11 ps), die sich nach den spektroskopischen Anforderungen der logischen Operationen richtet, ergeben sich erstmals für alle Gatter hocheffiziente und einfach strukturierte Pulse. Besondere Beachtung findet in dieser Arbeit die Gewährleistung experimenteller Umsetzbarkeit des Molekularen Quantencomputings. Untersuchungen zur Erzeugung der optimierten Pulse sind dabei von primärer Bedeutung. Pulszerlegung und die Berechnung von Maskenfunktionen zeigen, dass sich sowohl indirektes als auch direktes Pulsformen für die Generierung der Laserfelder eignen. Gegen dabei entstehende Abweichungen von der optimalen Pulsstruktur sind die Gatter robust. Um die Laser-Molekül-Wechselwirkung im Experiment zusätzlich zu steigern, können die Prozessoreinheiten fixiert und ausgerichtet werden. Dies lässt sich durch Immobilisierung in der Kristallstruktur eines Zeoliths erreichen, wie erste Rechnungen ergeben. Darüber hinaus wird die Relevanz potentieller Störungen des Qubitsystems wie Dissipation und interner Schwingungsumverteilung überprüft. Die Ergebnisse zeigen, dass das Qubitsystem einen nahezu dekohärenzfreien Raum für die Informationsverarbeitung bietet. Durch die sorgfältige Wahl einer geeigneten molekularen Spezies und die auf das Qubitsystem individuell abgestimmten Pulsdauern ist es gelungen, Molekulares Quantencomputing experimentell zugänglich mit hocheffizienten robusten Quantengattern zu implementieren.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Das Ziel dieser Arbeit war es 40Ca+-Ionen an einen optischen Resonator zu koppeln, um auf diese Weise Resonator-QED-Experimente, mit einer konstanten und deterministischen Kopplung durchzuf¨uhren. Als wichtigstes Ergebnis ist es erstmals gelungen, im kontinuierlichen Betrieb kontrollierte Lichtpulse zu erzeugen, die genau ein Photon enthalten. Zun¨achst war es unerl¨asslich, ein bestehendes Experiment weiter zu entwickeln, so wie wichtige Eigenschaften des 40Ca+-Ions zu vermessen. Dazu wurde die bisherige Falle durch eine verbesserte Ionenfalle ersetzt. Diese wurde charakterisiert, wobei insbesondere eine verbesserte Mikrobewegungskompensation nachgewiesen wurde. Zur Durchf¨uhrung der hier vorgestellten Experimente, wurde das bestehende Lasersystem weiterentwickelt und ein zus¨atzliches System aufgebaut. Zudem wurde der optische Resonator und dessen Stabilisierung den Anforderungen der Resonator-QED-Experimente angepasst. Um Aufladungen dielektrischer Materialien in der Fallenumgebung zu vermeiden, wurde die Photoionisation von Kalziumatomen implementiert und die Abh¨angigkeit der Ladeezienz von den Laserparametern bestimmt. Da aufgrund der reichhaltigen Niveaustruktur von 40Ca+-Ionen eine Vielzahl von Eekten auftreten, wurden die spektroskopischen Eigenschaften von 40Ca+-Ionen detailiert vermessen. Dazu geh¨ort neben den Anregungsspektren die Messung der Lebensdauer des D5/2 -Niveaus und die genaue Untersuchung des Hanle-Eekts zur Magnetfeld- Kompensation. Im Rahmen dieser Arbeit wurde zudem die g(2)-Funktion der Fluoreszenz des Ions studiert. Auch die Ergebnisse dieser Messung spiegeln die komplexe Niveau-Struktur des Ions wieder. Da die Lokalisierung der Ionen in der Falle von großer Bedeutung ist und diese nur durch Laserk¨uhlung der Ionen in der Falle optimiert werden kann, wurde das Verhalten von 40Ca+-Ionen bei Dopplerk¨uhlung genauer untersucht. Neben dem K¨uhlen der Ionen ist auch die Mikrobewegung des Ions in der Falle f¨ur dessen Lokalisierung von essenziellem Interesse. Kombiniert man einen optischen Resonator mit einer Ionenfalle, so treten aufgrund der Verzerrung des Fallenfeldes Wechselwirkungen zwischen den Spiegeln und den Ionen auf, die zu Mikrobewegung f¨uhren. Dieser Eekt wurde vermessen und mit Simulationen des Fallenfeldes verglichen. Um die relative Lage des Ions zur Resonatormode zu bestimmen, wurde ein einzelnes 40Ca+-Ion als nanometrische Probe f¨ur das Resonatorfeld verwendet. Die bisher vorliegenden Daten dieses Experiments wurden im Rahmen dieser Arbeit erweitert und Eekte der Anregung auf die gemessene Fluoreszenzverteilung untersucht. Die genannten Messungen und Entwicklungen erm¨oglichten es letztendlich, Resonator-QED-Eekte nachzuweisen. In dieser Arbeit wurde die stimulierte Emission mehrerer und eines einzelnen Ions in die Resonatormode beobachtet. Desweiteren konnte der Einfluss des Resonators auf die Lebensdauer des P1/2 - Niveau demonstriert werden. Auf der mit diesem Experiment geschaenen Basis ist es gelungen, eine besonders interessante Vorhersage der Resonator-QED zu realisieren, die kontrollierte Erzeugung einzelner Photonen im Dauerbetrieb. Dabei konnte eine Einzel- Photonenemissions-Wahrscheinlichkeit pro Pumppuls von 8 % erreicht werden. Diese neuartige Lichtquelle wurde im Rahmen dieser Arbeit sowohl theoretisch als auch experimentell intensiv untersucht. Die statistischen Eigenschaften der emittierten Photonen wurden gemessen, und die Erzeugung verschiedener zeitlicher Pulsprofile konnte demonstriert werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Interferierende Laserstrahlen können ein periodisches Potential für Atome induzieren, das es erlaubt, ultrakalte Neutralatome in geordneten Strukturen zu fangen. Diese Ensemble lichtgebundener Atome werden als optische Gitter bezeichnet. Liegt die Frequenz der verwendeten Lichtfelder sehr weit unterhalbder nächstgelegenen atomaren Resonanz, so entstehen quasi-statische Mikrofallen. Sie eignen sich durch ihre nahezu vollkommene Dissipationsfreiheit aufgrund der zu vernachlässigenden spontanen Photonenstreuung sehr gut zur Speicherung und Manipulation von kalten Atomen. In dieser Arbeit wird über Experimente zur kontrollierten Manipulation derartiger lichtgebundener Atome berichtet. Mit dem Licht eines CO2-Lasers der Wellenlänge 10.6 µm wird eine intensive Stehwelle erzeugt, in der kalte Rubidiumatome in mesoskopischen Dipolfallen mit einem Gitterabstand von 5.3 µm und bei Lebensdauern von über drei Sekunden gespeichert werden. Im ersten Teil der Arbeit werden die Eigenschaften der gespeicherten Atome charakterisiert. Es zeigt sich, daß die atomare Temperatur empfindlich von der Fallenlaserintensität abhängt. Für niedrige Intensitäten werden atomare Temperaturen von 21 µK bei Dichten oberhalb 1013 Atome/cm3 beobachtet. Unter alleinigen Verwendung der Laserkühlung wird damit eine atomare Phasenraumdichte von 1/300 erreicht, was nur drei Größenordnungen unterhalbdes Übergangs zur Bose-Einstein-Kondensation liegt. Bei höheren Intensitäten des Fallenlasers steigt die Temperatur im Gitter auf 140 µK an, welches in etwa der Doppler-Temperatur des Rubidiumatoms entspricht. Dies wird auf die große differentielle Lichtverschiebung der Atomzustände durch den Fallenlaser zurückgeführt, die die Effizienz der Subdoppler-Kühlmechanismen verringert. Durch das Erreichen hoher Vibrationsfrequenzen sowohl in radialer als auch in axialer Richtung wird erstmals ein dissipationsfreies, eindimensionales Gitter realisiert, indem der Lamb-Dicke-Bereich in allen drei Raumrichtungen erreicht wird. Dies ist die Grundlage für ein angestrebtes Kühlen der Atome in den Grundzustand des Gitters mit Hilfe des Raman-Seitenband-Verfahrens. Im Rahmen der Arbeit gelingt es weiterhin, Atome in einzelnen Gitterplätzen mit einem Abstand von 5.3 µm in einer Fluoreszenzabbildung optisch aufzulösen. Dies bedeutet den direkten Nachweis der Lokalisierung der in einer Stehwelle gebundenen Atome, so daß lokale Aspekte dieses optischen Gitters untersucht werden können. Gleichzeitig erlaubt ein konfokales Mikroskop, Atome in einzelnen Gitterplätzen mit Hilfe fokussierter, resonanter Lichtpulse selektiv anzusprechen. Dies eröffnet im Prinzip die Möglichkeit der Präparation und des Auslesens von Zuständen einzelner Atome, wie sie für eine Realisierung quantenlogischer Experimente in optischen Gittern erforderlich ist. In weiteren Experimenten werden gepulste Raman-Übergänge an kalten Rubidiumatomen untersucht, die in der CO2-Laser Dipolfalle gefangen sind. Dabei können Mehrphotonen-Übergänge zwischen zwei Zeeman-Grundzustandsniveaus beobachtet werden, sofern die Differenzfrequenz der beiden Raman-Laserstrahlen einer Subharmonischen der Frequenz des Zweiphotonenübergangs entspricht. Man kann diese Resonanzen als Mehrphotonen-Ramanübergänge interpretieren, bei denen n Photonenpaare beteiligt sind. Dabei zeigte sich sowohl experimentell als auch theoretisch, daß die Linienbreiten der höheren Subharmonischen deutlich unterhalbder durch die RamanpulsAlänge gegebenen Fourier-Breite liegen. Man findet weiter, daß das genaue Skalieren der Linienbreiten mit der beteiligten Photonenzahl von der verwendeten Form der Pulseinhüllenden abhängt.