Podcasts about wasserstoffatome

  • 2PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 13, 2010LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about wasserstoffatome

Chemie in 2 Minuten
#9 - Wasserstoffbrückenbindungen

Chemie in 2 Minuten

Play Episode Listen Later Jun 13, 2010


Hallo, mein Name ist Ricardo Grieshaber und ich begrüße euch zu dieser Folge von Chemie in 2 Minuten. Unser heutiges Thema sind die stärksten Kräfte, die zwischen Molekülen wirken können, die sogenannten Wasserstoffbrückenbindungen. Sie entstehen in polaren Molekülen, in denen Wasserstoff an ein stark elektronegatives Atom wie Fluor, Sauerstoff oder Stickstoff gebunden ist. Das beste Beispiel dafür ist das Wassermolekül: In diesem werden die Elektronen des Wasserstoffs viel stärker von dem Sauerstoffatom angezogen als von den Wasserstoffatomen selbst. Die Wasserstoffatome sind stark positiv geladen, das Sauerstoffatom dagegen stark negativ. Im Wasser ziehen dann negativ geladene Sauerstoffatome positiv geladene Wasserstoffatome aus anderen Wassermolekülen an und bilden eine Art großes, bewegliches Gitter. Im Eis ist dieses Gitter dann nicht mehr beweglich, sondern fest. Auch hier liegen Wasserstoffbrückenbindungen vor. Durch dieses Phänomen lässt sich auch die geringere Dichte von Eis erklären: Die Wasserstoffbrückenbindungen brauchen als festes Gitter mehr Platz als im flüssigen Wasser, da das Kristallgitter Hohlräume zwischen den einzelnen Wassermolekülen enthält. Außerdem machen es die Wasserstoffbrückenbindungen überhaupt möglich, dass wir auf der Erde leben können: Verglichen mit anderen Stoffen mit der gleichen Molekülmasse, müsste Wasser bereits bei minus 100 Grad Celsius schmelzen und ab minus 80 Grad Celsius gasförmig sein! Vielen Dank fürs Zuhören! Falls ihr ein Thema vorschlagen möchtet, schreibt mir einfach eine Mail an chemie@in2minuten.com. Weitere Informationen findet ihr unter in2minuten.com

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Substituierte Erdalkalimetall-bis(pentolide) und –bis(trialkylzinkate)

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later May 29, 2001


Im Gegensatz zu den Alkalimetall-pentoliden erweckt das Gebiet der Erdalkalimetallbis( pentolide) erst seit einigen Jahren das Interesse einiger Arbeitsgruppen. Westerhausen et al. konnten vor einigen Jahren bei der Umsetzung von Diphenylbutadiin mit Calcium- und Strontium-bis[bis(trimethylsilyl)phosphanid] die Bildung von Erdalkalimetall-bis(phospholid) nachweisen. Ein alternativer Weg nutzt die Metallierung von 1-Chlor-substituierten Pentolen durch Erdalkalimetalle zu Nutze. Ebenso wie den Erdalkalimetall-bis(pentoliden) wird den metallorganischen Verbindungen der schweren Erdalkalimetalle mit Erdalkalimetall- Kohlenstoffatom-σ-Bindungen seit einigen Jahren starkes Interesse entgegen gebracht. Die meisten Vertreter dieser Substanzklasse zeichnen sich durch ihr schlechtes Löslichkeitsverhalten in aromatischen und aliphatischen Kohlenwasserstoffen aus. Zudem ist noch kein allgemeines Syntheseprinzip zur Darstellung von Verbindungen aller schweren Erdalkalimetalle bekannt. Den Verbindungen dieser Klasse kommt ein hohes Maß an Reaktivität sowie Oxidations- und Hydrolyseempfindlichkeit zu, was ihre Synthese und Handhabung erschwert. Trotzdem gewähren diese Verbindungen einen interessanten Einblick in die metallorganische Chemie der zweiten Hauptgruppe. Die vorliegende Arbeit gliedert sich in drei Themengebiete. Im ersten Teil beschäftigten wir uns mit der Erweiterung des Spektrums der Alkalimetall- und Erdalkalimetall-pentolide, dabei lag unser Hauptinteresse in der Synthese und Strukturaufklärung von Metall-Pentoliden der Elemente Phosphor bis Antimon, wobei die Synthesen und Strukturaufklärungen des ersten Kalium-Stibolids und des Barium-Phospholids gelangen. Ein weiteres Ziel lag in der Untersuchung der Transmetallierung von Dialkylzink- Verbindungen mit aktivierten Erdalkalimetallen. Das Hauptaugenmerk auf eine mögliche Synthese von metallorganischen Verbindungen mit Erdalkalimetall-Kohlenstoff-σ-Bindungen gerichtet, gelang die Charakterisierung einer ganzen Reihe von Erdalkalimetall-bis(zinkaten). Zuletzt beschäftigten wir uns mit dem Einsatz der von uns dargestellten Erdalkalimetallbis( zinkate) in Metallierungsreaktionen gegenüber CH-acider Verbindungen. Zur Darstellung der Alkalimetall- und Erdalkalimetall-pentolide wählten wir als Edukte die 1- Chlor-substituierten Pentole. Diese Verbindungen sind durch Transmetallierung entsprechender Zirconacyclopentadiene mit Penteltrichlorid leicht zugänglich. Die Umsetzung der 1-Chlor-substituierten Pentole mit Metallen der 1. bzw. 2. Hauptgruppe führt in einem ersten Reaktionsschritt zu den entsprechenden Dipentolylen. Bis zu dieser Stufe zeigt die Reaktion eine nur geringfügige Abhängigkeit vom eingesetzten Metall. Die Reduktion von Octaethyldiphospholyl 5 und Octaethyldistibolyl 7 mit Kaliummetall in THF führt zur Bildung von Kalium-2,3,4,5-tetraethylphospholid 8 und Semi(tetrahydrofuran- O)biskalium–bis(2,3,4,5-tetraethylstibolid) 9. Das Reaktionsschema 4.1 verdeutlicht die Darstellung anschaulich.Die Verbindungen zeichen sich durch die Ausbildung ungewöhnlicher Festkörperstrukturen aus. Verbindung 8 kristallisiert in einer hochsymmetrischen polymeren Kettenstruktur. Jedes Kaliumatom liegt zwischen zwei parallelen Phospholid-Liganden. Aufgrund der geringen endocyclischen Bindungslängendifferenz ∆ [∆ = d(C2C3) – d(C3C4)] von nur 2,6 pm, liegt bei den Pentoliden ein weitgehend aromatisches Anion vor, das an Kaliumkationen η5- gebunden vorliegt. Im Vergleich dazu weist die analoge Stibolid-Verbindung 9 eine völlig andere Festkörperstruktur auf. Verbindung 9 bildet ebenfalls Ketten aus, in denen Kalium-Kationen und Stibolid-Anionen alternierend auftreten, jedoch beobachtet man wie in Abbildung 4.1 wiedergegeben drei kristallographisch und chemisch unterschiedliche Metallzentren. K1 liegt zwischen zwei parallelen Stibolidanionen, an K3 ist ein THF-Ligand gebunden und erzwingt eine nichtparallele Anordnung der benachbarten Stibolidsubstituenten, wohingegen K2 engen Kontakt zur benachbarten Kette zeigt, was zur Ausbildung einer gewellten Schichtstruktur führt.Auch hier sind die Heterocyclen eindeutig η5 an die Metallzentren koordiniert. Die K-Sb- Abstände innerhalb der einzelnen Ketten weisen durchschnittlich 352 pm auf, während der KSb- Kontakt zwischen den Ketten 362 pm beträgt. Bei den Umsetzungen der 1-Chlor-substituierten Pentole mit den schweren Erdalkalimetallen Magnesium, Calcium, Strontium und Barium isolierten wir abhängig vom Metallzentrum vier unterschiedliche Produkte. Ebenso wie bei den Alkalimetallen konnte bei allen Erdalkalimetallen in einem ersten Schritt die Bildung der Dipentolyle nachgewiesen werden. Während Strontium und Barium die Pentel-Pentel-Bildung der entsprechenden Dipentolyle unter Bildung von Erdalkalimetall-bis(pentoliden) reduktiv spaltet [vgl. Reaktionsschema 4.3], gelingt diese Reaktion mit den leichteren Homologen Calcium und Magnesium nicht. Erst der Zusatz der stöchiometrischen Menge Metalldichlorid führt zur Bildung der heteroleptischen Magnesium- und Calcium-pentolidchloride [vgl. Reaktionsschema 4.2]. Um den Einfluß der Erdalkalimetallatomgröße auf die Reaktion detaillierter beschreiben zu können, wurden die Kristallstrukturen der dimerem Verbindungen von (Tetrahydrofuran- O)magnesium-2,3,4,5,-tetraethyl-λ3-phospholidchlorid 10 und Bis(tetrahydrofuran- O)calcium-2,3,4,5,-tetraethyl-λ3-phospholidchlorid 13 bestimmt. Alle heterocyclischen Liganden sind η5 an die Metallatome koordiniert. Die Abstände der Magnesiumatome zu den Ringkohlenstoffatomen liegen im Bereich von 247 bis 249 pm, für die vergleichbare Calcium- Verbindung im weiten Bereich von 277 bis 287 pm. Der Metall-Phosphor-Abstand beträgt für Verbindung 10 262 pm, für 13 findet man Werte von 295 bzw. 297 pm.Die Umsetzung von 5, 6 und 7 mit einem Überschuß von Strontium oder Barium führt durch Bruch der Pentel-Pentel-Bindung zur Bildung der Erdalkalimetall-bis(pentolide). Während die Barium-Verbindungen (20, 21, 22) ohne neutralen Co-Liganden am Metallatom kristallisieren, verbleibt bei den Strontium-Verbindungen (16, 17, 18) ein THF-Molekül in der Koordinationssphäre des Metallzentrums. Die von Verbindung 20 angefertigte Röntgenstrukturanalyse zeigt jedes Bariumatom an zwei Phospholid-Anionen η5-koordiniert, während zwei weitere Phospholid-Liganden über die Phosphoratome σ-gebunden auftreten wobei ein eindimensionaler Strang gebildet wird. Die η5-koordinierten Phospholid-Liganden sind gegeneinnader verkippt, der daraus resultierende Winkel zwischen den Zentren der Ringe und dem Metallzentrum beträgt 142°. Die Abstände der Metallzentren zu den Ringkohlenstoffatomen liegen aufgrund der Winkelung im weiten Bereich von 306 bis 318 pm. Die Ba-P-Abstände zu den Heteroatomen der η5-koordinierten Heterocyclen nehmen Werte von 324 und 329 pm an und sind ungefähr 20 pm kürzer als die Kontakte zu den η1- gebundenen Phosphoratomen. Neben den Erdalkalimetall-pentoliden mit η5-gebundenen Heterocylen beschäftigten wir uns mit der Transmetallierung von Bis(trimethylsilylmethyl)zink durch aktivierte Erdalkalimetalle zur Darstellung von Verbindungem mit Metall-Kohlenstoff-σ-Bindungen. Wir konnten zeigen, dass destilliertes Calcium und Strontium nur in THF mit Bis(trimethylsilylmethyl)zink zu den Erdalkalimetall-bis[tris(trimethylsilylmethyl)zinkaten] reagieren, während Barium reaktiv genug ist, um sowohl in THF als auch in Toluol und Heptan das entsprechende Zinkat zu bilden. Eine Übersicht über die Reaktionen ist in Reaktionsschema 4.4 wiedergegeben.Von großem Interesse waren die Bindungsverhältnisse der Erdalkalimetallbis[ tris(trimethylsilylmethyl)zinkate]. Zur Klärung dieser Frage wurden die Röntgenstrukturanalysen der Verbindungen 24, 25, 26 und 27 angefertigt. In allen Verbindungen ist das Erdalkalimetall an vier verbrückende Methylen-Gruppen gebunden. Je nach Lösemittel wird die Koordinationssphäre der Metallzentren durch als Lewis-Basen wirkende Lösemittel-Moleküle ergänzt. Die Erdalkalimetall-Kohlenstoff-Zink- Bindungsverhältnisse lassen sich als Zwei-Elektronen-Drei-Zentren-Bindungen beschreiben. Die gefundenen Erdalkalimetall-Kohlenstoff-Abstände sind durchschnittlich 20 pm länger als die berechneten Werte der entsprechenden Dimethylerdalkalimetall-Verbindungen. Zu einem interessanten Ergebnis führte die Transmetallierung von solvensfreiem Bariumbis[ tris(trimethylsilylmethyl)zinkat] mit einem Überschuss an Barium und gleichzeitiger Ultraschall-Behandlung. Aus der roten Reaktionslösung konnten wir Dibarium- {bis[bis(trimethylsilylmethyl)zink]-tris(trimethylsilylmethanido)zinkat} 30 isolieren. Die Verbindung ist in mehrfacher Hinsicht interessant. Die Festkörperstruktur der dimeren Verbindung 30 weist als Grundgerüst einen Ba4Zn2C6-Käfig auf, der als verzerrter Doppelwürfel mit einer gemeinsamen Ba2C2-Fläche vorliegt. Das Strukturmodell von 30 ist in Abbildung 4.2 anschaulich dargestellt. Die Ba-C-Abstände innerhalb des flächenverknüpften Doppelwürfels liegen im Bereich von 283 bis 320 pm. Die Koordinationssphären der Metallzentren werden durch agostische Bindungen zu Methylen-Gruppen ergänzt. Verbindung 30 ist das bisher zweite strukturell untersuchte geminal biszinkierte Alkan. Die gefundenen Zink-Kohlenstoff-Abstände liegen im Bereich von 206 bis 215 pm. Sowohl diese großen Koordinationszahlen als auch die teilweise auf benachbarten Atomen lokalisierten anionischen Ladungen führen zu diesen großen Zn-C-Abständen, die Aufweitung im Vergleich zu entsprechenden Dialkylzinkverbindungen liegt bei etwa 20 pm. Durch den Einsatz der von uns synthetisierten Erdalkalimetallbis[ tris(trimethylsilylmethyl)zinkate] in Metallierungsreaktionen mit CH-aciden Verbindungen konnte eine Reihe neuartiger Verbindungen dargestellt werden. Bei der Umsetzung der THF-Addukte der Erdalkalimetall-bis(zinkate) von Calcium, Strontium und Barium mit 2,3-Bis(trimethylsilyl)-2,3-dicarba-nido-hexaboran konnten wir die entsprechenden Erdalkalimetall-bis(carborate) isolieren. Bei der Metallierung ist jeweils nur ein Trimethylsilylmethyl-Substituent aktiv, auch eine Folgereaktion der Carborate mit gebildetem Bis(trimethylsilymethyl)zink wurde nicht beobachtet. Diese Syntheseroute bietet eine Alternative zu der bisher genutzten Methathese von Alkalimetall-Carboraten mit Erdalkalimetall-dihalogeniden. Die von Verbindung 32 und 33 angefertigten Röntgenstrukturanalysen zeigen unterschiedliche Koordination der Carborat-Liganden an die Metallzentren. Ein Ligand koordiniert über zwei hydridische Wasserstoffatome an das Erdalkalimetall. Die Bindungsverhältnisse können als Metall-H-B2-Vier-Zentren-Bindung beschrieben werden. Die Sr-H-Abstände in 32 liegen bei 269 und 262 pm, in Verbindung 33 wurden Ba-HAbstände von annähernd 290 pm gefunden. Unterschiedlich ist die Koordination des zweiten Liganden. Verbindung 32 zeigt die Bindung über ein Brückenwasserstoffatom, sowie über jeweils ein Bor- und ein Kohlenstoffatom. Die homologe, dimere Barium-Verbindung 33 koordiniert ebenfalls über ein Brückenwasserstoffatom sowie über die beiden Kohlenstoffatome. Durch Metallierung von Triisopropylsilylphosphan und –arsan eröffnet sich von der Verbindungsklasse der Erdalkalimetall-bis(zinkate) aus ein Zugang zu neuartigen Erdalkalimetall-zinkaten. So führt die Umsetzung des Calcium-Derivats 24 mit drei Äquivalenten Triisopropylsilylphosphan zur Bildung von Tris(tetrahydrofuran-O)calcium- [1,3-bis(triisopropylsilylphosphanyl)-1,3-bis(trimethylsilylmethyl)-2-triisopropylsilyl-1,3- dizinka-2-phosphapropandiid] 34. Das von drei THF-Liganden und den drei Phosphoratomen des dreizähnigen Liganden verzerrt oktaedrisch umgebenes Calciumatom weist Ca-PAbstände von 292 bis 296 pm auf. Aus der von Verbindung 34 abgetrennten Mutterlauge kann man durch erneutes Kühlen Bis[tris(tetrahydrofuran-O)calcium]-tris(µ- triisopropylsilylphosphanid)-tris(triisopropylsilylphosphanyl)zinkat 35 isoliern. Verbindung 35 kristallisiert als getrenntes Ionenpaar. Das binukleare Kation entspricht einer trigonalen Bipyramide mit den Calciumatomen in den apikalen Positionen. Drei THF-Liganden pro Calciumatom vervollständigen die verzerrt oktaedrische Umgebung der Metallzentren. Die Ca-P-Bindungslängen innerhalb des Bicyclus variieren von 294 bis 302 pm. Das Zinkatom im Tris(triisopropylsilylphosphanyl)zinkat-Anion ist trigonal planar umgeben. Die Zn-PAbstände liegen im Bereich von 231 bis 238 pm. Bei der Umsetzung von 24 mit Triisopropylsilylarsan konnten wir Tetrakis(tetrahydrofuran- O)calcium-[1,3-bis(triisopropylsilylarsanyl)-2,4-bis(triisopropylsilyl)-1,3-dizinka-2,4-diarsacyclobutandiid] 37 isolieren. Das zentrale Strukturelement ist ein Zn2As2-Viering mit zwei terminalen Arsanyl-Substituenten an den Zinkatomen. Das Calciumatom ist über die endocyclischen Arsanyl-Gruppen koordiniert, die gefundenen Ca-As-Bindungsabstände betragen 295 und 300 pm. Die endocyclischen Zn-As-Bindungslängen sind im Vergleich zu den terminalen Arsanyl-Liganden um 5 pm länger. Eine Überblick über die Reaktionen von Calcium-bis(zinkat) 24 mit primären Pentelen bietet Reaktionsschema 4.6. Bei der Umsetzung des Strontium-Derivats 25 mit Triisopropylsilylphosphan isoliert man das zu den Calcium-Verbindungen 34 und 35 verschiedene Bis(tetrahydrofuran-O)strontiumbis[ bis(triisopropylsilylphosphanyl)(trimethylsilylmethyl)zinkat] 36. Durch den Ersatz der vier verbrückenden Trimethylsilylmethyl-Substituenten von 25 durch Triisopropylsilylphosphanyl-Reste erhält man ein von vier Phosphoratomen quadratisch planar umgebenes Strontiumatom. Die oktaedrische Umgebung wird durch zwei THFLiganden in den apikalen Positionen vervollständigt. Die Strontium-Phosphor- Bindungslängen bewegen sich im Bereich von 308 bis 313 pm. Die Reaktion ist ebenfalls in Schema 4.6 aufgeführt.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

1 Hydraziniumazide In dieser Arbeit wurde untersucht, ob die Eigenschaften von Hydraziniumazid durch Einführung organischer Substituenten verbessert werden können. Die Hydraziniumazidderivate wurden aus den jeweiligen wasserfreien, substituierten Hydrazinen und einer wasserfreien Lösung von HN3 in Ether dargestellt, die aus der Reaktion von Tetrafluoroborsäureetherat mit Natriumazid gewonnen wurde. Hydraziniumazid ist ein Addukt der schwachen Säure HN3 (pKs = 4.92) mit Hydrazin. Zwischen den Hydrazinium- und Azidionen treten starke Wasserstoffbrückenbindungen auf. Die Stärke der Wasserstoffbrückenbindungen ist entscheidend für die Eigenschaften der jeweiligen Verbindungen. Die Leichtflüchtigkeit sowie die Hygroskopie von Hydraziniumazid und seinen Derivaten lassen sich auf die Stärke und Zahl der Wasserstoffbrückenbindungen zurückführen. Die Einführung organischer Substituenten schwächt die Bindung zwischen Azidionen und Hydraziniumionen bereits dadurch, dass weniger NH Wasserstoffatome, die Wasserstoffbrückenbindungen bilden können, vorhanden sind. Je mehr Substituenten vorhanden sind, desto schwächer ist somit die Bindung zwischen Hydrazin und HN3. Der Schmelzpunkt der Hydraziniumazide ist eine gute Beschreibungsgröße für die Stärke der Wasserstoffbrückenbindungen und damit die Stärke des Hydrazin-HN3 Addukts. Dies kann an den sinkenden Schmelzpunkten der methylierten Verbindungen Methylhydraziniumazid (3), N,N-Dimethylhydraziniumazid (4), N,N´- Dimethylhydraziniumazid (5), und N,N,N´-Trimethylhydraziniumazid (6) überprüft werden. Die organischen Substituenten lieferten während der Explosion keine Energiebeiträge, da sie entweder zum Kohlenwasserstoff oder zum organylsubstituierten Amin reagierten. Daher sinkt der Anteil an aktiver Masse mit zunehmendem Substitutionsgrad. Erstaunlicherweise explodierten aber die flüssigen di-, tri- und tetramethylierten Verbindungen 4-7 bei Erwärmung heftiger als das monomethylierte 3. Dies ist auf die schwache Bindung von HN3 in diesen Verbindungen zurückzuführen. Es wurde zuerst HN3 abgespalten, das dann explodierte. Es wurde versucht, die Bindung zwischen Hydrazinium- und Azidionen durch zusätzliche Wasserstoffbrückenbindungen mit weiteren NH und OH Protonen in 2-Hydroxyethylhydrazin und Ethylendihydrazin zu stärken. Aus der Reaktion dieser Hydrazinderivate mit HN3 wurden keine Feststoffe, sondern zähflüssige Produkte, die nicht die stöchiometrische Menge HN3 enthielten, isoliert.Der Einbau eines Hydrazinstickstoffatoms in Ringsysteme führt zur Erhöhung der Basizität des Stickstoffatoms. Stärkere Hydrazin-HN3 Addukte sollten sich ergeben. Dies wird dadurch belegt, dass der Schmelzpunkt der N,N-dimethylierten Verbindungen N,NDimethylhydraziniumazid (4) und N-Amino-1-azoniacyclohexanazid (18) im Sechsringsystem 18 um 50 °C höher ist. Das Siebenringsystem N-Amino-1- azoniacycloheptanazid (19) zeigt ebenfalls eine Erhöhung des Schmelzpunktes von 18 °C gegenüber 4. Die Erhöhung ist geringer als bei 18, da in Siebenringsystemen die Basizitätserhöhung des Ringstickstoffatoms niedriger ist als in Sechsringsystemen. Das bei N-Amino-1-azonia-4-oxacylcohexanazid (20) im Ringsystem vorhandene Sauerstoffatom zeigt keine Auswirkungen auf den Schmelzpunkt. 20 spaltete jedoch während längerer Lagerung eine NH2-Gruppe ab, Morpholiniumazid (21) wurde erhalten. Auch bei den N,N´-dimethylierten Verbindungen N,N´-Dimethylhydraziniumazid 5, N,N´-Diethylhydraziniumazid (22), Pyrazolidiniumazid (23) und Hexahydropyridaziniumazid (24) wurde eine Erhöhung des Schmelzpunktes durch Einbinden des Hydrazinmoleküls in ein Ringssystem festgestellt. Während die offenkettigen Azide 5 und 22 erst unterhalb Raumtemperatur fest wurden, waren die Ringsysteme 23 und 24 bei Raumtemperatur fest. Diorganylsubstituierte Hydraziniumazide sind nicht praktisch anwendbar, da zu viele organische Substituenten vorhanden sind, die die Explosion hemmen. Während der Explosion entstanden große Mengen an organischen Nebenprodukten, vor allem Organylamine. Ein weiterer Nachteil ist die Oxidationsempfindlichkeit der Alkylhydrazine, die sich in den Azidderivaten wiederfindet. Die Verbindungen N,N,N´,N´-Tetramethylhydraziniumazid-tetramethylhydrazinat (7) und Phenylhydraziniumazid-phenylhydrazinat (14) sind Grenzfälle. Bei der Reaktion mit HN3 bildeten sich Dimere der Hydrazine, an die das Azidion über Wasserstoffbrückenbindungen gebunden ist. Es war nicht möglich, aus einem festen, substituierten Hydrazin das Addukt mit HN3 zu bilden, da bei der Entfernung des Lösungsmittels immer das substituierte Hydrazin ausfiel. Substituierte Hydrazine mit einem permethylierten Stickstoffatom ergaben Hydraziniumazidderivate, die nicht mehr flüchtig, aber sehr hygroskopisch sind. Sie wurden aus der Umsetzung der jeweiligen Hydraziniumiodide mit Silberazid erhalten. N,N,NTrimethylhydraziniumazid (8), N,N,N,N´-Tetramethylhydraziniumazid (9) und Pentamethylhydraziniumazid (10) haben Schmelzpunkte um 180 °C. Die Anzahl der Methylgruppen wirkt sich hier nicht auf den Schmelzpunkt aus. 8-10 explodierten aufgrund der vielen organischen Substituenten nur schwach, bei der Explosion entstanden größere Mengen Trimethylamin. Günstige Auswirkung auf die Eigenschaften von Hydraziniumazid hat die Adduktbildung mit einem weiteren Molekül Hydrazin. Hydraziniumazidhydrazinat (2) ist nicht mehr hygroskopisch, wesentlich weniger flüchtig und die Empfindlichlichkeit gegenüber Schlag, Reibung und Temperaturerhöhung sinkt. Der Schmelzpunkt ist mit 65 °C allerdings noch niedriger als der Schmelzpunkt von Hydraziniumazid mit 75 °C. Ein weiterer Nachteil ist, dass bei der Explosion mehr Ammoniak entsteht als bei Hydraziniumazid. Als Beispiel ist hier die Struktur von Hydraziniumazidhydrazinat (2) abgebildet, die Strukturen vieler anderer Hydraziniumazide finden sich in Kapitel 1. 2 Methylierte Hydraziniumnitrate In Raketentriebwerken werden Methylhydrazin oder N,N-Dimethylhydrazin und N2O4 eingesetzt. Bei der unvollständigen Verbrennung können Ablagerungen der jeweiligen Ammonium- und Hydraziniumnitrate gebildet werden. Die mono- und N,N-dimethylierten Ammonium- und Hydraziniumnitrate wurden hergestellt und ihre Eigenschaften überprüft. Sowohl Methylhydrazinium- (27) als auch N,N-Dimethylhydraziniumnitrat (28) sind sehr hygroskopische Substanzen. Wasser konnte aus den Hydraziniumnitraten nicht im Vakuum entfernt werden. Daher wurden 27 und 28 aus den wasserfreien, methylierten Hydrazinen und wasserfreier Salpetersäure bei –78 °C hergestellt. Die Hydraziniumnitrate zersetzten sich bei leicht erhöhter Temperatur (60 °C) bereits langsam zu den jeweiligen Ammoniumnitraten. Die Strukturen von Methylhydraziniumnitrat (27) und Dimethylhydraziniumnitrat (28) wurden bestimmt, die Struktur von Methylhydraziniumnitrat (27) ist hier als Beispiel angegeben. Die Zersetzung der Ammonium- und Hydraziniumnitrate bei hoher Temperatur erfolgte nicht vollständig. Während die Ammoniumnitrate größere Mengen NO2 ergaben, wurden bei den Hydraziniumnitraten nur Produkte einer weiter fortgeschrittenen Zersetzung, z.B. NO, nachgewiesen. Auch kleine Mengen Methylazid wurden gefunden. Während der durchgeführten Test ist es nicht gelungen, die Nitrate zur Explosion zu bringen. Beim starken Erhitzen der Hydraziniumnitrate 27 und 28 fand nur eine Zersetzung, keine Explosion statt. 3 Reaktionen mit cis-Hyponitrit Die in der Literatur erwähnten Verbindungen mit cis-Hyponitritanionen wurden entweder durch Kupplung von zwei NO Molekülen an einem Metallzentrum oder durch Reaktion von N2O mit Natriumoxid erhalten. In dieser Arbeit ist es nicht gelungen, aus Reaktionen des cis-Hyponitritions neue Verbindungen zu isolieren, es wurde immer die Bildung von N2O beobachtet. Die theoretische Untersuchung der Zersetzung der einfach protonierten Verbindung cis-HN2O2 – ergab eine niedrige Aktivierungsbarriere von 11.9 kcal/mol (MP2/6-31+G(d,p)) für die Bildung von N2O und OH– in der Gasphase. Zusätzlich muss berücksichtigt werden, dass vor allem das OH–-Ion in einem Lösungsmittel gegenüber der Gasphase beträchtlich stabilisiert wird, so dass die Aktivierungsenergie in Lösung noch niedriger liegen dürfte. Dies erklärt die Bildung von N2O, die bei allen durchgeführten Experimenten, selbst bei sehr tiefen Temperaturen beobachtet wurde. Eine Isolierung der cis-hyposalpetrigen Säure kann daher wahrscheinlich nicht aus Lösung erfolgen, da sich die einfach protonierte Verbindung sofort zu N2O und OH– zersetzt. Ein Stickstoffoxid N6O4, das aus der Reaktion von Natrium-cis-hyponitrit mit Tetrafluorhydrazin entstehen kann, hat nur bei der Berechnung auf PM3 und HF Niveau ein Miniumum. Bei stärkerer Berücksichtigung der Elektronenkorrelation auf B3LYP oder MP2 Niveau wurden keine Minima auf der Energiehyperfläche gefunden. 4 Verbindungen mit 5,5´-Azotetrazolat Das 5,5´-Azotetrazolation enthält bereits 5 Mol Stickstoff. Durch Kombination mit Kationen von Stickstoffbasen, vor allen Hydraziniumkationen, können Verbindungen erhalten werden, die pro Formeleinheit viele Mole Gas erzeugen. Der Hauptbestandteil der Explosionsgase ist Stickstoff. Hydraziniumverbindungen bilden zusätzlich Wasserstoff, was für hohe Detonationsgeschwindigkeiten sorgt. Verbindungen, die große Mengen Stickstoff erzeugen, werden für Gasgeneratoren in automatischen Feuerlöschsystemen, Airbags und Rettungswesten gesucht. Ein Vorteil der Salze von 5,5´-Azotetrazolat mit Stickstoffbasen ist, dass sie gegenüber Schlag und Reibung relativ unempfindlich sind, was für eine Anwendung wichtig ist. Das empfindlichste Salz ist das Ammoniumsalz, das im Fallhammertest in der Literatur bei 4.4 kg bei einer Fallhöhe von 50 cm explodierte. [130] 5,5´-Azotetrazol ist im Gegensatz zu HN3 eine starke Säure und zerfiel bei Raumtemperatur innerhalb einer Minute vollständig zu Tetrazolhydrazin. Die freie Säure kann bei –30 °C hergestellt und bei –80 °C mehrere Wochen gelagert werden. Aus Methanol kristallisierte 5,5´-Azotetrazol mit zwei Molekülen Kristallwasser (70). 5,5´-Azotetrazolatsalze sind jedoch stabil. Die Synthese von 5,5´-Azotetrazolatsalzen erfolgte durch Umsetzung von Sulfaten der entsprechenden Kationen mit Barium-5,5´-azotetrazolat. Die Stabilität von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen ist davon abhängig, wie leicht das Proton von der Stickstoffbase auf das 5,5´-Azotetrazolation übertragen werden kann. Dies kann an den Ammmoniumsalzen Diammonium-5,5´- azotetrazolat (45), Bis-methylammonium-5,5´-azotetrazolat (46), Bis-dimethylammonium- 5,5´-azotetrazolat (47), Bis-trimethylammonium-5,5´-azotetrazolat (48) und den Hydraziniumsalzen Hydrazinium(2+)-5,5´-azotetrazolat (51), Dihydrazinium-5,5´- azotetrazolat (53), Bis-methylhydrazinium-5,5´-azotetrazolat (54), Bis-N,Ndimethylhydrazinium- 5,5´azotetrazolat (55) und Bis-N,N´-dimethylhydrazinium-5,5´- azotetrazolat (56) abgelesen werden. Je mehr Methylgruppen vorhanden waren, desto tiefer waren die Zersetzungstemperatur der Salze. Waren keine NH+ Gruppen in den Kationen vorhanden, z.B. in Bis-tetramethylammonium-5,5´-azotetrazolat (49) und Bis-N,N,Ntrimethylhydrazinium- 5,5´-azotetrazolat (57), so erfolgte die Zersetzung über einen anderen Mechanismus, der wahrscheinlich umgekehrt zur Bildung der Tetrazolringe verläuft und erst bei höheren Temperaturen stattfindet. Die Synthese von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen kann bei Raumtemperatur nur in Wasser als Lösungsmittel stattfinden. In organischen Lösungsmitteln erfolgte eine Zersetzung des Azotetrazolations. Dihydrazinium-5,5´-azotetrazolat (53) ist eine neue hochenergetische Verbindung, die alle Anforderungen für einen modernen Sprengstoff erfüllt. Die hohe Standardbildungsenthalpie von 264 kcal/mol (ber.), die bei der Detonation freigesetzt wird sowie die bei der Detonation gebildeten großen Mengen Wasserstoff sorgen für ein gute Detonationsgeschwindigkeit von 6330 m/s. Der größte Nachteil von 53 ist die niedrigen Dichte. Bei einer vergleichbaren Dichte würde die Verbindung die Werte der kommerziellen Sprengstoffe RDX und HMX übertreffen. Die bereits bekannten Guanidinium- (66) und Triaminoguanidiniumverbindungen (68), deren Kristallstrukturen in dieser Arbeit bestimmt wurden, haben höhere Dichten und sind thermisch stabiler. Vor allem das Guanidiniumsalz wird wahrscheinlich in den nächsten Jahren in Gasgeneratoren zum Einsatz kommen. Die niedrigen Dichten der Hydraziniumsalze im Vergleich zu den Guanidiuniumsalzen sind geometrisch begründet. Die Guanidiuniumderivate sind flach. Dadurch können sich sowohl die 5,5´-Azotetrazolationen als auch die Kationen platzsparend übereinander anordnen. Hydraziniumionen haben Wasserstoffatome, die nach allen Raumrichtungen ausgerichtet sind. Da diese Wasserstoffatome in Wasserstoffbrückenbindungen einbezogen werden, entstehen Lücken zwischen den 5,5´-Azotetrazolationen in der Kristallpackung. Das Hydraziniumsalz 53 kann zwei Einheiten Wasser oder Hydrazin über Wasserstoffbrücken binden. Sowohl das Ammoniumsalz 45, als auch Hydroxylammonium- 5,5´-azotetrazolat (50) und die methylierten Ammonium- 46-49 und Hydraziniumverbindungen 54-57 können keine zusätzlichen Stickstoffbasen über Wasserstoffbrückenbindungen binden. Die Alkali- und Erdalkalisalze 29-37 von 5,5´-Azotetrazolat binden große Mengen Kristallwasser. Die Wassermoleküle sind sowohl an die Kationen koordiniert als auch über Wasserstoffbrückenbindungen im Kristall gebunden. Daraus ergeben sich verschiedene Bedingungen für die Entfernung des Kristallwassers. Während nur über Wasserstoffbrückenbindungen gebundenes Kristallwasser beim Aufheizen bereits bei Temperaturen um 100 °C entwichen ist, liessen sich die koordierten Wassermoleküle erst bei Temperaturen von 120-150 °C entfernen. Bei der Entfernung der letzten Wassermoleküle wurden im DSC jeweils große Energiemengen festgestellt, die für eine Strukturänderung nach der Entfernung der letzten Wassermoleküle sprechen. Die Temperaturstabilität der Alkali- und Erdalkalimetallsalze sinkt mit zunehmender Größe des Kations. Während die Lithiumverbindung (29) erst bei 335 °C explodierte, explodierte die Bariumverbindung (37) bereits bei 211 °C. Bei der Entfernung von Wasser bei Temperaturen um 100 °C im Ölpumpenvakuum fanden Explosionen statt. Daher kann Wasser praktisch nur durch lange Lagerung der Salze im Exsikkator über P2O5 entfernt werden. Die wasserfreien Alkali- und Erdalkalimetallsalze sind schlag- und reibungsempfindlich, was sie zu potentiellen Primärexplosivstoffen macht Die Kristallstrukturen von Lithium-5,5´-azotetrazolat-hexahydrat (29), Natrium-5,5´- azotetrazolat-pentahydrat (30), Rubidium-5,5´-azotetrazolat-hydrat (32) und Barium-5,5´- azotetrazolat-pentahydrat (37) zeigen eine Koordination von 5,5´-Azotetrazolat– stickstoffatomen an das jeweilige Metallion. In Calcium-5,5´-azotetrazolat-octahydrat (35) und Yttrium-5,5´-azotetrazolat-docosahydrat (39) sind die 5,5´-Azotetrazolatstickstoffatome nicht mehr an die Metallionen koordiniert, die Metallionen sind von einer Hydrathülle umgeben. Auch Magnesium-5,5´-azotetrazolat-octahydrat (34) und die Salze der dreiwertigen Kationen Aluminium 38, Lanthan 40, Cer 41 und Neodym 42 sind im Einklang mit dem HSAB-Prinzip wahrscheinlich nur von einer Hydrathülle umgeben. Das Magnesiumsalz 34 sowie die Salze der dreiwertigen Kationen sind nur solange stabil, wie das Kation von der Hydrathülle umgeben ist. Verlieren die Verbindungen Wasser, z. B. beim Erhitzen, so werden farblose Zersetzungsprodukte erhalten. Bei der Reaktion von [Ce]4+[SO4]2– 2 mit Barium-5,5´-azotetrazolat kommt es sofort zu einer Gasentwicklung, Ce+4 ist in wässriger Lösung zu sauer. Nach Auflösen von Barium-5,5´-azotetrazolat in Hydrazin entfärbte sich die Reaktionslösung innerhalb von zwei Stunden. Farbloses Barium-N,N´-ditetrazolatohydrazintrihydrazin (44) wurde erhalten. 5 Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid Aus der Reaktion von Benzoldiazoniumchlorid mit Lithiumazid konnte Phenylpentazol isoliert werden. Analoge Reaktionen mit verschiedenen Phenylderivaten ergaben substituierte Phenylpentazole. Die Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid ergibt Tetrazolazid. Daher wurde auch in dieser Reaktion eine Pentazolzwischenstufe vermutet. Theoretische Berechnungen ergaben, dass die Aktivierungsenergie für den Zerfall verschiedener Tetrazolpentazolisomere in der Gasphase zu Tetrazolazid und Stickstoff mindestens 14.8 kcal/mol beträgt. Daher erschien es möglich, Tetrazolpentazol im Experiment zu beobachten. Bei der 15N-NMR spektroskopischen Verfolgung der Reaktion von Tetrazoldiazoniumchlorid (71) mit Lithium-15Nα-azid wurden zwei Signale bei δ = –29.7 und δ = 7.7 beobachtet, die bei Erwärmung auf –50 °C an Intensität abnahmen und bei –30 °C vollständig verschwunden waren. Gleichzeitig nahm das Signal von Stickstoff an Intensität zu und ein Signal von Nβ markiertem Tetrazolazid erschien. Die bereits bei tiefen Temperaturen wieder verschwindende Zwischenstufe der Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid entspricht daher sowohl ihrem chemischen Verhalten, als auch in den beobachteten Signalen dem Verhalten, das von Tetrazolpentazol erwartet wird.