Podcasts about monomers

  • 14PODCASTS
  • 16EPISODES
  • 35mAVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 19, 2023LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about monomers

Latest podcast episodes about monomers

PaperPlayer biorxiv cell biology
Extracellular Matrix Stiffness Promotes Vascular Smooth Muscle Cell Calcification by Reducing The Levels of Nuclear Actin Monomers

PaperPlayer biorxiv cell biology

Play Episode Listen Later Jun 19, 2023


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2023.06.18.545506v1?rss=1 Authors: McNeill, M. C., Chee, F. L., Ebrhimighaei, R., Sala Newby, G. B., Newby, A. C., Hathway, T., Annaiah, A. S., Joseph, S., Carrabba, M., Bond, M. Abstract: 1.0BackgroundVascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. MethodsUsing hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo,we investigated the role of extracellular matrix (ECM) stiffness in the regulation of VSMC calcification ResultsWe demonstrate that increased ECM stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of ECM stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft ECM, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). ConclusionThis work highlights for the first time the role of nuclear actin in mediating ECM stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes. 2.0 GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=140 SRC="FIGDIR/small/545506v1_ufig1.gif" ALT="Figure 1" greater than View larger version (24K): org.highwire.dtl.DTLVardef@10b52aforg.highwire.dtl.DTLVardef@619f4borg.highwire.dtl.DTLVardef@1212f97org.highwire.dtl.DTLVardef@1bb9766_HPS_FORMAT_FIGEXP M_FIG C_FIG 9.0 HIGHLIGHTSO_LIIncreased ECM stiffness promotes VSMC calcification. C_LIO_LIIncreased ECM stiffness reduces levels of nuclear actin monomer. C_LIO_LIOn physiological soft ECM, high levels of nuclear actin monomer inhibits calcification by repressing YAP activation. C_LIO_LIYAP activation promotes calcification by stimulating the activity of TEAD and RUNX2. C_LI Copy rights belong to original authors. Visit the link for more info Podcast created by Paper Player, LLC

Translation
DNA Origami with Anastasia Ershova

Translation

Play Episode Listen Later Nov 3, 2022 38:35


Episode Summary: DNA is an ideal molecule for storing information in our genomes because it's stable, programmable, and well understood. The same qualities make DNA a great building block or construction material for nanoscale biomolecular structures that have nothing to do with our genome, like molecular scaffolds created by folding DNA into 2D and 3D shapes. This technology is known as DNA origami.However, the practical applications of DNA origami are limited by spontaneous growth and poor reaction yields. Anastasia developed a method that uses crisscross DNA polymerization of single-stranded DNA slats or DNA origami tiles to assemble DNA structures in a seed-dependent manner. This work may be useful to produce ultrasensitive, next-generation diagnostics or in programmable biofabrication at the multi-micron scale.Search Keywords: fifty years, bio, translation, ayush noori, ashton trotman grant, dna origami, dna, monomers, anastasia ershova, structures, diagnostics, proteins, micron scale, nucleation, biology, nanoscaleEpisode Notes:About the Guest Anastasia is a PhD candidate at Harvard University, currently working on DNA nanotechnology in William Shih's lab at the Wyss Institute and Dana-Farber Cancer Institute.She received her bachelor's degree in Natural Sciences from Cambridge University.During her PhD at Harvard, she co-founded the Molecular Programming Interest Group, an international community of students in the molecular programming, DNA computing and related fields.Impact DNA Origami will provide us with a plethora of new information on biology and physics.By manipulating that data on the nanoscale, we can get answers to a lot of questions in the future.Quick diagnostics can enable people all over the world to quickly get diagnosis-related answers and seek targeted treatment.PapersRobust nucleation control via crisscross polymerization of highly coordinated DNA slatsMulti-micron crisscross structures from combinatorially assembled DNA-origami slats

My AP Biology Thoughts
Monomers and Polymers of Macromolecules

My AP Biology Thoughts

Play Episode Listen Later Apr 6, 2021 4:25


My AP Biology Thoughts  Episode #41Welcome to My AP Biology Thoughts podcast, my name is Arthur and I am your host for episode 41 called Unit 1: Monomers and Polymers of the Macromolecules. Today we will be discussing dehydration and hydrolysis reactions in regards to macromolecules. Segment 1: Introduction to Monomers and Polymers of the MacromoleculesThe formation and breaking of macromolecules are essential for complex life to function. We will be discussing the chemical mechanisms by which macromolecules both form and break down.   Monomers: The unit components of the larger macromolecules. Polymers: What is formed when the monomers bond together, which are known as macromolecules. Dehydration synthesis: A water molecule being ejected in order to allow for a monomer to covalently bond to another monomer or polymer. Hydrolysis: A polymer splitting apart after reacting with a water molecule.   Activation energy: An energy threshold, which must be met in order for a reaction to proceed.   Segment 2: Example of Monomers and Polymers of the MacromoleculesMonosaccharides are the monomers of carbohydrates. In the presence of the necessary enzyme, a hydroxyl group is ripped off one of the monosaccharides and a hydrogen off the hydroxyl group of the other. This results in the two monosaccharides bonding together via an ether (glycosidic) bond as well as the formation of a water molecule. Conversely, this reaction can happen in reverse via hydrolysis.   The formation of triglycerides involves dehydration synthesis. An ester linkage is created between a fatty acid and a glycerol and a water molecule is released. A hydrogen is ripped of the carboxylic acid from the fatty acid and the hydroxyl is ripped off the glycerol. Polypeptide chains form via dehydration synthesis between two amino acids. An OH is ripped off the carboxylic acid and a hydrogen is ripped off the amine group, allowing the amino acids to covalently bond as well as allowing the formation of a water molecule. This occurs many times allowing for long polypeptide chains to form, which eventually leads to proteins.   Segment 3: Digging Deeper Monomers and Polymers of the MacromoleculesThe creation of macromolecules from monomers gives complex life its structure (ex. Cellulose). Additionally, the breaking down of macromolecules is essential for metabolism and the operations of cells (ex. Breaking down polysaccharides down to glucose for cellular respiration).   Thank you for listening to this episode of My AP Biology Thoughts. For more student-ran podcasts and digital content, make sure that you visit http://www.hvspn.com/ (www.hvspn.com). See you next time! Music Credits:“Ice Flow” Kevin MacLeod (incompetech.com) Licensed under Creative Commons: By Attribution 4.0 License http://creativecommons.org/licenses/by/4.0/ Subscribe to our Podcasthttps://podcasts.apple.com/us/podcast/my-ap-biology-thoughts/id1549942575 (Apple Podcasts) https://open.spotify.com/show/1nH8Ft9c9f6dmo75V9imCk?si=IvI4iQV-SSaFb0ZmvTabxg (Spotify) https://podcasts.google.com/feed/aHR0cHM6Ly9mZWVkcy5jYXB0aXZhdGUuZm0vbXlhcGJpb2xvZ3l0aG91Z2h0cw (Google Podcasts  ) https://www.youtube.com/channel/UC07e_nBHLyc_nyvjF6z-DVg (YouTube)   Connect with us on Social MediaTwitterhttps://twitter.com/thehvspn ( )https://twitter.com/thehvspn (@thehvspn)

PaperPlayer biorxiv bioinformatics
Predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning

PaperPlayer biorxiv bioinformatics

Play Episode Listen Later Nov 10, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.11.09.373878v1?rss=1 Authors: Quadir, F., Roy, R. S., Halfmann, R., Cheng, J. Abstract: Deep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are often difficult to obtain because there are not many known protein complexes available to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of a single monomer followed by discrimination of interchain and intrachain contacts according to the tertiary structure of the monomer. Allowing true-positive predictions within two residue shifts, the best average precision was obtained for the Top-L/10 predictions of DNCON2: 22.9% for homodimers, and 17.0% for higher order homomultimers. In some instances, especially where interchain contact densities are high, the approach predicted interchain contacts with 100% precision. We show that the predicted contacts can be used to accurately construct the structure of some complexes. Our experiment demonstrates that monomeric multiple sequence alignments can be used with deep learning to predict interchain contacts of homomeric proteins. Copy rights belong to original authors. Visit the link for more info

Evolving with Mr. V
Season 2 Episode 7 Week (7 & 8) AP/DC Biology

Evolving with Mr. V

Play Episode Listen Later Oct 11, 2020 16:00


In this week's 7th episode of Season 2 we recap the 8th Week of Distance Learning but 1st Week of Hybrid Teaching that was in AP/DC Biology focusing on the Monomers of Nucleic Acids the Nucleotide. In our 2nd segment, with a Quick approaching Exam over Chapters 4 and 5 I review a usually forgotten Concept...Protein Folding. In our Final Segment, I introduce a New Segment to the Podcast...Mr. V Recommends...where I recommend Music, Movies, Activities, Other Podcast, and Anything I think is the Cool Beans for you to Check Out. Remember to subscribe, like, and please comment on the podcast on your podcast listening platform. You can also e-mail me at ovelas@neisd.net with any comments or feedback. You can also follow me on twitter at OscarVelasquez@APBiologyMrV. Students can always contact me and communicate with me via Google Classroom. If you have questions or feedback you would like Mr. V to answer please e-mail me the questions or send them on Google Classroom, Instagram, or Twitter. Also follow the Instagram Page for the podcast "Evolving with Mr. V" and also now subscribe to the Wakelet Course Site Giving all the AP Biology Content by Weeks. Remember Wash Your Hands Well, Cough & Sneeze into your Elbow, Avoid Large Gatherings, Practice Social Distancing, Wear Your Mask, and Stay Safe!!! Also Study for Your Exam!!! I want to thank you for listening...I am your Host Mr. Oscar Velasquez "Master of the Biological Arts". Have a Great Week and May the Force be With Us...Always...For that is the Way. Also don't forget Rate this Podcast...GIMME Feedback!!! And Check out the Wakelet Course Page!!! Lastly...Big Shout Out to Free Music Achieve, SoundBible, and Zapsplat for the music and sound effects in the podcast. https://www.instagram.com/evolvingwithmrv/?hl=en

PaperPlayer biorxiv biochemistry
The mobility of interfaces between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes

PaperPlayer biorxiv biochemistry

Play Episode Listen Later Sep 20, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.09.18.303636v1?rss=1 Authors: Spikes, T. E., Montgomery, M. G., Walker, J. E. Abstract: The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other. When the interaction between membrane domains is disrupted in living cells, the morphology of the cristae is affected severely. By analysis of particles of purified dimeric bovine ATP synthase by cryo-electron microscopy, we have shown that the angle between the central rotatory axes of the monomeric complexes varies between ca. 76o and ca. 95o. Some variations in this angle arise directly from the catalytic mechanism of the enzyme, and others are independent of catalysis. The monomer-monomer interaction is mediated mainly by j-subunits attached to the surface of wedge shaped protein-lipid structures in the membrane domain of the complex, and the angular variation arises from rotational and translational changes in this interaction, and combinations of both. The structures also suggest how the dimeric ATP synthases might be interacting with each other to form the characteristic rows along the tips of the cristae via other inter-wedge contacts, moulding themselves to the range of oligomeric arrangements observed by tomography of mitochondrial membranes, and at the same time allowing the ATP synthase to operate under the range of physiological conditions that influence the structure of the cristae. Copy rights belong to original authors. Visit the link for more info

Teach Me Biology
Monomers and Polymers

Teach Me Biology

Play Episode Listen Later Aug 28, 2020 14:50


In this weeks episode we learn all about Monomers and Polymers. Find us on the internet!Our website - Teachmescience.co.ukEmail - teachmebiologycast@gmail.comTwitter - twitter.com/teachmebiocastInstagram - @teachmebiologycast

PaperPlayer biorxiv neuroscience
Characterization and validation of 15 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology: How specific are the conformation-specific

PaperPlayer biorxiv neuroscience

Play Episode Listen Later Jun 15, 2020


Link to bioRxiv paper: http://biorxiv.org/cgi/content/short/2020.06.15.151514v1?rss=1 Authors: Kumar, S. T., Jagannath, S., Francois, C., Vanderstichele, H., Stoops, E., Lashuel, H. A. Abstract: Increasing evidence suggests that alpha-synuclein (-syn) oligomers are obligate intermediates in the pathway involved in -syn fibrillization and Lewy body (LB) formation, and may also accumulate within LBs in Parkinson's disease (PD) and other synucleinopathies. Therefore, the development of tools and methods to detect and quantify -syn oligomers has become increasingly crucial for mechanistic studies to understand the role of these oligomers in PD, and to develop new diagnostic methods and therapies for PD and other synucleinopathies. The majority of these tools and methods rely primarily on the use of aggregation state-specific or conformation-specific antibodies. Given the impact of the data and knowledge generated using these antibodies on shaping the foundation and directions of -syn and PD research, it is crucial that these antibodies are thoroughly characterized, and their specificity or ability to capture diverse -syn species is tested and validated. Herein, we describe an antibody characterization and validation pipeline that allows a systematic investigation of the specificity of -syn antibodies using well-defined and well-characterized preparations of various -syn species, including monomers, fibrils, and different oligomer preparations that are characterized by distinct morphological, chemical and secondary structure properties. This pipeline was used to characterize 17 -syn antibodies, 15 of which have been reported as conformation- or oligomer-specific antibodies, using an array of techniques, including immunoblot analysis (slot blot and Western blot), a digital ELISA assay using single molecule array technology and surface plasmon resonance. Our results show that i) none of the antibodies tested are specific for one particular type of -syn species, including monomers, oligomers or fibrils; ii) all antibodies that were reported to be oligomer-specific also recognized fibrillar -syn; and iii) a few antibodies showed high specificity for oligomers and fibrils but did not bind to monomers. These findings suggest that the majority of -syn aggregate-specific antibodies do not differentiate between oligomers and fibrils, thus highlighting the importance of exercising caution when interpreting results obtained using these antibodies. Our results also underscore the critical importance of the characterization and validation of antibodies before their use in mechanistic studies and as diagnostic and therapeutic agents. This will not only improve the quality of research and reduce costs but will also reduce the number of therapeutic antibody failures in the clinic. Copy rights belong to original authors. Visit the link for more info

High School Biology - Study by Seneca
Biochemistry: Monomers & Polymers

High School Biology - Study by Seneca

Play Episode Listen Later Jan 29, 2020 2:25


Emma looks at the building blocks of biological molecules you need to know for your AP Biology test. She looks at the hydrolysis and dehydration synthesis (or condensation). Ideal for preparing you for your High School Biology Exam. Click here for the full course, or visit this link: http://bit.ly/35WuyZy

Revise - A Level Biology Revision
Biological Molecules: Monomers & Polymers

Revise - A Level Biology Revision

Play Episode Listen Later Jan 14, 2020 1:09


Liz looks at monomers and polymers for your A Level Biology exam. In this episode, she will look at what monomers and polymers are, and some examples of the two. Ideal for preparing you for your A Level Biology exam. Click here for the full course, or visit this link: http://bit.ly/2TaDFD8

Revise - A Level Biology Revision
A Level Biology - Monomers & Polymers

Revise - A Level Biology Revision

Play Episode Listen Later Apr 2, 2019 1:09


Liz looks at monomers and polymers for your A Level Biology exam. In this episode, she will look at what monomers and polymers are, and some examples of the two. Ideal for preparing for your A Level Biology exam. For more info visit https://www.senecalearning.com/blog/a-level-biology-revision/

ideal polymer monomers level biology
Immortality Session Podcast
DJeff - Immortality Session 013

Immortality Session Podcast

Play Episode Listen Later Mar 3, 2017 118:57


Immortality Session broadcast on ah.fm every first friday of each month at 10:00 am ET and rebroadcast on sincity.fm every fourth thursday of each month at 18:00 pm ET Tracklist : Atacama - In Orbit Always (Original Mix) Inner Sphere - Beyond the Horizon (Original Mix) Mario Piu - Thunderstruck (Voolgarizm Mix) Jak Aggas - Subversion (Original Mix) Sunscreem - Please Save Me (James Dymond Remix) Black Marvin - Sometimes (Seven Ways & Hopeku remix) Adam Szydlik - Vectrum (Original Mix) The Noble Six - Chernobyl (Original Mix) Protonica - Northern Storm (Faders Remix) Vertical Mode - Lucky Number (Symbolic Remix) TrancEye - Night's Watch (Original Mix) Guest mix Way out West - Killa(Distinctive Records) Solid Stone feat. Jennifer Rene - Heat call(Monomers remix)(Coldharbour Recordings) Nenes & Pascal Feriz - Platinum(Radion6 remix)(High Contrast Recordings) Arkham Knights - Awakening(Coldharbour Recordings) Arnej & 8 Wonders - Together we will rise again(Rielism) Markus Schulz - Digital madness(Coldharbour Recordings) Mike Efex - Blackstone(Dave Neven remix)(Coldharbour Recordings) Orjan Nilsen - Between the rays(Marlo remix)(Armanda Music Bundles) Ferry Corsten - Beautiful(Flashover Recordings) Lange - The First rebirth(Coldharbour Recordings)

djeff coldharbour recordings monomers immortality session
Immortality Session Podcast
DJeff - Immortality Session 013

Immortality Session Podcast

Play Episode Listen Later Mar 3, 2017 118:57


Immortality Session broadcast on ah.fm every first friday of each month at 10:00 am ET and rebroadcast on sincity.fm every fourth thursday of each month at 18:00 pm ET Tracklist : Atacama - In Orbit Always (Original Mix) Inner Sphere - Beyond the Horizon (Original Mix) Mario Piu - Thunderstruck (Voolgarizm Mix) Jak Aggas - Subversion (Original Mix) Sunscreem - Please Save Me (James Dymond Remix) Black Marvin - Sometimes (Seven Ways & Hopeku remix) Adam Szydlik - Vectrum (Original Mix) The Noble Six - Chernobyl (Original Mix) Protonica - Northern Storm (Faders Remix) Vertical Mode - Lucky Number (Symbolic Remix) TrancEye - Night's Watch (Original Mix) Guest mix Way out West - Killa(Distinctive Records) Solid Stone feat. Jennifer Rene - Heat call(Monomers remix)(Coldharbour Recordings) Nenes & Pascal Feriz - Platinum(Radion6 remix)(High Contrast Recordings) Arkham Knights - Awakening(Coldharbour Recordings) Arnej & 8 Wonders - Together we will rise again(Rielism) Markus Schulz - Digital madness(Coldharbour Recordings) Mike Efex - Blackstone(Dave Neven remix)(Coldharbour Recordings) Orjan Nilsen - Between the rays(Marlo remix)(Armanda Music Bundles) Ferry Corsten - Beautiful(Flashover Recordings) Lange - The First rebirth(Coldharbour Recordings)

djeff coldharbour recordings monomers immortality session
Partial Differential Equations in Kinetic Theories
Existence and uniqness of solution to the Lifshitz-Slyozov system with monomers spatial diffusion

Partial Differential Equations in Kinetic Theories

Play Episode Listen Later Sep 14, 2010 34:25


Tine, LM (INRIA Lille) Thursday 09 September 2010, 16:00-16:30

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06

Die plastidäre DNA höherer Pflanzen wird allgemein als zirkuläres Molekül von der Größe eines Monomers beschrieben. Die DNA-Replikation soll von einem Paar Replikationsursprünge ausgehen. Mittels theta- (displacement loop) und sigma-Replikation (rolling circle) würden aus zirkulären Ausgansprodukten erneut zirkuläre Produkte entstehen. In Nicotiana tabacum sollen diese Mechanismen auf zwei beschriebenen Replikationsursprüngen beruhen: oriA und oriB. In früheren Arbeiten wurde bereits gezeigt, dass oriA nicht essentiell ist, aber vermutet, dass eine Kopie des oriB unverzichtbar sei. Mittels Plastidentransformation wurde jetzt auch gezeigt, dass plastidäre DNA-Replikation auch erfolgt, wenn beide Kopien des oriB inaktiviert sind. In weiteren Experimenten konnten in einer Linie drei der vier Ori deletiert werden. Untersuchungen mittels Pulsfeldgelelektrophorese und Southern-Analysen zum Replika-tionsmechanismus wiesen auf lineare ptDNA-Moleküle mit definierten Enden hin. Eine mögliche Erklärung für diese Enden wäre, dass diese an der Position von Replikationsursprüngen liegen. Tatsächlich wurde eine entsprechende Korrelation mit oriA – und weniger deutlich – mit oriB gefunden. Andere Enden liegen auf Positionen, auf denen in Chlamydomonas reinhardtii, Glycine max, Oenothera elata ssp. hookeri, Oryza sativa und Zea mays Replikationsursprünge beschrieben wurden. Dazu kommen noch weitere mögliche Replikationsursprünge. Die Mechanismen der plastidärer DNA-Replikation werden basierend auf diesen neuen Ergebnissen und neuen Erkenntnissen in der Literatur diskutiert.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Statische Kontraktionsspannung und Härtebestimmung bei unterschiedlichen Polymerisationskonzepten

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19

Play Episode Listen Later Jul 18, 2006


Auswirkung verschiedener Polymerisationskonzepte von Halogen- bzw. LED-Lampen auf die Kontraktionsspannung im Komposit Mit dieser Untersuchung soll das Ziel verfolgt werden, Aussagen über die statische Kontraktionsspannung in ein und demselben Komposit, unter dem Einfluss verschiedener Polymerisationskonzepte diverser Lichtquellen, zu treffen. Dabei ist es wichtig, eine möglichst vollständige Durchhärtung in allen Schichten, eine hohe Konversionsrate des Monomers bei möglichst geringen Spannungszuständen im Komposit, in einer für die Praxis vernünftigen Belichtungszeit, zu erreichen. Somit wurden im ersten Teil dieser Studie die Lichtkonzepte zweier verschiedener sich auf dem Markt befindlichen Halogen-Lampen (Astralis 10 und Elipar Trilight), sowie zweier verschiedener LED-Lampen (Elipar Freelight und GC e-light) verglichen, wobei letztere einen Prototyp darstellte. Es wurden zunächst alle Konzepte in einem statischen Polymerisationsschrumpfverfahren über 300 s ohne Kompensation untersucht. Es stellte sich heraus, dass die Konzepte mit der größten Lichtintensität – beide Halogen-Lampen - auch die höchsten Spannungen im Komposit aufwiesen. Die niedrigsten Spannungen wiesen die verschiedenen Konzepte der LED-GC e-light auf. Trotz einer weiteren Belichtung der Konzepte dieser Lampe von 40 s mit 400mW/cm², wurden nach insgesamt 460 gemessenen Sekunden nochmals eine deutliche Steigerung der Spannungswerte erbracht, wobei aber die Werte der Halogen-Lampe Astralis 10 nicht erreicht werden konnten. Eine Belichtung mit sehr hoher Intensität von Anfang an bewirkt demnach eine sehr große Schrumpfung und Spannungsbildung im Komposit, das auf den adhäsiven Verbund negative Auswirkungen hat. Auffallend ist, dass alle Lampen, deren Konzepte einen exponentiellen Verlauf haben, die niedrigsten Werte aufwiesen. Durch die daher herabgesetzte Polymerisationsgeschwindigkeit wird das Nachfließen des Materials verlängert, wodurch bis zum Erreichen des Gelpunktes innere Spannungen im Komposit - bei einem höheren Vernetzungsgrad - abgebaut werden können. Ein spannungsreduzierender Effekt wurde somit nachweisbar. Der zweite Teil der Studie beschäftigte sich sowohl mit der Durchhärtung an der Oberfläche, als auch der Härte in 2 mm Tiefe, da dieser Wert als ideale Schichtstärke angesehen wird. Um die Durchhärtungswerte zu bestimmen, wurde als indirektes Maß die Härtemessung nach Vickers durchgeführt. Die Versuche zeigten eine Abhängigkeit des Polymerisationsgrades der Proben von der Polymerisationsdauer, sowie Intensität innerhalb der vergleichbaren Konzepte und der Art der Polymerisationsgeräte. Dabei erreichten beide LED-Lampen die geringsten Härtewerte. Das beste Ergebnis für eine relativ kurze Belichtungszeit von 24 s bei einer geringen Schrumpfspannung und einer guten Aushärtung - selbst an der Unterseite der Probe - zeigte das Pulse 10.2-Konzept der GC e-light. Einzig eine Ausnahme im Vergleich zu den übrigen Lampen bildet das Soft A-Konzept der GC e-light. Allein durch die Belichtungzeit von 40 s war hier eine ausreichende Tiefenaushärtung gewährleistet. Der Vergleich beider Halogen-Lampen zeigt bei der Astralis 10 generell größere Durchhärtungsergebnisse als bei vergleichbaren Konzepten der Elipar Trilight, was auf die sehr hohe Anfangsintensität zurückzuführen ist. Die Werte an der Ober- bzw. Unterseite verhielten sich signifikant untereinander. Aufgrund der höheren Schrumpfspannungen aber auch der größeren Tiefendurchhärtung der Halogen-Lampen im Vergleich zu den LED-Lampen, ist zum jetzigen technischen Entwicklungszeitpunkt dieser hier verwendeten Lampen keine Empfehlung für einen bestimmten Lampentyp auszusprechen.