POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 12/19
Das PHLDA1 (pleckstrin homology-like domain family A member 1) ist ein induzierbares zytoplasmatisches Protein, das einige Motive, die für die Vermittlung von Protein-Protein Interaktionen bekannt sind, enthält. Die PHLDA1 ist stark in gutartigen melanozytären Läsionen (Naevi) exprimiert und wird während der Tumorprogression des humanen Melanoms vom Primärtumor bis hin zur Metastase herunterreguliert. Das PHLDA1 Protein scheint als ein proapoptotisches Molekül zu fungieren. Das Mechanismus ist allerdings noch nicht bekannt. In dieser Arbeit wird gezeigt, dass die 293 PHLDA1 Transfektanten zusätzlich zu einer erhöhten Apoptose Empfindlichkeit auch eine höhere MHC Klasse I Oberflächenexpression im Vergleich zu Neo Kontrollzellen aufweisen. Das konnte mit mehreren monoklonalen Antikörpern, bestätigt werden. Auch mittels IEF, konnte auf der gesamten Proteinebene, bei zwei PHLDA1 Transfektanten eine höhere Expression der Allelprodukte HLA A2 und HLA B7 bestätigt werden. Nach einer 3-stündigen Inkubation mit radioaktivmarkierten Aminosäuren weisen die PHLDA1 Transfektanten 4,5- bis 8,5-fach mehr neu synthetisierte MHC Klasse I Moleküle, im Vergleich zu den Kontrollzellen, auf. Mit Hilfe der Pulse/Chase Methode konnte gezeigt werden, dass PHLDA1 Transfektanten, im Vergleich zu den Neo Kontrollzellen, einen schnelleren MHC Klasse I Transport vom ER zum Golgi Apparat aufweisen. Durch die Immunopräzipitation von MHC Klasse I Molekülen, konnte auch das PHLDA1 Protein mitpräzipitiert werden. Das PHLDA1 Protein war nicht mit ICAM-1 oder MCAM mitpräzipitiert, was eine spezifische Bindung des PHLDA1 Proteins an die MHC Klasse I bestätigt. Es ist denkbar, dass das PHLDA1 Protein als Chaperon fungiert und durch die Bindung an die MHC Klasse I Moleküle diesen eine höhere Stabilität verleiht. Dadurch können die MHC Klasse I Moleküle schneller an die Oberfläche transportiert werden. PHLDA1 Transfektanten wurden von HLA A2 allospezifischen T-Zellen besser als die Neo Kontrollzellen erkannt. So könnte der Verlust des PHLDA1 Proteins bei Melanomen und Mammakarzinomen auch zum Verlust der T-Zellerkennung beitragen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 03/06
Eine große Gruppe genetisch vererbter Erblindungskrankheiten steht im Zusammenhang mit Mutation in Genen, die in Photorezeptoren exprimiert sind. Diese Mutationen führen nicht nur zu einer Beeinträchtigung des mutierten Proteins selbst, sondern auch zu einer Störung von funktionell nachgeschalteten Proteinnetzwerken. In der Folge ändern sich die Zusammensetzung von Multiproteinkomplexen sowie die Proteinlokalisation, was schwerwiegende physiologische Konsequenzen nach sich zieht. Alleine im lichtwahrnehmenden Molekül Rhodopsin sind mehr als hundert unterschiedliche Mutationen beschrieben worden, die vermutlich im Zusammenhang mit Retinitis pigmentosa, einer degenerativen Erkrankung der Retina, stehen (http://www.sph.uth.tmc.edu/RetNet/). In Saccharose-Dichte Gadienten Experimenten von Dr. Magdalena Swiatek-deLange, die dieser Studie vorangegangen sind, wurde Rhodopsin als Teil eines potentiellen Rhodopsin/Ras Homolog Gene Family, Member A (RhoA)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/RhoKinase II (Rock II)/ Collapsin response mediator protein 2 (CRMP2) Signal-Multiproteinkomplexes in Außensegmenten von Stäbchen Photorezeptoren (ROS) identifiziert, welcher im Zuge dieser Studie bestätigt und eingehender untersucht wurde. Ein Zusammenhang zwischen einer Rhodopsin-vermittelten Degeneration von Photorezeptoren und der Regulation des Cytoskeletts durch die kleine GTPase Rac1, wurde von Chang und Kollegen (Chang and Ready, 2000) hergestellt. Sie haben gezeigt, dass die Expression von dominant-aktivem Rac1 in Rhodopsin-Null Mutanten von Drosophila die Rhabdomer Morphogenese erhalten kann. In Zellen fungiert Rac1 durch den Wechsel zwischen einem inaktiven, vorwiegend cytosolischen und einem aktiven, überwiegend membranassoziierten Zustand, als molekularer Schalter in der Signaltransduktion und vermittelt Signale von Membranrezeptoren an das Cytoskelett. Obwohl die Rolle von Rac1 bereits in einer großen Zahl unteerschiedlicher Zellen untersucht worden ist, ist seine Funktion in Photorezeptoren noch immer weitgehend ungeklärt. Die wenigen vorhanden Studien, in denen beispielsweise gezeigt wurde, dass Rac1 an der Fusion von Rhodpsintransportcarriern in Rana barlandieri (Deretic et al., 2004) oder auch an der lichtinduzierten Degeneration von murinen Photorezeptoren beteiligt ist (Belmonte et al., 2006), machen aber deutlich, dass Rac1 ein für die Funktion und Regulation von Photorezeptoren wichtiges Molekül ist. In dieser Studie wurde daher die Rolle von Rac1 in Photorezeptoren eingehender untersucht und ein Rac1-Interaktom in ROS, bestehend aus 22 Interaktoren, identifiziert. Von diesen 22 identifizierten Interaktoren sind fünf bereits als Interaktoren von Rac1 beschrieben worden, darunter CRMP2, einer der Hauptregulatoren von Polarität in neuronalen Zellen, sowie die cytoskelettalen Proteine Aktin ( and und Tubulin ( and Unter den 17 neuen potentiellen Rac1 Interaktoren befindet sich das Aryl Hydrocarbon Receptor-Interacting Protein Like 1 (AIPL1), das im Zusammenhang mit Leberscher kongenitaler Amaurose (LCA) sowie mit retinalem Proteintransport steht (Sohocki et al., 2000), sowie eine Reihe von Proteinen, die Teil der Phototransduktionskaskade sind, wie die Untereinheit der 3´, 5´-cyclic-GMP Phosphodiesterase 6, Recoverin, Arrestin sowie die , und Untereinheiten von Transducin. Rac1 verbindet damit die Lichtwahrnehmung durch Rhodopsin mit einer Regulation des Cytoskeletts und legt damit eine Interdependenz von Lichtwahrnehmung mit einer korrekten zellulären und funktionalen Struktur von Photorezeptoren nahe. In dieser Studie wurde nicht nur die Existenz des potentiellen Rhodopsin/RhoA/Rac1/Rock II/CRMP2 Multiproteinkomplexes in ROS bestätigt, sonder auch eine lichtabhängige Dynamik und Interaktion der einzelnen Komplexbestandteile beschrieben. In Übereinstimmung mit Daten aus verschiedenen Organismen ((Wieland et al., 1990), (Petrov et al., 1994), (Balasubramanian and Slepak, 2003)) konnte eine lichtabhängige Aktivierung von Rac1 in ROS von Schweinen nachgewiesen werden. Während lichtaktiviertes, GTP-gebundenes Rac1 überwiegend membranassoziiert vorliegt, konnte in dunkeladaptierten ROS insgesamt nur eine sehr geringe Menge an aktivem Rac1 detektiert werden. Des Weiteren wurden in dieser Studie auch deutliche Hinweise geliefert, die auf eine CRMP2 vermittelte Verbindung von Rac1 und RhoA assoziierten Signalwegen hinweisen, wohingegen die Kinase Rock II nur Teil des RhoA assoziierten Signalkomplexes zu sein scheint. Als Funktion von CRMP2 liegt daher eine Rolle als physiologischer Schalter nahe, der die Balance zwischen Rac1 und RhoA vermittelter Signaltransduktion koordiniert. Eine solche Funktion für CRMP2 wurde von Ariumura und Kollegen bereits für die Signaltransduktion in Neuronen vorgeschlagen (Arimura et al., 2000). Um die Signaltransduktion von CRMP2 in ROS eingehender untersuchen zu können, sind CRMP2 Antikörper unabdingbar, welche aber zu Beginn dieser Arbeit kommerziell nicht erhältlich waren. Daher war die Produktion und Charakterisierung von monoklonlalen CRMP2 spezifischen Antikörpern ein wichtiger Teil dieser Studie. Von den vier erhaltenen stabilen Linien monoklonaler, CRMP2 spezifischer Antikörper waren alle für den Einsatz im Western Blot sowie in der Immunohistochemie geeignet, aber nur ein Antikörper erwies sich auch als geeignet für die Immunopräzipitation von nativem CRMP2 aus primärem retinalen Gewebe. Dieser Antikörper stellt damit ein exzellentes Werkzeug für die weitere Charakterisierung der Funktion von CRMP2 in ROS dar. Drei Klassen von Proteinen regulieren die Aktivität von Rac1. Sie alle haben einen Einfluss auf den GTP/GDP-Austausch. Einer dieser Regulatoren ist der Rho GDP Dissociation Inhibitor (RhoGDI). Er kontrolliert die Interaktion von Rac1 mit weiteren regulatorischen Proteinen und Effektoren, sowie durch Interaktion mit dem Prenylrest von Rac1 das Pendeln zwischen Cytosol und Membran. Da aber der RhoGDI nicht in ROS nachgewiesen werden konnte (Balasubramanian and Slepak, 2003), legt dies den Schluss nahe, dass ein anderes Protein diese Funktion in ROS übernimmt. Das 17-kDa große Protein PDEdas lange Zeit als Untereinheit der retinalen cGMP Phosphodiesterase 6 aus Stäbchen galt, weist starke strukturelle Homologien zu RhoGDI auf. Es interagiert mit einer ganzen Reihe von prenylierten und unprenylierten Proteinen. Seine Fähigkeit, prenylierte Proteine von Zellmembranen zu lösen, erinnert stark an die Funktion, welche RhoGDI auf GTPasen der Rho Familie hat. Es wurde daher im Zuge dieser Studie untersucht, ob PDE in ROS GDI Funktion auf Rac1 ausübt. In dieser Arbeit konnte eine lichtabhängige Interaktion von Rac1 mit PDE in ROS von Schweinen nachgewiesen werden. Des Weiteren wurde gezeigt, dass aufgereinigtes PDE Rac1 von isolierten ROS Membranen lösen kann, eine Eigenschaft, die deutlich auf eine GDI-Funktion von PDE für Rac1 hinweist. Zudem wurde gezeigt, dass die Interaktion von Rac1 mit PDE mit einer lichtabhängigen Carboxylmethylierung von Rac1 in ROS korreliert, was ein Hinweis darauf sein kann, dass die die GDI Funktion von PDE durch die Methylierung von Rac1 reguliert wird. Alles in Allem zeigen diese Daten, das PDE für Rac1 in ROS die Funktion eines GDIs ausübt. In dieser Studie geben die identifizierten und mit Rac1 assoziierten Multiproteinkomplexe sowie deren lichtregulierte Dynamik einen deutlichen Hinweis darauf, dass Rac1 die Lichtwahrnehmung durch Rhodopsin mit Signalnetzwerken verbindet, die eine Rolle bei der strukturellen Integrität und Polarität von Photorezeptoren spielen. Dies deutet auf eine Abhängigkeit von Lichtwahrnehmung und funktioneller zellulärer Struktur hin. Mit der Bereitstellung von qualitativ sehr hochwertigen CRMP2 spezifischen Antikörpern liefert diese Studie zudem eine gute Basis für weiterführende Studien in diesem Forschungsfeld. Neben Rhodopsin assoziierten Komplexen stehen auch eine ganze Reihe von ciliären Komplexen in Zusammenhang mit degenerativen Erkrankungen der Retina. Im kürzlich entdeckten ciliären Protein Lebercilin (den Hollander et al., 2007) wurden Mutationen mit Leberscher kongenitaler Amaurose (LCA) in Verbindung gebracht, einer sehr schweren Form einer erblichen retinalen Dystrophie ((Kaplan et al., 1990), (Perrault et al., 1999)). Mit Hilfe von SF-TAP und LC/MS/MS Analysen konnten 24 Lebercilin Interaktoren in HEK Zellen identifiziert werden (den Hollander et al., 2007). Hier in dieser Studie wurden schließlich diese potentiellen Lebercilin Interaktoren auch in Photorezeptoren von Schweinen bestätigt (veröffentlicht in (den Hollander et al., 2007). Die identifizierten Interaktoren stellen mögliche Kandidaten für Gene für LCA und andere Ciliopathien dar und weisen Lebercilin als ein ciliär und mikrotubulär assoziiertes Protein in der Retina aus. Dies betont den Stellenwert, welche gestörte ciliäre Prozesse in der molekularen Pathogenese von LCA besitzen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Die akute Pankreatitis beginnt in den Azinuszellen, allerdings bestimmen die sich anschließenden außerazinären, immunologischen Geschehnisse den Schweregrad der Erkrankung. Diese immunologische Reaktion wird über Zytokine vermittelt, die hauptsächlich von Immunzellen, zusätzlich aber auch von Pankreasazinuszellen selbst sezerniert werden. In dieser Arbeit wurde untersucht, ob Pankreasazinuszellen in der Lage sind, auf autokrin oder parakrin freigesetzte Zytokine zu reagieren. Der JAK/STAT-Signaltransduktionsweg, eine Phosphorylierungskaskade, die von Oberflächenrezeptoren initiierte Signale in den Zellkern weiterleitet, stellt den Haupteffektor der meisten Zytokine dar. Wir konnten mittels Immunopräzipitation und Western-Blot die meisten JAK und STAT Proteine in Pankreasazinuszellen nachweisen (JAK1, JAK2 und TYK2 sowie STAT1, STAT2, STAT3, STAT5 und STAT6). Darüber hinaus konnten wir zeigen, dass einige dieser Proteine in Pankreasazinustellen durch physiologische (Zytokine), aber auch unphysiologische (Stress) Stimuli phosphoryliert und damit aktiviert werden. Dies belegt neben der Expression zusätzlich eine Regulation dieser Proteine und damit eine funktionelle Rolle des JAK/STATSignaltransduktionsweges im Pankreas. Exemplarisch wurde mitttels Immunhistochemie gezeigt, dass IFN-
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Familie der Geruchsrezeptoren ist zwar ein zentrales Forschungsgebiet, dennoch ist wenig über sie bekannt. Im Folgenden wird dargestellt, worin die beiden Hauptursachen für die Problematik der Analyse von Geruchsrezeptoren bestehen und welche Strategien in dieser Arbeit gewählt wurden, um einen experimentellen Ansatz zur Untersuchung von Geruchsrezeptoren zu finden: 1. Erst wenigen Geruchsrezeptoren konnten Liganden zugeordnet werden . Da noch keine Struktur eines Geruchsrezeptors bekannt ist, können bislang Modellvorstellungen nur über Sequenzhomologien innerhalb der Rezeptorgruppe oder anhand verwandter Rezeptoren, z. B. dem Rinderopsin, erstellt werden. Offensichtlich reichen diese Modelle jedoch nicht aus, um effektiv Liganden zuzuordnen oder Struktur-Funktion-Zusammenhänge zu erkennen. Das HEK-293-Zellsystem erwies sich zwar als das bisher effektivste heterologe Expressionssystem für diese Art von Rezeptoren, doch auch hier ist die Zahl beschriebener, funktionell exprimierter ORs begrenzt . Es gibt also nur wenige Möglichkeiten, Geruchsrezeptoren funktionell zu exprimieren, und daher besteht ein Bedarf an weiteren Expressionssystemen, um diese Rezeptoren in vivo untersuchen zu können. 2. Neben der Problematik einer funktionellen Expression gibt es bislang kein Expressionssystem, welches die Herstellung geeigneter Mengen für eine Strukturaufklärung dieser Rezeptoren ermöglicht. Die Menge der synthetisierten Rezeptoren ist in der Regel zu gering oder die Zielproteinspezies liegt in Einschlusskörpern vor. Zu 1) Die funktionelle Expression mit korrekter Translokation des Membranproteins sollte in Kombination mit einer Semliki Forest Virus-basierten Infektion in Säugetier P19-Zellen durchgeführt werden. Ausgewählt wurde diese Zelllinie aufgrund folgender Tatsachen: es handelt sich bei der P19-Zelllinie um Teratokarzinom-Zellen, welche ursprünglich aus embryonalen Stammzellen, implantiert in Hodengewebe, generiert wurden. Einem Gewebe also, in dem in vivo eine Geruchsrezeptor-Expression nachgewiesen wurde . Ein weiterer vielversprechender Umstand war die Differenzierbarkeit dieser Fibroblasten-ähnlichen Zellen in neuronale Zellen, dem Zelltyp, der auch in vivo für olfaktorische Neuronen vorliegt. Dementsprechend lautet die Annahme, dass es sich um eine optimale Zelllinie für die Expression rekombinanter ORs handeln kann, die zur zeitgerechten Expression aller für die olfaktorische Signalkaskade notwendigen Bestandteile befähigt ist. Die Zelllinie sollte bezüglich ihrer Eignung als Expressionsplattform für Geruchsrezeptoren charakterisiert und Expressionsstudien am Beispiel des Rezeptors OR5 durchgeführt werden. Zu 2) Die Überexpression des Membranproteins zur quantitativen Isolierung erfolgte in Hefe. Gegenüber E. coli ist der Hefeorganismus zur Durchführung posttranslationaler Modifikationen fähig. Ein Vorteil im Vergleich zu Säugerzellen sind die hohen erreichbaren Zelldichten. Primärgewebe kam für diese Fragestellung nicht in Frage: eine Isolierung wäre mit sehr geringen Ausbeuten verbunden, eine Problematik, die durch die Verwendung von heterologen Expressionssystemen umgangen werden kann. Es wurde eine „unfolded protein response“ (UPR)-kontrollierte Expression in Saccharomyces cerevisiae ausgewählt, um zu gewährleisten, dass überwiegend korrekt gefaltetes Rezeptorprotein gebildet wird. Mit dieser Arbeit sollten erstmals durch eine optimierte Expression, Produktion und Isolierung ausreichende Proteinmengen des Geruchsrezeptors OR5 (aus R. norvegicus) mit einer Homogenität von >90% zur Verfügung gestellt werden, um biochemische und strukturelle Charakterisierungen durchzuführen. Zusätzlich sollten monoklonale OR5-Antikörper generiert werden, um eine spezifische Detektion und Immunopräzipitation des Geruchsrezeptors OR5 zu ermöglichen. Zusammengefasst tragen die etablierten Systeme dazu bei, die genaue Rolle der ORs in der Geruchswahrnehmung in Zukunft entschlüsseln zu können. Mit Hilfe der P19-Zelllinie wird die OR-Charakterisierung in einem heterologen System ermöglicht, und durch den Gebrauch des Hefeexpressionsystem und die optimierte Isolierungs-Strategie kann das Material für eine Strukturaufklärung bereitgestellt werden.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Dhh1 Protein aus Saccharomyces cerevisiae ist aufgrund von acht hoch konservierten Aminosäure-Motiven als putative RNA Helikase klassifiziert. In S. pombe (Ste13p), Drosophi-la melanogaster (ME31B), Xenopus laevis (Xp54), Mus musculus (mmRCK) und Homo sa-piens (hRCK/p54) findet man Proteine, die zu Dhh1p eine sehr hohe Konservierung von bis zu 83 % aufweisen. Lediglich der N- und C-Terminus dieser Proteingruppe ist nicht konserviert. In der vorliegenden Arbeit wurde die Auswirkung der Deletion von DHH1 in Saccharomyces cerevisiae auf verschiedene Aspekte der DNA Schädigung und Reparatur, sowie die Funktio-nalität verschiedener Domänen von Dhh1p durch Mutationsanalysen untersucht. Im ersten Teil der Arbeit wurde das DHH1 Gen in verschiedenen Hefestämmen deletiert und die Auswirkungen von DNA schädigenden Substanzen auf diese Mutanten untersucht. Die De-letion von DHH1 führte zu einer starken Erhöhung der Sensitivität von Hefezellen sowohl ge-genüber Bleomycin als auch gegenüber MMS. Allerdings zeigten dhh1D-Zellen nur eine schwache Sensitivität gegenüber UV-Strahlung und keine Sensitivität gegenüber g-Strahlung. Dies weist sehr stark darauf hin, dass die beobachteten Sensitivitäten auf einem eventuell durch Membrandefekte verursachten, sogenannten „uptake“-Phänotyp beruhen. In „uptake“ unabhängigen Experimenten wurde die Funktionalität des Non-homologous End-joining Repa-raturweges der Hefe untersucht. Dabei konnte gezeigt werden, dass dhh1D-Stämme eine um den Faktor fünf reduzierte Effizienz in der Rezirkularisierung linearisierter Plasmide zeigen. Allerdings ist nur die Effizienz, nicht die Genauigkeit des End-joining in dhh1D-Stämmen be-troffen – die rezirkularisierten Plasmide wurden zu 100 % genau repariert. Dies weist darauf hin, dass die Deletion sich auf mehr als nur einen einzelnen Aspekt zellulä-rer Vorgänge auswirkt. Im zweiten Teil der Arbeit wurde die extreme Sensitivität der dhh1D-Stämme gegenüber Ble-omycin und MMS als Testsystem für die funktionelle Charakterisierung verschiedener Dhh1p Domänen verwendet. Dabei zeigte sich, dass eine Deletion des N-Terminus von Dhh1p kaum Einfluss auf die Funktionalität des Proteins hat. Die Deletion des C-Terminus führt zu einer deutlichen Sensitivität der Zellen gegenüber Bleomycin. Bei Deletion beider Termini wachsen die Zellen auf Bleomycin nur noch geringfügig besser als der dhh1D-Stamm. Diese Effekte werden durch Überexpression der verkürzten Proteine aufgehoben. Keine der drei Verkürzun-gen hat Einfluss auf das Wachstum auf MMS-haltigen Platten. Die Mutation der ATPase Domäne (Walker A Motiv) hebt die Funktion des Proteins fast voll-ständig auf. Diese Mutanten sind nahezu so sensitiv gegenüber Bleomycin, wie dhh1D Zellen. Die Überexpression der ATPase Mutante führt im Gegensatz zu den Verkürzungen zu keiner Verringerung der Sensitivität gegenüber Bleomycin. Die zusätzliche Entfernung der Termini in der ATPase Mutante führt nicht zu einer Erhöhung der Bleomycin-Sensitivität. Allerdings zeigt die Dreifachmutante deutlich schlechteres Wachstum auf MMS-haltigen Platten. Die Mutation des SAT-Motives in AAA führt ebenfalls zu einer deutlichen Bleomycin-Sensitivität. Der Phänotyp ist vergleichbar mit den Auswirkungen der Deletion des C-Terminus. Das ur-sprünglich als RNA Entwindemotiv charakterisierte SAT-Motiv wind mittlerweile eher als eine Art „Scharnier“ angesehen, das eine Bewegung der Domänen 1 und 2 im Dhh1 Protein relativ zueinander ermöglicht. Die Auswirkung der Mutation des SAT-Motivs in AAA im Vergleich zu den Verkürzungen und den ATPase Mutanten weist auf eine eher strukturelle Rolle des SAT-Motives in Dhh1p hin. Aus diesen Daten ließ sich ein vorläufiges Modell über die Funktionsweise des Dhh1 Proteins ableiten. In in vitro Experimenten wurde mit dem IMPACT-System aufgereinigtes Dhh1 Protein auf seine Fähigkeit hin untersucht, DNA und RNA zu entwinden. Für die verwendeten Substrate konnte keine in vitro Helikase Aktivität festgestellt werden. Zur Analyse der ATPase Aktivität wurde IMPACT-gereinigtes Dhh1p und durch Immunopräzipitation aus Heferohextrakten ge-wonnenes Protein eingesetzt. In beiden Fällen konnte keine ATP Hydrolyse beobachtet wer-den, obwohl die Mutationsanalyse eindeutig darauf hinweist, dass die ATPase Aktivität essen-tiell für die Funktion des Dhh1 Proteins ist.