Podcasts about chaos communication congress 33c3

  • 4PODCASTS
  • 4EPISODES
  • 1h 28mAVG DURATION
  • ?INFREQUENT EPISODES
  • Jul 26, 2018LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about chaos communication congress 33c3

Modellansatz
Flugunfälle

Modellansatz

Play Episode Listen Later Jul 26, 2018 82:29


Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf Sebastian auf Bernd Sieker und sprach mit ihm um Unfälle mit Autopiloten mit Flugzeugen und Automobilen. Der Flugreiseverkehr ist inzwischen sehr sicher, es verbleibt aber ein Restrisiko, das man an den sehr seltenen Flugunfällen erkennen kann. Bernd untersucht nun die wenigen Abstürze großer Airliner, die es noch gab, und fragt sich, wie es zu diesen Katastrophen kommen konnte. Beispiele für Unfallursachen können beispielsweise Ausfälle scheinbar weniger relevanter Systeme sein, wo von der Crew Entscheidungen getroffen werden, die sie für sinnvoll halten, sich aber später als problematisch herausstellen. Technische Schäden, die unmittelbar zum Absturz führen, sind inzwischen sehr selten. Und selbst scheinbare kritische Ausfälle wie Triebwerksausfälle werden geübt und es gibt Prozeduren, wie man in diesen Fällen das Flugzeug möglichst sicher landen können sollte. Im Segelflug gehört eine Außenlandung auf freiem Feld zum Normalbetrieb, wobei man natürlich für am Boden etwaig entstandenen Schaden aufkommen muss, falls der Landwirt darauf besteht. Eine entsprechende nicht genehmigte Sicherheits- oder Notlandung führt bei Motorflugzeugen zur Auskunfts- oder Meldepflicht mit entsprechenden Auflagen zum Abtransport oder Erlaubnis zum Wiederstart. Bei der Untersuchung von Unglücksfällen geht der erste Blick auf offizielle Berichte oder Untersuchungen. So auch beim Air-France Flug 447 von 2009, wo ein Airbus A330-203 mitten über dem Atlantik plötzlich verschwand. Erste Indizien auf das Unglück wurden durch ACARS-System über Satellit empfangen, unter anderem über den Ausfall von Staurohren, mit denen die Geschwindigkeit des Flugzeugs gemessen wird. Das ist ein dramatischer Ausfall an Information, mit dem die Piloten aber umgehen können müssten und der eigentlich nicht zu einem Absturz führen sollte, denn die Geschwindigkeit ist noch mittels anderer Sensoren erkennbar. Erste gefundene Wrackteile deuteten darauf hin, dass das Flugzeug fast senkrecht in horizontaler Lage auf das Wasser aufgeschlagen sein musste. Dies führte auf die Vermutung, dass das Flugzeug überzogen wurde, bis es zum Strömungsabriss kam, und es daraufhin einfach herunterfiel. Nach Bergung des Flugschreibers bestätigte sich der vermutete Ablauf. Er wurde durch einen überraschend kurzen Zeitraum von wenigen Minuten zwischen Fehlermeldung und Absturz aus Reiseflughöhe belegt. Die Piloten müssen in der widersprüchlichen Situation gewesen sein, dass ihnen der Sink"flug" angezeigt wurde, während die Nase des Flugzeugs nach oben zeigte, was laut Training normalerweise in diesem Flugzustand nicht möglich ist. Bei dem eingesetzten Fly-by-wire System wäre eigentlich auch kein Strömungsabriss möglich gewesen. Nach Ausfall der Staurohre führte nun die Verkettung zwischen unvorhersehbarem Flugzeugzustand und der dramatischen Fehlinterpretation durch die Piloten zum Absturz. In der Ursachenanalyse ist sowohl zu beachten, dass die Warnmeldungen zum Strömungsabriss von den Piloten womöglich wegen einer Vielzahl von Warnmeldungen nicht mehr erfasst werden konnte. Ebenso wurden widersprüchliche Angaben zur Fluggeschwindigkeit und Anstellwinkeln von den Systemen des Flugzeugs irgendwann als ungültig abgewiesen und entsprechende Warnungen abgeschaltet oder nur noch widersprüchlich wiedergegeben. Dies führt zur Betrachtung solcher Systeme unter dem Aspekt, dass sie sozio-technisch sind, mit der Einsicht, dass gerade bei der Übertragung von Aufgaben des Menschen an Technik und zurück ein besonderes und schwer vorhersehbares Fehlerpotenzial besteht. Insbesondere Autopiloten haben eine besondere Bedeutung, da sie direkt in die Aufgaben der steuernden Menschen eingreifen. Klassisch steuern Autopiloten nur in sehr engen Parametern wie einzuhaltende Richtung, Höhe, Querneigung der Sink-/Steiggeschwindigkeit. Im Auto sind schon Geschwindigkeits- und Abstandsautomatik üblich. Jedoch sind auch Landungen mit Autopilot möglich, die aber ein besonderes Training und Überprüfung von Mensch und Maschine und Verbesserung der Algorithmen und redundante Sensoren erfordern. Dies zeigt schon, wie kritisch Autopiloten im Automobil zu sehen sind, da hier bisher kein besonderes Training für die Verwendung von Autopiloten erfolgt. Eine Überraschung ist dabei, dass eine besondere Gefahr daraus entsteht, wenn Autopiloten so zuverlässig werden dass sich Menschen zu sehr auf sie verlassen. Überraschende Situationen kann aber der Mensch meist besser bewältigen. Bei der Untersuchung von Flugunfällen stellt sich besonders die Frage, welche Ereignisse die eigentliche Ursache also für das Unglück verantwortlich sind. Wie ist hier Kausalität zu definieren? An der Uni Bielefeld wurde in der Arbeitsgruppe von Prof. Ladkin dazu die Why-Because-Analysis (WBA) entwickelt, wo die Counterfactual Test Theory von David Lewis zum Einsatz kommt. Aus der Überprüfung, ob ein Ereignis notwendig und die Menge der gefunden Ereignisse hinreichend für die Entstehung eines Ereignisses war, entsteht ein kausaler "Why-Because"-Graph (WBG), der genau nur die Ereignisse zusammenfasst, die notwendig zum Unglück führten. Ein interessantes philosophisches Konstrukt ist hier die Nearest-Possible-World-Theory, die ein Szenario konstruiert, das dem Unglück möglichst stark ähnelt, für das aber es nicht zum Unglück gekommen wäre. Was war hier anders? Was können wir daraus lernen? Durch Vergleich mit vorherigen dokumentierten Ereignissen können Teile des WBG auch quantitativ bewertet werden, obgleich die Datenbasis oft sehr gering ist. Dennoch können Schlüsse gezogen werden, welche Ereignisse bisher ignoriert wurden und ob dies gerechtfertigt ist. Das National Transportation Safety Board (NTSB) befasst sich in den USA wie die Bundesstelle für Flugunfalluntersuchung (BFU) in Deutschland typischerweise mit der Aufarbeitung von Unglücksfällen, und wie diesen in Zukunft entgegengewirkt werden kann. Darüber hinaus haben ebenso Versicherungen von Fluggesellschaften ein großes Interesse an einer Aufarbeitung, da die Fluggesellschaften in vielen Bereichen für Unglücke haftbar sind, soweit sie nicht nachweisen können, dass die Hersteller verantwortlich zu machen sind. Während des Asiana Airlines Flug 214 kam es in einer Boeing 777 im Anflug auf San Francisco 2013 im Landeanflug zu einer "Mode Confusion" beim Autopilot: Die erwartete Schubregulierung blieb aus, und es kam zu einem Absturz. Im Fall des Turkish Airlines Flug 1951 mit einer Boeing 737 nach Amsterdam gab es im Anflug einen Fehler im Radarhöhenmessgerät, wodurch der Autopilot in Erwartung der Landung aktiv den Schub zurückregelte. Die Korrektur der Piloten schlug fehl, da sie sich nicht über die genauen Abläufe im Klaren waren. Dies deutet schon deutlich darauf, dass Schwierigkeiten beim Einsatz von Autopiloten im automobilen Umfeld zu erwarten sind. Darüber hinaus sind die erforderlichen menschlichen Reaktionszeiten im Auto deutlich kürzer, so dass Missverständnisse oder das An- oder Abschalten von Autopilot-Funktionen deutlich leichter zu Unglücken führen können. Eine wichtige Einstufung sind hier die erreichten SAE Autonomiestufen, die beschreiben, wie weit das Fahrzeug Aufgaben des Fahrens übernehmen kann. Besonders problematisch ist Autonomiestufe 3: Hier darf der Fahrer sich während der Fahrt anderen Dingen als der Fahrzeugführung zuwenden, muss aber nach einer gewisse Vorwarnzeit wieder die Führung wieder übernnehmen können. Selbst bei wenigen Sekunden wird dies bei höheren Geschwindigkeiten sehr schwer zu erfüllen sein. Bei Stufe 4 muss das Fahrzeug auch ohne Fahrerintervention sicher bleiben, notfalls durch Anhalten, Stufe 5 ist vollständig autonom von Tür zu Tür. Ein weiterer Gesichtspunkt ist die vorhandene Sensoraustattung und deren Ausfallsicherheit oder die Interpretation der Sensormessungen. Im Fall des Unfalls eines Uber-Autos am 18. März 2018 in Arizona wurde eine Fußgängerin von den Sensoren zwar erfasst, jedoch wurden die Detektion durch die Software als Fehler zurückgewiesen und es kam zum Unfall. Die hier verwendete Software war und wird weit weniger getestet und formal geprüft als Software im Luftfahrtumfeld, da dies auch im Bezug auf neuronale Bilderkennungsverfahren schwer umzusetzen sein wird. Ein weiterer Aspekt ist, dass selbst wenn ein sozio-technisches System sicherer als Menschen fährt, die Akzeptanz nur sehr schwer zu erreichen sein und viele rechtliche und ethische Fragen zunächst zu klären wären. Vielen Dank an Markus Völter für die Unterstützung in dieser Folge. Literatur und weiterführende Informationen D. Lewis: Counterfactuals and comparative possibility, Springer, Dordrecht, 57-85, 1973. P. Ladkin: Causal reasoning about aircraft accidents, International Conference on Computer Safety, Reliability, and Security. Springer, Berlin, Heidelberg, 2000. B. Sieker: Visualisation Concepts and Improved Software Tools for Causal System Analysis, Diplomarbeit an der Technischen Fakultät der Universität Bielefeld, 2004. B. Sieker: Systemanforderungsanalyse von Bahnbetriebsverfahren mit Hilfe der Ontological Hazard Analysis am Beispiel des Zugleitbetriebs nach FV-NE, Dissertation an der Technischen Fakultät der Universität Bielefeld, 2010. Causalis Limited Research Group Networks, System Safety, Embedded and Distributed Systems B. Sieker: Hold Steering Wheel! Autopilots and Autonomous Driving. Presentation at the Gulaschprogrammiernacht 18, ZKM/HfG, Karlsruhe, 2018. B. Sieker: What's It Doing Now? The Role of Automation Dependency in Aviation Accidents. Presentation at the Chaos Communication Congress 33C3, 2016. Podcasts H. Butz, M. Völter: Komplexe Systeme, Folge 058 im omega tau Podcast, Markus Völter und Nora Ludewig, 2011. S. B. Johnson, M. Völter: System Health Management, Episode 100 in the omega tau Podcast, Markus Völter and Nora Ludewig, 2012. R. Reichel, M. Völter: Fly by Wire im A320, Folge 138 im omega tau Podcast, Markus Völter und Nora Ludewig, 2014. S., J., C., A., M. Völter: Mit Lufthansas A380 nach Hong Kong Teil 1, Folge 262 im omega tau Podcast, Markus Völter und Nora Ludewig, 2017. S., J., C., A., M. Völter: Mit Lufthansas A380 nach Hong Kong Teil 2, Folge 263 im omega tau Podcast, Markus Völter und Nora Ludewig, 2017. P. Nathen, G. Thäter: Lilium, Gespräch im Modellansatz Podcast, Folge 145, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. GPN18 Special B. Sieker, S. Ritterbusch: Flugunfälle, Gespräch im Modellansatz Podcast, Folge 175, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/flugunfaelle A. Rick, S. Ritterbusch: Erdbebensicheres Bauen, Gespräch im Modellansatz Podcast, Folge 168, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/erdbebensicheres-bauen GPN17 Special Sibyllinische Neuigkeiten: GPN17, Folge 4 im Podcast des CCC Essen, 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke F. Magin, S. Ritterbusch: Automated Binary Analysis, Gespräch im Modellansatz Podcast, Folge 137, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/binary-analyis M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meter GPN16 Special A. Krause, S. Ritterbusch: Adiabatische Quantencomputer, Gespräch im Modellansatz Podcast Folge 105, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/adiabatische-quantencomputer S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/probabilistische-robotik J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/incredible-proof-machine

united states training san francisco arizona system er berlin situation security prof software auto amsterdam zukunft deutschland dar blick bei mensch hilfe presentation beispiel bedeutung schl wire universit boeing lage fehler selbst dort wasser situationen technik einsatz interesse aufgaben interpretation dingen menge umfeld bezug gefahr besonders richtung erste ereignisse sink schwierigkeiten str dennoch teile beispiele vielen dank bereichen entstehung feld autopilot nase fahrt literatur springer sekunden reliability unfall ausf ursache aspekt ereignis akzeptanz systeme vielzahl missverst schaden ungl heidelberg ablauf ebenso unf abl embedded verbesserung flugzeug ereignissen maschine krause jedoch zeitraum hochschule bernd hersteller geschwindigkeit verwendung betrachtung karlsruhe berichte versicherungen stufe bielefeld aufarbeitung untersuchung katastrophen erwartung abst mathematik angaben dissertation algorithmen absturz szenario systemen international conference untersuchungen fahrer piloten erlaubnis einsicht atlantik ausfall auflagen fahrzeug schub warnungen konstrukt abschalten landwirt klaren fakult landung david lewis sensoren vermutung automobil im fall flugzeugen autonomous driving im auto sicherheits arbeitsgruppe reichel dordrecht satellit airliner anflug a320 unfalls kausalit lilium ereignisses butz geschwindigkeiten einstufung klassisch parametern fluggesellschaften anhalten diplomarbeit autopiloten gesichtspunkt nathen flugzeugs fahrens karlsruher institut verkettung zkm datenbasis meldepflicht airbus a330 notlandung magin technologie kit detektion landungen geschwindigkeits abtransport restrisiko landeanflug wbg fehlinterpretation uni bielefeld markus v die korrektur reaktionszeiten prozeduren automobilen podcasts h die piloten warnmeldungen fehlermeldung bundesstelle flugunf ausfallsicherheit ajuvo durch vergleich gestaltung hfg modellansatz podcast chaos communication congress 33c3 nora ludewig
Sliding Windows
SLW06: (Web) SSO mit Daniel Fett und Guido Schmitz

Sliding Windows

Play Episode Listen Later Jan 9, 2017


Das Interview wurde im Sendezentrum des 33. Chaos Communication Congress (33C3) am 29.12.2016 in Hamburg aufgezeichnet. Daniel und Guidos Vortrag findet man im "Fahrplan" des 33C3 und auf media.ccc.de: "On the Security and Privacy of Modern Single Sign-On in the Web"

IT-Keller
ITK019 Wanze

IT-Keller

Play Episode Listen Later Jan 1, 2017 117:42


Themen: 33rd Chaos Communication Congress (33C3), Vorträge auf dem 33C3, Vortrag über Travel Booking Systeme, Vortrag zum Thema Netzpolitik in Österreich, Vortrag über N26 Security Flaw, HTTPS, Verschlüsselung und wieder einmal Let's Encrypt, Apples SSL Bug "goto fail", PHPMailer Bug PwnScriptum, Pebble von Fitbit gekauft, Stefan steigt live vom 33C3 per Studio Link ein, Lesung zum Thema NSA-Untersuchungsausschuss, Podcastpat_innen, Rohrpost "Seidenstraße", Chaos Communication Camp, Borg Backup, DIY Digitales Raumthermometer, ESP8266, ESP8266 und HTTPS mit WiFiClientSecure (Github), AZ-Delivery 128 x 64 Pixel OLED Display für Arduino, Raspberry Pi und Mikrocontroller, AZ-Delivery DS18B20 Digitale Temperatursensoren, Gehäuse für das Raumthermometer, Rogue One: A Star Wars Story, "Alles unter Kontrolle" von Werner Boote, Westworld, Westworld Fernsehserie Gäste: Bernhard, Roland, Stefan, Ulrich

WikiStammtisch
WIKIST0039 33C3

WikiStammtisch

Play Episode Listen Later Dec 30, 2016 63:57


Besucher des Chaos Communication Congress 33C3 sprechen über ihre Wikipedia

wikipedia besucher chaos communication congress 33c3