POPULARITY
STERNENGESCHICHTEN LIVE TOUR 2025! Tickets unter https://sternengeschichten.live Die "Millenium-Simulation" hat die Entwicklung des Kosmos simuliert. Aber wie simuliert man das gesamte Universum und warum will man das überhaupt machen? Das erfahrt ihr in der neuen Folge der Sternengeschichten. Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter), Patreon (https://www.patreon.com/sternengeschichten) oder Steady (https://steadyhq.com/sternengeschichten)
Como os impactos sociais e ambientais influenciam o crescimento de uma empresa? Neste episódio, o jornalista Eduardo Rosa recebe Onilia Araújo, fundadora da I.CON, e Débora Chagas, diretora de negócios da Numerik, para uma conversa sobre startups mais humanas e diversas a partir das práticas de ESG. Oferecimento: CREA-RS, CIEE-RS, PUCRS, KTO, Elevato, SebraeX e SENGE-RS
Folge 38 des Science Busters Podcasts. Kabarettist Martin Puntigam bespricht mit Astronom und Himmelsmechaniker Florian Freistetter, ob Astronomie die älteste Wissenschaft ist und Hans Guck in die Luft eigentlich Astronom war, wie lange Newton bei der Erforschung des Weltalls reicht, welche Figur Numerik bei Asterix ist und wann Florian Uranus und Neptun einmal richtig wurscht waren. Bonus: warum Wissenschaft das eine ist, und Fakten aber auch.
Meine Güte, ist in den letzten zwei Wochen viel passiert. Florian hat nicht nur einen, sondern gleich einen ganzen Haufen an Sternenhimmeln kennengelernt und das noch dazu in Bayern. Das Universum hat Gin gebrannt. Die Raumstation kriegt Risse und der Marsrover bohrt Löcher. Und in der Hauptgeschichte geht es um einen Astronom, der komplexe Daten in Sekundenschnelle analysiert und das auch noch mit Papier und Bleistift. So jedenfalls lautet die etwas überzogene Schlagzeile in den Medien; was da wirklich an - sehr spannender Forschung! - dahinter steckt, erklärt diesmal Ruth und braucht dafür weder Papier, noch Bleistift. Außerdem beantworten wir Fragen über die Tagundnachtgleiche, Pulsarplaneten und den Freien Fall. In “Neues aus der Sternwarte” erzählt Evi vom Einfluss der Science-Fiction-Literatur auf das Astronomistudium und es entspannt sich eine Diskussion über die beste Star-Trek-Serie, bei der Florian auf verlorenem Posten steht...
Gudrun spricht in dieser Folge mit Attila Genda über sein Praktikum bei Dassault Systèmes (Standort Karlsruhe), das er m Frühjahr und Sommer 2020 im Rahmen seines Masterstudiums Technomathematik absolviert hat. Bei Dassault Systèmes in Karlsruhe wird schon seit einigen Jahrzehnten Strukturoptimierung betrieben. Wir haben dort auch schon einige Podcastfolgen zu den mathematischen Hintergründen und den aktuellen Weiterentwicklungen aufgenommen (s.u.). Für die numerische Lösung der betrachteten partiellen Differentialgleichungen werden Finite Elemente Verfahren eingesetzt. Grundlage einer jeden Strukturoptimierung ist ein mathematisches Optimierungsproblem unter Nebenbedingungen. Dazu werden eine Zielgröße und mehrere Nebenbedingungen definiert. Die Zielgröße ist dabei abhängig von zu bestimmenden Variablen, die als Unbekannte oder Optimierungsparameter bezeichnet werden. Die Nebenbedingungen sind Bedingungen an die Variablen, die erfüllt sein müssen, damit die Löung ”zulässig“ ist. Das Ziel der Optimierung ist nun die Minimierung der Zielgröße unter Einhaltung der Nebenbedingungen. Um konkrete Probleme zu lösen, gibt es eine Bandbreite verschiedener Löungsmöglichkeiten, die jeweils auf die Aufgabenstellung zugeschnitten werden. Alle Löser bzw. Minimierungsprobleme haben jedoch gemein, dass sowohl die Konvexität der Zielfunktion als auch die Konvexität des Designgebiets von fundamentaler Bedeutung für die Lösbarkeit des Problems sind. Strukturoptimierung verändert die Form eines Bauteils oder einer Baugruppe so, dass weniger Material nötig ist, aber vorgegebene Festigkeitsanforderungen (z.B. Spannungen, denen das Teil typischerweise ausgesetzt ist) erfüllt sind. Dabei darf sich die Materialverteilung frei in approximativen Schritten verändern und ist nicht durch eine Vorplanung der prinzipiell einzuhaltenden äußeren Form begrenzt. Dies führt z.B. zur Entstehung von Löchern in der Form des Bauteils, was die Topologie auch im mathematischen Sinne verändert. Das ist kompliziert und einfach zugleich - je nachdem, unter welchem Blickwinkel man es betrachtet. Die Einfachheit ergibt sich aus der Tatsache, dass keine Zellen aus dem numerischen Netz der Numerik entfernt werden. Man setzt einfach eine Variable, die angibt, ob dort Material vorhanden ist oder nicht. Anstatt dies jedoch mit binären Werten zu tun (d.h. Material "an" oder "aus"), ändert man die Materialdichte der Zelle kontinuierlich zwischen [0, 1]. Dabei steht 0 für kein Material und 1 für die volle Materialmenge. Um numerische Probleme zu vermeiden wird statt 0 eine kleine Zahl verwendet. Da diese Modellierung im Allgemeinen zu physikalisch nicht interpretierbaren Ergebnissen führt, bei denen die Zellen weder leer sind noch die volle Menge an Material enthalten, müssen wir sicherstellen, dass der Optimierer dazu neigt, Ergebnisse zu finden, bei denen die Anzahl der Zellen mit mittlerer Dichte minimal ist. Dazu bestrafen wir solche Konstruktionen. Diese Verfahren heißen Solid Isotropic Material with Penalization Method - kurz SIMP-Methode. Strukturoptimierungsaufgaben enthalten in der Regel eine sehr große Anzahl von Designvariablen, in der Praxis sind es nicht selten mehrere Millionen von Variablen, die die Zielfunktion beeinflussen. Demgegenüber ist die Zahl der Nebenbedingungen viel kleiner - oft gibt es sogar nur ein paar wenige. Da Strukturoptimierungsprobleme im Allgemeinem keine konvexen Promleme sind und oft auch keine linearen Probleme, ist die Auswertung des Zielfunktionals und der Nebenbedingungen sehr rechenintensiv. Deshalb wurden spezielle Algorithmen entwickelt, die besonders geeignet für die Lösung solcher Probleme sind, weil sie vermeiden können, dass bis zur Konvergenz eine große Anzahl von Funktionsauswertungen stattfinden müssen. Der wahrscheinlich meist verbreitete Algorithmus heißt Method of Moving Asymptotes (MAA). Er wird in der Podcastepisode diskutiert. Die Aufgabe von Attila in seiner Zeit des Praktikums war es nämlich, diese Methode zu verallgemeinern, dann zum implementieren und die Implementierung zu testen. Die ursprünglich angewandte MAA-Methode, die von Svanberg vorgeschlagen wurde, verwendet nur einen sehr einfachen Ansatz zur Behandlung der Länge des Intervalls zwischen der unteren und oberen Asymptote. Literatur und weiterführende Informationen M.M. Selim; R.P. Koomullil: Mesh Deformation Approaches - A Survey. Journal of Physical Mathematics, 7, 2016. doi C. Dai, H.-L. Liu, L. Dong: A comparison of objective functions of optimization-based smoothing algorithm for tetrahedral mesh improvement. Journal of theoretical and applied mechanics, 52(1):151–163, 2014. L. Harzheim. Strukturoptimierung: Grundlagen und Anwendungen. Deutsch, 2008. David A. Field: Laplacian Smoothing and Delaunay Triangulations. Communications in Applied Numerical Methods, 4:709 – 712, 1988. K. Svanberg: The method of moving asymptotes—a new method for structural optimization, International Journal for Numerical Methods in Engineering, 1987 Podcasts H. Benner, G. Thäter: Formoptimierung, Gespräch im Modellansatz Podcast, Folge 212, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. M. An, G. Thäter: Topologieoptimierung, Gespräch im Modellansatz Podcast, Folge 125, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. P. Allinger, N. Stockelkamp, G. Thäter: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 053, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
In der Astronomie schaut man die ganze Zeit zum Nachthimmel? Manchmal. Sehr viel öfter sitzt man aber am Computer. Die "numerische Astronomie" ist mindestens genau so wichtig wie die Beobachtung. Darum geht es in der neuen Folge der Sternengeschichten.
Le Numerik Games Festival est dédiée à lʹart et la culture numériques. Pour sa 5ème édition, forcément un peu particulière, la manifestation se déploie en sept événements thématiques. A lʹaffiche de ce premier week-end de festivités, Alain Damasio, écrivain de science-fiction, spécialiste des dystopies et de l'anticipation politique. Les différents rendez-vous avec lʹartiste pourront être suivis en live streaming sur YouTube, Twitch et Facebook Live. A suivre du 5 au 7 mars 2021. Alain Damasio est lʹinvité dʹAnne-Laure Gannac.
TRACKLIST 0:00 Roy Ayers - In the Dark 9:30 Alton Edwards - I Just Wanna (Spend Some Time with You) 15:30 PillowTalk - Black Paradise 18:30 Steve "Silk" Hurley - Jack Your Body (Original Club Mix) 23:00 Shina Williams & His African Percussionists - Agboju Logun 38:30 The Jacksons - Shake Your Body (Album Version) 44:30 Evelyn King - Take A Chance 47:00 Pulse - I'll Be Alright 49:30 Rose Royce - Still In Love 54:30 UDAUFL - Make The Time 57:30 Criss Korey - If It Feels Good (Original Mix) 1:01:00 Dennis Ferrer - How Do I Let Go 1:05:30 Dj Oliver - The Message 1:14:00 Sunlightsquare - Oyelo (Love Soul Remix) 1:16:30 UDAUFL - Most Precious Love 1:20:00 UDAUFL - A Wonderful Place 1:31:00 Minimal Funk - The Groovy Thang (Vinny Noriega e Roger Rama Groovy Thang) 1:34:00 Monkey Brothers feat Shaun Escoffery - Losin' My Head [Peaktime Mix] 1:37:00 A.K Soul - Show You Love 1:40:30 ABC - When Smokey Sings 1:50:00 Earth, Wind & Fire - Let's Groove 2:10:00 Billy Jack Williams - PARTY CHILDREN (#2) 2:14:30 Candi Staton - Young Hearts Run Free 2:23:00 Purkart Vs. Wesenberg - Runaway (Original Version) 2:26:00 Ssense feat. Jenny B - Gonna Get Your Love (House Double 'S' Rmx) House, Funky House Type: DJ-Set124 bpm Key: Am monte carlo
TRACKLIST 0:00 Roy Ayers - In the Dark 9:30 Alton Edwards - I Just Wanna (Spend Some Time with You) 15:30 PillowTalk - Black Paradise 18:30 Steve "Silk" Hurley - Jack Your Body (Original Club Mix) 23:00 Shina Williams & His African Percussionists - Agboju Logun 38:30 The Jacksons - Shake Your Body (Album Version) 44:30 Evelyn King - Take A Chance 47:00 Pulse - I'll Be Alright 49:30 Rose Royce - Still In Love 54:30 UDAUFL - Make The Time 57:30 Criss Korey - If It Feels Good (Original Mix) 1:01:00 Dennis Ferrer - How Do I Let Go 1:05:30 Dj Oliver - The Message 1:14:00 Sunlightsquare - Oyelo (Love Soul Remix) 1:16:30 UDAUFL - Most Precious Love 1:20:00 UDAUFL - A Wonderful Place 1:31:00 Minimal Funk - The Groovy Thang (Vinny Noriega e Roger Rama Groovy Thang) 1:34:00 Monkey Brothers feat Shaun Escoffery - Losin' My Head [Peaktime Mix] 1:37:00 A.K Soul - Show You Love 1:40:30 ABC - When Smokey Sings 1:50:00 Earth, Wind & Fire - Let's Groove 2:10:00 Billy Jack Williams - PARTY CHILDREN (#2) 2:14:30 Candi Staton - Young Hearts Run Free 2:23:00 Purkart Vs. Wesenberg - Runaway (Original Version) 2:26:00 Ssense feat. Jenny B - Gonna Get Your Love (House Double 'S' Rmx) House, Funky House Type: DJ-Set124 bpm Key: Am monte carlo
Des Pokémons à Tokyo jungle, qui sont les animaux numériques ? Sont-ils de rassurants chouchou- doudous ou de terribles hybrides fantastiques ? Vivent-ils dans des mondes meilleurs que le nôtre ou plus effrayants ? Visite guidée dans les Numerik Games. Nancy Ypsilantis reçoit Marc Atallah, Dir. de la Maison dʹAilleurs à Yverdon-les-Bains. Le festival Numerik Games à Yverdon-les-bains, du 30 août au 1er septembre.
Gudrun spricht mit Henrieke Benner über deren Masterarbeit "Adaption and Implementation of Conventional Mesh Smoothing Techniques for the Applicability in the Industrial Process of Automated Shape Optimization", die in Zusammenarbeit von Henrieke und Gudrun mit der Firma Dassault entstanden ist. Unser Leben wird bestimmt durch industriell hergestellte Dinge. Im Alltag nutzen wir zum Beispiel Toaster, Waschmaschinen, Fernseher und Smartphones. Fahrräder, Autos, Züge und Flugzeuge transportieren uns und wir denken wenig darüber nach, wie es dazu kam, dass sie genau diese Form und das gewählte Material haben, solange alles funktioniert. Für die Industrie, die all diese Gegenstände baut, zerfällt der Prozess der Entwicklung neuer Produkte in viele Entscheidungen über Form und Material einzelner Bauteile. Traditionell wurde hier verändert und ausprobiert, aber seit einigen Jahrzehnten sind Computer eine große Hilfe. Mit Ihnen können Bilder von noch nicht existierenden Produkten erschafft werden, die sich diese von allen Seiten, auch von innen und in Bewegung darstellen, mit Hilfe von Simulationsprogrammen Experimente zur Qualität gemacht werden, bestmögliche Formen gefunden werden. In der Masterarbeit geht es um die Optimierung der Form von Objekten am Computer - schnell und möglichst automatisch. Es liegt in der Natur der Aufgabe, dass hier mehrere Wissensfelder zusammentreffen: mechanische Modelle, Computer Strukturen und wie man dort beispielsweise Modelle von Objekten abbilden kann, Optimierungsmethoden, numerische Verfahren. Als Rahmen dient für Arbeit das Strukturoptimierungsprogrammpaket TOSCA, das von Dassault Systèmes am Standort in Karlsruhe (weiter)entwickelt wird und weltweit als Software-Tool, eingebunden in Simulationsschleifen, genutzt wird, um Bauteile zu optimieren. Für die Numerik werden Finite Elemente Verfahren genutzt. Grundlage einer jeden Strukturoptimierung ist ein mathematisches Optimierungsproblem unter Nebenbedingungen. Dazu werden eine Zielgröße und mehrere Nebenbedingungen definiert. Die Zielgröße ist dabei abhängig von zu bestimmenden Variablen, die als Unbekannte oder Optimierungsparameter bezeichnet werden. Die Nebenbedingungen sind Bedingungen an die Variablen, die erfüllt sein müssen, damit die Löung ”gültig“ ist. Das Ziel der Optimierung ist nun die Minimierung der Zielgröße unter Einhaltung der Nebenbedingungen. Um das Problem zu lösen, gibt es eine Bandbreite verschiedener Löungsmöglichkeiten, jeweils zugeschnitten auf das genaue Problem. Alle Löser bzw. Minimierungsprobleme haben jedoch gemein, dass sowohl die Konvexität der Zielfunktion als auch die Konvexität des Designgebiets von fundamentaler Bedeutung für die Lösbarkeit des Problems sind. Wenden wir uns nun dem Gebiet der Strukturoptimierung zu, so besteht anfangs zunächst die Hüde, ein mechanisches Problem mit Hilfe von Computer-Aided-Design Software (CAD) auszudrücken. Um die Belastungen des Bauteils zu berechnen, nutzt man anschließend Finite-Element-Analysis Software (FEA). Das Strukturoptimierungspaket TOSCA bietet anschließend mehrere Möglichkeiten zur Optimierung an. Relevant ist für das vorliegende Problem jedoch nur die Formoptimierung. Sie setzt ihre Ziel- und Restriktionsfunktionen aus Steifigkeit, Volumen, Verschiebung, inneren Kräften und Widerstandsmoment zusammen. Um eine Formoptimierung zu starten, muss zunächst vom Nutzer eine Triangulierung zur Verfügung gestellt werden, mit der die Werte der Ziel und Restriktionsfunktion berechnet werden. Während der Optimierung werden die Positionen der Oberflächenknoten variiert. Beispielsweise wird Material an Stellen hoher Spannung hinzugefügt und an Stellen niedriger Spannung entfernt. Problematisch an der Formoptimierung ist, dass sich die Qualität der finiten Elemente durch die Bewegung der Oberflächenknoten verändert. Modifiziert man nur die Oberflächenknoten, so entsteht ein unregelmäßiges Netz, welches keine gleichmäßigen finiten Elemente enthält oder schlimmstenfalls keine gültige Zerlegung der modifizierten Komponente ist. Die auf der ungültigen Triangulierten durchgeführten Berechnungen der Zielgrößen sind daher nicht mehr zuverlässig. Abhilfe kann nur geschaffen werden, wenn das Netz nach jedem Iterationschritt geglättet wird. Im Rahmen von Henriekes Arbeit werden zwei Ansätze zur Netzglättung implementiert, diskutiert und miteinander verglichen: Glättung durch den Laplace Operator und Qualitätsmaße für das Finite Elemente Gitter. Die Anwendung des Laplace Operators ist theoretisch die fundiertere Variante, aber in der numerischen Umsetzung sehr aufwändig. Literatur und weiterführende Informationen M.M. Selim; R.P. Koomullil: Mesh Deformation Approaches - A Survey. Journal of Physical Mathematics, 7, 2016. http://dx.doi.org/10.4172/2090-0902.1000181 C. Dai, H.-L. Liu, L. Dong: A comparison of objective functions of optimization-based smoothing algorithm for tetrahedral mesh improvement. Journal of theoretical and applied mechanics, 52(1):151–163, 2014. L. Harzheim. Strukturoptimierung: Grundlagen und Anwendungen. Deutsch, 2008. David A. Field: Laplacian Smoothing and Delaunay Triangulations. Communications in Applied Numerical Methods, 4:709 – 712, 1988. Podcasts M. An, G. Thäter: Topologieoptimierung, Gespräch im Modellansatz Podcast, Folge 125, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. P. Allinger, N. Stockelkamp, G. Thäter: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 053, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. G. Thäter, H. Benner: Fußgänger, Gespräch im Modellansatz Podcast, Folge 43, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015
Gudrun spricht in dieser Folge mit Simone Göttlich über Verkehrsoptimierung. Die Verabredung zum Gespräch war im März am Rande einer Tagung in Bonn erfolgt. Am 23. Mai 2019 war Gudrun dann einen Tag zu Gast in der Arbeitsgruppe von Simone an der Universität in Mannheim. Im Sport starten sie gemeinsam unter dem doppeldeutigen Namen "Team Göttlich". Verkehr erleben wir täglich zu Fuß, im Auto, auf dem Fahrrad oder im ÖPNV. Wir haben oft das Gefühl, dass einiges besser geregelt sein könnte, um den Verkehrsfluss zu verbessern. In der Stadt vermischen sich viele unterschiedliche Fragen sehr komplex, da viele unterschiedliche Verkehrsmittel um den Raum konkurrieren. Auf der Autobahn kann man sich auf den Autoverkehr konzentrieren. Aber auch dort muss das unterschiedliche Verhalten von schnell fahrenden Autos und langsamen Lastwagen berücksichtigt werden. Außerdem beeinflussen auch Auf- und Abfahrten die Durchlässigkeit der Autobahnspuren. Es gibt also viele Fragen und Probleme im Zusammenhang mit Verkehr. Ihre Beantwortung kann allen das Leben erleichtern und Kosten erheblich senken. Das Gespräch mit Simone beginnt beim Thema Daten. Wie viele Autos, Personen und Fahrräder bestimmte Strecken zu bestimmten Zeiten nutzen, wird stichprobenhaft recht genau gezählt. Zu einigen Zeiten fließt der Verkehr gut, aber z.B. zur sogenannten Rushhour kommt er ins stocken. Die gezählten Daten fließen in Verkehrsprognosemodelle beispielsweise für Routenplanung ein. Wir rufen dann einfach eine App auf und lassen uns die besten Routen vorschlagen. Für jede wird von der App eine voraussichtliche Reisedauer geschätzt. Für Autobahnverkehr werden außerdem auch ganz aktuelle Daten ergänzt. Um gemeldete Staus aber auch um die Verkehrsdichte auf besonders wichtigen Autobahnabschnitten, wo das automatisiert beobachtet wird. Als ein Beispiel dient im Gespräch von Gudrun und Simone die Autobahn A5 in der Nähe von Frankfurt, wo schon lange Jahre eine Anzeige gute Dienste leistet, die bei Einfahrt in den Ballungsraum die aktuell zu erwartende Fahrtzeit zu markanten Punkten wie beispielsweise dem Flughafen angibt. Als jemand, der sein Flugzeug erreichen muss, kann man dann ruhiger durch den dichten Verkehr reisen und sich an die reduzierte Höchstgeschwindigkeit halten, da man Planungssicherheit hat. Als Nebeneffekt senkt dies die Unfallwahrscheinlichkeit, weil auf hektische Überholmanöver verzichtet wird. Effekte, die man mit Verkehrsflußmodellen simulieren möchte sind erwartbare Engpässe beim Einziehen von Fahrspuren oder auch der sogenannte Stau aus dem Nichts, der bei hoher Verkehrsdichte auftreten kann. Wir alle wissen, dass auf Autobahnen Geschwindigkeitseinschränkungen auf Baustellen vorbereiten, um das Einfädeln der Spuren zu vereinfachen. Wenn der Verkehr dicht genug ist, breitet sich die Störung, die beim Einfädeln entsteht, entgegen der Fahrtrichtung wie eine Schockwelle aus. Das ist eine Beobachtung, die sicher alle schon einmal gemacht haben. Für das Modell heißt das aber, dass es geeignet sein muss Schockwellen als Lösungen zuzulassen. Traditionell gibt es sogenannte mikroskopische und makroskopische Modelle für Verkehr. In den Ersteren schaut man die Fahrzeuge einzeln in ihrem typischen Verhalten an. Die Modelle beruhen auf der Idee des zellulären Automaten. In den makroskopischen Modellen sieht man als wesentlichen Vorgang das Fließen und charakterisiert das Verkehrsgeschehen mit den Variablen Dichte und Fluss. Man kann recht schnell ein erstes Modell aufstellen, indem man folgende elementare Beobachtungen: wenn kein Verkehr ist, ist der Fluß Null (Dichte Null -> Fluß Null) wenn die Dichte maximal ist, stehen alle im Stau und der Fluß Nullmit Hilfe einer konkaven Funktion des Flusses in Abhängigkeit von der Dichte verbindet. Diese hat ein Maximum für eine gewisse Dichte. Die entspricht auch einer Geschwindigkeit des Verkehrsgeschehens, die man mit Bezug auf den besten Fluß als Optimum ansehen kann. Komplexere Modelle nehmen die Masseerhaltung als Grundlage (Autos bleiben in der Summe erhalten) und führen auf die sogenannte Transportgleichung, die hyperbolisch ist. Hyperbolische Gleichungen haben auch unstetige Lösungen, was dem Verkehrsgeschehen entspricht, aber ihre Behandlung schwieriger macht. In der Numerik muss auf die besonderen Eigenschaften Rücksicht genommen werden. Das erfolgt beispielsweise über die sogenannte CFL-Bedingung, die Zeit- und Raumdiskretisierung koppelt. Oder man benutzt Upwind-Schemata für finite Differenzen. Am besten angepasst an hyperbolische Probleme sind jedoch Finite Volumen Verfahren. Sie arbeiten mit der Approximation des Flusses über deren Ränder von Zellen. Simone hat Wirtschaftsmathematik in Darmstadt studiert und anschließend in Kaiserslautern promoviert. Als Akademische Rätin blieb sie einige Jahre in Kaiserslautern und hat sich dann dort auch habilitiert. Seit 2011 ist sie Mathematikprofessorin an der Universität Mannheim am Institut für Wirtschaftsinformatik und Wirtschaftsmathematik. Literatur und weiterführende Informationen J. Kötz, O. Kolb, S. Göttlich - A combined first and second order traffic network model - preprint, March 2019. M. Burger, S. Göttlich, T. Jung - Derivation of second order traffic flow models with time delays Networks and Heterogeneous Media, Vol. 14(2), pp. 265-288, 2019. U. Clausen, C. Geiger: Verkehrs- und Transportlogistik VDI-Buch, 2013. ISBN 978-3-540-34299-1 M. Treiber, A. Kesting: Verkehrsdynamik Springer, 2010. ISBN 978-3-642-32459-8 Podcasts P. Vortisch, G. Thäter: Verkehrsmodellierung I, Gespräch im Modellansatz Podcast, Folge 93, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. U. Leyn, G. Thäter: Verkehrswesen, Gespräch im Modellansatz Podcast, Folge 88, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. K. Nökel, G. Thäter: ÖPNV, Gespräch im Modellansatz Podcast, Folge 91, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. T. Kretz, G. Thäter: Fußgängermodelle, Gespräch im Modellansatz Podcast, Folge 90, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
Gudrun spricht in dieser Folge mit Tanja Hagedorn, die Geschäftsführerin des KIT-Zentrums MathSEE ist. Das Karlsruher Zentrum für Technologie (KIT) besteht aus sehr vielen Instituten, die in fünf thematischen Bereichen zusammengeschlossen sind. Andererseits gibt es die eher horizontal durch alle Bereiche hindurch sortierenden Gremien, die KIT-Zentren heißen. Hier sind Forscherinnen und Forscher Mitglied und es "werden Fragestellungen, die von fundamentaler Bedeutung für die Existenz und Weiterentwicklung der Gesellschaft sind oder die aus dem Streben nach Erkenntnis resultieren, bearbeitet." ( lt. Webseite). Sieben solche Zentren gibt es seit Gründung des KITs: Energie Information · Systeme · Technologien Mobilitätssysteme Elementarteilchen- und Astroteilchenphysik Klima und Umwelt Materialien Mensch und Technik Allerdings gab es ursprünglich kein Thema, unter dem die vielen Aktivitäten, die die Mathematik am KIT für die Gesellschaft leistet (und die auch nicht nur in der KIT-Fakultät für Mathematik stattfinden), ein Zuhause finden könnte. Deshalb entstand der Wunsch nach einem passenden Zentrum im KIT. Das KIT-Zentrum Mathematics in Sciences, Engineering, and Economics, kurz "MathSEE", gibt es nun seit Oktober 2018. In MathSEE kooperieren theoretisch-mathematisch und anwendungsorientiert arbeitenden Wissenschaftlerinnen und Wissenschaftler in gemeinsamen Forschungsprojekten. Aufgabe von MathSEE ist es auch, diese Forschung nach außen hin sichtbar zu machen sowie neue interdisziplinäre mathematische Forschung am KIT zu fördern. Da gilt es vor allen Dingen auch, Vermittlung zwischen Großforschungs- und Universitätsbereich zu betreiben. MathSEE bietet unter anderem eine Anschubförderung für neue interdisziplinäre Projekte] an, deren erste Ausschreibungsrunde gerade erfolgreich abgeschlossen wurde und die ersten sieben Projekte eine Förderung erhalten haben. Die nächste Bewerbungsfrist ist Ende Juni 2019. Keimzelle von MathSEE war insbesondere der Sonderforschungsbereich 1173: Wellenphänomene: Analysis und Numerik. Doch auch andere bestehende große Drittmittelprojekte in der Mathematik wie das Graduiertenkolleg 2229: Asymptotic Invariants and Limits of Groups and Spaces bilden die Grundlage für die Entstehung von MathSEE. Sie haben dazu geführt, dass die besondere Stellung der Mathematik an der technischen Forschungseinrichtung KIT und die Forschungsstärke der Mathematik sichtbarer wurden. Die Initiative der Sprecherin Marlis Hochbruck hat die Gründung von MathSEE dann ins Rollen gebracht. Der engagierte Wissenschaftliche Sprecher von MathSEE, Prof. Martin Frank, ist in seiner Doppelrolle als Professor in der Mathematik und SCC-Direktor perfekt für die Aufgabe. Um gezielter zusammen arbeiten zu können, ist MathSEE mit seinen momentan knapp 130 Mitgliedern weiter untergliedert in Methodenbereiche: MB 1: Mathematische Strukturen: Formen, Geometrie, Zahlentheorie und Algebra MB 2: Mathematische Modellbildung, Differentialgleichungen, Numerik, Simulation MB 3: Inverse Probleme, Optimierung MB 4: Stochastische Modellbildung, statistische Datenanalyse und Vorhersage Mitglieder arbeiten oft in mehreren Methodenbereichen mit. Die Methodenbereiche werden jeweils durch ein Paar interdisziplinär geleitet, d.h. eine Person aus der Mathematiker und eine Person aus einem anderen Forschungsbereich. Wichtig in MathSEE ist, dass insbesondere auch Promovierende Mitglied sein können und hier Kooperationspartner für Fragestellungen in ihrem Promotionsprojekt finden können. Für sie bietet die Graduiertenschule MathSEED außerdem ein umfassendes Qualifikationsprogramm an. MathSEE fördert darüber hinaus zwei Veranstaltungsformate: In der MathSEE Modellierungswoche im August entwickeln Studierende Lösungsansätze zu aktuellen interdisziplinären mathematischen Fragestellungen von Problemstellenden aus MathSEE. Studierende erhalten dabei einen ersten Eindruck von der Forschung in angewandter Mathematik und die Problemstellenden können erste Ergebnisse erwarten. Bald wird auch ein MathSEE ScienceSlam stattfinden, da MathSEE versucht, auch für Mathematik bei einem größeren Publikum zu werben. Literatur und weiterführende Informationen MathSEE Veranstaltungen und Termine Podcasts M. Frank, G. Thäter: Kinetische Theorie, Gespräch im Modellansatz Podcast, Folge 152, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. K. Wohak, M. Hattebuhr, E. Bastian, C. Beizinger, G. Thäter: CAMMP-Week, Gespräch im Modellansatz Podcast, Folge 174, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. M. Hattebuhr, K. Wohak, G. Thäter: Simulierte Welten, Gespräch im Modellansatz Podcast, Folge 179, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
Gudrun traf sich im Februar 2019 mit Jennifer Schröter und Christian Scharun vom Institut für Meteorologie und Klimaforschung - Atmosphärische Spurengase und Fernerkundung zum Gespräch. Christian, Sebastian und Gudrun waren auf dem ersten Treffen des MATHSEE-Methodenbereichs Mathematische Modellbildung, Differentialgleichungen, Numerik, Simulation ins Gespräch gekommen und hatten ein baldiges Podcastgespräch verabredet. Christian holte noch seine Kollegin Jennifer ins Boot und im Februar 2019 saßen die drei (ohne Sebastian) in Gudruns Büro, um sich über die Weiterentwicklung von Klimamodellen zu unterhalten. Das Wetter und das Klima werden durch Vorgänge in der Erdatmosphäre in der Kopplung mit Wärme- und Wassertransport in den Ozeanen bestimmt. Auch der Mensch hat darauf einen Einfluss. Zum ersten Mal wurde das wahrscheinlich durch die Entstehung des Ozon-Loches ins breite Bewußtsein geholt. Im Projekt, für das Christian arbeitet, geht es u.a. darum, mit einem Computermodell nachzubilden, inwieweit austretendes Methan (ein Spurengas, das z.B. an Erdgas-Bohrlöchern auftritt) einen Einfluss auf die Entwicklung des Klimas nehmen kann. Grundlage hierfür sind sehr genaue Messungen und die Weiterentwicklung des Computermodells. Im Modell werden Strömungs-, Strahlungs- und chemische Prozesse berücksichtigt. Es wird in enger Zusammenarbeit mit dem Deutschen Wetterdienst (DWD), dem Max-Planck-Institut für Meteorologie Hamburg (MPI-M) und dem Deutschen Klimarechenzentrum (DKRZ) entwickelt. Das Modell wird zur täglichen Wettervorhersage wie auch Klimaprognosen verwendet. Die Gruppe Globale Modellierung MOD des IMK-ASF fügt ein Modul zur Simulation der atmosphärischen Chemie vom Boden bis in die mittlere Atmosphäre hinzu. Das Thema ist in sich fächerübergreifend, weil physikalische und chemische Prozesse verstanden werden müssen und auf den modernsten Großcomputern simuliert werden. Christian hat sein Lehramtsstudium mit dem ersten Staatsexamen für die Fächer Geographie und Mathematik abgeschlossen. Jennifer ist promovierte Physikerin und seit einigen Jahren Hauptenwicklerin für chemische Prozesse in ICON-ART. Als ein wichtiges Produkt der Arbeit der Gruppe sieht sie auch an, Daten, die bei der Berechnung entstehen, der Öffentlichkeit in einer nutzbaren Art zur Verfügung zu stellen. In den Punkten der Modellentwicklung, Performanceverbesserung und Bereitstellung von Forschungsdaten arbeitet sie mit dem Rechenzentrum des KITs, dem Steinbuch Center for Computing eng zusammen. Literatur und weiterführende Informationen J. Schröter et al.: ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations, Geoscientific model development 11, 4043–4068, 2018. Helmholtz-Projekt Digital Earth Podcasts S. Hemri, G. Thäter: Ensemblevorhersagen, Gespräch im Modellansatz Podcast, Folge 96, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. N. Vercauteren, S. Ritterbusch: Lokale Turbulenzen, Gespräch im Modellansatz Podcast, Folge 144, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Wendisch, M. Voelter: Meteorologie, omegatau Podcast von Markus Voelter, Nora Ludewig, Episode 037, 2010. B. Weinzierl, T. Pritlove: Die Atmosphäre, Raumzeit Podcast, Metaebene Personal Media, 2011.
Wie es kam, dass es kam, dass es so ist, wie es ist, mit dem Rechenschieber. Zu einer gemeinsamen Folge vom damalsTM-Podcast zur Technikgeschichte und dem Modellansatz zur Mathematik trafen sich Prof. Dr. Ralph Pollandt, Stephan Ajuvo und Sebastian Ritterbusch in der Hochschule für angewandte Wissenschaften in Karlsruhe zu diesem mathematisch-technischen Thema aus vergangenen Zeiten. Stephan Ajuvo hatte den Rechenschieber schon länger auf seiner Liste seiner Wunschthemen. Er konnte nach der hackover-Konferenz nach Karlsruhe kommen, wo am 4. Mai 2018 die 9. Lange Nacht der Mathematik stattgefunden hatte, die von Sebastian Ritterbusch moderiert wurde, und wo Ralph Pollandt den Rechenschieber in einem Publikumsvortrag vorgestellt hatte. Die lange Nacht der Mathematik wurde an der damaligen Fachhochschule Karlsruhe im Jahr 2000, dem Weltjahr der Mathematik, gestartet, und fand seither alle zwei Jahre mit sehr großem Besucherandrang statt. Vor Einzug der Taschenrechner, wie beispielsweise dem SchulRechner 1 oder SR1, waren Rechenschieber im Schulbetrieb allgegenwärtig. Es gab unter anderem Typen von Aristo oder von VEB Mantissa Dresden. Die Basis der grundsätzlichen Methode hinter dem Rechenschieber wurde mit dem Beginn der Nutzung von Logarithmentafeln (um 1600) gelegt. In der DDR wurden diese für Schulen vom Verlag Volk und Wissen gedruckt. Sie umfassten neben den Logarithmen auch eine Formelsammlung für Mathematik, Physik und Chemie. Auch die Bordwährung der c-base orientierte sich an der logarithmischen Skala. Ein Weg den Logarithmus einzuführen geht über die Exponentialfunktion, die viele Wachstumsprozesse in der Natur bis zur Sättigung beschreibt. Da diese Entwicklungen oft sehr schnell ansteigen, bietet es sich an, die Werte mit der Umkehrfunktion zu beschreiben, und das ist genau der Logarithmus: Exponentiell ansteigende Werte wie die 2-er Potenzen 1, 2, 4, 8, 16, 32, ..., werden nach Anwendung des Logarithmus Dualis zur Basis 2 linear zu 0, 1, 2, 3, 4, 5, ..., und damit deutlich einfacher zu begreifen. Auch in der Musik werden aus Frequenzen von Tönen nach Anwendung des Logarithmus Dualis ganzzahlig zu Oktaven und im nicht-ganzzahligen Rest zu den Tönen. Für die Nutzung mit Logarithmentafeln und dem Rechenschieber sind die Logarithmenregeln äusserst wichtig: In Logarithmentafeln ist sehr häufig der dekadische Logarithmus zur Basis 10 abgedruckt, da dies bei der Nutzung mit Zahlen im Dezimalsystem sehr hilfreich ist. Dabei wird typisch nur eine Dekade in der Tafel abgedeckt, da höhere Dekaden einfach ganzzahlige Differenzen im Wert darstellen. Da diese Betrachtung außerhalb der Tafeln stattfindet, müssen diese Größenordnungen während der Rechnung mitgeführt und am Ende dem Ergebnis abgerechnet werden. Da Rechenschieber wie gegenüber liegende Lineale sehr einfach addieren können, wird aus der Schieblehre bei Nutzung der Logarithmenregeln ein mächtiges Multiplikationsgerät. Das kann man sich am Selbstbau-Rechenschieber gut vor Augen führen: Der Rechenschieber besteht typischerweise aus einem bedruckten äußeren Körper, einer darin ebenfalls bedruckten beweglichen Zunge und einem oben aufliegenden bis auf Linien transparenten Läufer. Die aufgedruckten Skalen können zum einen einfache logarithmische Skalen für die Multiplikation und Division sein (hier die Skalen C und D über eine Dekade), oder auch ganz andere Funktionen beinhalten, wie für das Bauwesen die Festigkeit, dem Elastizitätsmodul, der Druckfestigkeit oder die Zinseszins-Rechnung. Oft waren wichtige Konstanten wie die Kreiszahl π oder die Lichtgeschwindigkeit c angenähert auf der Rückseite abgedruckt. Für die Bedruckung und Anwendung haben sich verschiedene Systeme etabliert, wie das System Darmstadt, das System Rietz oder Duplexstäbe, es gab aber auch nationale Unterschiede durch Traditionen, Notationen oder Hersteller. Das typische Tischformat hatte eine Länge von rund 30cm, es gab sie aber auch im Taschenformat oder in lebensgroßen 2 Metern, und entsprechendem Gewicht. Ein sehr verbreiteter Rechenschieber in Kreisform ist der Benzin-Rechner: Ein weiterer interessanter Aspekt ist, dass Rechenschieber auch irrationale Konstanten wie die Euler'sche Zahl e, die Kreiszahl π oder einfach Werte der Wurzelfunktion scheinbar exakt auf den analogen Skalen abbilden konnten, und damit einen Analogrechner darstellen. Das Rechnen mit dem Rechenschieber stammt von den Logarithmentafeln ab. Will man die Zahlen 2 und 3 multiplizieren, so kann man die Logarithmen der Zahlen 2 und 3 nachschlagen, das sind bei dem dekadischen Logarithmus auf 3 Stellen die Zahlen 0,3010 und 0,4771. Diese Zahlen werden nun addiert zu 0,7781 und nach umgekehrter Suche findet man als Ergebnis die Zahl, die diesem Logarithmus zugeordnet ist, die Zahl 6. Der Rechenschieber nimmt einem nun das Nachschlagen und Addieren ab, in dem die Skalen C und D logarithmisch aufgetragen sind und die Addition durch das Verschieben der Zunge erfolgt. Die gleiche Rechnung kann man auch mit den Skalen A und B durchführen, die gleich zwei Dekaden von 1-100 abdecken, wenn sie auf dem Schieber zur Verfügung stehen. Rechnet man kombiniert zwischen A und C oder B und D, so kann man gleichzeitig Wurzelziehen oder Quadrieren, muss aber den Läufer verwenden, um die Skalen genau ausrichten zu können. Die Erfindung des Läufers wird Sir Isaac Newton zugeschrieben. Die verschiedenen Skalen ermöglichen die Abbildung fast beliebiger Funktionen, auf fast allen Rechenschieber sind beispielsweise die trigonometrischen Funktionen enthalten, jedoch nur auf eingeschränkten Skalen. Hier muss man entweder die Symmetrieeigenschaften der jeweiligen Funktionen kennen, oder für tiefe Werte besondere Techniken oder Approximationen wie Taylorreihenentwicklungen kennen. Eine Nutzung des Rechenschiebers setzt auch immer die Fähigkeit zur Überschlagsrechnung voraus, bei der man vorab eine Abschätzung zum erwarteten Ergebnis bestimmt. Das bietet einen gewissen Schutz vor Fehlbedienungen, ist aber auch bei der Verwendung von Computern sinnvoll, da es immer wieder zu Fehlern in der Hardware kam, wie beispielsweise beim Pentium-FDIV-Bug, wo Rechnungen schlicht falsch ausgeführt wurden. Nicht nur vermeintlich korrekte Rechenergebnisse können zu Irrtum führen, auch ein blindes Verlassen auf Signifikanztests ist ebenso nicht zielführend, in dem Artikel Why Most Published Research Findings Are False schreibt John P. A. Ioannidis, wieso man sogar beweisen kann, dass inzwischen die meissten solcher Arbeiten auf begrenzten Arbeitsgebieten falsch sein müssen, da sie ihre Abhängigkeit von früheren Arbeiten nicht berücksichtigen. Einen Einblick in die Komplexität der Abschätzung des Treibstoffsverbrauchs bei Flugrouten bekommt man bei Folge 262 und Folge 263 im OmegaTau-Podcast beim Flug nach Hong Kong und zurück. Auch in Folge 291 zum Buschfliegen wird das Thema der Flugplanung berührt. Lange waren runde Rechenschieber zur Berechnung des Treibstoff-Verbrauchs im Flugzeug im Einsatz. Bei der langen Nacht der Mathematik gab es auch eine Ausstellung von Rechenmaschinen, die durch ihre mechanische Bauweise einen sonst verborgenen Einblick in die Rechentechnik liefern. Der angesprochene MegaProzessor zur Visualisierung der Rechentechnik aktueller Prozessoren wurde in FreakShow 222 besprochen und wird im Video zum MegaProzessor vorgestellt. Es gibt regelmäßige Treffen der deutschsprachigen Rechenschieberfreunde, die Rechenschieber-Sammler-Treffen (RST), zuletzt nach Publikation dieser Folge am 20. Oktober 2018 in Bruchsal. Eine interessanter Rechentrick ist die Berechnung von Additionen mit Hilfe von Division und Multiplikation auf dem Rechenschieber. Hier wird der Zusammenhang genutzt. Zur Addition wird damit der Quotient von x und y berechnet, um 1 addiert und wieder mit y multipliziert. Beim Rechnen mit dem logarithmischen Rechenschieber ist eher der relative gegenüber dem absoluten Fehler im Fokus. Genau das gilt auch für die Rechnung in Fließkommazahlen im Computer, wo das logarithmische Rechenstab-Prinzip durch den Exponentialteil zum Teil ebenfalls zu Anwendung kommt. Neben dem dekadischen Logarithmus zur Basis 10, der bei Logarithmentafeln und Rechenschieber zum Einsatz kommt, oder dem Logarithmus Dualis zur Basis 2 aus der Musik oder im Computer, gibt es auch einen natürlichen Logarithmus. Was bedeutet hier natürlich? Der natürliche Logarithmus ist die Umkehrfunktion der Exponentialfunktion, der Potenzfunktion zur Basis e. Diese Funktion hat die Eigenschaft, dass sie als einzige Funktion unter Differenziation, also z.B. der Berechnung von Geschwindigkeit aus Positionen, und Integration, also z.B. der Berechnung von Positionen aus Geschwindigkeiten, unverändert bleibt. Dies kann man sich auch an der Potenzreihenentwicklung der Exponentialfunktion veranschaulichen: Dann ist die Ableitung: Dadurch ist hat die Exponentialfunktion eine große Bedeutung für Modelle und Differenzialgleichungen. Darüber hinaus ist die Exponentialfunktion auch mit den trigonometrischen Funktionen in den komplexen Zahlen direkt miteinander verknüpft: Entsprechend beinhaltet auch der natürliche Logarithmus den Zusammenhang mit Analysis, Numerik und Trigonometrie und kann auf den komplexen Zahlen auch als ewige Spirale dargestellt werden. CC BY-SA 3.0: Leonid 2 In der Kryptographie spielen diskrete Logarithmen eine besondere Rolle, da Potenzfunktionen Kern des RSA-Verfahrens und der elliptischen Kryptographie sind: Im RSA-Verfahren werden Nachrichten auf endlichen Ringen mit einem Schlüssel potenziert, meisst 65537 beim öffentlichen Schlüssel, in der elliptischen Kryptographie wird die Nachricht abschnittsweise in den Exponenten geschrieben und auf einer speziellen elliptischen Kurve berechnet. Auch wenn es zum aktuellen Zeitpunkt noch keine grundsätzliche Lücken in den beiden Verfahren gibt, so ist es wichtig, diese auch korrekt umzusetzen. Ein berüchtigtes Beispiel ist die Perfect Forward Secrecy, die durch fahrlässige Implementationen zur LogJam-Attack führte. Ralph Pollandt hatte in der Polytechnischen Oberschule (POS) in den Klassenstufen 1-8 noch keine Vertiefung in die Mathematik vor Augen. Seine Faszination für Mathematik entstand aus Interesse an Knobelaufgaben in der Erweiterten Oberstufe (EOS) in den Klassen 9-12, wo er die Hochschulreife erlangte, und neben den Optionen zu Naturwissenschaften oder dem Lehramt, sich für das Studium und Promotion in der Mathematik entschied. Nach mehrjähriger ingenieurstechnischer Tätigkeit im Bauwesen, erlangte ihn der Ruf zur Mathematik-Professur an der Hochschule für angewandte Wissenschaften in Karlsruhe, wo er nun reich mit der Erfahrung aus der Anwendung zur Mathematik im Bauingenieurwesen lehrt. Literatur und weiterführende Informationen R. Pollandt: Bastelanleitung Rechenschieber R. Pollandt: Bedienungsanleitung zum Rechenschieber Seite der deutschsprachigen Rechenschieber-Sammler Rechenschieber im Rechnerlexikon, der Enzyklopädie des mechanischen Rechnens Podcasts K. Landzettel, T. Pritlove: Old School Computing, CRE: Technik, Kultur, Gesellschaft, Episode 193, Metaebene Personal Media, 2012. B. Ullmann, M. Völker: Analog Computers, Omega Tau Podcast, Episode 159, Nora Ludewig und Markus Völker, 2014. R. Pollandt, S. Ajuvo, S. Ritterbusch: Rechenschieber, damalsTM Podcast, Episode 58, 2018. J. Müller, S. Ajuvo: Büromaschinen damals, damalsTM Podcast, Episode 50, 2017. K. Leinweber, S. Ajuvo: Taschenrechner, damalsTM Podcast, Episode 37, 2017.
Am 6. Juni 2018 hat Dietmar Gallistl seine Antrittsvorlesung gehalten. Dies ist der traditionelle Abschluss jedes Habilitationsverfahrens an der KIT-Fakultät für Mathematik. Der Titel des Vortrags lautete: Die Stabilitätskonstante des Divergenzoperators und ihre numerische Bestimmung. Im Zentrum des Vortrags und des Gespräches mit Gudrun stand die Inf-sup-Bedingung, die u.a. in der Strömungsrechnung eine zentrale Rolle spielt. Das lineare Strömungsproblem (Stokesproblem) besteht aus einer elliptischen Vektor-Differentialgleichung für das Geschwindigkeitsfeld und den Gradienten des Drucks und einer zweiten Gleichung. Diese entsteht unter der Annahme, dass es zu keiner Volumenänderung im Fluid unter Druck kommt (sogenannte Inkompressibilität) aus der Masseerhaltung. Mathematisch ist es die Bedingung, dass die Divergenz des Geschwindigkeitsfeldes Null ist. Physikalisch ist es eine Nebenbedingung. In der Behandlung des Problems sowohl in der Analysis als auch in der Numerik wird häufig ein Lösungsraum gewählt, in dem diese Bedingung automatisch erfüllt ist. Damit verschwindet der Term mit dem Druck aus der Gleichung. Für das Geschwindigkeitsfeld ist dann mit Hilfe des Lax-Milgram Satzes eine eindeutige Lösung garantiert. Allerdings nicht für den Druck. Genau genommen entsteht nämlich ein Sattelpunktproblem sobald man den Druck nicht ausblendet. Dieses ist nicht wohlgestellt, weil man keine natürlichen Schranken hat. Unter einer zusätzlichen Bedingung ist es aber möglich, hier auch die Existenz des Druckes zu sichern (und zwar sowohl analytisch als auch später im numerischen Verfahren solange der endliche Raum ein Unterraum des analytischen Raumes ist). Diese heißt entweder inf-sup Bedingung oder aber nach den vielen Müttern und Vätern: Ladyzhenska-Babushka-Brezzi-Bedingung. Die Konstante in der Bedingung geht direkt in verschiedene Abschätzungen ein und es wäre deshalb schön, sie genau zu kennen. Ein Hilfsmittel bei der geschickten numerischen Approximation ist die Helmholtzzerlegung des L2. Diese besagt, dass sich jedes Feld eindeutig in zwei Teile zerlegen läßt, von der eines ein Gradient ist und der andere schwach divergenzfrei. Es lassen sich dann beide Teile getrennt betrachten. Man konstruiert den gemischten Finite Elemente Raum so, dass im Druck stückweise polynomielle Funktionen (mit Mittelwert 0) auftreten und und für den Raum der Geschwindigkeitsgradienten das orthogonale kompelemt der schwach divergenzfreien Raviart-Thomas-Elemente gewählt ist. Dietmar Gallistl hat in Freiburg und Berlin Mathematik studiert und promovierte 2014 an der Humboldt-Universität zu Berlin. Nach Karlsruhe kam er als Nachwuchsgruppenleiter im SFB Wellenphänome - nahm aber schon kurz darauf in Heidelberg die Vertretung einer Professur wahr. Zur Zeit ist er als Assistant Professor an der Universität Twente tätig. Literatur und weiterführende Informationen D. Gallistl. Rayleigh-Ritz approximation of the inf-sup constant for the divergence. Math. Comp. (2018) Published online, https://doi.org/10.1090/mcom/3327 Ch. Bernardi, M. Costabel, M. Dauge, and V. Girault, Continuity properties of the inf-sup constant for the divergence, SIAM J. Math. Anal. 48 (2016), no. 2, 1250–1271. https://doi.org/10.1137/15M1044989 M. Costabel and M. Dauge, On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 873–898. https://doi.org/10.1007/s00205-015-0845-2 D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. Podcasts J. Babutzka: Helmholtzzerlegung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 85, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016
Gudrun hatte zwei Podcast-Gespräche beim FEniCS18 Workshop in Oxford (21.-23. März 2018). FEniCS ist eine Open-Source-Plattform zur Lösung partieller Differentialgleichungen mit Finite-Elemente-Methoden. Dies ist die zweite der beiden 2018er Folgen aus Oxford. Susanne Claus ist zur Zeit NRN Early Career Personal Research Fellow an der Cardiff University in Wales. Sie hat sich schon immer für Mathematik, Physik, Informatik und Ingenieursthemen interesseirt und diese Interessen in einem Studium der Technomathematik in Kaiserlautern verbunden. Mit dem Vordiplom in der Tasche entschied sie sich für einen einjährigen Aufenthalt an der Universität Kyoto. Sie war dort ein Research exchange student und hat neben der Teilnahme an Vorlesungen vor allem eine Forschungsarbeit zu Verdunstungsprozessen geschrieben. Damit waren die Weichen in Richtung Strömungsrechnung gestellt. Dieses Interesse vertiefte sie im Hauptstudium (bis zum Diplom) an der Uni in Bonn, wo sie auch als studentische Hilfskraft in der Numerik mitarbeitete. Die dabei erwachte Begeisterung für nicht-Newtonsche Fluid-Modelle führte sie schließlich für die Promotion nach Cardiff. Dort werden schon in langer Tradition sogenannte viskoelastische Stoffe untersucht - das ist eine spezielle Klasse von nicht-Newtonschem Fluiden. Nach der Promotion arbeitet sie einige Zeit als Postdoc in London am University College London (kurz: UCL) zu Fehleranalyse für Finite Elemente Verfahren (*). Bis sie mit einer selbst eingeworbenen Fellowship in der Tasche wieder nach Cardiff zurückkehren konnte. Im Moment beschäftigt sich Susanne vor allem mit Zweiphasenströmungen. In realen Strömungsprozessen liegen eigentlich immer mindestens zwei Phasen vor: z.B. Luft und Wasser. Das ist der Fall wenn wir den Wasserhahn aufdrehen oder die Strömung eines Flusses beobachten. Sehr häufig werden solche Prozesse vereinfacht modelliert, indem man sich nur eine Phase, nämlich die des Wassers genau ansieht und die andere als nicht so wichtig weglässt. In der Modellbildung für Probleme, in denen beide Phasen betrachtet werden sollen, ist das erste Problem, dass das physikalische Verhalten der beiden Phasen sehr unterschiedlich ist, d.h. man braucht in der Regel zwei sehr unterschiedliche Modelle. Hinzu treten dann noch komplexe Vorgänge auf der Grenzflächen auf z.B. in der Wechselwirkung der Phasen. Wo die Grenzfläche zu jedem Zeitpunkt verläuft, ist selbst Teil der Lösung des Problems. Noch interessanter aber auch besonders schwierig wird es, wenn auf der Grenzfläche Tenside wirken (engl. surfactant) - das sind Chemikalien die auch die Geometrie der Grenzfläche verändern, weil sie Einfluß auf die Oberflächenspannung nehmen. Ein Zwischenschritt ist es, wenn man nur eine Phase betrachtet, aber im Fließprozess eine freie Oberfläche erlaubt. Die Entwicklung dieser Oberfläche über die Zeit wird oft über die Minimierung von Oberflächenspannung modelliert und hängt deshalb u.a. mit der Krümmung der Fläche zusammen. D.h. man braucht im Modell lokale Informationen über zweite Ableitungen. In der numerischen Bearbeitung des Prozesses benutzt Susanne das FEniCS Framework. Das hat sie auch konkret dieses Jahr nach Oxford zum Workshop geführt. Ihr Ansatz ist es, das Rechengitter um genug Knoten anzureichern, so dass Sprünge dargestellt werden können ohne eine zu hohe Auflösung insgesamt zu verursachen. (*) an der UCL arbeitet auch Helen Wilson zu viscoelastischen Strömungen, mit der Gudrun 2016 in Oxford gesprochen hat. Literatur und weiterführende Informationen S. Claus & P. Kerfriden: A stable and optimally convergent LaTIn-Cut Finite Element Method for multiple unilateral contact problems, CoRR, 2017. H. Oertel jr.(Ed.): Prandtl’s Essentials of Fluid Mechanics, Springer-Verlag, ISBN 978-0-387-21803-8, 2004. S. Gross, A. Reusken: Numerical Methods for Two-phase Incompressible Flows, Springer-Verlag, eBook: ISBN 978-3-642-19686-7, DOI 10.1007/978-3-642-19686-7, 2011. E. Burman, S. Claus & A. Massing: A stabilized cut finite element method for the three field Stokes problem. SIAM Journal on Scientific Computing 37.4: A1705-A1726, 2015. Podcasts G. Thäter, R. Hill: Singular Pertubation, Gespräch im Modellansatz Podcast, Folge 162, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. H. Wilson: Viscoelastic Fluids, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 92, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
Jonathan Fröhlich hat im Juli 2017 seine Masterarbeit zum Thema "Heterogeneous Multiscale Methods for Poroelastic Media" eingereicht. Sie wurde von Professor Christian Wieners in unserem Institut betreut. Strömungs- und Transportphänomene in sogenannten porösen Medien spielen eine wichtige Rolle in einem breiten Spektrum von Bereichen und Anwendungen, wie zum Beispiel in der Landwirtschaft, der Biomedizin, der Baugeologie und der Erdöltechnik. Betrachtet man beispielsweise den Boden, so stellt man fest, dass der Sand, das Gestein oder der Kies keine homogene Masse ist mit homogenen Materialeigenschaften, sondern aus unzähligen unterschiedlich großen und in den physikalischen Eigenschaften variierenden Teilen bestehen. Die hohe Heterogenität solcher Medien führt auf eine große Komplexität, die im Modell des porösen Mediums stark vereinfacht betrachtet wird. Es liegt deshalb die Frage nahe: Wie verallgemeinert man herkömmliche Modelle für poröse Medien so, dass nicht gleich die komplette Zusammensetzung benötigt wird, aber mehr von der Struktur berücksichtigt wird? Die vorliegende Arbeit und unser Gespräch konzentrieren sich auf einen Spezialfall, nämlich die einphasige Strömung durch poroelastische Medien. Sie sind gekennzeichnet durch die Wechselwirkung zwischen der Beanspruchung der intrinisischen Struktur und der Strömung der Flüssigkeit. Konkret erzwingt die Änderung des Flüssigkeitsdrucks eine Beanspruchung des Materials, wodurch es beschleunigt und bewegt wird. Ein Beispiel hierfür ist der Blutfluß durch Adern. Das Blut verändert im Fließen ständig die konkrete Geometrie der elastisch verformbaren Adern und gleichzeitig ändern die Adern die Fließrichtung und -geschwindigkeit des Blutes. Dieser Prozeß wird mit bestimmten partiellen Differentialgleichungen (PDEs) modelliert. Jonathan verwendete das von Biot (1941) eingeführte linearisierte Modell und erweitert es zu einem quasistatischen Konsolidationsmodell für die Bodenmechanik. Solche Probleme sind charakterisiert durch die enorme Größe des betrachteten Gebietes, beispielsweise mehrere Kilometer an Flussbett. Dies steht im Kontrast zu den sehr kleineskaligen geometrischen Informationen, wie Sandkorngrößen und -formen, die einen Einfluss auf das System haben. Die standardmäßige Finite-Elemente-Methode zur numerischen Lösung dieses Systems von PDEs wird nur dann gute Ergebnisse liefern, wenn die Auflösung des Netzes wirklich extrem hoch ist. Dies würde zu nicht realisierbaren Rechenzeiten führen. Deshalb wird eine Idee von E und Engquist benutzt, die sogenannte Finite Element Heterogene Multiskalen Methode (FE-HMM) von 2003. Sie entkoppelt den heterogenen Teil und löst ihn durch ein mikroskopisch modelliertes Problem. Das makroskopische Problem braucht dann nur ein viel gröberes Netz und benutzt die Informationen aus dem mikroskopischen Teil als Daten. Mathematisch gesehen verwendet die Theorie eine schwache Formulierung mit Hilfe von Bilinearformen und sucht nach Lösungen in Sobolev-Räumen. Die passende Numerik für das makroskopische Problem ist eine gemischte Finite-Elemente-Methode für ein gestörtes Sattelpunktproblem. Deshalb müssen für Existenz und Eindeutigkeit von schwachen Lösungen bestimmte Bedingungen erfüllt sein, die der klassischen LBB-Bedingung (auch inf-sup-Bedingung genannt) ähnlich sind. Das zu lösende mikroskopische Problem ist elliptisch und wird mithilfe klassischer Homogenisierungstheorie hergeleitet, wobei zusätzliche Bedingungen zur Sicherung der Zwei-Skalen Konvergenz erfüllt werden müssen. Literatur und weiterführende Informationen Maurice A. Biot: General Theory of Three‐Dimensional Consolidation Journal of Applied Physics 12, 155, 1941. E. Weinan, Björn Engquist: The Heterogeneous Multiscale MethodsCommunications in Mathematical Sciences, Volume 1, Number 1, 87-132, 2003. M. Sahimi: Flow and Transport in Porous Media and Fractured Rock Wiley Weinheim, 2011. Assyr Abdulle e.a.: The heterogeneous multiscale method Acta Numerica Volume 21, pp. 1-87, 2012. Podcasts J. Fröhlich: Getriebeauswahl, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 028, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. L.L.X. Augusto: Filters, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 112, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
Gudrun wollte sich mit unserem neuen Kollegen über sein hauptsächliches Forschungsthema, die kinetische Theorie unterhalten. Diese Denkweise wurde zur Modellierung von Gasen entwickelt und ist inspiriert von physikalischen Vorstellungen, die kinetische Energie als inhärente Eigenschaft von Materie ansieht. Die kinetische Gastheorie schaut auf die mikroskopische Ebene, um schließlich makroskopische Größen wie Wärme und Temperatur besser zu erklären. Im sogenannten idealen Gas bewegen sich unfassbar viele kleine Massepunkte entsprechend der Newtonschen Mechanik frei, ungeordnet und zufällig im Raum, stoßen dabei ab und zu zusammen und wir empfinden und messen den Grad der Bewegungsaktivität der Teilchen als Wärme. Die Einheit, die man dieser Größe zunächst zuwies war Kalorie von lat. Calor=Wärme. Heute ist die richtige SI-Einheit für Energie (und damit auch Wärme) das Joule. Die messbare Größe Temperatur ist damit vereinfacht ausgedrückt die mechanische Engergie im Gassystem und das Modell liefert eine kinetische Theorie der Wärme. Man kann es aber auch als Vielteilchensystem von mikroskopischen Teilchen ansehen aus denen sich in klar definierten (unterschiedlichen) Grenzwertprozessen makroskopische Größen und deren Verhalten ableiten lassen. Die Untersuchung dieser Grenzwerte ist eine mathematisch sehr anspruchsvolle Aufgabe und bis heute ein offenes Forschungsfeld, in dem nur Stück für Stück spezielle Fragen beantwortet werden. Eine Schwierigkeit ist dabei nämlich, dass automatisch immer sehr unterschiedliche Skalen nebeneinander existieren und in ihrer Interaktion richtig gefaßt und verstanden werden müssen. Außerdem ist in der Regel jeder Grenzwert, für den sich interessante Forschungsergebnisse ergeben, innerhalb der Theorie eine Singularität. Schon Hilbert hatte 1900 die axiomatische Fassung der Physik zwischen Mechanik und Wahrscheinlichkeitsrechnung als eines der wichtigen mathematischen Probleme für das 20. Jahrhundert dargestellt. Wir sind seitdem vorangekommen, aber es bleibt noch sehr viel zu tun. Zum Beispiel ist die mögliche Korreliertheit zwischen den Teilchenbewegungen für Gase eine offene Frage (außer für kurze Zeiten). Ein Vorteil gegenüber der Zeit Hilberts ist heute, dass wir inzwischen auch den Computer benutzen können, um Modelle zu entwickeln und zu analysieren. Dafür muss man natürlich geeignete numerische Methoden entwickeln. In der Arbeit von Martin Frank sind es in der Regel Integro-Differentialgleichungen mit hyperbolischer partieller Differentialgleichung für die Modellierung von Bewegungen ohne Dämpfung. Diese haben schon durch die Formulierung viele Dimensionen, nämlich jeweils 3 Orts- und 3 Geschwindigkeitskomponenten an jedem Ort des Rechengebietes. Deshalb sind diese Simulationen nur auf großen Parallelrechnern umsetzbar und nutzen High Performance Computing (HPC). Hieraus erklärt sich auch die Doppelrolle von Martin Frank in der Verantwortung für die Weiterentwicklung der HPC-Gruppe am Rechenzentrum des KIT und der Anwendung von Mathematik auf Probleme, die sich nur mit Hilfe von HPC behandeln lassen. Sehr interessant ist in dieser Theorie die gegenseitige Beeinflussung von Numerik und Analysis in der Behandlung kleiner Parameter. Außerdem gibt es Anknüpfungspunkte zur Lattice Boltzmann Research Group die am KIT das Software-Paket OpenLB entwickeln und anwenden. Auch wenn sich geschichtlich gesehen die kinetische Theorie vor allem als Gastheorie etabliert hat, ist die Modellierung nicht nur in Anwendung auf Gase sinnvoll. Beispielsweise lassen sich Finanzmärkte aus sehr vielen unabhängig handelnden Agenten zusammensetzen. Das Ergebnis der Handlungen der Agenten ist der Aktienpreis - sozusagen die Temperatur des Aktienmarktes. Es lassen sich dann aufgrund dieses Modells Eigenschaften untersuchen wie: Warum gibt es so viele Reiche? Außerdem geht es auch darum, die richtigen Modellannahmen für neue Anwendungen zu finden. Zum Beispiel ist ein Resultat der klassischen Gastheorie das Beer-Lambertsche Gesetz. Es besagt, dass Photonen durch Wolken exponentiell abgeschwächen werden. Messungen zeigen aber, dass dies bei unseren Wolken gar nicht gilt. Wieso? Dafür muss man schon sehr genau hinschauen. Zunächst heißt das wohl: Die zugrunde liegende Boltzmann-Gleichung ist für Wolken eine zu starke Vereinfachung. Konkret ist es die Annahme, dass man sich die Wolken als homogenes Medium vorstellt wahrscheinlich nicht zutreffend, d.h. die Streuzentren (das sind die Wassertropfen) sind nicht homogen verteilt. Um ein besseres Modell als die Boltzmann-Gleichung herzuleiten müsste man nun natürlich wissen: Welche Art der Inhomogenität liegt vor? Martin Frank hat Mathematik und Physik an der TU Darmstadt studiert, weil er schon in der Schulzeit großes Interesse an theoretischer Physik hatte. Im Studium hat er sich schließlich auf Angewandte Analysis spezialisiert und darin auch nach dem Diplom in Mathematik an der TU Darmstadt weiter gearbeitet. In dieser Zeit hat er auch das Diplom in Physik abgeschlossen. In der Promotion an der TU Kaiserslautern wurde es aber die numerische Mathematik, der er sich hauptsächlich zuwandte. In der eigenen universitären Lehre - aber auch in speziellen Angeboten für Schülerinnen und Schüler - pendelt er zwischen Projekt- und Theorie-zentriertem Lehren und Lernen. Literatur und weiterführende Informationen M. Frank, C. Roeckerath: Gemeinsam mit Profis reale Probleme lösen, Mathematik Lehren 174, 2012. M. Frank, M. Hattebuhr, C. Roeckerath: Augmenting Mathematics Courses by Project-Based Learning, Proceedings of 2015 International Conference on Interactive Collaborative Learning, 2015. Simulating Heavy Ion Beams Numerically using Minimum Entropy Reconstructions - SHINE M. Frank, W. Sun:Fractional Diffusion Limits of Non-Classical Transport Equations P. Otte, M. Frank: Derivation and analysis of Lattice Boltzmann schemes for the linearized Euler equations, Comput. Math. Appl. Volume 72, 311–327, 2016. M. Frank e.a.: The Non-Classical Boltzmann Equation, and Diffusion-Based approximations to the Boltzmann Equation, SIAM J. Appl. Math. 75, 1329–1345, 2015. M. Frank, T. Goudon: On a generalized Boltzmann equation for non-classical particle transport, Kinet. Relat. Models 3, 395-407, 2010. M. Frank: Approximate models for radiative transfer, Bull. Inst. Math. Acad. Sinica (New Series) 2, 409-432, 2007.
Gudrun unterhält sich diesmal mit Johanna Mödl. Johanna hat von August bis Oktober 2017 ihre Bachelorarbeit Analytische und numerische Untersuchungen zum mikrowelleninduzierten Temperaturanstieg von zylindrischen Probekörpern aus Beton geschrieben. Der Hintergrund war ein Thema aus dem Institut für Massivbau und Baustofftechnologie (Abt. Baustoffe und Betonbau). Dort wird untersucht, wie hochenergetische Mikrowellen solche Temperaturunterschiede in (trockenen) Betonkörpern erzeugen, dass der Werkstoff an der Oberfläche zerstört wird. Um Erfahrungswerte im Umgang mit diesem Verfahren zu erhalten, werden derzeit Laborexperimente durch das Institut für Massivbau und Baustofftechnologie und das Institut für Hochleistungsimpuls- und Mikrowellentechnik, beides Institute des Karlsruher Instituts für Technologie, durchgeführt. Auf Basis der Messergebnisse wird versucht, den Vorgang durch einfache Gleichungen zu beschreiben, um vorhersagen zu können, wie er sich in größerem Maßstab verhält. Aufgrund der Komplexität des Prozesses werden nur vereinfachende Modelle betrachtet. Da diese sich durch partielle Differentialgleichungen beschreiben lassen, sollte der Vorgang während der Bachelorarbeit aus mathematischer Sicht analysiert werden. Die Ausbreitung der Mikrowellen-Energie als Wärme im Baustoff wird durch die Wärmeleitungsgleichung gut beschrieben. Dies ist eine in der Mathematik wohlstudierte Gleichung. Im Allgemeinen lassen sich aber analytische Lösungen nur schwer oder gar nicht berechnen. Daher mussten zusätzlich numerische Verfahren gewählt und implementiert werden, um eine Approximation der Lösung zu erhalten. Johanna entschied sich für das Finite-Differenzen-Verfahren im Raum und ein explizites Eulerverfahren in der Zeitrichtung, da beide einfach zu analysieren und zu implementieren sind. Erfreulicherweise stimmt die numerisch auf diese Weise approximierte Lösung mit den experimentellen Ergebnissen in den hauptsächlichen Gesichtspunkten überein. Die Wärme breitet sich von der Quelle in den Beton aus und es kommt im zeitlichen Verlauf zu einer kontinuierlichen Erwärmung in den Körper hinein. Das größte Problem und die vermutliche Ursache dafür, dass die Meßdaten noch nicht ganz genau mit den Simulationen übereinstimmen ist, dass man physikalisch sinnvollere Randbedingungen bräuchte. Im Moment wird - wie üblich - davon ausgegangen, dass am Rand des Betonzylinders, wo nicht die Energie eintritt, der Körper Umgebungstemperatur hat. Hier bräuchte man eine phyiskalische Modellierung, die das korrigiert. Literatur und weiterführende Informationen W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen, Springer Spektrum, Wiesbaden, 4. Auflage, 2017. B. Lepers e.a.: A drying and thermoelastic model for fast microwave heating of concrete. Global Digital Central, Frontiers in Heat and Mass Transfer, 2014. M. Umminger e.a.: Ablation kontaminierter Oberflächen zementgebundener Bauteile beim Rückbau kerntechnischer Anlagen. Abschlussbericht, BMBF- Förderkennzeichen 02S8709 und 02S8719, Februar 2015.
On vous l'avait promis dans la Tartine de Noël donc voici venu le temps des Tartines bonus que nous avons enregistrées au festival Numerik Games.Vous y trouverez deux interview de créateurs Romands présents sur le festival: Elias Farhan avec Splash Blast Panic et David Roulin avec We Fit. Pendant une vingtaine de minutes chacun nous les travaillons au corps pour connaître leur petits secrets de création. Bonne écoute et bonne année!
Strömungen beobachten wir fast jeden Tag. Die Meeresbrandung fasziniert uns und eine gut funktionierende Klimaanlage ist ein wunderbarer Luxus, egal ob sie wärmt oder kühlt. Strömungen zu beherrschen ist aber auch in vielen verfahrenstechnischen Zusammenhängen wichtig. Insofern haben Gleichungen, die Strömungen beschreiben, eine große praktische Relevanz und gleichzeitig eine fast emotionale Anziehungskraft. Das einfachste mathematische Modell, das auch für viele Computersimulationen genutzt wird, sind die inkompressiblen Navier-Stokes Gleichungen (INS). Hier ist die strömende Substanz dem Wasser ähnlich genug, dass nur in der Materialkonstante Viskosität verschiedene Fließfähigkeiten unterschieden werden. Als Lösungen des Systems von partiellen Differentialgleichungen suchen wir das Geschwindigkeitsfeld und den Druck als Funktionen von Raum und Zeit . Im 3d-Fall ist das ein System von vier Gleichungen. Drei davon sind eine Vektorgleichung, die aus der Impulserhaltung abgeleitet wird und die vierte ist die Erhaltung der Masse. Im inkompressiblen Fall vereinfacht sich diese aus die Forderung, dass die Divergenz des Geschwindigkeitsfeldes verschwindet. Die komplexer aussehende Gleichung ist die Vektorgleichung, weil hier die zweiten räumlichen Ableitungen des Geschwindigkeitsfeldes, der Druckgradient, die zeitliche Ableitung der Geschwindigkeit und ein nichtlinearer Term vorkommen. Die Gleichungen müssen im Strömungsgebiet gelten. Die Lösungen müssen sich aus dem Anfangszustand entwickeln (Anfangsbedingung) und am räumlichen Rand vorgeschriebenen Werten, den Randwerten (meist fordert man, dass die Geschwindigkeit Null ist) genügen. Dieses Modell ist in einem längeren Prozess entwickelt worden. Ein großer Durchbruch bei der mathematischen Analyse gelang dem französischen Mathematiker Leray im Jahr 1934. Er hatte die geniale Idee, sich von dem Wunsch zu verabschieden, für diese komplizierte Gleichung eine punktweise zutreffende Lösung zu konstruieren. Statt dessen verallgemeinerte er den Lösungsbegriff und führte den Begriff der schwachen Lösung ein. Diese erfüllt die Gleichung nur im Sinne eines ausgeklügelten Systems von unendlich vielen Integralgleichungen. Er zeigte mit Hilfe von abstrakten Argumenten, dass die INS immer solche schwachen Lösungen haben. Heute ist bekannt, dass falls eine punktweise Lösung existiert (sogenannte starke Lösung), diese eindeutig ist (also insbesondere mit der schwachen übereinstimmt), es in 2d immer eine punktweise Lösung gibt, die für alle Zeiten existiert (unter geringfügigen Bedingungen an den Rand), und es unter Kleinheitsbedingungen an die Daten und bei glattem geometrischen Rand des Gebietes auch in 3d punktweise Lösungen gibt.Wir wissen jedoch in 3d nicht, ob die gefundenen schwache Lösung regulär bzw. stark ist (d.h. eine punktweise Lösung ist.) In Vorbereitung auf den Jahrtausendwechsel gab es in der Mathematik die Bestrebung, so wie dies 100 Jahre zuvor von Hilbert geschehen war, die wichtigsten mathematischen Problemstellungen in den Fokus zu nehmen. Das Ergebnis waren sieben sogenannte Milleniumsprobleme der Clay Foundation, für deren Lösung jeweils ein Preisgeld von einer Millionen Dollar ausgelobt wurde. Eines dieser für so wichtig angesehenen Probleme ist die offene Frage der Regularität der schwachen Lösungen der INS. Woran liegt das? Eine Eigenschaft der INS, die sie schwierig macht, ist ihre Nichtlinearität. Sie ist nur quadratisch und hat eine besondere Struktur. Diese Struktur verdanken wir es z.B., dass die schwache Theorie erfolgreich ist. Es besteht Hoffnung, dass wir auch die Lücke zur starken Theorie unter Ausnutzung der Struktur schließen können. Der Standardweg im linearen Fall (z.B. beim Laplace-Problem) ist es, für die schwachen Lösungen mit einem Münchhausen-Prinzip (Elliptic Bootstrapping) Stück für Stück mehr Regularität zu zeigen. Man kann so zeigen, dass die Lösung immer so gut ist, wie die es Daten erlauben. Man nennt das maximale Regularität. Leider ist für die INS das Wachstum in der Nichtlinearität zu schnell, um im 3d-Fall mit diesen Standardmethoden zu argumentieren (im 2d Fall geht es aber). Im 3d-Fall geht es aber unter bestimmten Zusatzbedingungen, z.B. einer höheren Integrierbarkeit des Geschwindigkeitsfeldes als die schwachen Lösungen von vornherein haben. Man fand dies über Skalierungs-Eigenschaften der Gleichung heraus. Grob gesagt, muss man fordern dass die Lösung zu einem Raum gehört, der Skalierungsinvariant ist. Eine weitere zusätzliche Forderung ist die Gültigkeit der Energiegleichung (Erhaltung der kinetischen Energie), denn leider weiß man bisher von schwachen Lösungen nur, dass sie eine Energieungleichung erfüllen. Eine zweite Schwierigkeit der INS ist der Zusammenhang zwischen Druck und Divergenzgleichung. Ein Trick der schwachen Theorie ist, dass wir uns von Anfang an auf Funktionen beschränken, die schwach divergenzfrei sind (also die Gleichung in Integralmittel erfüllen. Was in der Theorie sehr gut funktioniert, ist blöd für die Numerik, weil man Divergenzfreiheit immer wieder herstellen muss wegen der Rechenfehler im Prozess. Unter den Forschern gibt es zwei Richtungen: Entweder man sucht nach Blow-up Lösungen, also schwachen Lösungen, die keine punktweisen Lösungen sein können, oder man versucht die Zusatzforderungen aufzuweichen (um sie am Ende ganz weglassen zu können). Dabei gibt es ständig kleine Fortschritte. Es gibt auch zwei Wege, für allgemeinere Modelle Theorien zu entwickeln, die dann im Spezialfall auch etwas über INS sagen. Ein durch O.A. Ladyzenskaya vorgeschlagener Zugang geht über den p-Laplace-Operator. Hier findet man starke Lösungen für alle p>2,5, die INS ist jedoch der Fall p=2. Als Materialgesetz interessant für Ingenieure ist aber der noch schwierigere Fall 1
Im Bundesland Baden-Württemberg (BW) ist die Ausbildung von Lehrerinnen und Lehrern für verschiedene Schulformen unterschiedlich geregelt. Für Lehrpersonen, die am Gymnasium Schülerinnen und Schüler bis zum Abitur begleiten wollen, ist die Ausbildung an den Universitäten vorgesehen, alle anderen erhalten ihre Ausbildung an den Pädagogischen Hochschulen (PH). Auch an unsere Fakultät kommen Studierende mit dem Ziel, später an Gymnasien Mathematik zu vermitteln. Es ist deshalb höchste Zeit, auch einmal über die Lehramtsausbildung an unserer Fakultät zu reden. Andreas Kirsch begleitet die Organisation der Lehramtsstudiengänge schon viele Jahre und war deshalb Gudruns Wunsch-Gesprächspartner zu diesem Thema. Prinzipiell müssen Lehramtskandidaten mindestens zwei Fächer studieren, weshalb ihre Ausbildung (und ihr Abschluss) nur zum Teil in den Händen unserer Fakultät liegen kann. Generell ist der Lehramtsstudiengang deshalb auch durch eine Ordnung geregelt, die für das ganze KIT (alle Fakultäten) gilt und sich an klaren Vorgaben des BW-Kultusministeriums orientieren muss. Hier wird dann auch festgelegt, wie groß der Anteil von pädagogischen/psychologischen Veranstaltungen ist, der neben den beiden Fachstudien-Anteilen absolviert werden muss. Viele Jahrzehnte war die Gymnasial-Lehramts-Ausbildung in BW an den Universitäten so geregelt, dass in den ersten Jahren das Studium Diplom und Lehramt Mathematik quasi identisch waren - und das in zwei Fächern. Die Idee dahinter war, dass Personen, die das Bild von Mathematik in den Köpfen unserer Kinder prägen, selbst kompetente Mathematiker und darüber hinaus von ihrem Fach begeistert sind. Das Lehramtsstudium endete mit dem ersten Staatsexamen und wurde über eine anschließende Schulpraxis-orientierte Ausbildung im Referendariat fortgesetzt, die mit dem zweiten Staatsexamen beendet wurde. Vor Ablegen des ersten Staatsexamens war auch das Anfertigen einer wissenschaftlichen Arbeit in einem der Unterrichtsfächer oder in Pädagogik verpflichtend. Schon immer gehörte zur Lehramtsausbildung auch die Vermittlung von Didaktik im Fach Mathematik. Da es in BW keine Professuren für Didaktik der Mathematik an den Universitäten gibt, wurden und werden für diese Veranstaltungen häufig Gastdozenten gewonnen. Seit 2008 änderte sich diese traditionelle Lehrerbildung an den Universitäten in BW Stück für Stück in verschiedenen Aspekten grundlegend. Zunächst wurde der Anteil der Fachdidaktik sehr stark erhöht (was zwangsläufig bedeutet, dass sich der wissenschaftliche Anteil im Faches verringerte, da das Studium nicht verlängert wurde) - inklusive eines verpflichtenden Praxis-Semesters von 13 (inzwischen 12) Wochen an einer Schule. Mit Hilfe dieses Praktikums können angehende Lehrpersonen rechtzeitig ausprobieren, ob der Schulalltag "etwas für sie ist". Etwas später wurden die Lehrinhalte in sogenannte Module gegliedert, die in der Regel schon im Verlauf des Studiums (nach Absolvieren des Moduls) geprüft werden. Damit wurde die Rolle des ersten Staatsexamens gründlich verändert. Seit dem Studienbeginn im Wintersemester 2015/16 ist der Studiengang aufgeteilt in einen ersten Teil, dem Bachelor of Education, und einen zweiten Teil,der zum Abschluss Master of Education führt. Der Masterabschluss hat dabei das erste Staatsexamen vollständig abgelöst. Wenn man heute den wissenschaftlichen Mathematik-Anteil des Studiums Lehramt Mathematik anschaut, ist er etwa so hoch wie in den Bachelor-Studiengängen Mathematik. In Karlsruhe haben wir einige dieser Veränderungen in der Lehramts-Ausbildung dadurch aufgefangen, dass die Abteilung für Didaktik vergrößert wurde und sehr erfinderisch neuartige fachdidaktische Angebote entwickelte (und entwickelt), die nicht nur den Studierenden etwas bringen. In enger Zusammenarbeit mit den Schulen in Karlsruhe und dem Schülerlabor können bei uns angehende Lehrpersonen z.B. mit besonders interessierten Schülern arbeiten oder anhand von Projekten im Schülerlabor Unterricht in sehr unterschiedlichen Formen entwickeln und erproben. Es wurden außerdem einige speziell für die Lehramtsstudierenden konzipierte Vorlesungen eingeführt. Andreas Kirsch ist seit vielen Jahren als Professor an der Fakultät für Mathematik in Karlsruhe tätig. Zu den Aufgaben der von ihm geleiteten Arbeitsgruppe gehört die Mathematikausbildung von Maschinenbauern, Bauingenieuren, Verfahrenstechnikern und den angehenden Ingenieuren in verwandten Gebieten. Sein mathematisches Spezialgebiet sind inverse Probleme. Das ist ein sehr komplexes Gebiet zwischen Analysis und Numerik mit vielen Anwendungen. Einige dieser Anwendungen waren auch schon Gesprächsthema in unserem Podcast: Unsichtbarkeit, Erdölsuche, Erdbeben und Optimale Versuchsplanung, Splitting Waves. Literatur und weiterführende Informationen Antworten auf oft gestellte Fragen rund ums Lehramtsstudium in Karlsruhe Studienberatung am KIT und in der Fakultät zum Lehramtsstudium Zentrum für Lehrerbildung am KIT Lehrer online in BW Landes Bildungsserver BW
Mathematik mit Kunst und Design erklären- das war ein Ziel des Kurses von Jill Enders und Chris Spatschek im Cooking Math-Projekt über das uns die beiden im Gespräch mit Gudrun Thäter und Sebastian Ritterbusch berichten. Jill und Chris haben an der Hochschule für Gestaltung (HfG) Karlsruhe studiert und mit Science Vision dort ihr Diplom abgeschlossen. Bei Science Vision ging es darum, dass Wissenschaftler und Designer für je eine 10-minütige Präsentation zusammen gebracht wurden, wo die wissenschaftlichen Inhalte ansprechend dargestellt wurden. Das Thema war Jill gut bekannt, da sie das Design der sehr erfolgreichen Science Slams ihrer Schwester Guilia Enders entworfen hatte und schließlich auch die Illustrationen im Bestseller Darm mit Charme erstellte. Im Rahmen des SFB für Wellenphänomene gab es dann die Initiative ein entsprechendes Projekt als Kurs an der HfG für Doktoranden an der Fakultät für Mathematik zu starten. Im Gegensatz zur Science Vision wurde hier die Art der Darstellung offen gelassen. Gestartet hat das Projekt mit Workshops, bei denen die Designergruppen in die mathematischen Inhalte von den Doktoranden eingeführt wurden. Im Anschluss arbeiteten die von Jill und Chris betreuten Teams aus meisst zwei Designern und einem Mathematiker in Kleingruppen selbstständig. Eine erste Vorführung der Ergebnisse gab es beim Sommerloch der HfG und die Schlusspräsentation fand anlässlich des 16. Science Slam in Karlsruhe am 5. November 2015 im Jubez Karlsruhe statt. Eine Ausstellung im Kollegiengebäude Mathematik (und eine weitere Kooperation mit dem SFB) ist für das Jahr 2016 geplant. Literatur und Zusatzinformationen Desiree Kabis und Wendy Fox: GRAFIK/NUMERIK, Formeln verwandeln sich in famose Formen, Hochschule für Gestaltung Karlsruhe (HfG), Karlsruher Institut für Technologie (KIT), Cooking Math, 2016. SFB 1173 Wellenphänomene: Analysis und Numerik, Karlsruher Institut für Technologie (KIT), 2015. J. Enders, C. Spatschek: Science Vision Conference, Hochschule für Gestaltung Karlsruhe (HfG), Kalsruher Institut für Technologie (KIT), Universität Heidelberg, 2013.
Im Rahmen des ersten Alumitreffens im neu renovierten Mathematikgebäude gibt uns unser Alumnus Markus Even einen Einblick in seine Arbeit als Mathematiker am Fraunhofer IOSB, dem Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung in Ettlingen in der Arbeitsgruppe zur Analyse und Visualisierung von SAR-Bilddaten. Er befasst sich mit der Entwicklung von Algorithmen für die Fernerkundung, genauer gesagt für die Deformationsanalyse mit Hilfe von SAR-Interferometrie (InSAR). Deformation bezieht sich hier auf Bewegungen der Erdkruste oder auf ihr befindlicher Strukturen, z.B. von Bauwerken. Hinter dem Stichwort SAR-Interferometrie verbirgt sich eine Vielfalt von Verfahren der Fernerkundung, die auf Synthetic Aperture Radar, auf Deutsch Radar mit synthetischer Apertur, beruhen, und die die Fähigkeit der Sensorik ein kohärentes Signal zu verarbeiten zur Erzeugung sogenannter Interferogramme nutzen. Für SAR ist es wesentlich, dass der Sensor bewegt wird. Zu diesem Zweck ist er auf einen Satelliten, ein Flugzeug oder auch auf einem auf Schienen laufenden Schlitten montiert. Für die Mehrzahl der Anwendungen wird er entlang einer näherungsweise geradlinigen Bahn bewegt und sendet in festen Zeitabständen elektromagnetische Signale im Mikrowellenbereich aus, deren Returns er, unterteilt in sehr kurze Zeitintervalle, aufzeichnet. Dabei "blickt" er schräg nach unten, um nicht systematisch von zwei verschiedenen Orten der Erdoberfläche rückkehrende Signale zu vermischen. Herauszuheben ist, dass er unabhängig von der Tageszeit- er beleuchtet die Szene selbst- und weitgehend unabhängig von den Wetterverhältnissen- die Atmosphäre verzögert das Signal, ist aber für diese Wellenlängen (ca. 3cm-85cm) bis auf seltene Ausnahmen durchlässig dafür- Aufnahmen machen kann. Dies ist ein Vorzug gegenüber Sensoren, die im optischen oder infraroten Teil des Spektrums arbeiten, und nachts oder bei Bewölkung nicht die gewünschten Informationen liefern können. Neben der Magnitude des rückgestreuten Signals zeichnet der SAR-Sensor auch dessen Phasenverschiebung gegenüber einem Referenzoszillator auf, die die Grundlage für die Interferometrie darstellt und viele Anwendungsmöglichkeiten bietet. Aus dem aufgezeichneten Signal wird das sogenannte fokusierte Bild berechnet. (Mathematisch gesehen handelt es sich bei dieser Aufgabe um ein inverses Problem.) Die Achsen dieses komplexwertigen Bildes entsprechen eine der Position des Satelliten auf seiner Bahn und die andere der Laufzeit des Signals. Der Zahlenwert eines Pixels kann vereinfacht als Mittel der aufgezeichneten Rückstreuung aus dem Volumen angesehen werden, dass durch das jeweilige Paar aus Bahninterval und Laufzeitinterval definiert ist. Dies ist der Kern von SAR: Die Radarkeule erfasst eine größere Fläche auf dem Boden, so dass das aufgezeichnete Signal aus der Überlagerung aller zurückkehrenden Wellen besteht. Diese Überlagerung wird durch die Fokusierung rückgängig gemacht. Dazu benutzt man, dass ein Auflösungselement am Boden zu allen Returns beiträgt, solange es von der Radarkeule erfasst wird und dabei eine bekannte Entfernungskurve durchläuft.Die Magnitude des sich so ergebenden Bildes erinnert bei hochaufgelösten Aufnahmen auf den ersten Blick an eine Schwarzweißphotographie. Betrachtet man sie jedoch genauer, so stellt man schnell Unterschiede fest. Erhabene Objekte kippen zum Sensor, da die höhergelegenen Punkte näher zu ihm liegen. Hohe Werte der Magnitude, also hohe Rückstreuung, sind in der Regel mit günstigen geometrischen Konstellationen verbunden: Eine ebene Fläche muss dazu beispielsweise senkrecht zum einfallenden Signal ausgerichtet sein, was selten der Fall ist. Geht man an die Grenze des aktuell Möglichen und betrachtet ein Bild einer städtischen Umgebung eines luftgetragenen Sensors mit wenigen Zentimetern Auflösung, so scheint es beinahe in punktförmige Streuer zu zerfallen. Diese werden durch dihedrale (Pfosten) und- häufiger- trihedrale Strukturen erzeugt. Trihedrale Strukturen reflektieren das einfallende Signal parallel zur Einfallsrichtung (man kennt das von den an Fahrzeugen verwendeten, Katzenaugen genannten Reflektoren). Sehr niedrige Rückstreuung ist meist darin begründet, dass kein Signal mit der entsprechenden Laufzeit zum Sensor zurückkehrt, sei es weil keine Streuer erreicht werden (Schatten) oder das Signal auf glatten Flächen vom Satelliten weggespiegelt wird. Für Wellenlängen von einigen Zentimetern sind z.B. asphaltierte oder gepflasterte Flächen glatt, bei Windstille ist es auch Wasser. Daneben gibt es auch kompliziertere Streumechanismen, die zu Magnituden mittlerer Höhe führen, etwa Volumenstreuung in Vegetation, Schnee und Sand, verteilte Streuung an Flächen mit vielen kleinen, homogen verteilten Objekten (z.B. Kiesflächen oder andere Flächen mit spärlicher Vegetation) oder einer gewissen Rauigkeit. Außer diesen gibt es noch viele weitere Möglichkeiten, wie Mehrfachreflektionen oder das Zusammenfallen in verschiedenen Höhen positionierter Streuer in einer Entfernungszelle.Die für die SAR-Interferometrie wesentliche Information aber ist die Phase. Sie kann allerdings nur genutzt werden, wenn zwei oder mehr Aufnahmen aus annähernd der gleichen Position vorliegen. Die grundlegende Idee dabei ist die Betrachtung von Doppeldifferenzen der Phase zweier Pixel zweier Aufnahmezeitpunkte. Um sie zu verstehen nehmen wir zunächst an, dass sich in beiden Auflösungszellen je ein dominanter, punktförmiger Streuer befindet, was so gemeint ist, dass die Phase einer Laufzeit entspricht. Da die Subpixelpositionen unbekannt sind und die Größe der Auflösungszelle um Vieles größer als die Wellenlänge ist, ist die Phasendifferenz zweier Pixel eines einzelnen Bildes nicht verwertbar. In der Doppeldifferenz heben sich die unbekannten Subpixelpositionen allerdings heraus. Die Doppeldifferenz ist in dieser idealisierten Situation die Summe dreier Anteile: des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien, des Laufzeitunterschiedes auf Grund einer relativen Positionsänderung der Streuer während der zwischen den Aufnahmen verstrichenen Zeit und des Laufzeitunterschiedes auf Grund der räumlichen und zeitlichen Variation der atmosphärischen Verzögerung. Diese drei Anteile können jeder für sich nützliche Information darstellen. Der Erste wird zur Gewinnung von Höhenmodellen genutzt, der Zweite zur Detektion von Deformationen der Erdoberfläche und der Dritte, obwohl meist als Störterm angesehen, kann bei der Bestimmung der Verteilung von Wasserdampf in der Atmosphäre genutzt werden. Es stellt sich aber die Frage, wie man diese Terme separiert, zumal noch die Mehrdeutigkeit aufgelöst werden muss, die darin liegt, dass die Phase nur bis auf ganzzahlige Vielfache von zwei Pi bekannt ist.Weitere Fragen ergeben sich, da in realen Daten diese Annahmen für viele Pixel nicht erfüllt sind. Stellt man sich beispielsweise eine Auflösungszelle mit mehreren oder vielen kleineren Streuern vor (z.B. mit Geröll), so ändert sich die Phase der überlagerten Returns mit dem Einfallswinkel des Signals. Sie ändert sich auch, wenn manche der Streuer bewegt wurden oder die beiden Aufnahmen nicht ausreichend genau zur Deckung gebracht wurden. Dies führt dazu, dass die Phase sich um einen schlecht quantifizierbaren Betrag ändert. Man spricht dann von Dekorrelation. Eventuell besteht nach Änderung der physischen Gegebenheiten in der Auflösungszelle keine Beziehung mehr zwischen den Phasenwerten eines Pixels. Dies ist etwa der Fall, wenn ein dominanter Streuer hinzu kommt oder nicht mehr anwesend ist, ein Gelände überschwemmt wird oder trocken fällt. Es stellt sich also die Frage, welche Pixel überhaupt Information tragen, bzw. wie ihre Qualität ist und wie sie extrahiert werden kann.Die Geschichte der SAR-Interferometrie begann nach dem Start des ESA-Satelliten ERS 1 im Jahr 1991 mit einfachen differentiellen Interferogrammen. Das berühmteste ist sicher das vom Landers-Erdbeben 1992 in Kalifornien. Zum ersten Mal in der Geschichte der Wissenschaft war es möglich, das Deformationsfeld eines Erdbebens flächig zu messen, wenn auch nur die Komponente in Sichtlinie des Sensors. Statt Werte hunderter in der Region installierter Messstationen stellte das Interferogramm ein Bild des Erdbebens mit Millionen Datenpunkten dar. Diese Fähigkeit, großflächig Deformationen der Erdoberfläche aufzuzeichnen, besitzt nur die SAR-Interferometrie! Allerdings ist zu bemerken, dass dieses Resultat seine Entstehung auch günstigen Umständen verdankt. Landers liegt in der Mojave-Wüste, so dass die Variation der atmosphärischen Verzögerung und die Dekorrelation vernachlässigbar waren. Dank der Verfügbarkeit eines guten Höhenmodells konnte der Anteil des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien eliminiert werden (man spricht dann von einem differentiellen Interferogramm). Ein weiterer Meilenstein war die Shuttle Radar Topography Mission des Space Shuttle Endeavour im Februar 2000, während der die Daten für ein Höhenmodell der gesamten Landmasse zwischen 54 Grad südlicher Breite und 60 Grad nördlicher Breite aufgezeichnet wurden. Für diesen Zweck wurde die Endeavour mit zwei SAR-Antennen ausgestattet, eine am Rumpf, eine an einem 60 Meter langen Ausleger. Dank zeitgleicher Aufnahmen waren die Phasenanteile auf Grund Deformation und atmosphärischer Verzögerung vernachlässigbar. Dekorrelation auf Grund von Änderungen der physischen Gegebenheiten spielt hier auch keine Rolle. Dem Wunsch nach einem weltweiten, dazu deutlich höher aufgelösten Höhenmodell kommt seit 2010 die TanDEM-X-Mission des DLR nach, bei der die beiden SAR-Antennen von zwei Satelliten im Formationsflug getragen werden. Auch in der Algorithmik gab es entscheidende Fortschritte. Einer der fruchtbarsten war die Erfindung von Permanent Scatterer Interferometric SAR (PSInSAR) um das Jahr 2000, das durch die Verwendung einer längeren Zeitreihe von differentiellen Interferogrammen und einiger neuer Ideen das Problem der Separierung der im vorangehenden Abschnitt genannten Terme löste. Der Ausgangspunkt hierfür war die Entdeckung, dass häufig eine größere Anzahl über lange Zeiträume phasenstabile Streuer, die sogenannten Permanent Scatterer (auch Persistent Scatterer oder PS), gefunden werden können, die man sich vereinfacht als Pixel vorstellen darf, deren Auflösungszelle einen dominanten, punktförmigen, über die Zeitreihe unveränderten Streuer enthält. Auf diese wird nun die Auswertung beschränkt, die vereinfacht folgende Schritte durchläuft: Definition eines Graphen mit den PS als Knoten und Paaren benachbarter PS als Kanten; Schätzung einer Modellphase für Deformation und Höhenmodellfehler an Hand der Doppeldifferenzen aller verwendeten differentiellen Interferogramme für alle Kanten; Entrollen von Originalphase minus Modellphase, d.h. Auflösen der Mehrdeutigkeiten; räumlich-zeitliche Filterung, um die Variation der atmosphärischen Verzögerung zu eliminieren. Als Produkt ergeben sich für jeden PS seine Bewegung in Sichtlinie des Sensors und eine Korrektur seiner Höhenlage relativ zum für die Erzeugung der differentiellen Interferogramme verwendeten Höhenmodell. Seither wurden diese Grundideen modifiziert und verfeinert. Vor allem müssen die Berücksichtigung verteilter Streuer (auch Distributed Scatterer oder DS) für die Deformationsanalyse erwähnt werden, was die Informationsdichte vor allem in ariden Gebieten drastisch erhöhen kann, sowie die SAR-Tomographie, die eine Analyse auch dann erlaubt, wenn zwei oder drei vergleichbar starke Streuer in einer Auflösungszelle vorhanden sind (z.B. wenn ein Streuer am Boden, eine Fensterniche und eine Dachstruktur den gleichen Abstand zum Sensor haben). Die SAR-Interferometrie, insbesondere die Deformationsanalyse, verwendet vor allem mathematische Methoden aus den Bereichen Stochastik, Signalverarbeitung, Optimierungstheorie und Numerik. Besondere Herausforderungen ergeben sich daraus, dass die Vielfalt natürlicher Phänomene sich nur bedingt durch einfache statistische Modelle beschreiben lässt und aus dem Umstand, dass die Datensätze in der Regel sehr groß sind (ein Stapel von 30 Aufnahmen mit komplexwertigen 600 Megapixeln ist durchaus typisch). Es treten lineare Gleichungssysteme mit mehreren Zehntausend Unbekannten auf, die robust gelöst sein wollen. Für die Auflösung der Mehrdeutigkeiten verwenden die fortgeschrittensten Algorithmen ganzzahlige Optimierung. Wavelet-basierte Filterverfahren werden genutzt, um die atmosphärische Verzögerung vom Nutzsignal zu trennen. Im Zusammenhang mit der Schätzung der Variation der atmosphärischen Verzögerung werden geostatistische Verfahren wie Kriging eingesetzt. Statistische Tests werden bei der Auswahl der DS, sowie zur Detektion schlechter Pixel eingesetzt. Bei der Prozessierung der DS spielen Schätzer der Kovarianzmatrix eine prominente Rolle. Die SAR-Tomographie nutzt Compressive Sensing und viele weitere Verfahren. Zusammenfassend lässt sich sagen, dass die SAR-Interferometrie auch aus Perspektive eines Mathematikers ein reichhaltiges und spannendes Arbeitsgebiet ist. Eine wichtige Anwendung ist die Deformationsanalyse durch die InSAR-Methode: Die SAR-Interferometrie zeichnet sich vor allen anderen Techniken dadurch aus, dass sie bei geeignetem Gelände sehr großflächige Phänomene mit sehr hoher Informationsdichte abbilden kann. Allerdings liefert sie relative Messungen, so dass in der Regel eine Kombination mit Nivellement oder hochgenauen GPS-Messungen verwendet wird. Ihre Genauigkeit hängt neben der Qualität der Daten von der Wellenlänge ab und zeigt bei 3cm Wellenlänge meist nur wenige Millimeter je Jahr Standardabweichung. Damit können selbst sehr feine Bewegungen, wie z.B. die Hebung des Oberrheingrabens (ca. 2mm/y), nachgewiesen werden. Allerdings können wegen der Mehrdeutigkeit der Phase Bewegungen auch zu stark sein, um noch mit PSInSAR auswertbar zu sein. In diesem Fall können längere Wellenlängen, höhere zeitliche Abtastung oder Korrelationsverfahren helfen. Trotz der diskutierten Einschränkungen lässt sich die Deformationsanalyse mit InSAR in vielen Zusammenhängen nutzensreich einsetzen, denn auch die Ursachen für Deformationen der Erdoberfläche sind vielfältig. Neben geologischen und anderen natürlichen Phänomenen werden sie von Bergbau, Förderung von Wasser, Erdgas, Erdöl, durch Geothermiebohrungen, Tunnelbau oder andere Bautätigkeiten ausgelöst. Meist steht bei den Anwendungen die Einschätzung von Risiken im Fokus. Erdbeben, Vulkanismus, aber auch Schäden an kritischer Infrastruktur, wie Deichen, Staudämmen oder Kernkraftwerken können katastrophale Folgen haben. Ein weiteres wichtiges Thema ist die Entdeckung oder Beobachtung von Erdbewegungen, die sich potentiell zu einem Erdrutsch entwickeln könnten. Allein in den Alpen gibt es tausende Bergflanken, wo sich größere Bereiche in langsamer Bewegung befinden und in Leben oder Infrastruktur gefährdende Hangrutsche münden könnten. Auf Grund der zunehmenden Erderwärmung nimmt diese Bedrohung überall dort zu, wo Permafrost zu tauen beginnt, der bisher den Boden stabilisierte. InSAR wird bei der Erstellung von Risikokarten genutzt, die der Beurteilung der Gefährdungslage und der Entscheidung über Gegenmaßnahmen dienen. In vielen Regionen der Erde werden Deformationen der Erdoberfläche durch veränderte Grundwasserstände verursacht. Nimmt das Grundwasser ab, etwa wegen Entnahme zur Bewässerung oder industriellen Verwendung, so senkt sich die Erdoberfläche. Nimmt das Grundwasser während regenreicher Zeiten zu, so hebt sich die Erdoberfläche. Das Monitoring mit InSAR ist hier aus mehreren Gründen interessant. Bewegungen der Erdoberfläche können Schäden an Gebäuden oder anderen Strukturen verursachen (Bsp. Mexico City). Übermäßige Wasserentnahme kann zu irreversibler Verdichtung der wasserführenden Schichten führen, was Konsequenzen für die zukünftige Verfügbarkeit der lebenswichtigen Flüssigkeit hat. Bei Knappheit muss die Entnahme reguliert und überwacht werden (Bsp. Central Valley, Kalifornien). Von besonderer Bedeutung sind durch geologische Phänomene wie Vulkanismus oder tektonische Bewegungen verursachte Deformationen der Erdoberfläche. Die von SAR-Satelliten gewonnenen Daten werden zur Einschätzung von Risiken benutzt, auch wenn eine sichere, frühzeitige und zeitgenaue Vorhersage von Erdbeben oder Vulkanausbrüchen mit den heutigen Methoden nicht möglich ist. Sie sind aber die Grundlage für eine ausgedehnte Forschungsaktivität, die unser Verständnis der Vorgänge in der Erdkruste stetig wachsen lässt und immer genauere Vorhersagen erlaubt. Dies ist in erster Linie den SAR-Satelliten der ESA (ERS-1, ERS-2, Envisat und aktuell Sentinel-1A) zu verdanken, die seit 1991 mit lediglich einer Lücke von zwei Jahren (2012-2014) kontinuierlich die gesamte Erde aufnehmen. Die Idee dabei ist, dass so in festem zeitlichen Rhythmus (bei ERS alle 35 Tage) jeder Punkt der Erde aufgenommen wird. Dadurch ist ein großes Archiv entstanden, das es nach einem geologischen Ereignis ermöglicht, dieses mit den Methoden der SAR-Interferometrie zu untersuchen, da die Vorgeschichte verfügbar ist. Eine Entwicklung der letzten Jahre ist die Nutzung bei der Erschließung von Erdgas und Erdöl. Die mit InSAR sichtbar gemachten Deformationen erlauben es, neue Einsicht in die Struktur der Lagerstätten zu erhalten, geomechanische Modelle zu kalibrieren und letztlich die Rohstoffe Dank optimierter Positionierung von Bohrlöchern effektiver und kostengünstiger zu fördern. Wer InSAR noch besser verstehen will, der findet in den InSAR Guidlines der ESA die Grundlagen sehr gut erklärt. Einen etwas breiteren Überblick über Anwendungsmöglichkeiten kann man sich auf der Homepage von TRE verschaffen, einem Unternehmen, das von den Schöpfern von PSInSAR gegründet wurde und im Bereich InSAR-Auswertungen nach wie vor führend ist. Die Wettbewerber ADS und e-GEOS bieten außer InSAR weitere Anwendungen von SAR-Daten. Aus wissenschaftlich/politischer Perspektive kann man sich in der Broschüre der DLR über Themenfelder der Erdbeobachtung informieren. Zu dem speziellen Thema der Erdbewegung auf Grund Absenkung des Grundwasserspiegels in den USA gibt es weitere Informationen. Literatur und weiterführende Informationen A. Ferretti, A. Monti-Guarnieri, C. Prati, F. Rocca, D. Massonnet: InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, TM-19, ESA Publications, 2007. M. Fleischmann, D. Gonzalez (eds): Erdbeobachtung – Unseren Planeten erkunden, vermessen und verstehen, Deutsches Zentrum für Luft- und Raumfahrt e.V., 2013. Land Subsidence, U.S. Geological Survey. M. Even, A. Schunert, K. Schulz, U. Soergel: Atmospheric phase screen-estimation for PSInSAR applied to TerraSAR-X high resolution spotlight-data, Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 2010. M. Even, A. Schunert, K. Schulz, U. Soergel: Variograms for atmospheric phase screen estimation from TerraSAR-X high resolution spotlight data, SPIE Proceedings Vol. 7829, SAR Image Analysis, Modeling, and Techniques X, 2010. M. Even: Advanced InSAR processing in the footsteps of SqueeSAR Podcast: Raumzeit RZ037: TanDEM-X Podcast: Modellansatz Modell010: Positionsbestimmung Podcast: Modellansatz Modell012: Erdbeben und Optimale Versuchsplanung Podcast: Modellansatz Modell015: Lawinen
Im Herbst beginnen die neuen Studiengänge der Mathematik am KIT und neben den Vorlesungen zur Linearen Algebra, Stochastik oder Numerik gehört die Analysis zu den mathematischen Vorlesungen, mit dem das Studium der Mathematik in den ersten Semestern beginnt. Dazu spricht Sebastian Ritterbusch mit Johannes Eilinghoff, der im letzten Jahr den Übungsbetrieb der Analysis-Vorlesungen mit großem Anklang organisiert hat.Die Analysis befasst sich besonders mit der Mathematik um Funktionen auf reellen Zahlen, welche Eigenschaften sie haben, und wie man diese differenzieren oder integrieren kann. Vieles zur Geschichte der Analysis findet man besonders in den Büchern von Prof. Dr. Michael von Renteln, der unter anderem über die Geschichte der Analysis im 18. Jahrhundert von Euler bis Laplace, die Geschichte der Analysis im 19. Jahrhundert von Cauchy bis Cantor, über Aspekte zur Geschichte der Analysis im 20. Jahrhundert von Hilbert bis J. v. Neumann und über die Die Mathematiker an der Technischen Hochschule Karlsruhe 1825-1945 geschrieben hat.Grundlage für die Mathematik in der Analysis sind die Zahlenmengen, wie die abzählbaren natürlichen Zahlen , ganzen Zahlen , rationale Zahlen und schließlich die überabzählbaren reellen Zahlen . Während die natürlichen Zahlen direkt mit dem Beweisprinzip der vollständigen Induktion in Verbindung stehen und für sich schon ein Thema der Zahlentheorie sind, benötigt man für die Analysis mindestens die reellen Zahlen. Diese kann man über konvergente Folgen bzw. Cauchy-Folgen rationaler Zahlen einführen. Für den Beweis der Äquivalenz dieser beiden Konvergenzbegriffe kann man die Dreiecksungleichung sehr gut gebrauchen. Ein Beispiel für eine Folge rationaler Zahlen, die gegen eine irrationale Zahl konvergieren ist , die gegen die Eulersche Zahl konvergiert, d.h. . Aus jeder Folge kann man eine Reihe bilden, indem man die Folgenglieder aufsummiert. Wichtige Reihen sind die geometrische Reihe mit Summenwert , wenn , und die divergente Harmonische Reihe, mit der man sogar Brücken bauen kann.Über den Begriff der Folge kann man auch offene Mengen und abgeschlossene Mengen definieren, so wie dies auch mit Epsilon-Umgebungen definiert werden kann. Diese Eigenschaften werden im Bereich der mathematischen Topologie noch viel umfassender eingeführt, aber schon diese Darstellungen helfen, den wichtigen Begriff der Funktion in der Analysis und deren Eigenschaften einzuführen. Zur Definition einer Funktion gehört neben der eigentlichen Abbildungsvorschrift die Angabe der Definitionsmenge und der Wertebereich. Ohne diese Informationen ist es nicht möglich Surjektivität und Injektivität nachzuweisen.Eine wichtige Eigenschaft von Funktionen ist der Begriff der Stetigkeit, die man für den Zwischenwertsatz benötigt. Damit kann man zum Beispiel wackelnde Tische reparieren oder mit Anastasia im Science Slam Orte gleicher Temperaturen auf der Erde suchen. Der Zwischenwertsatz gilt zunächst nur für reelle Funktionen, es gibt den Zwischenwertsatz aber auch in allgemeinerer Form.Eine weitere wichtige Eigenschaft von Funktionen ist die Differenzierbarkeit und das Berechnen von Ableitungen mit ihren Ableitungsregeln. Sehr wichtig ist dabei die Exponentialfunktion, die mit ihrer eigenen Ableitung übereinstimmt. Diese Funktion findet man im Alltag in jeder Kettenlinie in der Form des Cosinus Hyperbolicus wieder. Eine wichtige Anwendung für differenzierbare Funktionen ist der Mittelwertsatz, ohne den die Abschnittskontrolle auf Autobahnen zur Geschwindigkeitsüberprüfung nicht denkbar wäre. Aber auch in höheren Dimensionen kann man Differentialrechnung betreiben, und man führt dazu den Gradienten, Richtungsableitungen und z.B. die Divergenz eines Vektorfelds ein.Als Umkehrung der Differentiation erhält man die Integralrechnung. Jedoch ist das Bilden einer Stammfunktion nur bis auf eine Konstante eindeutig. Daher kann man zum Beispiel mit Beschleunigungssensoren im Handy nicht wirklich eine Positions- und Geschwindigkeitsmessung durchführen, sondern muss für die Trägheitsnavigation viele weitere Sensoren mit einbeziehen. Eine andere Einführung des Integrals ist das Lebesgue-Integral oder das Riemannsche Integral, wo man bei letzterem in einem Intervall die Fläche unter einer Kurve durch Treppenfunktionen annähert. Den Zusammenhang dieser beiden Begriff liefert der Fundamentalsatz der Analysis. Leider kann man nicht zu allen Funktionen analytische Stammfunktionen bestimmen. Hier kann dann die numerische Integration zum Einsatz kommen. Die Integration ist aber keine rein abstrakte Idee, sondern wir finden mathematische Zusammenhänge wie den Gaußsche Integralsatz direkt in der Natur wieder.Für den Start im Studium erhält man in Karlsruhe viel Unterstützung: Es gibt Vorkurse und die von der Fachschaft für Mathematik und Informatik organisierte Orientierungsphase, oder kurz O-Phase, in der man die zukünftigen Mitstudierenden kennenlernen kann. Mit diesen sollte man sich gemeinsam den Stoff von Vorlesungen, Übungen und Tutorien erarbeiten, um sich mit gelösten Übungsblättern zur Klausteilnahme zu qualifizieren, und letztlich auch die Prüfungen gemeinsam vorzubereiten.Literatur und Zusatzinformationen W. Reichel: Kurzskript Analysis 1, Vorlesung am KIT, 2012/2013. W. Reichel: Kurzskript Analysis 2, Vorlesung am KIT, 2013. H. Amann, J. Escher: Analysis 1, 3. Auflage, Birkhäuser-Verlag, 2008. O. Forster: Analysis 1, 7. Auflage, Vieweg-Verlag, 2004. H. Heuser: Lehrbuch der Analysis, Teil 1, 15. Auflage, Teubner-Verlag, 2006. K. Königsberger, Analysis 1, 5. Auflage, Springer-Verlag, 2001. W. Rudin, Analysis, 4. Auflage, Oldenbourg-Verlag, 2008. R. Strichartz, The Way of Analysis, Jones and Bartlett-Verlag, 1995. W. Walter, Analysis 1, 7. Auflage, Springer-Verlag, 2007. Konscience Podcast KNS026: Effizienz der photovoltaischen Wasserspaltung erhöht