POPULARITY
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
One of the important transformations of alcohols to esters is the reaction with acetic anhydride catalysed by 4-(dimethylamino)pyridine (DMAP) in the presence of an auxiliary base like triethyl amine. Although this is a widely used reaction, several questions left unaddressed until now: the reaction mechanism of the latter transformation was not completely conceived. Since Steglich and Litvenencko found DMAP in 1969 independently as nucleophilic catalyst, there was hardly any effort to search for new nucleophilic catalysts of higher catalytic efficiency than DMAP or 4-(pyrrolidinyl)pyridine (PPY). All chiral nucleophilic catalysts are based on these structural motifs and due to their lack of catalytic efficiency, there are hitherto no examples for kinetic resolution experiments of tertiary alcohols described. In this dissertation, the following goals were achieved: With computational methods, the reaction pathway of tert-butanol with acetic anhydride in the presence of DMAP was explored. Based on these results a fast computational tool was developed to screen for more efficient nucleophilic catalysts. The best candidates were synthesised, the catalytic efficiency quantified and the best catalysts applied in the synthesis of esters. The reaction mechanism of the acetylation of tert-alcohols was explored by calculating the nucleophilic and base catalysed reaction pathway of tert-butanol with acetic anhydride in the presence of DMAP at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. In the course of this study, a nucleophilic and base catalysed reaction pathway with DMAP as catalyst was found. The energetically lowest transition state of the base catalysed reaction pathway is 37.9 kJ mol-1 higher in energy then the energetically lowest transition state in the rate-determining step of the nucleophilic reaction path. The combination of kinetic measurements with the calculation of the nucleophilic reaction path reveals that no triethyl amine is involved in the rate-determining step of nucleophilic reaction pathway. This shows clearly that nucleophilic catalysis is the preferred and that the acetate anion is deprotonating the alcohol in the rate-determining step. Furthermore, the results of the recalculation of the nucleophilic reaction path with a different catalyst show that a higher stabilisation of the transient acylpyridinium cation has a pivotal influence on the overall reaction rate of the ester formation. Therefore, relative acetylation enthalpies (ΔH298) were calculated at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory by using an isodesmic reaction approach. In this way a large number of new nucleophilic catalysts were screened and numerous promising candidates were synthesised which have a larger negative ΔH298 value then DMAP (-82.1 kJ mol 1). The catalytic effiency of the new nucleophilic catalysts was quantified by a test reaction using 1 equiv. of 1-ethynylcyclohexanol, 2 equiv. of acetic or isobutyric anhydride and 3 equiv. triethyl amine. The conversion of 1-ethynylcyclohexyl acetate or -isobutyrate was monitored by 1H NMR spectroscopy. Pyrido[3,4-b]pyrazine- and pyrido[3,4 b]quinoxaline-derivatives show the best catalytic effiency. Especially (rac) 5,10-diethyl-5,5a,6,7,8,9a,10-octahydropyrido[3,4 b]-quinoxaline (DOPQ) shows equal to better catalytic efficiency then 6,6-tricyloaminopyridine (TCAP), which was hitherto the best nucleophilic catalyst. DOPQ can be synthesised very efficiently in a four step protocol starting from commercially available 3,4-diaminopyridine and cyclohexane-1,2-dione with an overall yield of 45 % while TCAP is only available in a five step synthesis with an overall yield of 8-13 %. The synthesis of DOPQ starts with the Schiff-base formation of 3,4-diaminopyridine and cyclohexane-1,2-dione. Reduction with LiAlH4 yields the cis-configured octahydro[3,4-b]quinoxaline, which can be alkylated without the use of any protecting group in the presence of acetic anhydride in pyridine and subsequent reduction with LiAlH4/AlCl3 to yield DOPQ. The structure of the latter compound was confirmed by X ray single crystal structure. The new catalysts were applied to an enhanced Gooßen esterification to transform sterically hindered acids to their tert-butyl esters. The reaction mechanism was explored by monitoring the substrate, intermediate and product conversions with 1H NMR spectroscopy. With this enhanced reaction protocol, it was possible to transform 1-phenylcyclohexane carboxylic acid into the tert-butyl ester under high concentration conditions at room temperature in the presence of 5 mol% DOPQ within 270 min while with the standard DCC/DMAP protocol only the anhydride of the carboxylic acid is formed. With this very mild method, it was possible to convert a variety of substrates into their tert-butyl- and benzyl esters, which are not accessible with any other method starting from the free carboxylic acid. In the case of chiral substrates no lose of stereochemical information was detected. Combination of high concentration conditions and new catalysts provide attractive reaction times of a few minutes instead of several hours with the Gooßen protocol.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
The molecular structures of all silver halide monomers, Ag2X, AgX, AgX2 and AgX3, (X = F, Cl, Br, I), have been calculated at the B3LYP, MP2 and CCSD(T) levels of theory by using quasirelativistic pseudopotentials for all atoms except fluorine and chlorine. All silver monohalides are stable molecules, while the relative stabilities of the subhalides, dihalides and trihalides considerably decrease toward the larger halogens. The ground-state structure of all Ag2X silver subhalides has C2v symmetry, and the molecules can be best described as [Ag2]+X-. Silver dihalides are linear molecules; AgF2 has a 2Sg ground state, while all of the other silver dihalides have a ground state of 2Pg symmetry. The potential energy surface (PES) of all silver trihalides has been investigated. Neither of these molecules has a D3h symmetric trigonal planar geometry, due to their Jahn-Teller distortion. The minimum energy structure of AgF3 is a T-shaped structure with C2v symmetry. For AgCl3, AgBr3 and AgI3, the global minimum is an L-shaped structure, which lies outside the Jahn-Teller PES. This structure can be considered as a donor-acceptor system, with X2 acting as donor and AgX as acceptor. Thus, except for AgF3, in the other three silver trihalides, silver is not present in the formal oxidation state 3. Hybrid density functional theory methods have been used to examine the reactivity of hexafluoro- and hexachlorocyclotriphosphazene with respect to single, multiple and complete substitution with water, ammonia, phosphoric and sulfuric acid. Geometries of both educts and all substitution products habe been optimized and their thermodynamic properties are discussed. Based on these results the thermodynamically most favorable reaction pathways have been determined. Starting from a basic unit, which consists of two phosphazene rings that are geminally linked by two hydrazine bridges, several possibilities to form double-stranded chains or helices containing cyclotriphosphazenes were examined by PM3 calculations.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
This thesis focuses on the experimental and theoretical investigation of small molecules containing phosphorus, nitrogen and sulfur. The first part of this work presents synthesis and characterisation of molecules bearing a P-N-N-group: N,N´,N´-[tris(trimethylsilyl)]-hydrazino-diphenylphosphane, (TMS)2N-(TMS)N-PPh2, and N,N´,N´-[tris(trimethylsilyl)]-hydrazino-phenyl(chloro)phosphane, (TMS)2N-(TMS)N-P(Cl)Ph, were obtained in the reaction of bis-[lithiumtris(trimethylsilyl)hydrazide] with PhnPCl3 - n (n = 1, 2). The structure and bonding of both species are discussed on the basis of experimentally observed (X-ray, Raman, NMR, and MS) and theoretically obtained data (B3LYP/6-31G(d,p), NBO analysis). Oxidation with sulfur and selenium results in the formation of (TMS)2N-(TMS)N-P(S)-Ph2, (TMS)2N-(TMS)N-P(Se)Ph2, (TMS)2N-(TMS)N-P(S)Ph(Cl) and (TMS)2N-(TMS)N-P(Se)Ph(Cl). Moreover, the thermal decomposition of N,N´,N´-[tris(trimethylsilyl)]hydrazine-dichlorophosphane, (TMS)2N-(TMS)N-PCl2 and the reaction with magnesium have been investigated. The formation and molecular structure of the novel MgCl2(THF)2* 2Mg[(TMS)NP(O)2N(TMS)2](THF) salt containing the hitherto unknown (TMS)NP-(O)2N(TMS)22- anion are discussed. DFT calculations (B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d,p)) are used to evaluate the bonding, ground-state structures, and energy landscape for the different isomers of (TMS)2N-(TMS)N-PCl2: the thermodynamics and kinetics of the successive elimination of chlorotrimethylsilane (TMS-Cl) resulting in the formation of covalent azide analogues such as TMS-PNN or TMS-NNP are discussed. While investigating the reaction of (TMS)2N-(TMS)N-PCl2 with Lewis acides a galliumtrichloride-adduct of 4-bis[trimethylsilylamino]-1,2,4,3,5-triazadiphosphole was discovered. This hitherto unknown triazadiphosphole represents one of the few examples of a five-membered ring-molecule containing only phosphorus and nitrogen. This ring system was unequivocally characterized by X-Ray, Raman, NMR and MS analysis. Furthermore the Staudinger-type reaction of N,N´,N´-[tris(trimethylsilyl)]-hydrazino-diphenylphosphane with SP(N3)3 and and C3N12 in different stoichiometries were investigated. It is possible to substitute only one azide group in SP(N3)3 and up to two azide groups in C3N12 with (TMS)2N-(TMS)N-PPh2, resulting in the expected products. Upon heating of a solution of (TMS)2N-(TMS)N-PPh2 and SP(N3)3 a new eight-membered ring containing phosphorus and nitrogen in alternating order was obtained. The molecule contains a long pnicogene-chain (eleven atoms in total, three phosphorus- and eight nitrogen-atoms). The reactions of (NSCl)3 and NSCl2- with AgX salts (X = CN, SCN, OCN), as well as the reaction of (NSCl)3 with [PPh4]X (X = CN, SCN, OCN) and HgX (X = CN, SCN) have been investigated in a combined experimental and theoretical study. Additionally, the reaction of NSCl2- salts with hydride-transferring-agents like NaBH4 or NaBH3CN was studied. The thermodynamics as well as structure and bonding of the formation of NSX, NSX2- and NSXY- (X, Y = Cl, H, CN, SCN, OCN) have been studied. Unfortunately the preparation of these species did not suceed. The substitution of sulfur by selenium with SeO2, as reported by Rawson, was investigated on the salts of NSCl2- and S2N3+. These reactions resulted polymeric products and selenium; the formation of a nitrogen-selenium-species could not be confirmed.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Quantenchemische Berechnungen von Carbokationen-Stabilitäten und Elektrophilieparametern E Die Strukturen von zwölf Benzhydrylkationen (XC6H4)2CH+ und ihrer Additionsprodukte mit dem Methylanion (XC6H4)2CH-CH3 wurden auf B3LYP/6-31G(d,p)-Niveau optimiert. Struktur und Reaktivität wurden diskutiert. ClClMeMeMeMeOOOOONMe2Me2NNNNNtol(Ph)CH+(tol)2CH+(ani)2CH+(pcp)2CH+ani(Ph)CH+ani(tol)CH+(fur)2CH+(mfa)2CH+(dma)2CH+(jul)2CH+(lil)2CH+Ph2CH+NNCF3MeMeF3COH3CH3CCH3H3C Abbildung 0-1: Zwölf Benzhydrylkationen; dargestellt ist jeweils das optimierte Konformere.Der Einfluss des Basissatzes wurde bis zum B3LYP/6-311++G(3df,2pd)//B3LYP/6-31g(d,p)-Niveau untersucht. Eine ausgezeichnete lineare Korrelation wurde zwischen dem experimentellen Elektrophilieparameter E (aus der Beziehung lg k = s (N + E)[1]) und den berechneten Methylanion-Affinitäten bereits auf B3LYP/6-31g(d,p)-Niveau gefunden.Abbildung 0-2: Korrelation zwischen den Elektrophilieparametern E verschiedener Benzhydrylkationen mit berechneten Methylanion Affinitäten [∆E0 = E0(Ar2CH–CH3) – E0(Ar2CH+) – E0(CH3–)] auf B3LYP/6-31G(d,p) Niveau (r = 0.9976). Hydrid- und Hydroxidanionaffinitäten von fünf Benzhydrylkationen wurden auf B3LYP/6-31G(d,p)-Niveau berechnet. Diese korrelieren mit den berechneten Methylanion-Affinitäten mit einer Steigung von 1.00; dies zeigt an, dass die relativen Anion-Affinitäten von Benzhydrylkationen von der Lewis-Base unabhängig sind. Um Solvatationseffekte zu berücksichtigen, wurden Hydroxidanionaffinitäten in der Gasphase mit entsprechenden experimentellen Affinitäten in Lösung (d.h. pKR+) verglichen. Dabei ergab sich, dass sich die Stabilitätsunterschiede derCarbokationen in Lösung verkleinern. Zum gleichen Ergebnis gelangt man durch Korrelation von experimentellen Chloridanion-Affinitäten in Lösung mit den berechneten Methylanion-Affinitäten in der Gasphase. Mit Hilfe der Marcus-Gleichung konnte gezeigt werden, dass die intrinsische Barriere konstant bleibt, wenn ein Nucleophil mit dem Steigungsparameter s = 0.67 mit einer Serie von Benzhydrylkationen umgesetzt wird. Größere bzw. kleinere Werte von s als 0.67 zeigen ein Absinken bzw. Ansteigen der intrinsischen Barriere mit zunehmender thermodynamischen Triebkraft der Reaktion an. Diels-Alder-Reaktionen von 1,3-Diarylallylkationen Die Allylkationen 41 und 42 wurden als Tetrafluoroborat-Salze synthetisiert. BF4NMe2Me2NBF4OMeMeO4142 Abbildung 0-3: Allylkationen 41 und 42. Bei den Umsetzungen von 41 und 42 mit one-bond-Nucleophilen (Allylsilane, Allylstannane, Silylenolether, Heteroarene und Hydriddonoren) wurden die erwarteten Produkte erhalten (Schema 0-1).BF4XXXXNuNuX = OMe, NMe241 / 42 Schema 0-1: Umsetzung von 41 und 42 mit one-bond Nucleophilen. 41 reagierte mit den Dienen 61-63 zu Sechsringen (Schema 0-2). Entsprechende Reaktionen mit 42 konnten auch mit elektronenreicheren Dienen nicht beobachtet werden. MeOMeOMeR1R2ZnCl2OMeMeMeOMeOMeOR1R261 62 6364 65 6641MeMeOMeOR1R2ZnCl2OMe68 Me HH HR1 R2H Me61, 6462, 6563, 66 Schema 0-2: Bildung von Cycloaddukten ausgehend von 41. Die Kinetik der Reaktionen von 41 und 42 mit one-bond Nucleophilen wurde UV-spektroskopisch untersucht. Dadurch konnten die Elektrophilieparameter der beiden Allylkationen 41 und 42 bestimmt werden.Aus diesen E-Parametern und bereits bekannten s- und N-Parametern der Diene konnten Geschwindigkeitskonstanten für die Reaktion von 41 und 42 mit Dienen für den Fall vorhergesagt werden, dass nur eine neue Bindung im geschwindigkeitsbestimmenden Schritt geknüpft wird. Entsprechend berechnete Werte stimmen mit den gemessenen Geschwindigkeitskonstanten überein. Übergangszustände mit hohem Grad an Konzertiertheit können daher ausgeschlossen werden. Quantenchemische Untersuchung der Reaktionspfade der Reaktion von Methyl-substituierten Allylkationen mit 1,3-Dienen Die Reaktion des 1,1-Dimethylallykations mit s-cis-1,3-Butadien[2] wurde auf B3LYP/6-311++G(3df,2pd)//B3LYP/6-311G(d,p)-Niveau studiert. Da die Reaktion keine Barriere bezüglich Etot besitzt, wurden drei Reaktionspfade (lineare-, exo- und endo-Annäherung) vorgegeben und an Strukturen entlang dieser Pfade Frequenzrechnungen durchgeführt. linexoendoHHHHHHHHH Abbildung 0-4: Untersuchte Reaktionspfade der Reaktions des 1,1-Dimethylallykations mit s-cis-1,3-Butadien. Auf diese Weise wurden Barrieren der freien Enthalpie (∆G ‡) zwischen 2 und 3 kcal mol-1 erhalten. Die Reaktion des 1,1,3-Trimethylallylkations mit 1,3-Butadien wurde auf B3LYP/6-311++G(3df,2pd)//B3LYP/6-311G(d,p)-Niveau untersucht. Die Strukturen der Edukte, von vier π-Komplexen, von fünf Übergangszuständen und von vier möglichen Produkten wurden auf B3LYP/6-311G(d,p)-Niveau durch Geometrieoptimierung ermittelt. Die Übergangsstrukturen zeigen ein hohes Maß an Unsymmetrie. Die durchgeführten IRC-Rechnungen (intrinsic reaction coordinate) belegen eine große Asynchronizität der [2++4]-Cycloadditionen. Berechnung der Übergangsstrukturen der Diels-Alder-Reaktion des Kations 41 mit 2,3-Dimethyl-1,3-butadien und Isopren zeigen in Übereinstimmung mit den experimentellen Ergebnissen keine Mehrzentrenbeteiligung. Experimentelle und theoretische Untersuchungen der Reaktion des N-Methyl-4-vinylpyridinium-Ions mit Cyclopentadien und Diazoessigester N-Methyl-4-vinylpyridiniumtriflat (103) wurde nach Literaturvorschrift synthetisiert. NOTf103 Abbildung 0-5: N-Methyl-4-vinylpyridiniumtriflat (103). Die Reaktionen von 103 mit Morpholinocyclohexen (72), Diazoessigester (89) sowie Cyclopentadien (86) lieferten die Cycloaddukte 105, 109 und 106.OTfNNHNCO2EtNOTfOTfNNO109106105 Abbildung 0-6: Cycloaddukte105, 109 und 106. Die Elektrophilie von 103 wurde aufgrund eigener kinetischer Untersuchungen und literaturbekannter Geschwindigkeitskonstanten ermittelt. Mit Hilfe der Gleichung lg k = s (N + E) wurden Geschwindigkeitskonstanten für die Reaktionen von 103 mit Nucleophilen berechnet, die Mehrzentrenreaktionen eingehen können. Der Vergleich dieser berechneten Geschwindigkeitskonstanten mit experimentellen Werten ergab große Abweichungen für die Reaktionen von 103 mit Cyclopentadien und Diazoessigester. Dies ermöglichte die Berechnung der „free enthalpy of concert“, den Energiebetrag um den die konzertierte (und real ablaufende) Reaktion gegenüber der (hypothetischen) stufenweisen Reaktion bevorzugt ist. Während man für die Diels-Alder-Reaktion des N-Methyl-4-vinylpyridinium-Ions 103 mit Cyclopentadien eine free enthalpy of concert von ca. 11 kcal mol-1 ermittelt, ergibt sich für die 1,3-dipolare Cycloaddition von 103 mit Diazoessigester ein Konzertiertheitsgrad von ca. 4 kcal mol-1. Berechnungen der Reaktion von 103 mit Cyclopentadien auf B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G(d,p) wurden durchgeführt Die endo-Übergangsstruktur ist um 2.9 kcal mol-1 (∆G) gegenüber der Übergangsstruktur des linearen Angriffs von Cyclopentadien bevorzugt.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Trimesitylblei(IV)bromid und Dimesitylblei(IV)dibromid, Mes3PbBr und Mes2PbBr2 Bei der äquimolaren Umsetzung von Mesityllithium mit Blei(II)chlorid in THF bei Raumtemperatur konnten Mes3PbBr und als Nebenprodukt Mes2PbBr2 isoliert und charakterisiert werden. Die Plumbylene Mes2Pb, MesPbCl oder MesPbBr, können als Intermediate postuliert werden, die mit Mesityllithium weiter zu Mes3PbBr bzw. zu Mes2PbBr2 reagieren können. Die Bildung der Blei−Brom-Bindung ist vermutlich auf einen Austausch von Chlor gegen Brom zurückzuführen, welches sich durch die Synthese von MesLi im Reaktionssystem befindet. Eine Grignard-Umsetzung führte nicht zu einer Ausbeuteverbesserung, sondern die Ausbeute an Mes3PbBr sinkt von 44% aus der Reaktionsgleichung a auf 2% von Gleichung b. Besonders aussagekräftig sind die 207Pb-NMR Spektren der beiden Mesityl-Blei- Verbindungen. Die Spektren zeigen jeweils ein scharfes Signal für die Blei-Resonanz, welches von 13C-Satelliten umgeben ist. Auch alle 1H- und 13C-Resonanzen weisen aufgrund der Kopplung mit 207Pb Bleisatelliten auf. Ein besonders auffallendes Merkmal beim Vergleich der NMR-Daten von Mes3PbBr mit Mes2PbBr2 ist der signifikante Anstieg (~40- 60%) der Werte für die Kopplungskonstanten nJH-Pb (n = 4,6) und nJC-Pb (n = 1-5) vom Bromid zum Dibromid. Die Übereinstimmungen zwischen experimentell ermittelten (Röntgenstrukturanalyse) und quantenchemisch berechneten (PM3) Strukturparametern ist recht gut, was zeigt, dass die PM3 Parameter sogar für die Vorhersage der Eigenschaften von schwermetallorganischen Verbindungen wie Mes3PbBr und Mes2PbBr2 geeignet sind. Die besonders interessanten strukturellen Merkmale sind die Bindungswinkel am zentralen Bleiatom, welche wesentlich von den idealen Tetraederwinkeln (109.5°) abweichen. Die C−Pb−C-Winkel liegen sowohl experimentell, als auch rechnerisch bei 115-123°. Die C−Pb−Br- und Br−Pb−Br-Winkel liegen zwischen 96 und 115°. Diese Tatsachen stimmen hervorragend mit der Bent'schen Regel überein, welche besagt, dass elektronegativere Substituenten Hybridorbitale mit geringerem s-Charakter und elektropositivere Substituenten Hybridorbitale mit höherem s- Charakter bevorzugen [100-102]. Bei Trimesitylblei(IV)bromid handelt es sich um eine sehr stabile Verbindung, die sowohl hydrolyse- als auch luftbeständig ist. Ein Austausch des Halogens gegen eine Azid- Gruppierung konnte nicht zweifelsfrei nachgewiesen werden. Zwar sind in den IR- und Raman-Spektren der erhaltenen Substanzen die symmetrischen und antisymmetrischen Azid- Schwingungen erkennbar, doch sind die gefundenen Stickstoffgehalte zu gering, was zu der Vermutung führt, dass nur ein teilweiser Halogen-Azid-Austausch stattgefunden hat. Leider war bisher jede Trennung eines Mes3PbBr/Mes3PbN3-Gemisches unmöglich, ebenso waren Kristallzüchtungsversuche bislang erfolglos. Tetraphenylphosphonium(arsonium)octabromoplumbat(II), [Ph4E]2[Pb3Br8] mit E = P, As Neue anionische Blei-Halogensysteme wurden hergestellt, z.B. Tetraphenylphosphoniumoctabromoplumbat. Um [Ph4P]2[Pb3Br8] zu erhalten, wurde [Ph4P]Br mit PbBr2 bei 75°C in CH3CN umgesetzt. Das Anion bildet Ketten, in denen zwei verschiedene Arten an Blei-Atomen existieren; das eine besitzt eine oktaedrische Koordinationssphäre, ist somit von sechs Brom-Atomen umgeben, während das zweite Blei-Atom eine mehrfach verzerrt tetraedrische Koordination aufweist (Abbildung A). Das 207Pb-NMR Spektrum einer frisch hergestellten Lösung von [Ph4P]2[Pb3Br8] in DMSOD6 zeigt mit 323 ppm eine andere chemische Verschiebung als eine um ca. 4 Monate gealterte Probenlösung mit 208 ppm. Zu erklären ist dies wahrscheinlich durch einen zunehmenden Einfluss einer DMSO-Koordination über die Sauerstoffatome zum Blei-Atom. Das Anion [Pb3Br8]2− kann auch mit dem Kation [Ph4As]+ durch die Reaktion von [Ph4As]Cl mit PbBr2 bei 75°C in CH3CN isoliert werden. Hierbei konnte kein Chlorid- Transfer zum Blei hin beobachtet werden, so dass kein gemischtes Halogenoplumbat-Anion gebildet wurde. Die Struktur der Verbindung wurde mit Hilfe der Einkristall- Röntgenstrukturanalyse bestimmt. Die Struktur des Anions [Pb3Br8]2− entspricht hierbei dem in der Verbindung [Ph4P]2[Pb3Br8]. Das von einer frisch hergestellten Lösung von [Ph4As]2[Pb3Br8] in DMSO-D6 aufgenommene 207Pb-NMR-Spektrum zeigt eine chemische Verschiebung von 386 ppm. Der wenn auch nur geringe Unterschied im 207Pb-Shift von [Ph4As]2[Pb3Br8] (386 ppm) zu [Ph4P]2[Pb3Br8] (323 ppm), lässt sich durch den unterschiedlichen Einfluss der Kationen, die sich in ihrer Grösse unterscheiden und somit die Umgebung der Blei-Atome verändern, erklären. Wie schon bei [Ph4P]2[Pb3Br8] können die beiden unterschiedlichen Blei-Atome des Anions im 207Pb-Spektrum nicht unterschieden werden. Tetraphenylphosphoniumbromodichloroplumbat(II), [Ph4P][PbBrCl2]·CH3CN Gemischte Halogenoplumbate sind bisher nicht sonderlich gut charakterisiert worden. Setzt man [Ph4P]Br mit PbCl2 bei 70°C in CH3CN um (Gleichung c), so erhält man das gemischte Bromodichloroplumbat [Ph4P][PbBrCl2]·CH3CN. Das in der Verbindung koordinierte Acetonitril kann auch durch ein längeres Erwärmen der Substanz im Vakuum nicht entfernt werden. Die chemische Verschiebung im 207Pb-NMR Spektrum einer frisch hergestellten Lösung von [Ph4P][PbBrCl2]·CH3CN in DMSO-D6 beträgt 466 ppm. Vermisst man diese Probe nach ca. 4 Wochen erneut, so verändert sich der Shift von δ = 466 auf 361 ppm. Da dieses Phänomen auch u.a. bei der Verbindung [Ph4P]2[Pb3Br8] zu beobachten ist, kann ein möglicher Halogenaustausch im [PbBrCl2]−- Anion ausgeschlossen werden. Im Kristall sind die Anionen fehlgeordnet, und es werden keine Blei-Brom-Ketten gebildet, wie es z.B. im [Pb3Br8]2−-Anion der Fall ist, sondern diskrete [PbBrCl2]−-Einheiten. Die experimentell beobachteten und berechneten (MP2 und CCSD) Struktur- und Schwingungsdaten wurden miteinander verglichen. Die Übereinstimmung zwischen berechneten Raman-Daten und den beobachteten Raman-Frequenzen ist sehr gut. Die durch Röntgenstrukturanalyse gemessenen Pb−Cl- und Pb−Br-Bindungslängen liegen ebenfalls im Rahmen der auf MP2-Niveau kalkulierten Werte. Die kürzere Rechenzeiten benötigende und somit billigere MP2-Methode in Kombination mit einem "double-zeta"-Basissatz hat sich dabei als zuverlässige Methode erwiesen, um gute Strukturresultate und Schwingungsfrequenzen zu erhalten. Tetraphenylphosphoniumchlorodibromoplumbat(II), [Ph4P][PbBr2Cl]·CH3CN Dieses weitere, gemischte Halogenoplumbat wurde durch die Umsetzung von [Ph4P]Cl mit PbBr2 bei 70°C in CH3CN erhalten (Gleichung d). Hierbei erfolgt ein Chlorid-Transfer auf das Blei. Wie schon bei [Ph4P][PbBrCl2]·CH3CN lässt sich auch hier das koordinierte Acetonitril nicht aus der Verbindung entfernen. [Ph4P]Cl → CN CH PbBr 3 2 , [Ph4P][PbBr2Cl]·CH3CN (d) Die chemische Verschiebung von einer frisch hergestellten Lösung von [Ph4P][PbBr2Cl]·CH3CN in DMSO-D6 im 207Pb-NMR Spektrum liegt mit 439 ppm zwischen den Werten von [Ph4P][PbCl3] mit 430 ppm und [Ph4P][PbBrCl2]·CH3CN mit 466 ppm. Die durchgeführten quantenchemischen Rechnungen auf HF-, BLYP- und B3LYP-Niveaus konnten aufgrund dessen, dass keine experimentell ermittelten Strukturdaten zur Verfügung stehen, nicht verglichen werden. Nur die auf B3LYP/LANL2DZ-Niveau berechnete Schwingungsfrequenz bei 249.4 cm−1 findet sich im gemessenen Raman-Spektrum bei 249 cm−1 als Deformationsschwingung von Br−Pb−Cl wieder. Tetraphenylarsoniumtrichloroplumbat(II), [Ph4As][PbCl3] Die Verbindung wird aus [Ph4As]Cl und PbCl2 in CH3CN gewonnen (Gleichung e). [Ph4As]Cl → CN CH PbCl 3 2 , [Ph4As][PbCl3] (e) Der im Vakuum gut getrocknete Feststoff enthält kein gebundenes Acetonitril, während aus CH3CN gewonnene Kristalle ein Äquivalent des Lösungsmittels eingebaut haben. Dieses geht aus den Werten der Elementaranalyse eindeutig hervor. Im von einer in DMSO-D6 gelösten Probe aufgenommenen 207Pb-NMR Spektrum ist nur eine Resonanz bei 450 ppm sichtbar. Der Unterschied zwischen [Ph4P]+ und [Ph4As]+ ist nicht sonderlich gross, sodass die bei diesem Versuch gewonnene Verbindung [Ph4As][PbCl3] die gleichen Strukturmerkmale aufweisen sollte wie das analoge Phosphonium-Salz. Tetrakis(pentafluorphenyl)blei(IV), (C6F5)4Pb (C6F5)4Pb wurde als potentielle Ausgangsverbindung zur Darstellung von (C6F5)nPb-Aziden synthetisiert. Die Darstellung der Verbindung (C6F5)4Pb, die bisher nicht vollständig charakterisiert wurde, erfolgte durch zwei Methoden (Gleichungen f und g), wobei aufgrund der höheren Ausbeute, der beschriebene Syntheseweg in Gleichung f bevorzugt wurde. Die NMR-Studien dieser Verbindung sind sehr aussagekräftig. In den 13C-NMR und 19FNMR Spektren von Tetrakis(pentafluorphenyl)blei(IV) sind die Signale des magnetisch aktiven Blei-Isotops (207Pb, I = ½, 22.6%) teilweise mit denen der nicht magnetisch aktiven Blei-Isotopomere überlagert. Im 207Pb-NMR Spektrum wurde ein Signal bei δ = −391 beobachtet, welches sich in ein komplexes aber gut aufgelöstes Multiplett aufspaltet. Dieses 21-Spinsystem wurde hervorgerufen durch die Kopplung des Pb-Kerns mit allen 19F-Kernen (8 ortho, 8 meta und 4 para). Eine Spektrensimulation mit der PERCH NMR-Software führt zu einem praktisch deckungsgleichen Spektrum. 4 C6F5MgBr + PbCl2 + Br2 → − − MgBrCl 2 / MgBr 2 2 (f) Ein Vergleich zwischen den experimentell ermittelten (Röntgenstrukturanalyse) und auf semiempirischen PM3-Niveau berechneten Strukturdaten zeigt eine gute Übereinstimmung der Pb−C-Bindungslängen. Wie erwartet, wird auch gezeigt, dass die positive Ladung auf dem Metall mit steigender Substitution durch Fluor von +1.33 für (C6H5)4Pb auf +1.70 für (C6F5)4Pb steigt [107]. Ein Ansteigen der positiven Ladung am Blei, welches auf die elektronegativen Substituenten zurückzuführen ist, steigert die Grössenunterschiede zwischen den 6s- und 6p-Orbitalen und favorisiert somit die effiziente sp-Hybridisierung weniger stark. Es kann erwartet werden, dass (C6F5)4Pb stärkere Hybridisierungseffekte erleidet als (C6H5)4Pb und somit alle Pb−C-Bindungen durch die Substitution von elektronegativen Gruppen verkürzt werden. Deshalb sind die Pb−C-Bindungen in (C6F5)4Pb erwartungsgemäss kürzer als in (C6H5)4Pb. Versuchte Darstellungen von perfluorierten Blei-Verbindungen Die Verbindung (C6F5)2Cd·Diglyme ist als C6F5-Transferreagenz bekannt. Ph2Pb(N3)2 + (C6F5)2Cd·Diglyme → Ph2Pb(N3)2 / (C6F5)2Pb(N3)2 /... (h) Ph2Pb(NO3)2 + (C6F5)2Cd·Diglyme → Ph2Pb(NO3)2 / (C6F5)2Pb(NO3)2 /... (i) Die unter Gleichung h beschriebene Reaktion wurde durch die Verwendung verschiedener Lösungsmittel und verschiedener Mengenverhältnisse variiert. Aufgrund der gemessenen IR- und Raman-Spektren, sowie der Elementaranalysen konnte jeweils nur eine Teilumsetzung erkannt werden. Da Kristallisationsversuche bisher fehlschlugen, war eine genaue Charakterisierung der entstehenden Produkte bisher nicht möglich. Dieselben Argumente gelten für die in Gleichung i beschriebene Reaktion. Auch hier konnten nur Teilumsetzungen beobachtet werden. Die Verbindung (C6F5)4Pb ist extrem stabil. Behandelt man sie mit Salpetersäure (65% oder 100%), so findet keine Reaktion statt. Als Schlussfolgerung aus den gesamten Versuchen, neue (C6F5)nPb-Verbindungen darzustellen, lässt sich zusammenfassend sagen, dass es auf den beschrittenen Synthesewegen nicht möglich scheint, die gewünschten Produkte zu isolieren. Die C6F5-Reste lassen sich nicht bzw. nur geringfügig auf Blei-Verbindungen übertragen; ebenso ist (C6F5)4Pb so extrem stabil, dass auch von dieser Seite keine erfolgreiche Route beschritten werden kann. Azido(triphenylphosphan)gold(I), Ph3PAuN3 Kristalle dieser Verbindung konnten aus CH2Cl2 unter Zusatz geringer Mengen an Pentan bei einer Temperatur von 5°C gewonnen werden. Ein Kristall besteht aus diskreten Ph3PAuN3-Molekülen. Besonders interessant sind die Bindungslängen in der Azid-Einheit. Hier ist die Bindungslänge von N1−N2 mit einem Wert von 0.995(7) Å geringer als die von N2−N3 mit 1.294(8) Å. Dieses ist sehr erstaunlich und vermutlich falsch, da die Verhältnisse genau umgekehrt sein sollten. Eine kristallographische Erklärung dieser "verdrehten" Bindungsverhältnisse ist bislang noch nicht gefunden worden. Ausserdem ist der Wert von 0.995(7) Å für einen N−N-Abstand extrem gering. Im Gegensatz zu den durch Einkristall-Röntgenstrukturanalyse bestimmten N1−N2- und N2−N3-Bindungsabständen befinden sich die auf B3LYP-Niveau berechneten Werte in Übereinstimmung mit den Erwartungen, d.h. die Bindungslänge N1−N2 ist grösser, als die von N2−N3. Beide verwendeten Methoden, B3LYP/LANL2DZ und B3LYP/SDD, liefern sehr ähnliche Ergebnisse. Bis auf den P−Au−N1-Bindungswinkel von 164.1 bzw. 176.4° sind alle anderen theoretisch errechneten Abstände und Winkel nahezu gleich. Die Übereinstimmung mit den experimentell gefundenen Daten ist recht gut, mit Aussnahme der N−N-Abstände, wobei hier den quantenmechanisch berechneten Werten grösseres Vertrauen geschenkt werden sollte. Tetraphenylarsoniumtetraazidoaurat(III), [Ph4As][Au(N3)4] Kristalle dieser Verbindung konnten aus CH2Cl2 unter Zusatz geringer Mengen an Pentan bei einer Temperatur von 5°C gewonnen werden. Entgegen einer früheren Röntgenstrukturanalyse, bei welcher ein tetragonales System mit der Raumgruppe P4/n gefunden wurde, konnte nun bei dieser Bestimmung ein monoklines System mit der Raumgruppe C2/c ermittelt werden. Das Gold-Atom ist praktisch quadratischplanar von vier Stickstoff-Atomen umgeben. Die Bindungslänge von N1−N2 ist wie erwartet länger als die Distanz zwischen N2−N3. Die auf B3LYP- und MP2-Niveau theoretisch berechneten Strukturwerte stimmen im Vergleich zu den experimentell ermittelten recht gut überein. Die Bindungsabstände sind bei den Rechnungen länger als in den Röntgenstrukturen, was sich durch Packungseffekte im Kristall erklären lässt. Die Bindungswinkel sind nahezu identisch. Versuche zur Darstellung weiterer Gold-Azide Bei der Gold-Azid-Chemie handelt es sich um ein sehr diffiziles Thema. Die Verbindungen sind extrem explosionsgefährlich. So kam es mehrfach vor, dass bei einer zweiten Elementaranalyse ein und der selben Verbindung, diese explodierte, obwohl bei davor durchgeführten Tests kein explosives Verhalten festzustellen war. Die durchgeführten Versuche werden in der folgenden Übersicht tabellarisch zusammengefasst. Leider konnten bisher keine Kristalle der Verbindungen erhalten werden, so dass sich keine strukturellen Voraussagen treffen lassen. Da die Azid-Gruppe gegenüber Ag+ dasselbe Verhalten zeigt wie auch Cl−, kann man Chlorid-Ionen nicht ohne Probleme nachweisen. Anhand der Schwingungs- und 14N-NMR Spektroskopie lässt sich aber für alle in der Tabelle aufgeführten Reaktionen eindeutig sagen, dass es sich bei den entstandenen Produkten um kovalent-gebundene Gold-Azide handelt. Fallhammer-Explosionsteststand Der konstruierte Fallhammer hat sich als ein nützliches Werkzeug für Forschungszwecke herausgestellt. Die gemessenen Werte der maximalen absoluten Schallpegel ergeben eine wertvolle halb-quantitative Skala über die Explosionsfähigkeit und Schlagempfindlichkeit von potentiellen Explosivstoffen. Alle getesteten Substanzen waren Feststoffe und enthielten mindestens eine Azidgruppe: Silber(I)azid, Blei(II)azid, Cyanurazid, 1,3,5-Trinitro-2,4,6- triazidobenzen (TNTA), 1,3-Dinitro-2,4,6-triazidobenzen (DNTA) und 1,3,5-Trinitro-2- monoazidobenzen (TNMA). Cyanurazid ist ein noch stärkerer Explosivstoff als Silber- und Bleiazid. Eine Explosion von 20 mg Cyanurazid hat fast die gleiche Lautstärke wie eine durch 40 mg Pb(N3)2 oder durch 35 mg AgN3 verursachte Detonation. Neben den anorganischen Verbindungen, wurden einige organische Nitroazidsubstanzen getestet. Selbst die schwächste dieser organischen Explosivstoffe ist kraftvoller als AgN3 oder Pb(N3)2. Die Reihenfolge des Schallpegels ist TNMA < DNTA < TNTA, aber die Werte für DNTA und TNTA sind sehr ähnlich.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Ziel dieser Arbeit war die Charakterisierung und Synthese neuer Halogen- und Pseudohalogenverbindungen und die Untersuchung mit Hilfe von quanten– mechanischen Rechnungen. Im Folgenden sind kurz die Ergebnisse der in den Kapiteln C, D und E vorgestellten Arbeiten zusammengefasst. Die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung sind in Tabelle F1 aufgeführt. In der letzten Spalte sind die Literaturstellen der bereits veröffentlichten Arbeiten angegeben. Durch die Ergebnisse im Rahmen dieser Dissertation konnten neue Erkenntnisse über den Zusammenhang von Struktur und chemischer Bindung der untersuchten Verbindungen gewonnen werden. Des Weiteren konnten mit Hilfe quantenmechanischer Rechnungen neue Erkenntnisse über den Zusammenhang zwischen Stabilität, Ladungsverteilung und Reaktionsverhalten der verschiedensten Halogen und Pseudohalogenverbindungen gewonnen werden. Dabei konnte gezeigt werden, dass die Kombination von experimentellen Methoden, wie Schwingungsspektroskopie, NMR-Spektroskopie und Röntgenbeugung, mit quantenmechanischen Rechnungen ein hervorragendes Mittel ist, um die chemische Bindung von Halogen und Pseudohalogenverbindungen zu beschreiben. Dies konnte eindrucksvoll in den Studien zu den Thiazylhalogeniden, Triazinpseudohalogenverbindungen und Halogencyan-Addukten gezeigt werden. In Tabelle F2 sind die in dieser Arbeit mit quantenmechanischen Rechnungen charakterisierten Verbindungen aufgeführt. F1 Thiazylhalogenide (Kapitel C) Erstmals konnte die Struktur des NSCl2 –-Anions (Thiazyldichloridanion), dass zu einer neuen Klasse sehr labiler ternärer Anionen des Typs NSX2 – (X = Halogen) gehört, durch Röntgenbeugung an Einkristallen gelöst werden. Bisher wurde keine Verbindung, die das „nackte“ Anion enthält, strukturell charakterisiert. Bei der theoretischen Untersuchung des Cl–-Acceptorverhaltens und der Thermodynamik von NSCl wiesen ab-initio-(CCSD(T))- und Dichtefunktional- Rechnungen (B3LYP) auf einen barrierefreien Angriff des Cl–-Anions auf das NSCl- Molekül hin, welcher zur Bildung des NSCl2 –-Anions führt. Diese Reaktion stellt eine exotherme Lewis-Base-Lewis-Säure-Reaktion dar mit einer berechneten molaren Enthalpie von ∆H298 = –124.6 kJ mol–1, die zu einem Ladungstransfer von QCT = 0.385e (B3LYP/6-311+G(3df)) führt. Die Auswertung der IR- und Raman-Spektren ergab in Kombination mit den Ergebnissen von quantenmechanischen Rechnungen, dass die Cl-Atome sehr schwach an ein fast als SN+-Ion vorliegendes Kation gebunden sind. Die hervorstechenden strukturellen Besonderheiten des NSCl2 – lassen sich mit einfachen, qualitativen MO- und VB-Betrachtungen erklären: Die NSCl-Bindung kann als neuartige Vier-Elektronen-Drei-Zentren-Bindung, die die S-Cl-σ-Bindung mit der S-N-π-Bindung verknüpft, aufgefasst werden. Es gibt zwei solcher Vier-Elektronen-Drei-Zentren-Bindungen. In den umfassenden Studien zu den NSX2 –-Anionen (X = F, Cl, Br, I) wurde festgestellt: (i) durch Cl–/F–-Austausch ist es möglich das NSF2 – aus NSCl2 – in Lösung zu bilden; (ii) die Bildung von NSBrCl– im Festkörper und Lösung und die Bildung von NSBr2 – im Festkörper konnte nachgewiesen werden, wobei diese Verbindungen sehr instabil sind und sehr schnell weiterreagieren; (iii) die NSX2 –-Salze (X = Br, I) zerfallen unter Bildung von S4N4 bzw. polymeren (SN)x in Abhängigkeit von den Reaktionsbedingungen; (iv) die Polarität des Lösemittels besitzt einen großen Einfluss auf den Zerfall von Thiazyldichlorid und die Zerfallsprodukte. Die quantenmechanischen Rechnungen zu den NSX2 –-Anionen ergaben: (i) Alle betrachteten Verbindungen sind bezüglich der Bildungsreaktion thermodynamisch stabil. (ii) Alle Reaktionen sind exotherm, wobei die Fluor-Spezies erwartungsgemäß die kleinsten freien Reaktionsenthalpien und die Iod- Spezies die größten besitzen. (iii) Überraschend niedrig ist im Vergleich zu den Halogenen die freie molare Reaktionsenthalpie für die Bildung von NSH2 –. (iv) Alle NSXY–-Verbindungen repräsentieren hoch-polarisierte Moleküle, wobei die Polarisation der S-N- bzw. S-X-Bindung von den FVerbindungen zu den I-Verbindungen abnimmt. Die Bildungsreaktion (NSX + Y–) entspricht einer Donor-Acceptor-(charge transfer)-Reaktion, die barrierefrei verläuft. (v) Im Einklang mit den berechneten Strukturdaten (lange S-X- bzw. S-YBindungslängen, kurze S-N-Bindungen) zeigt die Elektronendichteverteilung in der NSCl-Ebene viel Elektronendichte zwischen der S-N-Bindung und nur wenig zwischen der S-Cl-Bindung. Dies deutet daraufhin, dass die ionischen Verbindungen NSX2 – bzw. NSXY– am besten als NS+ X– Y– mit schwachen kovalenten S-X- bzw. S-YWechselwirkungen beschrieben werden sollten (s.o.). (vi) Die Bindungssituation in den NSX2 –-Verbindungen lässt sich durch zwei Vier-Elektronen-Drei-Zentren-Bindungen mit „geschwächten“ S-X- und S-Y-σ-Bindungen und „geschwächten“ S-N-πx- und πy-Bindungen beschreiben. Die zunehmende Schwächung der Vier-Elektronen-Drei- Zentren-Bindungen ist durch die geringer werdende Überlappung in der Reihe F > Cl > Br > I (F: S-X-σ-S-N-π-Orbital; I: reines S-N-π-Orbital) zu erklären (siehe Abbildung C9). (vii) Die N-S-X-Winkel sind vom Halogen wenig beeinflusst und liegen bei 113 bis 115°. Der X-S-X-Winkel nimmt von X = H zu X = Br kontinuierlich von 77.4° auf 112.7° (B3LYP) zu. Aus den Ergebnissen der Umsetzung des NSCl2 –-Anions mit verschiedensten Übergangsmetallkomplexen kann folgendes geschlossen werden: (i) die Chloro-Liganden des NSCl2 –-Anions sind, wie schon aus den Rechnungen und Strukturdaten in Kapitel C1 hervorgeht, sehr schwach an den Schwefel gebunden, wodurch eine Cl–-Abstraktion begünstigt wird; (ii) keiner der verwendeten Übergangsmetallkomplexe ist in der Lage, das NSCl2 –-Anion ohne Zersetzung zu stabilisieren; (iii) die Reaktion mit Übergangsmetallchloriden forciert je nach Reaktionsbedingungen die Zersetzung des NSCl2 –-Anions zu NSCl/(NSCl)3, S2N2, S3N2 2–, S4N4 und Cl2. F2 Pseudohalogenchemie des s-Triazins (Kapitel D) Bei der Untersuchung des Reaktionsverhaltens der Pseudohalogenverbindungen MX (mit M = K, Na, Ag; X = NNN, OCN, CNO, SCN und SeCN) mit 2,4,6–Trichloro– 1,3,5–triazin (Cyanurchlorid) zeigte sich, dass (i) nur die Azide und Thiocyanate geeignet sind, das Cyanurchlorid im Sinne einer nucleophilen Substitution anzugreifen. (ii) die Bildung der analogen Selenocyanate und Cyanate bzw. der entsprechenden Iso-Verbindungen nicht beobachtet werden konnte. (iii) die Isocyanate 35 und 36 nur über die ein- bzw. zweifachsubstituierten Amine, durch Reaktion mit Oxalylchlorid oder Phosgen unter Abspaltung von Salzsäure und Kohlenmonoxid, dargestellt werden können. (iv) die Darstellung des Triisocyanatotriazins aus Melamin nicht gelang, da für diese Reaktion elektronenziehende Substituenten am Triazinring nötig sind. Die Verbindungen 26[60b], 35, und 36 konnten mit Hilfe der Schwingungsspektroskopie, der NMR-Spektroskopie und anhand von Einkristallröntgenstrukturanalysen charakterisiert werden. (v) die nucleophile Substitution der verbleibenden Chloratome in 35 und 36 durch Umsetzung mit anderen Pseudohalogeniden (z.B. LiN3, Na/K-N3, - NCO, -SCN, -CN) nicht möglich ist, da die Isocyanate durch ihre elektronenschiebenden Eigenschaften den Triazinring deaktivieren und somit eine weitere nucleophile Substitution am Ring verhindern. Bei der Reaktion von 2,4,6–Triazido–1,3,5–triazin (26) mit Triphenylphosphan in verschiedenen molaren Verhältnissen konnten die Verbindungen 29, 31 und 32 mit Hilfe der Schwingungsspektroskopie, der NMR-Spektroskopie und der Röntgenbeugung eindeutig charakterisiert werden (Gleichung F1). Des Weiteren konnten die Verbindungen 27 und 28, die in Lösung im Gleichgewicht mit 31 und 32 vorliegen, anhand ihrer 31P-NMR-Resonanzen nachgewiesen werden. Alle drei Stufen der Reaktion von 2,4,6–Triazido–1,3,5–triazin mit Triphenylphosphan repräsentieren exotherme Reaktionen. Nur für die Verbindungen 27 und 28 kann in Lösung ein Gleichgewicht zwischen dem Tetrazol- und dem Azidisomer gefunden werden. Die experimentelle Beobachtung des Azid-Tetrazol-Gleichgewichtes 27 a 31 und 28 a 32, im Gegensatz zu 26 a TR1 (ohne PPh3-Gruppen, Abbildung D1), kann durch die thermodynamische Stabilisierung des Tetrazolisomers nach der Einführung der Triphenylphosphangruppe erklärt werden (Abbildung D5). Aus den Rechnungen und den Experimenten ergab sich: (i) eine relativ große Aktivierungsbarriere für die Cyclisierung von ca. 20 bis 25 kcal mol–1, die mit der ungünstigen elektrostatischen Abstoßung zwischen dem terminalen Stickstoff der Azidgruppe und dem Stickstoffatom im Ring und ebenso durch das Abwinkeln der Azidgruppe erklärt werden kann. (ii) dass die Einführung von Triphenylphosphangruppen zu stärker polarisierten C-N-Bindungen im Ring und zu einem Ladungstransfer in das Triazinringsystem führt. (iii) der orbitalkontrollierte Ringschluß wird durch einen nicht unerheblichen Ladungstransfer in den Tetrazolring begleitet und stabilisiert so thermodynamisch das Tetrazolisomer. Diese Ladungsumverteilung erklärt die wichtige Rolle der Triphenylphosphangruppen bei der Ringschlussreaktion, da sie als gute Elektronendonatoren gelten. F3 Pseudohalogenchemie von P-N-Verbindungen (Kapitel E) Bei der Untersuchung des Reaktionsverhaltens von Trimethylsilyltriphenylphosphanimin mit den Halogen-Pseudohalogenverbindungen ClCN, BrCN und ICN zeigte sich, (i) dass es nur für die Reaktion mit ICN möglich ist das Addukt im Festkörper zu stabilisieren; (ii) dass das ClCN-Addukt spontan zu Ph3PNCN und ClSiMe3 zerfällt; (iii) dass das BrCN-Addukt zwar etwas stabiler ist, jedoch auch langsam zu Ph3PNCN und BrSiMe3 zerfällt; (iv) dass die Zugabe von KF oder eine Temperaturerhöhung zur sofortigen Bildung von Ph3PNCN führt. Das ICN-Molekül ist aufgrund der Wechselwirkungen mit dem N-Atom der Ph3PNSiMe3-Einheit leicht gewinkelt (ca. 176°). Die VB-Betrachtung der NBOAnalyse ergibt, dass es weder am I- noch am P-Atom zu nennenswerten d-Orbital- Erweiterungen kommt. Bei der Untersuchung der Donor-Acceptor-Wechselwirkungen zeigten sich schwache Wechselwirkungen zwischen den beiden freien Elektronenpaaren (p-AOs) des N-Atoms der Ph3PNSiMe3-Einheit mit dem leeren antibindenden σ*-Orbital des ICN-Fragmentes. Die Untersuchung des Reaktionsverhaltens verschiedenster Pseudohalogenidverbindungen MX (M = K, Na, Li, Ag; X = N3, SCN, OCN, SeCN, CNO) mit Hexachlorocyclotriphosphazen in unterschiedlichen Lösungsmitteln zeigte, dass nur die Azid- und Isothiocyanat-Verbindungen gebildet werden. Die Einkristall- Röntgenstrukturanalyse von Hexaisothiocyanatocyclotriphosphazen zeigte, dass der (PN)3-Ring abgewinkelt ist. Bei der Reaktion von KN3 mit Triphenylphosphan, [PN(Cl)2]3 und Kronenether in peroxidhaltigem THF kristallisierte interessanterweise nicht das erwartete Staudingerprodukt aus, sondern der Kronenetherkomplex [K([18]krone–6)(N3)- (OPPh3)]. Die Umsetzung mit KOCN, KSCN und KSeCN führte ebenfalls zu den analogen Kronenetherkomplexen.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
1 Hydraziniumazide In dieser Arbeit wurde untersucht, ob die Eigenschaften von Hydraziniumazid durch Einführung organischer Substituenten verbessert werden können. Die Hydraziniumazidderivate wurden aus den jeweiligen wasserfreien, substituierten Hydrazinen und einer wasserfreien Lösung von HN3 in Ether dargestellt, die aus der Reaktion von Tetrafluoroborsäureetherat mit Natriumazid gewonnen wurde. Hydraziniumazid ist ein Addukt der schwachen Säure HN3 (pKs = 4.92) mit Hydrazin. Zwischen den Hydrazinium- und Azidionen treten starke Wasserstoffbrückenbindungen auf. Die Stärke der Wasserstoffbrückenbindungen ist entscheidend für die Eigenschaften der jeweiligen Verbindungen. Die Leichtflüchtigkeit sowie die Hygroskopie von Hydraziniumazid und seinen Derivaten lassen sich auf die Stärke und Zahl der Wasserstoffbrückenbindungen zurückführen. Die Einführung organischer Substituenten schwächt die Bindung zwischen Azidionen und Hydraziniumionen bereits dadurch, dass weniger NH Wasserstoffatome, die Wasserstoffbrückenbindungen bilden können, vorhanden sind. Je mehr Substituenten vorhanden sind, desto schwächer ist somit die Bindung zwischen Hydrazin und HN3. Der Schmelzpunkt der Hydraziniumazide ist eine gute Beschreibungsgröße für die Stärke der Wasserstoffbrückenbindungen und damit die Stärke des Hydrazin-HN3 Addukts. Dies kann an den sinkenden Schmelzpunkten der methylierten Verbindungen Methylhydraziniumazid (3), N,N-Dimethylhydraziniumazid (4), N,N´- Dimethylhydraziniumazid (5), und N,N,N´-Trimethylhydraziniumazid (6) überprüft werden. Die organischen Substituenten lieferten während der Explosion keine Energiebeiträge, da sie entweder zum Kohlenwasserstoff oder zum organylsubstituierten Amin reagierten. Daher sinkt der Anteil an aktiver Masse mit zunehmendem Substitutionsgrad. Erstaunlicherweise explodierten aber die flüssigen di-, tri- und tetramethylierten Verbindungen 4-7 bei Erwärmung heftiger als das monomethylierte 3. Dies ist auf die schwache Bindung von HN3 in diesen Verbindungen zurückzuführen. Es wurde zuerst HN3 abgespalten, das dann explodierte. Es wurde versucht, die Bindung zwischen Hydrazinium- und Azidionen durch zusätzliche Wasserstoffbrückenbindungen mit weiteren NH und OH Protonen in 2-Hydroxyethylhydrazin und Ethylendihydrazin zu stärken. Aus der Reaktion dieser Hydrazinderivate mit HN3 wurden keine Feststoffe, sondern zähflüssige Produkte, die nicht die stöchiometrische Menge HN3 enthielten, isoliert.Der Einbau eines Hydrazinstickstoffatoms in Ringsysteme führt zur Erhöhung der Basizität des Stickstoffatoms. Stärkere Hydrazin-HN3 Addukte sollten sich ergeben. Dies wird dadurch belegt, dass der Schmelzpunkt der N,N-dimethylierten Verbindungen N,NDimethylhydraziniumazid (4) und N-Amino-1-azoniacyclohexanazid (18) im Sechsringsystem 18 um 50 °C höher ist. Das Siebenringsystem N-Amino-1- azoniacycloheptanazid (19) zeigt ebenfalls eine Erhöhung des Schmelzpunktes von 18 °C gegenüber 4. Die Erhöhung ist geringer als bei 18, da in Siebenringsystemen die Basizitätserhöhung des Ringstickstoffatoms niedriger ist als in Sechsringsystemen. Das bei N-Amino-1-azonia-4-oxacylcohexanazid (20) im Ringsystem vorhandene Sauerstoffatom zeigt keine Auswirkungen auf den Schmelzpunkt. 20 spaltete jedoch während längerer Lagerung eine NH2-Gruppe ab, Morpholiniumazid (21) wurde erhalten. Auch bei den N,N´-dimethylierten Verbindungen N,N´-Dimethylhydraziniumazid 5, N,N´-Diethylhydraziniumazid (22), Pyrazolidiniumazid (23) und Hexahydropyridaziniumazid (24) wurde eine Erhöhung des Schmelzpunktes durch Einbinden des Hydrazinmoleküls in ein Ringssystem festgestellt. Während die offenkettigen Azide 5 und 22 erst unterhalb Raumtemperatur fest wurden, waren die Ringsysteme 23 und 24 bei Raumtemperatur fest. Diorganylsubstituierte Hydraziniumazide sind nicht praktisch anwendbar, da zu viele organische Substituenten vorhanden sind, die die Explosion hemmen. Während der Explosion entstanden große Mengen an organischen Nebenprodukten, vor allem Organylamine. Ein weiterer Nachteil ist die Oxidationsempfindlichkeit der Alkylhydrazine, die sich in den Azidderivaten wiederfindet. Die Verbindungen N,N,N´,N´-Tetramethylhydraziniumazid-tetramethylhydrazinat (7) und Phenylhydraziniumazid-phenylhydrazinat (14) sind Grenzfälle. Bei der Reaktion mit HN3 bildeten sich Dimere der Hydrazine, an die das Azidion über Wasserstoffbrückenbindungen gebunden ist. Es war nicht möglich, aus einem festen, substituierten Hydrazin das Addukt mit HN3 zu bilden, da bei der Entfernung des Lösungsmittels immer das substituierte Hydrazin ausfiel. Substituierte Hydrazine mit einem permethylierten Stickstoffatom ergaben Hydraziniumazidderivate, die nicht mehr flüchtig, aber sehr hygroskopisch sind. Sie wurden aus der Umsetzung der jeweiligen Hydraziniumiodide mit Silberazid erhalten. N,N,NTrimethylhydraziniumazid (8), N,N,N,N´-Tetramethylhydraziniumazid (9) und Pentamethylhydraziniumazid (10) haben Schmelzpunkte um 180 °C. Die Anzahl der Methylgruppen wirkt sich hier nicht auf den Schmelzpunkt aus. 8-10 explodierten aufgrund der vielen organischen Substituenten nur schwach, bei der Explosion entstanden größere Mengen Trimethylamin. Günstige Auswirkung auf die Eigenschaften von Hydraziniumazid hat die Adduktbildung mit einem weiteren Molekül Hydrazin. Hydraziniumazidhydrazinat (2) ist nicht mehr hygroskopisch, wesentlich weniger flüchtig und die Empfindlichlichkeit gegenüber Schlag, Reibung und Temperaturerhöhung sinkt. Der Schmelzpunkt ist mit 65 °C allerdings noch niedriger als der Schmelzpunkt von Hydraziniumazid mit 75 °C. Ein weiterer Nachteil ist, dass bei der Explosion mehr Ammoniak entsteht als bei Hydraziniumazid. Als Beispiel ist hier die Struktur von Hydraziniumazidhydrazinat (2) abgebildet, die Strukturen vieler anderer Hydraziniumazide finden sich in Kapitel 1. 2 Methylierte Hydraziniumnitrate In Raketentriebwerken werden Methylhydrazin oder N,N-Dimethylhydrazin und N2O4 eingesetzt. Bei der unvollständigen Verbrennung können Ablagerungen der jeweiligen Ammonium- und Hydraziniumnitrate gebildet werden. Die mono- und N,N-dimethylierten Ammonium- und Hydraziniumnitrate wurden hergestellt und ihre Eigenschaften überprüft. Sowohl Methylhydrazinium- (27) als auch N,N-Dimethylhydraziniumnitrat (28) sind sehr hygroskopische Substanzen. Wasser konnte aus den Hydraziniumnitraten nicht im Vakuum entfernt werden. Daher wurden 27 und 28 aus den wasserfreien, methylierten Hydrazinen und wasserfreier Salpetersäure bei –78 °C hergestellt. Die Hydraziniumnitrate zersetzten sich bei leicht erhöhter Temperatur (60 °C) bereits langsam zu den jeweiligen Ammoniumnitraten. Die Strukturen von Methylhydraziniumnitrat (27) und Dimethylhydraziniumnitrat (28) wurden bestimmt, die Struktur von Methylhydraziniumnitrat (27) ist hier als Beispiel angegeben. Die Zersetzung der Ammonium- und Hydraziniumnitrate bei hoher Temperatur erfolgte nicht vollständig. Während die Ammoniumnitrate größere Mengen NO2 ergaben, wurden bei den Hydraziniumnitraten nur Produkte einer weiter fortgeschrittenen Zersetzung, z.B. NO, nachgewiesen. Auch kleine Mengen Methylazid wurden gefunden. Während der durchgeführten Test ist es nicht gelungen, die Nitrate zur Explosion zu bringen. Beim starken Erhitzen der Hydraziniumnitrate 27 und 28 fand nur eine Zersetzung, keine Explosion statt. 3 Reaktionen mit cis-Hyponitrit Die in der Literatur erwähnten Verbindungen mit cis-Hyponitritanionen wurden entweder durch Kupplung von zwei NO Molekülen an einem Metallzentrum oder durch Reaktion von N2O mit Natriumoxid erhalten. In dieser Arbeit ist es nicht gelungen, aus Reaktionen des cis-Hyponitritions neue Verbindungen zu isolieren, es wurde immer die Bildung von N2O beobachtet. Die theoretische Untersuchung der Zersetzung der einfach protonierten Verbindung cis-HN2O2 – ergab eine niedrige Aktivierungsbarriere von 11.9 kcal/mol (MP2/6-31+G(d,p)) für die Bildung von N2O und OH– in der Gasphase. Zusätzlich muss berücksichtigt werden, dass vor allem das OH–-Ion in einem Lösungsmittel gegenüber der Gasphase beträchtlich stabilisiert wird, so dass die Aktivierungsenergie in Lösung noch niedriger liegen dürfte. Dies erklärt die Bildung von N2O, die bei allen durchgeführten Experimenten, selbst bei sehr tiefen Temperaturen beobachtet wurde. Eine Isolierung der cis-hyposalpetrigen Säure kann daher wahrscheinlich nicht aus Lösung erfolgen, da sich die einfach protonierte Verbindung sofort zu N2O und OH– zersetzt. Ein Stickstoffoxid N6O4, das aus der Reaktion von Natrium-cis-hyponitrit mit Tetrafluorhydrazin entstehen kann, hat nur bei der Berechnung auf PM3 und HF Niveau ein Miniumum. Bei stärkerer Berücksichtigung der Elektronenkorrelation auf B3LYP oder MP2 Niveau wurden keine Minima auf der Energiehyperfläche gefunden. 4 Verbindungen mit 5,5´-Azotetrazolat Das 5,5´-Azotetrazolation enthält bereits 5 Mol Stickstoff. Durch Kombination mit Kationen von Stickstoffbasen, vor allen Hydraziniumkationen, können Verbindungen erhalten werden, die pro Formeleinheit viele Mole Gas erzeugen. Der Hauptbestandteil der Explosionsgase ist Stickstoff. Hydraziniumverbindungen bilden zusätzlich Wasserstoff, was für hohe Detonationsgeschwindigkeiten sorgt. Verbindungen, die große Mengen Stickstoff erzeugen, werden für Gasgeneratoren in automatischen Feuerlöschsystemen, Airbags und Rettungswesten gesucht. Ein Vorteil der Salze von 5,5´-Azotetrazolat mit Stickstoffbasen ist, dass sie gegenüber Schlag und Reibung relativ unempfindlich sind, was für eine Anwendung wichtig ist. Das empfindlichste Salz ist das Ammoniumsalz, das im Fallhammertest in der Literatur bei 4.4 kg bei einer Fallhöhe von 50 cm explodierte. [130] 5,5´-Azotetrazol ist im Gegensatz zu HN3 eine starke Säure und zerfiel bei Raumtemperatur innerhalb einer Minute vollständig zu Tetrazolhydrazin. Die freie Säure kann bei –30 °C hergestellt und bei –80 °C mehrere Wochen gelagert werden. Aus Methanol kristallisierte 5,5´-Azotetrazol mit zwei Molekülen Kristallwasser (70). 5,5´-Azotetrazolatsalze sind jedoch stabil. Die Synthese von 5,5´-Azotetrazolatsalzen erfolgte durch Umsetzung von Sulfaten der entsprechenden Kationen mit Barium-5,5´-azotetrazolat. Die Stabilität von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen ist davon abhängig, wie leicht das Proton von der Stickstoffbase auf das 5,5´-Azotetrazolation übertragen werden kann. Dies kann an den Ammmoniumsalzen Diammonium-5,5´- azotetrazolat (45), Bis-methylammonium-5,5´-azotetrazolat (46), Bis-dimethylammonium- 5,5´-azotetrazolat (47), Bis-trimethylammonium-5,5´-azotetrazolat (48) und den Hydraziniumsalzen Hydrazinium(2+)-5,5´-azotetrazolat (51), Dihydrazinium-5,5´- azotetrazolat (53), Bis-methylhydrazinium-5,5´-azotetrazolat (54), Bis-N,Ndimethylhydrazinium- 5,5´azotetrazolat (55) und Bis-N,N´-dimethylhydrazinium-5,5´- azotetrazolat (56) abgelesen werden. Je mehr Methylgruppen vorhanden waren, desto tiefer waren die Zersetzungstemperatur der Salze. Waren keine NH+ Gruppen in den Kationen vorhanden, z.B. in Bis-tetramethylammonium-5,5´-azotetrazolat (49) und Bis-N,N,Ntrimethylhydrazinium- 5,5´-azotetrazolat (57), so erfolgte die Zersetzung über einen anderen Mechanismus, der wahrscheinlich umgekehrt zur Bildung der Tetrazolringe verläuft und erst bei höheren Temperaturen stattfindet. Die Synthese von 5,5´-Azotetrazolatsalzen mit protonierten Stickstoffbasen kann bei Raumtemperatur nur in Wasser als Lösungsmittel stattfinden. In organischen Lösungsmitteln erfolgte eine Zersetzung des Azotetrazolations. Dihydrazinium-5,5´-azotetrazolat (53) ist eine neue hochenergetische Verbindung, die alle Anforderungen für einen modernen Sprengstoff erfüllt. Die hohe Standardbildungsenthalpie von 264 kcal/mol (ber.), die bei der Detonation freigesetzt wird sowie die bei der Detonation gebildeten großen Mengen Wasserstoff sorgen für ein gute Detonationsgeschwindigkeit von 6330 m/s. Der größte Nachteil von 53 ist die niedrigen Dichte. Bei einer vergleichbaren Dichte würde die Verbindung die Werte der kommerziellen Sprengstoffe RDX und HMX übertreffen. Die bereits bekannten Guanidinium- (66) und Triaminoguanidiniumverbindungen (68), deren Kristallstrukturen in dieser Arbeit bestimmt wurden, haben höhere Dichten und sind thermisch stabiler. Vor allem das Guanidiniumsalz wird wahrscheinlich in den nächsten Jahren in Gasgeneratoren zum Einsatz kommen. Die niedrigen Dichten der Hydraziniumsalze im Vergleich zu den Guanidiuniumsalzen sind geometrisch begründet. Die Guanidiuniumderivate sind flach. Dadurch können sich sowohl die 5,5´-Azotetrazolationen als auch die Kationen platzsparend übereinander anordnen. Hydraziniumionen haben Wasserstoffatome, die nach allen Raumrichtungen ausgerichtet sind. Da diese Wasserstoffatome in Wasserstoffbrückenbindungen einbezogen werden, entstehen Lücken zwischen den 5,5´-Azotetrazolationen in der Kristallpackung. Das Hydraziniumsalz 53 kann zwei Einheiten Wasser oder Hydrazin über Wasserstoffbrücken binden. Sowohl das Ammoniumsalz 45, als auch Hydroxylammonium- 5,5´-azotetrazolat (50) und die methylierten Ammonium- 46-49 und Hydraziniumverbindungen 54-57 können keine zusätzlichen Stickstoffbasen über Wasserstoffbrückenbindungen binden. Die Alkali- und Erdalkalisalze 29-37 von 5,5´-Azotetrazolat binden große Mengen Kristallwasser. Die Wassermoleküle sind sowohl an die Kationen koordiniert als auch über Wasserstoffbrückenbindungen im Kristall gebunden. Daraus ergeben sich verschiedene Bedingungen für die Entfernung des Kristallwassers. Während nur über Wasserstoffbrückenbindungen gebundenes Kristallwasser beim Aufheizen bereits bei Temperaturen um 100 °C entwichen ist, liessen sich die koordierten Wassermoleküle erst bei Temperaturen von 120-150 °C entfernen. Bei der Entfernung der letzten Wassermoleküle wurden im DSC jeweils große Energiemengen festgestellt, die für eine Strukturänderung nach der Entfernung der letzten Wassermoleküle sprechen. Die Temperaturstabilität der Alkali- und Erdalkalimetallsalze sinkt mit zunehmender Größe des Kations. Während die Lithiumverbindung (29) erst bei 335 °C explodierte, explodierte die Bariumverbindung (37) bereits bei 211 °C. Bei der Entfernung von Wasser bei Temperaturen um 100 °C im Ölpumpenvakuum fanden Explosionen statt. Daher kann Wasser praktisch nur durch lange Lagerung der Salze im Exsikkator über P2O5 entfernt werden. Die wasserfreien Alkali- und Erdalkalimetallsalze sind schlag- und reibungsempfindlich, was sie zu potentiellen Primärexplosivstoffen macht Die Kristallstrukturen von Lithium-5,5´-azotetrazolat-hexahydrat (29), Natrium-5,5´- azotetrazolat-pentahydrat (30), Rubidium-5,5´-azotetrazolat-hydrat (32) und Barium-5,5´- azotetrazolat-pentahydrat (37) zeigen eine Koordination von 5,5´-Azotetrazolat– stickstoffatomen an das jeweilige Metallion. In Calcium-5,5´-azotetrazolat-octahydrat (35) und Yttrium-5,5´-azotetrazolat-docosahydrat (39) sind die 5,5´-Azotetrazolatstickstoffatome nicht mehr an die Metallionen koordiniert, die Metallionen sind von einer Hydrathülle umgeben. Auch Magnesium-5,5´-azotetrazolat-octahydrat (34) und die Salze der dreiwertigen Kationen Aluminium 38, Lanthan 40, Cer 41 und Neodym 42 sind im Einklang mit dem HSAB-Prinzip wahrscheinlich nur von einer Hydrathülle umgeben. Das Magnesiumsalz 34 sowie die Salze der dreiwertigen Kationen sind nur solange stabil, wie das Kation von der Hydrathülle umgeben ist. Verlieren die Verbindungen Wasser, z. B. beim Erhitzen, so werden farblose Zersetzungsprodukte erhalten. Bei der Reaktion von [Ce]4+[SO4]2– 2 mit Barium-5,5´-azotetrazolat kommt es sofort zu einer Gasentwicklung, Ce+4 ist in wässriger Lösung zu sauer. Nach Auflösen von Barium-5,5´-azotetrazolat in Hydrazin entfärbte sich die Reaktionslösung innerhalb von zwei Stunden. Farbloses Barium-N,N´-ditetrazolatohydrazintrihydrazin (44) wurde erhalten. 5 Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid Aus der Reaktion von Benzoldiazoniumchlorid mit Lithiumazid konnte Phenylpentazol isoliert werden. Analoge Reaktionen mit verschiedenen Phenylderivaten ergaben substituierte Phenylpentazole. Die Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid ergibt Tetrazolazid. Daher wurde auch in dieser Reaktion eine Pentazolzwischenstufe vermutet. Theoretische Berechnungen ergaben, dass die Aktivierungsenergie für den Zerfall verschiedener Tetrazolpentazolisomere in der Gasphase zu Tetrazolazid und Stickstoff mindestens 14.8 kcal/mol beträgt. Daher erschien es möglich, Tetrazolpentazol im Experiment zu beobachten. Bei der 15N-NMR spektroskopischen Verfolgung der Reaktion von Tetrazoldiazoniumchlorid (71) mit Lithium-15Nα-azid wurden zwei Signale bei δ = –29.7 und δ = 7.7 beobachtet, die bei Erwärmung auf –50 °C an Intensität abnahmen und bei –30 °C vollständig verschwunden waren. Gleichzeitig nahm das Signal von Stickstoff an Intensität zu und ein Signal von Nβ markiertem Tetrazolazid erschien. Die bereits bei tiefen Temperaturen wieder verschwindende Zwischenstufe der Reaktion von Tetrazoldiazoniumchlorid mit Lithiumazid entspricht daher sowohl ihrem chemischen Verhalten, als auch in den beobachteten Signalen dem Verhalten, das von Tetrazolpentazol erwartet wird.