POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 17/19
Proteine werden durch Gene kodiert und sind die Vermittler biologischer Strukturen und Prozesse. Veränderungen der Gene haben einen Einfluss auf die Struktur und Funktion der Proteine. Zur Erfüllung ihrer Aufgaben bilden Proteine über Protein-Protein-Interaktionen (PPI) Komplexe oder Funktionseinheiten. Diese zu kennen, ist wesentlich für das Verständnis der Funktion einzelner Proteine im Gesamtkontext und um den Einfluss von genetischer Variation auf die Proteinfunktion im Rahmen angeborener Erkrankungen besser einordnen zu können. Bislang werden PPI einerseits v.a. mit Hochdurchsatz-Verfahren untersucht, bei welchen die Proteine nicht in ihrer biologischen Umgebung exprimiert oder in denaturierter Form verwendet werden; dadurch ist häufig mit Artefakten zu rechnen. Andererseits erfordern die Verfahren zur in vivo-Untersuchung biologisch relevanter Interaktionen einen hohen Aufwand. Wir beschreiben in dieser Arbeit den Aufbau und die Etablierung eines Verfahrens zur in vivo Hochdurchsatz-Untersuchung von PPI. Dieses beruht auf der Technologie des Biolumineszenz Resonanzenergietransfers (BRET), welche durch Optimierung des Prozesses zu improved BRET (iBRET) hinsichtlich Effizienz, Durchsatz und Validität verbessert wurde. Dabei wurde die Konstrukt-Klonierung durch Einsatz eines auf Rekombination basierenden Klonierungssystems beschleunigt und Effizienz sowie Durchsatz der Transfektion von eukaryonten Zellen mit Hilfe eines Elektroporationsverfahrens im 96-Well Format optimiert. Bei der Detektion wurde ein Substrat verwendet, welches nur von lebenden Zellen verarbeitet werden kann. Die Signalmessungen erfolgten automatisiert an einem Multiwell Plattenlesegerät. Die Auswertung wurde durch eine bioinformatische Methode zur Berechnung von Schwellenwerten für positive Interaktionen verbessert. Mit dieser Technologie konnte die Homodimerisierung von PEX26 erstmals beschrieben und charakterisiert werden. PEX26 ist ein Membranprotein des Peroxisoms, das am Import von Matrixporteinen in das Peroxisom beteiligt ist. Bei genetischen PEX26-Defekten kommt es zum Auftreten von sog. peroxisomal ghosts – dies sind Membrankompartimente ohne Matrixinhalt. Klinisch kommt es v.a. zu Erkrankungen aus dem Zellweger-Spektrum, die sich mit einem unterschiedlichen Schweregrad manifestieren. Anhand von Trunkierungs-Konstrukten identifizierten wir mittels iBRET die zwei Interaktionsdomänen für die Homodimerisierung am C-Terminus des Proteins in der Umgebung der Transmembrandomäne bzw. in der peroxisomalen Matrix. Diese liegen abseits der für den Matrixprotein-Import essentiellen Bindedomäne für PEX6, der sich im zum Zytosol gerichteten N-terminalen Abschnitt von PEX26 befindet. Neben dem Volllängeprotein PEX26 wurde auch die Splice-Variante PEX26Δex5 beschrieben, welcher das Exon 5 und damit die Transmembrandomäne fehlt. Diese Variante ist im Endoplasmatischen Retikulum (ER) und im Zytoplasma lokalisiert. Wir zeigten, dass auch sie Homodimere bildet und zudem das Volllängeprotein PEX26 bindet. Sie ist in der Lage, das Fehlen von funktionellem PEX26 in PEX26-Defektzelllinien zu etwa 50% zu komplementieren, obwohl das Protein nicht am Peroxisom lokalisiert ist. Dies lässt die Schlussfolgerung zu, dass sich PEX26 für den Matrixprotein-Import nicht zwingend am Peroxisom befinden muss. Die physiologische Funktion der Splice-Variante ist noch nicht aufgeklärt. Mittlerweile ist bekannt, dass auch PEX26 anteilig im ER lokalisiert ist und es mehren sich die Hinweise, dass es aufgrund der Herkunft der Peroxisomen aus dem ER bei deren Biogenese und Homöostase eine Rolle spielt. Wir führten eine Literaturrecherche nach Interaktionspartnern von PEX26 und seinem homologen Protein Pex15p aus der Hefe durch, fanden hier jedoch keinen Hinweis auf weitere Funktionsbereiche von PEX26. Klar ist jedoch, dass sich die unterschiedliche Manifestation der Defekte bei den Patienten nicht allein aus seiner Rolle beim Import von Matrixporteinen ableiten lässt. Basierend auf der vorliegenden Arbeit könnten Erkenntnisse aus der derzeit in unserer Arbeitsgruppe umgesetzten Untersuchung des peroxisomalen Interaktoms zu einem besseren Verständnis der Funktion von PEX26 und der Fehlfunktion bei PEX26-Defekt beitragen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 08/19
Das Mantelzelllymphom (MCL) ist eine neoplastische Erkrankung des blutbildenden Systems, die durch die ektopische Expression des Zellzyklus-regulierenden Proteins Cyclin D1 charakterisiert ist und im Regelfall durch eine chromosomale Translokation t(11;14)(q13;q32) ausgelöst wird. Trotz stetiger Verbesserungen der Behandlungsmethoden, insbesondere der Optimierung der Kombinationstherapie und dem Einsatz der Anti-CD20-Antikörpertherapie- konnte bislang jedoch keine wesentliche Verbesserung des Gesamtüberlebens erzielt werden. Die Untersuchung der Wirksamkeit und der Wirkmechanismen neuer, molekular ausgerichteter Therapieformen hat daher bei dieser Erkrankung besonders große Bedeutung. Zu diesem Zweck wurde ein 2D-PAGE-basiertes Verfahren zur Analyse der zellulären Proteinspiegel etabliert und durch die Charakterisierung der Unterschiede zwischen zwei Non-Hodgkin-Lymphom (NHL)-Subtypen (MCL und FL) auf Proteomebene validiert. Im Verlauf dieser Tests wurde darüber hinaus die Aussagekraft der 2D-PAGE-Analyse durch die Verwendung von „Proben-Pools“ verbessert, wodurch die Detektion zufallsbedingter molekularer „Bystander“-Aberrationen unterdrückt und ein repräsentativer molekularer Phänotyp charakterisiert werden konnte. Die Zahl solcher unspezifischen Proteinpunkte, die nur in einzelnen Zelllinien des Probenkollektivs nachgewiesen wurden, konnten in den „Proben-Pools“ um >66% gesenkt werden. Im Vergleich der zellulären Proteinspiegel der beiden NHL-Subtypen wiesen 175 von insgesamt 1350 Punkte auf den 2D-PAGE-Gelen Subtyp-spezifisch unterschiedliche Proteinspiegel auf, von denen 38 Punkte durch Massenspektrometrie (MS) identifiziert wurden. Die identifizierten Kandidatenproteine können grob 7 funktionellen Gruppen (Apoptose / Zelltod, Reparaturmechanismen, Zellzyklus und Proliferation, Regulation der Transkription, grundlegende zelluläre Funktionen, Tumor-Antigene, unbekannte Proteinfunktion / hypothetische Proteine)zugeordnet werden und interagieren vorwiegend in einem Netzwerk um den Tumorsuppressor p53. Das Verfahren der 2D-PAGE-Analyse mit massenspektrometrischer (MS) Proteinidentifizierung wurde anschließend benutzt, um die molekulare Wirkung des Proteasomen-Inhibitors Bortezomib auf MCL (Zelllinien und primäre Patientenzellen) zu analysieren. Dazu wurden 5 MCL-Zelllinien (Granta519, HBL-2, Jeko-1, NCEB-1 und Rec-1) einer Bortezomib-Konzentration von 25nM ausgesetzt und die Veränderungen der zellulären Proteinspiegel nach 1h und 4h mit denen von unbehandelten Zellen verglichen. In dieser Analyse waren die Proteinspiegel von 148 der insgesamt 1013 in allen MCL-Zelllinien nachweisbaren Proteinpunkten nach Bortezomib signifikant verändert. Durch MS konnten 38 der 41 reproduzierbar nachweisbaren Proteinpunkte identifiziert werden, wobei 20 ausschließlich in Bortezomib-sensitiven Zelllinien veränderte Spiegel aufwiesen. Eine Western Blot-Analyse von 17 der 38 identifizierten Proteine bestätigte in 76% die in 2D-PAGE-Gelen beobachteten Veränderungen der Proteinspiegel. Alle Zelllinien zeigten veränderte Spiegel von verschiedenen Hitzeschockproteinen (HSPA9, HSP7C, HSPA5, HSPD1), während Zelllinien die auf eine Behandlung mit Bortezomib ansprachen, auch veränderte Proteinspiegel bei Parametern des Energiestoff-wechsels (ATP5B, AK5, TPI1, ENO2, ENO3, ALDOC, GAPDH), der RNA- und Transkriptionsregulation (HNRPL, SFRS12) und der Zellteilung (NEBL, ACTB, SMC1A, C20orf23) sowie der Tumorsuppressoren ENO-1 und FH aufwiesen. Diese Proteine konnten in einem engen Interaktionsnetzwerk um das wichtige zelluläre „Checkpoint“-Molekül p53 gruppiert werden. Entsprechend konnten diese Ergebnisse in primären MCL-Patientenproben bestätigt werden, was die Rolle dieser Proteine im Rahmen der Proteasomeninhibition beim MCL unterstreicht.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die vorliegende Arbeit diente der funktionellen Charakterisierung der Zwei-Komponenten Systeme (ZKS) des halophilen Archaeons Halobacterium salinarum. Von der Existenz mehrerer Histidinkinasen (HK) und Antwortregulatoren (RR) neben dem Chemotaxis-ZKS CheA/CheY weiss man nur aufgrund der Sequenzierung des Genoms. Folglich fehlten bislang funktionelle Beschreibungen dieser Proteine. Die vorgelegte Dissertation begann, diesen Mangel zu beheben. Den Laborversuchen war eine bioinformatische Bestandsaufnahme vorgeschaltet, welche die Sensordomänen der HK, die Effektordomänen der RR und die konservierten ZKS-Domänen beider Proteinklassen nach greifbaren Anhaltspunkten durchforstete. Diese Rasterfahndung vermochte jedoch nur bescheidene Hinweise auf die Funktionen und Wechselwirkungen der HK und RR zu erbringen. Die praktischen Arbeiten zur funktionellen Charakterisierung der halobakteriellen ZKS basierten auf zwei unterschiedlichen Strategien. Der erste Ansatz bestand in dem Versuch einer Funktionszuordnung über die Applikation eines Phosphatmangels, dem alle bislang daraufhin untersuchten Prokaryoten durch eine exklusiv ZKS gesteuerte, differentielle Genexpression entgegenwirken. Im zweiten Ansatz wurde mit OE3855R eine der wenigen HK, deren Primärsequenz einen Hinweis auf die Proteinfunktion lieferte, eingehend biochemisch analysiert. Für die Phosphatmangelversuche musste zunächst geprüft werden, bei welchem Nährstoffangebot H. salinarum in eine Unterversorgung gerät. Den Experimenten zufolge limitiert ein Phosphatgehalt von weniger als 0,5mM im Medium die finale Wachstumsdichte. Die mangelhafte Phosphatversorgung induziert das Gen aph, was zu einer verstärkten Produktion und Sekretion des Enzyms Alkalische Phosphatase führt. Mikroarray-Analysen und RT-qPCR-Experimente deckten auf, dass das halobakterielle Pho-Regulon mehrere ABC-Transportsysteme und verschiedene sekretierte Enzyme umfasst. Über die somit stark verbesserten Phosphataufnahmefähigkeiten hinaus ändert sich die Transkription einer Vielzahl weiterer Gene, wobei es sich wahrscheinlich um sekundäre Effekte handelt. Während der Hungerphase verbraucht H. salinarum drei Viertel seines intrazellulären Phosphatspeichers. Die massive Abnahme des Phosphatvorrats ist nicht nur die Folge der Mangelversorgung, sondern gleichzeitig verantwortlich für die Induktion des Pho-Regulons. Das zuständige Regulatorprotein wurde bislang nicht enttarnt. Durch Konstruktion mehrerer Deletionsstämme konnten klassische ZKS als Signaltransduktoren überraschenderweise ausgeschlossen werden. Die Induktion von Proteinen mit Homologien zu DNA bindenden Bereichen von Transkriptionsfaktoren und zu dem regulatorischen Mediatorprotein PhoU deutet auf einen alternativen Regelkreis hin. Dieser wäre exklusiv für Archaea, da solche PhoU-Chimären ausschließlich in archaealen Genomen zu finden sind. Von der Anpassung des Proteininventars abgesehen orientieren H. salinarum-Zellen ihre Bewegungen an einem Phosphatgradienten. Diese Chemotaxis wird durch Phosphatmangel induziert und durch das Zwei-Komponenten System CheA-CheY vermittelt. Erstmals in einem Archaeon gezeigt, wird die Phosphattaxis von H. salinarum ausschließlich von anorganischem Phosphat ausgelöst. Laut Primärsequenzanalyse besitzt die Histidinkinase OE3855R eine Häm bindende PAS-Domäne (PAS3855) und könnte daher einen Sauerstoffsensor darstellen. Eine heterologe Expression von PAS3855 sollte dieser Hypothese Substanz verleihen. Das exprimierte Polypeptid enthielt geringe Mengen eines Kofaktors, der mittels Absorptionsspektroskopie und LC-MS-Analyse als Häm des Typs B identifiziert wurde. Auf Basis dieses Wissens erfolgte die Rekonstitution der Domäne mit HämB, was die Bildung eines Tetramers induzierte. Die spektroskopische Analyse entlarvte große Ähnlichkeiten zwischen den elektronischen Zuständen der zentralen Häm-Eisenionen von PAS3855 und dem Häm bindenden Redoxsensorprotein Dos aus E. coli. Da die Reduktion von FeIII- zu FeII-PAS3855 die Oligomerisierung der Domäne von einem Tetramer zu einem Dimer veränderte, lag eine redoxabhängige Signalfunktion der Histidinkinase OE3855R nahe. Die Deletion des kodierenden Gens führte zu keinem erkennbaren Phänotyp, weshalb zum gegenwärtigen Zeitpunkt keine Aussage getroffen werden kann, ob diese HK in vivo tatsächlich als Redox- oder auch Sauerstoffsensor fungiert.