POPULARITY
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Die Existenz eines Zytoskeletts galt lange als charakteristisches Merkmal eukaryotischer Zellen. Obwohl sich mit der Entdeckung der eubakteriellen Zytoskelettproteine MreB, ParM, FtsZ und CreS ein Paradigmenwechsel vollzog, lagen bislang keine Erkenntnisse über das Vorkommen von Zytoskelettproteinen in Archaeae vor. Der erste Teil der Arbeit beschreibt die strukturelle und biochemische Charakterisierung des Aktinhomologen Ta0583 aus dem Archaeon Thermoplasma acidophilum. Die Kristallstruktur von Ta0583 wurde mit der Methode der SAD-Phasierung bei einer Auflösung von 2,1 Å gelöst. Ta0583 gehört zur Aktin/Hsp70 Superfamilie und besteht aus zwei Domänen, die jeweils das Aktin/Hsp70 Kernelement enthalten. Obwohl Aktin und das archaeale Ta0583 kaum Sequenzidentität aufweisen, besteht eine deutliche strukturelle Homologie. Die Struktur von Ta0583 kombiniert strukturelle Eigenheiten sowohl von Aktin, als auch von den eubakteriellen Aktinhomologen MreB und ParM. So konnte beispielsweise die strukturelle Ähnlichkeit der Nukleotidbindungsstellen von Ta0583 und MreB in vitro durch den Effekt des MreB-Inhibitors S-(3,4-Dichlorobenzyl)-isothioharnstoff (A22) nachgewiesen werden, der die ATPase Aktivität von Ta0583 kompetitiv hemmt. Im Kristallgitter sind die Ta0583 Monomere in Filament-ähnlichen Reihen angeordnet, in denen ähnliche longitudinale Gitterabstände wie in den Protofilamenten von MreB, Aktin und ParM vorliegen. In vitro bildet Ta0583 kristalline Schichten, die ähnliche Gitterabstände wie die quasi-Filamente im Kristall aufweisen. Die Bereitwilligkeit von Ta0583 zur Kristallisation und zur Bildung kristalliner Schichten könnte eine intrinsische Neigung des Proteins zur Bildung von filamentartigen Strukturen andeuten. Das Vorkommen eines Aktin-Homologen im Archaeon T. acidophilum gibt erste Hinweise auf das Vorkommen möglicher Zytoskelettstrukturen neben Eukaryoten und Eubakterien auch in der dritten Domäne des Lebens, den Archaeae. Der zweite Teil der Arbeit befasst sich mit der strukturellen und biochemischen Charakterisierung des in S. cerevisiae essentiellen Stoffwechselenzyms Ugp1p, der UDP-Glukose Pyrophosphorylase (UGPase). Die UGPase katalysiert die Synthese von UDP-Glukose, einem zentralen Glykosyldonor im Stoffwechsel aller Organismen. In S. cerevisiae ist die UGPase ein Oktamer aus identischen Untereinheiten. Obwohl oktamere UGPasen schon in den 1960iger Jahren erstmals charakterisiert wurden, blieb die strukturelle Basis für die Assoziation der Monomere im Komplex bis heute unaufgeklärt. In dieser Arbeit wurde die Struktur von Ugp1p durch Molecular Replacement mit der Struktur einer monomeren UGPase aus A. thaliana bei einer Auflösung von 3,1 Å gelöst. Das Ugp1p Monomer besteht aus drei Domänen, einer N-terminalen Domäne, einer katalytischen SGC-Kerndomäne und einer C-terminalen Oligomerisierungsdomäne mit -Helix Motiv. Anhand der Struktur von Ugp1p konnten mehrere Aminosäurereste identifiziert werden, die die Wechselwirkungen zwischen den Untereinheiten im Oktamer vermitteln. Diese vorwiegend hydrophoben Reste sind in den UGPasen von Tieren und Pilzen konserviert, in den UGPasen der Pflanzen jedoch durch polare und geladene Reste ersetzt. Aufgrund der Konservierung der Reste im Bereich der Oligomerisierungs-Schnittstelle ist davon auszugehen, dass alle UGPasen aus Metazoen und Pilzen Ugp1p-ähnliche Oktamere bilden, pflanzliche UGPasen dagegen anders aufgebaut sind. Während die Aktivität pflanzlicher UGPasen über Assoziation und Dissoziation reguliert zu sein scheint (Martz et al., 2002), sind UGPasen aus Metazoen und Pilzen nicht über Oligomerisierung reguliert. So bildet Ugp1p ausschliesslich stabile Oktamere. In Ugp1p scheint vielmehr das flexible N-terminale Segment, das auch an Ser11 phosphoryliert gefunden wurde (Rutter et al., 2002), die Regulation der Enzymaktivität zu vermitteln. Die Struktur von Ugp1p bildet die Grundlage für gezielte Mutagenesestudien an allen UGPasen aus Metazoen und Pilzen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 02/06
Mitochondriales Hsp70 spielt eine wichtige Rolle bei der Biogenese und Funktion von Mitochondrien. Es ist essenziell für den Import, die Faltung und den Abbau mitochondrialer Proteine. Wie alle Hsp70-Proteine arbeitet mtHsp70 dabei mit Cochaperonen zusammen. In dieser Arbeit wurden neue Interaktionspartner von mtHsp70 identifiziert und funktionell charakterisiert. MtHsp70 ist die zentrale Komponente des Importmotors der TIM23-Translokase, der den ATP-abhängigen Transport von Proteinen über die Innenmembran der Mitochondrien vermittelt. Mit Tim14 und Mdj2 wurden in dieser Arbeit zwei Proteine des Importmotors als J-Cochaperone identifiziert. Sowohl Tim14 als auch Mdj2 wurden als MBP-Fusionsproteine aus E. coli gereinigt und stimulierten die ATPase-Aktivität von mtHsp70. Eine Variante von Tim14 mit einer Mutation im HPD-Motiv, die die Stimulation der ATPase-Aktivität von mtHsp70 durch Tim14 verhindert, konnte die Funktion von Tim14 in Hefezellen nicht übernehmen. Die Entdeckung von membranassoziierten J-Proteinen im Importmotor macht deutlich, dass mtHsp70 durch die Stimulation seiner ATPase-Aktivität effizient an ein importiertes Protein binden kann, sobald dieses die Translokationspore des TIM23- Komplexes verlässt. Ebenso wird die evolutionäre Konservierung zwischen dem Importmotor und bakteriellen Hsp70-Systemen ersichtlich. Der Importmotor der TIM23-Translokase ist aber eine Ausnahme unter den Hsp70-Systemen, da in diesem System mit Tim16 eine weitere, regulatorische Komponente identifiziert werden konnte. Tim16 ist ein J-ähnliches Protein, das selber keine stimulierende Wirkung auf die ATPase-Aktivität von mtHsp70 hat, aber die Stimulation von mtHsp70 durch Tim14 reguliert. Dies könnte einen unnötigen Verbrauch von ATP durch mtHsp70 in Abwesenheit eines Präproteins verhindern. Mit der Charakterisierung der J- und J-ähnlichen Proteine des Importmotors wurden wesentliche Erkenntnisse über die Funktionsweise des Importmotors geliefert. Ein bisher nicht bekanntes Protein wurde zusammen mit mtHsp70 aus S. cerevisiae gereinigt und anschließend biochemisch charakterisiert. Dieses Protein, Hep1, ist ein lösliches Protein der mitochondrialen Matrix. Es interagiert mit mtHsp70 in seiner nukleotidfreien und ADPgebundenen Form. Für diese Interaktion ist die ATPase-Domäne von mtHsp70 notwendig. Jedoch trägt vermutlich auch die PBD zur Bindung von mtHsp70 an Hep1 bei, da eine solche Bindung nur beobachtet werden konnte, wenn mtHsp70 sowohl die ATPase-Domäne als auch die PBD aufweist. Hep1 hat im Gegensatz zu den bekannten Cochaperonen keinen Einfluss auf den ATPase- Zyklus von mtHsp70. Allerdings aggregieren in Abwesenheit von Hep1 mitochondriale Hsp70-Proteine. Diese Aggregation ist irreversibel und führt zum Verlust der Funktion der mitochondrialen Hsp70-Proteine. Diese Beeinträchtigung führt wiederum zu Defekten in Prozessen, die funktionelle mitochondriale Hsp70-Proteine benötigen. So wurden in ∆hep1- Zellen Defekte im mitochondrialen Proteinimport und der Biogenese von Eisen-Schwefel- Clustern beobachtet. Aufgrund dieser Defekte zeigen ∆hep1-Zellen einen Temperatursensitiven Wachstumsphänotyp. Die Tendenz zur Aggregation ist spezifisch für mitochondriale Hsp70-Proteine, wobei besonders die nukleotidfreie Form von mtHsp70 betroffen ist. Im aggregierten Material ließ sich eine erhöhte Sensitivität der ATPase-Domäne gegenüber zugesetzter Protease feststellen, was auf eine Fehlfaltung dieser Domäne deutet. Es wurde eine Region in der ATPase- Domäne von mtHsp70 identifiziert, die zur Aggregation von mtHsp70 beiträgt. Durch Austausch dieser Region gegen die entsprechende Region aus DnaK, dem nächsten nicht mitochondrialen Verwandten von mtHsp70, konnte ein teilweise funktionsfähiges Hsp70- Protein hergestellt werden, dessen Löslichkeit nicht mehr von Hep1 abhängig ist. MtHsp70 aggregiert nur, wenn es sowohl die ATPase-Domäne als auch die PBD aufweist. Die Interdomänenkommunikation zwischen der ATPase-Domäne und der PBD von mtHsp70 scheint zur Ausbildung einer instabilen Konformation notwendig zu sein. Hep1 bindet an mtHsp70 in dieser Konformation und verhindert somit die Aggregation. Mit Hep1 wurde in dieser Arbeit ein neuer Typ von Interaktionspartnern mitochondrialer Hsp70-Proteine entdeckt. Es wirkt als Chaperon für dieses Hsp70-Proteine, indem es an sie bindet und deren Aggregation verhindert.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Zusammenfassung 1. Das für das Proteolipid aus Methanocaldococcus jannaschii kodierende Gen atpK wurde in E. coli DH5alpha und in dem Minizell-Produzenten E. coli DK6 exprimiert. Das Genprodukt wurde durch radioaktive Markierung nachgewiesen. 2. Aus den Membranen der thermophilen, hydrogenotrophen methanogenen Archaea M. jannaschii, Methanothermobacter thermautotrophicus, Methanothermobacter marburgensis sowie aus den Membranen des mesophilen, methylotrophen methanogenen Archäons Methanosarcina mazei Gö1 wurden mit Chloroform/Methanol die Proteolipide der A1AO-ATPasen und die MtrD-Untereinheiten der Methyltetrahydromethanopterin:CoenzymM-methyl-transferase extrahiert. Die einzelnen Peptide wurden mittels N-terminaler Sequenzierung identifiziert. 3. Durch MALDI-TOF-Analyse wurde die molekulare Masse des maturen Proteolipids aus M. jannaschii zu 21316 Da und 21183 Da (Methionin-freie Form) bestimmt. Zusammen mit der Gensequenz konnte daraus gefolgert werden, daß es sich um eine triplizierte Form des bakteriellen 8-kDa Proteolipids handelt, also 3 Haarnadel-Domänen ausweist. Die ionentranslozierenden Carboxylate sind nur in Haarnadel 2 und 3 konserviert. Bei einer angenommenen Anzahl von 24 Helices im c-Oligomer bedeutet das, daß ein Ionen/ATP-Verhältnis von 2,7 für die Synthese von ATP ausreichen würde. 4. Die Proteolipide aus M. thermautotrophicus und M. marburgensis besitzen duplizierte Proteolipide. Die aktiven Carboxylat-Reste sind im Gegensatz zu den bisher bekannten duplizierten Proteolipiden der V1VO-ATPasen in beiden Haarnadeln konserviert. 5. Die archäellen A1AO-ATPasen-Operone der Pyrococcen enthalten ebenfalls Gene, die für duplizierte Proteolipide kodieren. Allerdings sind die für die Ionentranslokation essentiellen Carboxylat-Reste wie in den Proteolipiden der V-Typ-ATPasen nur in der zweiten Haarnadel vorhanden. Die Abtrennung der A1AO- und V1VO-ATPasen muß daher vor der Entwicklung der Eukaryonten erfolgt sein. 6. Sequenzanalysen haben gezeigt, daß das Proteolipid-Gen aus Methanopyrus kandleri dreizehnmal so groß wie das aus Bakterien ist. Es kodiert für ein Protein mit 13 Haarnadel-Domänen. Die Ionenbindstelle ist in jeder Haarnadel konserviert. 7. Alle heute bekannten Formen der Proteolipide der V- und F-ATPasen waren schon in den Archaea enthalten. Die Vielfalt an Proteolipid-Größen und -Formen der archäellen ATPasen läßt vermuten, daß sie ein Reservoir an Möglichkeiten darstellen, aus denen die V1VO- und F1FO-ATPasen gespeist wurden. 8. Durch Sequenzvergleich mit den Na+-translozierenden Proteolipiden der bakteriellen F1FO-ATPasen wurde auch in den Proteolipiden der A1AO-ATPasen ein Na+-Bindemotiv identifiziert. Es lautet: P/S/T-XXX-Q/E (Motiv I in Helix eins), ET/S (Motiv II in Helix zwei). 9. Aus Membranen von Sulfolobus acidocaldarius und M. jannaschii wurden durch Chloroform/Methanol Lipide extrahiert, anschließend wurde aus diesen Lipiden Liposomen hergestellt, in die die A1AO-ATPase aus M. jannaschii rekonstituiert wurde. Die Synthese von ATP konnte jedoch nicht nachgewiesen werden. 10. Die ATPase-Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG wurden in den Fusionsvektor pMal kloniert und in Escherichia coli exprimiert. Die Fusionsproteine wurden aus dem Zellextrakt isoliert und zur Immunisierung von Kanninchen eingesetzt. Die erhaltenen Antiseren gegen die ATPase-Untereinheiten AhaA, AhaB, AhaC und AhaE waren spezifisch und wurden für die Analysen dieser Arbeit eingesetzt. 11. Das für die gesamte A1AO-ATPase kodierende Operon ahaHIKECFABDG des methanogenen Archäons Methanosarcina mazei Gö1 wurde in den Expressionsvektor pVSBAD2 hinter den ara-Promotor kloniert. Das Konstrukt wurde pRT1 genannt. 12. Die auf pRT1 lokalisierten Gene wurden heterolog in E. coli DK8 exprimiert. Die A1AO-ATPase war in E. coli membran-assoziiert und funktionell. Die spezifische ATPase-Aktivität an Membranen von E. coli DK8 betrug 150 mU/mg Protein. 13. DCCD und der für archäelle ATPasen spezifische Inhibitor DES hemmten das Enzym. Die I50-Wert betrugen 0,5 mM/mg Protein, beziehungsweise 200 nmol/mg Protein. 14. Die Synthese von AhaA, AhaB, AhaC, AhaE, AhaH, AhaK, und zum ersten Mal auch des gesamten AhaI, konnten nachgewiesen werden. Gegen AhaF, AhaD und AhaG lagen keine funktionellen Antikörper vor.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Das Dhh1 Protein aus Saccharomyces cerevisiae ist aufgrund von acht hoch konservierten Aminosäure-Motiven als putative RNA Helikase klassifiziert. In S. pombe (Ste13p), Drosophi-la melanogaster (ME31B), Xenopus laevis (Xp54), Mus musculus (mmRCK) und Homo sa-piens (hRCK/p54) findet man Proteine, die zu Dhh1p eine sehr hohe Konservierung von bis zu 83 % aufweisen. Lediglich der N- und C-Terminus dieser Proteingruppe ist nicht konserviert. In der vorliegenden Arbeit wurde die Auswirkung der Deletion von DHH1 in Saccharomyces cerevisiae auf verschiedene Aspekte der DNA Schädigung und Reparatur, sowie die Funktio-nalität verschiedener Domänen von Dhh1p durch Mutationsanalysen untersucht. Im ersten Teil der Arbeit wurde das DHH1 Gen in verschiedenen Hefestämmen deletiert und die Auswirkungen von DNA schädigenden Substanzen auf diese Mutanten untersucht. Die De-letion von DHH1 führte zu einer starken Erhöhung der Sensitivität von Hefezellen sowohl ge-genüber Bleomycin als auch gegenüber MMS. Allerdings zeigten dhh1D-Zellen nur eine schwache Sensitivität gegenüber UV-Strahlung und keine Sensitivität gegenüber g-Strahlung. Dies weist sehr stark darauf hin, dass die beobachteten Sensitivitäten auf einem eventuell durch Membrandefekte verursachten, sogenannten „uptake“-Phänotyp beruhen. In „uptake“ unabhängigen Experimenten wurde die Funktionalität des Non-homologous End-joining Repa-raturweges der Hefe untersucht. Dabei konnte gezeigt werden, dass dhh1D-Stämme eine um den Faktor fünf reduzierte Effizienz in der Rezirkularisierung linearisierter Plasmide zeigen. Allerdings ist nur die Effizienz, nicht die Genauigkeit des End-joining in dhh1D-Stämmen be-troffen – die rezirkularisierten Plasmide wurden zu 100 % genau repariert. Dies weist darauf hin, dass die Deletion sich auf mehr als nur einen einzelnen Aspekt zellulä-rer Vorgänge auswirkt. Im zweiten Teil der Arbeit wurde die extreme Sensitivität der dhh1D-Stämme gegenüber Ble-omycin und MMS als Testsystem für die funktionelle Charakterisierung verschiedener Dhh1p Domänen verwendet. Dabei zeigte sich, dass eine Deletion des N-Terminus von Dhh1p kaum Einfluss auf die Funktionalität des Proteins hat. Die Deletion des C-Terminus führt zu einer deutlichen Sensitivität der Zellen gegenüber Bleomycin. Bei Deletion beider Termini wachsen die Zellen auf Bleomycin nur noch geringfügig besser als der dhh1D-Stamm. Diese Effekte werden durch Überexpression der verkürzten Proteine aufgehoben. Keine der drei Verkürzun-gen hat Einfluss auf das Wachstum auf MMS-haltigen Platten. Die Mutation der ATPase Domäne (Walker A Motiv) hebt die Funktion des Proteins fast voll-ständig auf. Diese Mutanten sind nahezu so sensitiv gegenüber Bleomycin, wie dhh1D Zellen. Die Überexpression der ATPase Mutante führt im Gegensatz zu den Verkürzungen zu keiner Verringerung der Sensitivität gegenüber Bleomycin. Die zusätzliche Entfernung der Termini in der ATPase Mutante führt nicht zu einer Erhöhung der Bleomycin-Sensitivität. Allerdings zeigt die Dreifachmutante deutlich schlechteres Wachstum auf MMS-haltigen Platten. Die Mutation des SAT-Motives in AAA führt ebenfalls zu einer deutlichen Bleomycin-Sensitivität. Der Phänotyp ist vergleichbar mit den Auswirkungen der Deletion des C-Terminus. Das ur-sprünglich als RNA Entwindemotiv charakterisierte SAT-Motiv wind mittlerweile eher als eine Art „Scharnier“ angesehen, das eine Bewegung der Domänen 1 und 2 im Dhh1 Protein relativ zueinander ermöglicht. Die Auswirkung der Mutation des SAT-Motivs in AAA im Vergleich zu den Verkürzungen und den ATPase Mutanten weist auf eine eher strukturelle Rolle des SAT-Motives in Dhh1p hin. Aus diesen Daten ließ sich ein vorläufiges Modell über die Funktionsweise des Dhh1 Proteins ableiten. In in vitro Experimenten wurde mit dem IMPACT-System aufgereinigtes Dhh1 Protein auf seine Fähigkeit hin untersucht, DNA und RNA zu entwinden. Für die verwendeten Substrate konnte keine in vitro Helikase Aktivität festgestellt werden. Zur Analyse der ATPase Aktivität wurde IMPACT-gereinigtes Dhh1p und durch Immunopräzipitation aus Heferohextrakten ge-wonnenes Protein eingesetzt. In beiden Fällen konnte keine ATP Hydrolyse beobachtet wer-den, obwohl die Mutationsanalyse eindeutig darauf hinweist, dass die ATPase Aktivität essen-tiell für die Funktion des Dhh1 Proteins ist.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Konventionelle Kinesine sind Mikrotubuli assoziierte Motorproteine. Sie benutzen die Energie der ATP-Hydrolyse, um gerichtete Bewegungen entlang des Zytoskeletts zu ermöglichen. Tierische konventionelle Kinesine sind aus zwei schweren Ketten und zwei leichte Ketten aufgebaut. Die niederen Organismen, wie Pilze, besitzen dagegen nur die zwei schweren Ketten. Das konventionelle Kinesin des roten Brotschimmels Neurospora crassa (NcKin) bewegt sich wie auch andere Pilzkinesine in vitro im mikroskopischen Gleittest mit Geschwindigkeiten, die etwa drei- bis fünffach höher sind (zwischen 2,0 und 2,6 µm/s), als die der tierischen Kinesine (zwischen 0,2 und 0,8 µm/s). Trotz der hohen Sequenzähnlichkeit von Tier- und Pilzkinesinen, sind spezifische Unterschiede festgestellt worden, vor allem im Halsbereich. Weil es bisher keine zufrieden stellende Erklärung der schnellen Gleitgeschwindigkeit von NcKin gibt, liegt es nahe, in diesen pilzspezifischen Sequenzbereichen die Grundlage hierfür zu vermuten. In dieser Dissertation wurde daher untersucht, welchen Einfluss die einzelnen Kinesin-Domänen auf die Motilität und den ATP-Umsatz haben. Zu diesem Zweck wurden (i) bakterielle Expressionsvektoren hergestellt, die für C-terminal verkürzte Kinesinkonstrukte kodieren. Hierbei wurden zunächst rekombinante Motoren hergestellt, die an den Domänengrenzen endeten, wie sie durch kristallografische Modelle und Sekundärstrukturvorhersagen abgeleitet worden waren. Aufgrund der Ergebnisse an diesen Proteinen wurden weitere C-terminal verkürzte Kinesine konstruiert, die eine genauere funktionelle Kartierung der Scharnierdomäne zum Ziel hatten. Mit diesen Konstrukten wurden kinetische Studien durchgeführt, um ein Gesamtbild von deren ATPase-Aktivität und Prozessivität zu bekommen. Da ähnliche Studien an dem homologen Drosophila Kinesin durchgeführt worden waren, war ein direkter Vergleich zu diesen Vertretern der Tierkinesine möglich. (ii) Um den Beitrag der einzelnen Domänen zur hohen Geschwindigkeit von NcKin zu ermitteln, wurden in einem zweiten Teil der vorliegenden Arbeit gezielt NcKin Domänen in die entsprechenden Bereiche des humanen Kinesins eingeführt, und die entstandenen Chimären auf einen Geschwindigkeitszuwachs getestet.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
1.Die A1-ATPase-Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG wurden in den Fusionsvektor pMal-c2 kloniert und in Escherichia coli exprimiert.Die Fusionsproteine wurden aus dem Zellextrakt isoliert und zur Immunisierung von Kaninchen eingesetzt.Die spezifischen Antiseren gegen die A1-ATPase- Untereinheiten AhaA,AhaB,AhaC,AhaE und AhaF wurden für die Studien dieser Arbeit eingesetzt. 2.Die für die hydrophile Domäne der A1-ATPase kodierenden Gene ahaE, ahaC, ahaF, ahaA, ahaB, ahaD und ahaG des methanogenen Archäons Methanosarcina mazei Gö1 wurden in den Überexpressionsvektor pGEM-4Z hinter die lac und T7-Promotoren kloniert.Dieses Konstrukt wurde pTL2 genannt.pTL2 enthält zusätzlich 162 Bp stromaufwärts von ahaE 3.Die auf pTL2 lokalisierten Gene wurden heterolog in E. coli DK8 exprimiert und die A1-ATPase funktionell synthetisiert.Die spezifische ATPase-Aktivität im zellfreien Extrakt von E. coli DK8 (pSÖ1)betrug 186 mU/mg Protein.Die Synthese der A1-ATPase-Untereinheiten AhaA,AhaB,AhaC und AhaF konnte nachgewiesen werden.AhaE und AhaG konnten nicht detektiert werden. 4.Die A1-ATPase wurde aus dem Zellextrakt von E. coli DK8 (pTL2)über Ultra- zentrifugation,Ammoniumsulfatfällung,Gelfiltration an BioPrep SE 1000/17, Ionenaustauschchromatographie an BioScale DEAE und einer zweiten Gelfiltration an Sephacryl S-300 HR bis zur apparenten Homogenität gereinigt. 5.Das gereinigte Enzym wies eine molekulare Masse von 355 kDa auf und setzte sich aus 5 verschiedenen Untereinheiten zusammen.Die einzelnen Untereinheiten AhaA (65 kDa),AhaB (55 kDa),AhaC (41 kDa),AhaD (28 kDa)und AhaF (9 kDa)wurden mittels N-terminaler Sequenzierung identifiziert und wiesen im ATPase-Komplex eine Stöchiometrie von A3B3CDF auf.AhaE und AhaG waren nicht im Komplex enthalten. 6.Der ATPase-Testpuffer wurde für die heterolog exprimierte A1-ATPase optimiert (50 mM MES-HCl,40 mM Na-Acetat,30 mM NaHSO3,8 mM MgSO4,4 mM ATP,pH 5,2).Na-Acetat und Sulfit stimulieren die A1-A7.Die gereinigte A1-ATPase aus M. mazei Gö1 hydrolysierte Mg-ATP (im Verhältnis 2:1)als bevorzugtes Substrat mit einem V von 13 ± 3 U/mg Protein und einem K von 1,3 ± 0,3 mM für ATP. 8.DES,Hexestrol und Dienestrol wurden als spezifische Inhibitoren der archäellen A1-ATPase identifiziert.Die I Werte dieser Hemmstoffe betrugen 5 µmol Hexestrol/mg Protein,3 µmol DES/mg Protein und 6 µmol Dienestrol/mg Protein. 9.Quervernetzungsexperimente konnten belegen,dass die Kopien der Untereinheit AhaA in direkter Nachbarschaft zueinander stehen.Dies trifft auch für die Kopien der Untereinheit AhaB und für die Untereinheiten AhaA und AhaB untereinander zu.Zudem konnte eine direkte Nachbarschaft der Untereinheiten AhaA und AhaD festgestellt werden. 10.Die A1-ATPase besitzt eine dreifache Achsensymmetrie.Der Kopfteil der A1-ATPase ist hexagonal geformt und setzt sich aus sechs peripheren und einer zentralen Masse zusammen. 11.Die über Röntgenkleinwinkelstreuung ermittelten Dimensionen der A1-ATPase sind:Gesamtlänge =17,8 nm,Länge Kopfteil =9,4 nm,Stiellänge =8,4 nm, Stieldurchmesser =6 nm,Kopfdurchmesser (variabel,abhängig vom Substrat)= 10,06 nm,Kopfradius (variabel,abhängig vom Substrat)=5,03 nm. TPase,wohingegen sich alkoholische Lösungsmittel die ATPase-Aktivität hemmten.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Im Rahmen der vorliegenden Arbeit wurden verschiedene Aspekte der Qualitätskontrolle von Proteinen in Mitochondrien untersucht. Die Themengebiete umfaßten die Identifizierung und Charakterisierung neuer mitochondrialer Chaperonine und AAA-Proteasen sowie Struktur- Funktionsanalysen an der i-AAA-Protease aus S. cerevisiae. (1) Tcm62 aus S. cerevisiae weist eine geringe, aber signifikante Sequenzähnlichkeit zu Chaperoninen der Klasse I (z. B. GroEL aus E. coli oder Hsp60 aus Mitochondrien von S. cerevisiae) auf. Die im Rahmen der vorliegenden Arbeit durchgeführten funktionellen Untersuchungen belegen, daß Tcm62 ein neues, in der mitochondrialen Matrix lokalisiertes molekulares Chaperon darstellt. Wie andere Chaperonine bildet es einen hochmolekularen Komplex von ~850 kDa. Tcm62 übt unter Hitzestreß essentielle Funktionen in der Zelle aus. Der Verlust von TCM62 führt bei erhöhten Temperaturen zu einer Wachstumshemmung der Zellen auf nichtfermentierbaren Kohlenstoffquellen. Unter diesen Bedingungen ist Tcm62 essentiell für die Aufrechterhaltung der mitochondrialen Proteinsynthese und damit für die Synthese mitochondrial kodierter Untereinheiten der Atmungskettenkomplexe. In Übereinstimmung mit einer Chaperonaktivität von Tcm62 wird das Protein darüber hinaus für die Unterdrückung der Aggregation des ribosomalen Proteins Var1 bei erhöhten Temperaturen benötigt. (2) Es wurden zwei neue Vertreter der Familie der AAA-Proteasen, MAP-1 (für matrix-AAA-protease; auch m-AAA-Protease) und IAP-1 (für intermembranespace AAA-protease; auch i-AAA) im Fadenpilz N. crassa identifiziert und charakterisiert. Die entsprechenden Gene wurden unter Verwendung von DNA-Sequenzfragmenten, die aufgrund einer ESTDatenbank bekannt waren bzw. durch experimentelles Absuchen des Genoms von N. crassa mit Hilfe der PCR-Technik und degenerierter Primer erhalten. AAA-Proteasen wurden bislang in S. cerevisiae funktionell charakterisiert. Die Identifizierung neuer Vertreter dieser Proteasenfamilie in N. crassa ermöglichte erstmalig einen Vergleich der Funktionen in unterschiedlichen Organismen. Dabei ergaben sich konservierte Eigenschaften, jedoch auch funktionelle Unterschiede zwischen den orthologen Proteinen. Biochemische Analysen zeigten, daß AAA-Proteasen aus N. crassa, ebenso wie diejenigen aus S. cerevisiae, hochmolekulare Komplexe mit ähnlichen Molekulargewichten in der mitochondrialen Innenmembran bilden. Von besonderer Bedeutung ist die Konservierung der Membrantopologie mitochondrialer AAA-Proteasen, die in beiden Organismen ihre katalytischen Domänen auf gegenüberliegenden Seiten der Membran exponieren. Untersuchungen an Modellproteinen weisen darauf hin, daß eine effiziente Qualitätskontrolle von Innenmembranproteinen die Anwesenheit von AAA-Proteasen auf beiden Membranseiten erfordert. Eine Phänotypanalyse eines N. crassa-Stamms, indem das iap-1-Gen disruptiert wurde, ergab Hinweise auf funktionelle Unterschiede zwischen i-AAA-Proteasen aus S. cerevisiae (Yme1) und N. crassa (IAP-1). In beiden Organismen führt zwar die Abwesenheit der i-AAA-Protease zu einer Hemmung des Zellwachstums auf nicht fermentierbaren Kohlenstoffen unter Hitzestreß. Ein kältesensitives Wachstum oder eine Veränderung der mitochondrialen Morphologie, wie sie für die Disruption der i-AAA-Protease aus S. cerevisiae beschrieben ist, wurde allerdings in iap-1-defizienten N. crassa-Hyphen nicht beobachtet. Die in S. cerevisiae durchgeführten Komplementationsversuche belegen überlappende, jedoch nicht identische Funktionen der i-AAA-Proteasen in beiden Organismen. Durch die Expression von IAP-1 in S. cerevisiae-Zellen mit deletierten YME1-Gen, wurden lediglich das reduzierte Wachstum dieses Stamms bei 15°C und, zumindest teilweise, der Morphologiedefekte der Mitochondrien unterdrückt. IAP-1 konnte jedoch nicht wichtige Funktionen von Yme1 bei 37°C übernehmen. Dennoch kann aufgrund dieser Befunde IAP-1 als das Ortholog der AAA-Protease Yme1 bezeichnet werden. (3) Um einen weiteren Einblick in den Funktionsmechanismus der AAAProteasen zu erlangen, wurde die Oligomerisierung der i-AAA-Protease aus S. cerevisiae näher untersucht. Dabei zeigten am isolierten Proteasekomplex durchgeführte Studien eine essentielle Funktion der Oligomerisierung für die ATPase-Aktivität der AAA-Protease. Darüber hinaus wurde mit Hilfe von Deletionsanalysen die aminoterminale, in der Matrix lokalisierte Region von Yme1 als eine für die Assemblierung wichtige Domäne identifiziert. Der Verlust dieser nur gering konservierten Domäne bedingt eine teilweisen Inaktivierung der i-AAA-Protease in vivo.