Machine Learning Guide

Follow Machine Learning Guide
Share on
Copy link to clipboard

Teaches the high level fundamentals of machine learning and artificial intelligence. I teach basic intuition, algorithms, and math. I discuss languages and frameworks, deep learning, and more. Audio may seem inferior, but it's a great supplement during exercise/commute/chores. Where your other resou…

OCDevel


    • May 30, 2025 LATEST EPISODE
    • monthly NEW EPISODES
    • 37m AVG DURATION
    • 61 EPISODES
    • 1 SEASONS

    4.9 from 734 ratings Listeners of Machine Learning Guide that love the show mention: machine learning, ml, coursera, thank you tyler, tyler's, nlp, repetition, great real, math, complement, engineering, supplement, overview, scientist, programming, high level, also appreciate, concepts, computer, beginners.



    Search for episodes from Machine Learning Guide with a specific topic:

    Latest episodes from Machine Learning Guide

    MLG 036 Autoencoders

    Play Episode Listen Later May 30, 2025 65:55


    Auto encoders are neural networks that compress data into a smaller "code," enabling dimensionality reduction, data cleaning, and lossy compression by reconstructing original inputs from this code. Advanced auto encoder types, such as denoising, sparse, and variational auto encoders, extend these concepts for applications in generative modeling, interpretability, and synthetic data generation. Links Notes and resources at ocdevel.com/mlg/36 Try a walking desk - stay healthy & sharp while you learn & code Build the future of multi-agent software with AGNTCY. Thanks to T.J. Wilder from intrep.io for recording this episode! Fundamentals of Autoencoders Autoencoders are neural networks designed to reconstruct their input data by passing data through a compressed intermediate representation called a “code.” The architecture typically follows an hourglass shape: a wide input and output separated by a narrower bottleneck layer that enforces information compression. The encoder compresses input data into the code, while the decoder reconstructs the original input from this code. Comparison with Supervised Learning Unlike traditional supervised learning, where the output differs from the input (e.g., image classification), autoencoders use the same vector for both input and output. Use Cases: Dimensionality Reduction and Representation Autoencoders perform dimensionality reduction by learning compressed forms of high-dimensional data, making it easier to visualize and process data with many features. The compressed code can be used for clustering, visualization in 2D or 3D graphs, and input into subsequent machine learning models, saving computational resources and improving scalability. Feature Learning and Embeddings Autoencoders enable feature learning by extracting abstract representations from the input data, similar in concept to learned embeddings in large language models (LLMs). While effective for many data types, autoencoder-based encodings are less suited for variable-length text compared to LLM embeddings. Data Search, Clustering, and Compression By reducing dimensionality, autoencoders facilitate vector searches, efficient clustering, and similarity retrieval. The compressed codes enable lossy compression analogous to audio codecs like MP3, with the difference that autoencoders lack domain-specific optimizations for preserving perceptually important data. Reconstruction Fidelity and Loss Types Loss functions in autoencoders are defined to compare reconstructed outputs to original inputs, often using different loss types depending on input variable types (e.g., Boolean vs. continuous). Compression via autoencoders is typically lossy, meaning some information from the input is lost during reconstruction, and the areas of information lost may not be easily controlled. Outlier Detection and Noise Reduction Since reconstruction errors tend to move data toward the mean, autoencoders can be used to reduce noise and identify data outliers. Large reconstruction errors can signal atypical or outlier samples in the dataset. Denoising Autoencoders Denoising autoencoders are trained to reconstruct clean data from noisy inputs, making them valuable for applications in image and audio de-noising as well as signal smoothing. Iterative denoising as a principle forms the basis for diffusion models, where repeated application of a denoising autoencoder can gradually turn random noise into structured output. Data Imputation Autoencoders can aid in data imputation by filling in missing values: training on complete records and reconstructing missing entries for incomplete records using learned code representations. This approach leverages the model's propensity to output ‘plausible' values learned from overall data structure. Cryptographic Analogy The separation of encoding and decoding can draw parallels to encryption and decryption, though autoencoders are not intended or suitable for secure communication due to their inherent lossiness. Advanced Architectures: Sparse and Overcomplete Autoencoders Sparse autoencoders use constraints to encourage code representations with only a few active values, increasing interpretability and explainability. Overcomplete autoencoders have a code size larger than the input, often in applications that require extraction of distinct, interpretable features from complex model states. Interpretability and Research Example Research such as Anthropic's “Towards Monosemanticity” applies sparse autoencoders to the internal activations of language models to identify interpretable features correlated with concrete linguistic or semantic concepts. These models can be used to monitor and potentially control model behaviors (e.g., detecting specific language usage or enforcing safety constraints) by manipulating feature activations. Variational Autoencoders (VAEs) VAEs extend autoencoder architecture by encoding inputs as distributions (means and standard deviations) instead of point values, enforcing a continuous, normalized code space. Decoding from sampled points within this space enables synthetic data generation, as any point near the center of the code space corresponds to plausible data according to the model. VAEs for Synthetic Data and Rare Event Amplification VAEs are powerful in domains with sparse data or rare events (e.g., healthcare), allowing generation of synthetic samples representing underrepresented cases. They can increase model performance by augmenting datasets without requiring changes to existing model pipelines. Conditional Generative Techniques Conditional autoencoders extend VAEs by allowing controlled generation based on specified conditions (e.g., generating a house with a pool), through additional decoder inputs and conditional loss terms. Practical Considerations and Limitations Training autoencoders and their variants requires computational resources, and their stochastic training can produce differing code representations across runs. Lossy reconstruction, lack of domain-specific optimizations, and limited code interpretability restrict some use cases, particularly where exact data preservation or meaningful decompositions are required.

    MLG 035 Large Language Models 2

    Play Episode Listen Later May 8, 2025 45:25


    At inference, large language models use in-context learning with zero-, one-, or few-shot examples to perform new tasks without weight updates, and can be grounded with Retrieval Augmented Generation (RAG) by embedding documents into vector databases for real-time factual lookup using cosine similarity. LLM agents autonomously plan, act, and use external tools via orchestrated loops with persistent memory, while recent benchmarks like GPQA (STEM reasoning), SWE Bench (agentic coding), and MMMU (multimodal college-level tasks) test performance alongside prompt engineering techniques such as chain-of-thought reasoning, structured few-shot prompts, positive instruction framing, and iterative self-correction. Links Notes and resources at ocdevel.com/mlg/mlg35 Build the future of multi-agent software with AGNTCY Try a walking desk stay healthy & sharp while you learn & code In-Context Learning (ICL) Definition: LLMs can perform tasks by learning from examples provided directly in the prompt without updating their parameters. Types: Zero-shot: Direct query, no examples provided. One-shot: Single example provided. Few-shot: Multiple examples, balancing quantity with context window limitations. Mechanism: ICL works through analogy and Bayesian inference, using examples as semantic priors to activate relevant internal representations. Emergent Properties: ICL is an "inference-time training" approach, leveraging the model's pre-trained knowledge without gradient updates; its effectiveness can be enhanced with diverse, non-redundant examples. Retrieval Augmented Generation (RAG) and Grounding Grounding: Connecting LLMs with external knowledge bases to supplement or update static training data. Motivation: LLMs' training data becomes outdated or lacks proprietary/specialized knowledge. Benefit: Reduces hallucinations and improves factual accuracy by incorporating current or domain-specific information. RAG Workflow: Embedding: Documents are converted into vector embeddings (using sentence transformers or representation models). Storage: Vectors are stored in a vector database (e.g., FAISS, ChromaDB, Qdrant). Retrieval: When a query is made, relevant chunks are extracted based on similarity, possibly with re-ranking or additional query processing. Augmentation: Retrieved chunks are added to the prompt to provide up-to-date context for generation. Generation: The LLM generates responses informed by the augmented context. Advanced RAG: Includes agentic approaches—self-correction, aggregation, or multi-agent contribution to source ingestion, and can integrate external document sources (e.g., web search for real-time info, or custom datasets for private knowledge). LLM Agents Overview: Agents extend LLMs by providing goal-oriented, iterative problem-solving through interaction, memory, planning, and tool usage. Key Components: Reasoning Engine (LLM Core): Interprets goals, states, and makes decisions. Planning Module: Breaks down complex tasks using strategies such as Chain of Thought or ReAct; can incorporate reflection and adjustment. Memory: Short-term via context window; long-term via persistent storage like RAG-integrated databases or special memory systems. Tools and APIs: Agents select and use external functions—file manipulation, browser control, code execution, database queries, or invoking smaller/fine-tuned models. Capabilities: Support self-evaluation, correction, and multi-step planning; allow integration with other agents (multi-agent systems); face limitations in memory continuity, adaptivity, and controllability. Current Trends: Research and development are shifting toward these agentic paradigms as LLM core scaling saturates. Multimodal Large Language Models (MLLMs) Definition: Models capable of ingesting and generating across different modalities (text, image, audio, video). Architecture: Modality-Specific Encoders: Convert raw modalities (text, image, audio) into numeric embeddings (e.g., vision transformers for images). Fusion/Alignment Layer: Embeddings from different modalities are projected into a shared space, often via cross-attention or concatenation, allowing the model to jointly reason about their content. Unified Transformer Backbone: Processes fused embeddings to allow cross-modal reasoning and generates outputs in the required format. Recent Advances: Unified architectures (e.g., GPT-4o) use a single model for all modalities rather than switching between separate sub-models. Functionality: Enables actions such as image analysis via text prompts, visual Q&A, and integrated speech recognition/generation. Advanced LLM Architectures and Training Directions Predictive Abstract Representation: Incorporating latent concept prediction alongside token prediction (e.g., via autoencoders). Patch-Level Training: Predicting larger “patches” of tokens to reduce sequence lengths and computation. Concept-Centric Modeling: Moving from next-token prediction to predicting sequences of semantic concepts (e.g., Meta's Large Concept Model). Multi-Token Prediction: Training models to predict multiple future tokens for broader context capture. Evaluation Benchmarks (as of 2025) Key Benchmarks Used for LLM Evaluation: GPQA (Diamond): Graduate-level STEM reasoning. SWE Bench Verified: Real-world software engineering, verifying agentic code abilities. MMMU: Multimodal, college-level cross-disciplinary reasoning. HumanEval: Python coding correctness. HLE (Human's Last Exam): Extremely challenging, multimodal knowledge assessment. LiveCodeBench: Coding with contamination-free, up-to-date problems. MLPerf Inference v5.0 Long Context: Throughput/latency for processing long contexts. MultiChallenge Conversational AI: Multiturn dialogue, in-context reasoning. TAUBench/PFCL: Tool utilization in agentic tasks. TruthfulnessQA: Measures tendency toward factual accuracy/robustness against misinformation. Prompt Engineering: High-Impact Techniques Foundational Approaches: Few-Shot Prompting: Provide pairs of inputs and desired outputs to steer the LLM. Chain of Thought: Instructing the LLM to think step-by-step, either explicitly or through internal self-reprompting, enhances reasoning and output quality. Clarity and Structure: Use clear, detailed, and structured instructions—task definition, context, constraints, output format, use of delimiters or markdown structuring. Affirmative Directives: Phrase instructions positively (“write a concise summary” instead of “don't write a long summary”). Iterative Self-Refinement: Prompt the LLM to review and improve its prior response for better completeness, clarity, and factuality. System Prompt/Role Assignment: Assign a persona or role to the LLM for tailored behavior (e.g., “You are an expert Python programmer”). Guideline: Regularly consult official prompting guides from model developers as model capabilities evolve. Trends and Research Outlook Inference-time compute is increasingly important for pushing the boundaries of LLM task performance. Agentic LLMs and multimodal reasoning represent the primary frontiers for innovation. Prompt engineering and benchmarking remain essential for extracting optimal performance and assessing progress. Models are expected to continue evolving with research into new architectures, memory systems, and integration techniques.

    MLG 034 Large Language Models 1

    Play Episode Listen Later May 7, 2025 50:48


    Explains language models (LLMs) advancements. Scaling laws - the relationships among model size, data size, and compute - and how emergent abilities such as in-context learning, multi-step reasoning, and instruction following arise once certain scaling thresholds are crossed. The evolution of the transformer architecture with Mixture of Experts (MoE), describes the three-phase training process culminating in Reinforcement Learning from Human Feedback (RLHF) for model alignment, and explores advanced reasoning techniques such as chain-of-thought prompting which significantly improve complex task performance. Links Notes and resources at ocdevel.com/mlg/mlg34 Build the future of multi-agent software with AGNTCY Try a walking desk stay healthy & sharp while you learn & code Transformer Foundations and Scaling Laws Transformers: Introduced by the 2017 "Attention is All You Need" paper, transformers allow for parallel training and inference of sequences using self-attention, in contrast to the sequential nature of RNNs. Scaling Laws: Empirical research revealed that LLM performance improves predictably as model size (parameters), data size (training tokens), and compute are increased together, with diminishing returns if only one variable is scaled disproportionately. The "Chinchilla scaling law" (DeepMind, 2022) established the optimal model/data/compute ratio for efficient model performance: earlier large models like GPT-3 were undertrained relative to their size, whereas right-sized models with more training data (e.g., Chinchilla, LLaMA series) proved more compute and inference efficient. Emergent Abilities in LLMs Emergence: When trained beyond a certain scale, LLMs display abilities not present in smaller models, including: In-Context Learning (ICL): Performing new tasks based solely on prompt examples at inference time. Instruction Following: Executing natural language tasks not seen during training. Multi-Step Reasoning & Chain of Thought (CoT): Solving arithmetic, logic, or symbolic reasoning by generating intermediate reasoning steps. Discontinuity & Debate: These abilities appear abruptly in larger models, though recent research suggests that this could result from non-linearities in evaluation metrics rather than innate model properties. Architectural Evolutions: Mixture of Experts (MoE) MoE Layers: Modern LLMs often replace standard feed-forward layers with MoE structures. Composed of many independent "expert" networks specializing in different subdomains or latent structures. A gating network routes tokens to the most relevant experts per input, activating only a subset of parameters—this is called "sparse activation." Enables much larger overall models without proportional increases in compute per inference, but requires the entire model in memory and introduces new challenges like load balancing and communication overhead. Specialization & Efficiency: Experts learn different data/knowledge types, boosting model specialization and throughput, though care is needed to avoid overfitting and underutilization of specialists. The Three-Phase Training Process 1. Unsupervised Pre-Training: Next-token prediction on massive datasets—builds a foundation model capturing general language patterns. 2. Supervised Fine Tuning (SFT): Training on labeled prompt-response pairs to teach the model how to perform specific tasks (e.g., question answering, summarization, code generation). Overfitting and "catastrophic forgetting" are risks if not carefully managed. 3. Reinforcement Learning from Human Feedback (RLHF): Collects human preference data by generating multiple responses to prompts and then having annotators rank them. Builds a reward model (often PPO) based on these rankings, then updates the LLM to maximize alignment with human preferences (helpfulness, harmlessness, truthfulness). Introduces complexity and risk of reward hacking (specification gaming), where the model may exploit the reward system in unanticipated ways. Advanced Reasoning Techniques Prompt Engineering: The art/science of crafting prompts that elicit better model responses, shown to dramatically affect model output quality. Chain of Thought (CoT) Prompting: Guides models to elaborate step-by-step reasoning before arriving at final answers—demonstrably improves results on complex tasks. Variants include zero-shot CoT ("let's think step by step"), few-shot CoT with worked examples, self-consistency (voting among multiple reasoning chains), and Tree of Thought (explores multiple reasoning branches in parallel). Automated Reasoning Optimization: Frontier models selectively apply these advanced reasoning techniques, balancing compute costs with gains in accuracy and transparency. Optimization for Training and Inference Tradeoffs: The optimal balance between model size, data, and compute is determined not only for pretraining but also for inference efficiency, as lifetime inference costs may exceed initial training costs. Current Trends: Efficient scaling, model specialization (MoE), careful fine-tuning, RLHF alignment, and automated reasoning techniques define state-of-the-art LLM development.

    MLA 024 Code AI MCP Servers, ML Engineering

    Play Episode Listen Later Apr 13, 2025 43:38


    Tool Use and Model Context Protocol (MCP) Notes and resources at  ocdevel.com/mlg/mla-24 Try a walking desk to stay healthy while you study or work! Tool Use in Vibe Coding Agents File Operations: Agents can read, edit, and search files using sophisticated regular expressions. Executable Commands: They can recommend and perform installations like pip or npm installs, with user approval. Browser Integration: Allows agents to perform actions and verify outcomes through browser interactions. Model Context Protocol (MCP) Standardization: MCP was created by Anthropic to standardize how AI tools and agents communicate with each other and with external tools. Implementation: MCP Client: Converts AI agent requests into structured commands. MCP Server: Executes commands and sends structured responses back to the client. Local and Cloud Frameworks: Local (S-T-D-I-O MCP): Examples include utilizing Playwright for local browser automation and connecting to local databases like Postgres. Cloud (SSE MCP): SaaS providers offer cloud-hosted MCPs to enhance external integrations. Expanding AI Capabilities with MCP Servers Directories: Various directories exist listing MCP servers for diverse functions beyond programming. modelcontextprotocol/servers Use Cases: Automation Beyond Coding: Implementing MCPs that extend automation into non-programming tasks like sales, marketing, or personal project management. Creative Solutions: Encourages innovation in automating routine tasks by integrating diverse MCP functionalities. AI Tools in Machine Learning Automating ML Process: Auto ML and Feature Engineering: AI tools assist in transforming raw data, optimizing hyperparameters, and inventing new ML solutions. Pipeline Construction and Deployment: Facilitates the use of infrastructure as code for deploying ML models efficiently. Active Experimentation: Jupyter Integration Challenges: While integrations are possible, they often lag and may not support the latest models. Practical Strategies: Suggests alternating between Jupyter and traditional Python files to maximize tool efficiency. Conclusion Action Plan for ML Engineers: Setup structured folders and documentation to leverage AI tools effectively. Encourage systematic exploration of MCPs to enhance both direct programming tasks and associated workflows.

    MLA 023 Code AI Models & Modes

    Play Episode Listen Later Apr 13, 2025 37:35


    Notes and resources at  ocdevel.com/mlg/mla-23 Try a walking desk to stay healthy while you study or work! Model Current Leaders According to the Aider Leaderboard (as of April 12, 2025), leading models include for vibe-coding: Gemini 2.5 Pro Preview 03-25: most accurate and cost-effective option currently. Claude 3.7 Sonnet: Performs well in both architect and code modes with enabled reasoning flags. DeepSeek R1 with Claude 3.5 Sonnet: A popular combination for its balance of cost and performance between reasoning and non-reasoning tasks. Local Models Tools for Local Models: Ollama is the standard tool to manage local models, enabling usage without internet connectivity. Privacy and Security: Utilizing local models enhances data security, suitable for sensitive projects or corporate environments that require data to remain onsite. Performance Trade-offs: Local models, due to distillation and size constraints, often perform slightly worse than cloud-hosted models but offer privacy benefits. Fine-Tuning Models Customization: Developers can fine-tune pre-trained models to specialize them for their specific codebase, enhancing relevance and accuracy. Advanced Usage: Suitable for long-term projects, fine-tuning helps models understand unique aspects of a project, resulting in consistent code quality improvements. Tips and Best Practices Judicious Use of the @ Key: Improves model efficiency by specifying the context of commands, reducing the necessity for AI-initiated searches. Examples include specifying file paths, URLs, or git commits to inform AI actions more precisely. Concurrent Feature Implementation: Leverage tools like Boomerang mode to manage multiple features simultaneously, acting more as a manager overseeing several tasks at once, enhancing productivity. Continued Learning: Staying updated with documentation, particularly Roo Code's, due to its comprehensive feature set and versatility among AI coding tools.

    MLA 022 Code AI Tools

    Play Episode Listen Later Feb 9, 2025 46:35


    Try a walking desk while studying ML or working on your projects! https://ocdevel.com/walk Show notes: https://ocdevel.com/mlg/mla-22 Tools discussed: Windsurf: https://codeium.com/windsurf Copilot: https://github.com/features/copilot Cursor: https://www.cursor.com/ Cline: https://github.com/cline/cline Roo Code: https://github.com/RooVetGit/Roo-Code Aider: https://aider.chat/ Other: Leaderboards: https://aider.chat/docs/leaderboards/ Video of speed-demon: https://www.youtube.com/watch?v=QlUt06XLbJE&feature=youtu.be Reddit: https://www.reddit.com/r/chatgptcoding/ Examines the rapidly evolving world of AI coding tools designed to boost programming productivity by acting as a pair programming partner. The discussion groups these tools into three categories: • Hands-Off Tools: These include solutions that work on fixed monthly fees and require minimal user intervention. GitHub Copilot started with simple tab completions and now offers an agent mode similar to Cursor, which stands out for its advanced codebase indexing and intelligent file searching. Windsurf is noted for its simplicity—accepting prompts and performing automated edits—but some users report performance throttling after prolonged use. • Hands-On Tools: Aider is presented as a command-line utility that demands configuration and user involvement. It allows developers to specify files and settings, and it efficiently manages token usage by sending prompts in diff format. Aider also implements an “architect versus edit” approach: a reasoning model (such as DeepSeek R1) first outlines a sequence of changes, then an editor model (like Claude 3.5 Sonnet) produces precise code edits. This dual-model strategy enhances accuracy and reduces token costs, especially for complex tasks. • Intermediate Power Tools: Open-source tools such as Cline and its more advanced fork, RooCode, require users to supply their own API keys and pay per token. These tools offer robust, agentic features, including codebase indexing, file editing, and even browser automation. RooCode stands out with its ability to autonomously expand functionality through integrations (for example, managing cloud resources or querying issue trackers), making it particularly attractive for tinkerers and power users. A decision framework is suggested: for those new to AI coding assistants or with limited budgets, starting with Cursor (or cautiously exploring Copilot's new features) is recommended. For developers who want to customize their workflow and dive deep into the tooling, RooCode or Cline offer greater control—always paired with Aider for precise and token-efficient code edits. Also reviews model performance using a coding benchmark leaderboard that updates frequently. The current top-performing combination uses DeepSeek R1 as the architect and Claude 3.5 Sonnet as the editor, with alternatives such as OpenAI's O1 and O3 Mini available. Tools like Open Router are mentioned as a way to consolidate API key management and reduce token costs.

    MLG 033 Transformers

    Play Episode Listen Later Feb 9, 2025 42:14


    Try a walking desk while studying ML or working on your projects! 3Blue1Brown videos Background & Motivation: RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware. Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability. Core Architecture: Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped in residual connections and layer normalization. Positional Encodings: Since self-attention is permutation invariant, add sinusoidal or learned positional embeddings to inject sequence order. Self-Attention Mechanism: Q, K, V Explained: Query (Q): The representation of the token seeking contextual info. Key (K): The representation of tokens being compared against. Value (V): The information to be aggregated based on the attention scores. Multi-Head Attention: Splits Q, K, V into multiple “heads” to capture diverse relationships and nuances across different subspaces. Dot-Product & Scaling: Computes similarity between Q and K (scaled to avoid large gradients), then applies softmax to weigh V accordingly. Masking: Causal Masking: In autoregressive models, prevents a token from “seeing” future tokens, ensuring proper generation. Padding Masks: Ignore padded (non-informative) parts of sequences to maintain meaningful attention distributions. Feed-Forward Networks (MLPs): Transformation & Storage: Post-attention MLPs apply non-linear transformations; many argue they're where the “facts” or learned knowledge really get stored. Depth & Expressivity: Their layered nature deepens the model's capacity to represent complex patterns. Residual Connections & Normalization: Residual Links: Crucial for gradient flow in deep architectures, preventing vanishing/exploding gradients. Layer Normalization: Stabilizes training by normalizing across features, enhancing convergence. Scalability & Efficiency Considerations: Parallelization Advantage: Entire architecture is designed to exploit modern parallel hardware, a huge win over RNNs. Complexity Trade-offs: Self-attention's quadratic complexity with sequence length remains a challenge; spurred innovations like sparse or linearized attention. Training Paradigms & Emergent Properties: Pretraining & Fine-Tuning: Massive self-supervised pretraining on diverse data, followed by task-specific fine-tuning, is the norm. Emergent Behavior: With scale comes abilities like in-context learning and few-shot adaptation, aspects that are still being unpacked. Interpretability & Knowledge Distribution: Distributed Representation: “Facts” aren't stored in a single layer but are embedded throughout both attention heads and MLP layers. Debate on Attention: While some see attention weights as interpretable, a growing view is that real “knowledge” is diffused across the network's parameters.

    MLA 021 Databricks

    Play Episode Listen Later Jun 22, 2022 25:45


    Discussing Databricks with Ming Chang from Raybeam (part of DEPT®)

    MLA 020 Kubeflow

    Play Episode Listen Later Jan 29, 2022 67:57


    Conversation with Dirk-Jan Kubeflow (vs cloud native solutions like SageMaker) Dirk-Jan Verdoorn - Data Scientist at Dept Agency Kubeflow. (From the website:) The Machine Learning Toolkit for Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes simple, portable and scalable. Our goal is not to recreate other services, but to provide a straightforward way to deploy best-of-breed open-source systems for ML to diverse infrastructures. Anywhere you are running Kubernetes, you should be able to run Kubeflow. TensorFlow Extended (TFX). If using TensorFlow with Kubeflow, combine with TFX for maximum power. (From the website:) TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines. When you're ready to move your models from research to production, use TFX to create and manage a production pipeline. Alternatives: Airflow MLflow

    MLA 019 DevOps

    Play Episode Listen Later Jan 13, 2022 74:38


    Chatting with co-workers about the role of DevOps in a machine learning engineer's life Expert coworkers at Dept Matt Merrill - Principal Software Developer Jirawat Uttayaya - DevOps Lead The Ship It Podcast (where Matt features often) Devops tools Terraform Ansible Pictures (funny and serious) Which AWS container service should I use? A visual guide on troubleshooting Kubernetes deployments Public Cloud Services Comparison Killed by Google aCloudGuru AWS curriculum

    MLA 018 Descript

    Play Episode Listen Later Nov 7, 2021 6:22


    (Optional episode) just showcasing a cool application using machine learning Dept uses Descript for some of their podcasting. I'm using it like a maniac, I think they're surprised at how into it I am. Check out the transcript & see how it performed. Descript The Ship It Podcast How to ship software, from the front lines. We talk with software developers about their craft, developer tools, developer productivity and what makes software development awesome. Hosted by your friends at Rocket Insights. AKA shipit.io Brandbeats Podcast by BASIC An agency podcast with views on design, technology, art, and culture. Explore the new microsite at www.brandbeats.basicagency.com

    MLA 017 AWS Local Development

    Play Episode Listen Later Nov 6, 2021 64:04


    Show notes: ocdevel.com/mlg/mla-17 Developing on AWS first (SageMaker or other) Consider developing against AWS as your local development environment, rather than only your cloud deployment environment. Solutions: Stick to AWS Cloud IDEs (Lambda, SageMaker Studio, Cloud9 Connect to deployed infrastructure via Client VPN Terraform example YouTube tutorial Creating the keys LocalStack Infrastructure as Code Terraform CDK Serverless

    MLA 016 SageMaker 2

    Play Episode Listen Later Nov 5, 2021 59:43


    Part 2 of deploying your ML models to the cloud with SageMaker (MLOps) MLOps is deploying your ML models to the cloud. See MadeWithML for an overview of tooling (also generally a great ML educational run-down.) SageMaker Jumpstart Deploy Pipelines Monitor Kubernetes Neo

    MLA 015 SageMaker 1

    Play Episode Listen Later Nov 4, 2021 46:46


    Show notes Part 1 of deploying your ML models to the cloud with SageMaker (MLOps) MLOps is deploying your ML models to the cloud. See MadeWithML for an overview of tooling (also generally a great ML educational run-down.) SageMaker DataWrangler Feature Store Ground Truth Clarify Studio AutoPilot Debugger Distributed Training And I forgot to mention JumpStart, I'll mention next time.

    MLA 014 Machine Learning Server

    Play Episode Listen Later Jan 18, 2021 51:50


    Server-side ML. Training & hosting for inference, with a goal towards serverless. AWS SageMaker, Batch, Lambda, EFS, Cortex.dev

    MLA 013 Customer Facing Tech Stack

    Play Episode Listen Later Jan 3, 2021 46:54


    MLA 012 Docker

    Play Episode Listen Later Nov 9, 2020 30:58


    Use Docker for env setup on localhost & cloud deployment, instead of pyenv / Anaconda. I recommend Windows for your desktop.

    032 Cartesian Similarity Metrics

    Play Episode Listen Later Nov 8, 2020 42:28


    Social media Gnothi and email me a screenshot/link for 3-month access to Machine Learning Applied; commit code to the Github repository for life-access. Normed distances link A norm is a function that assigns a strictly positive length to each vector in a vector space. link Minkowski is generalized. p_root(sum(xi-yi)^p). "p" = ? (1, 2, ..) for below. L1: Manhattan/city-block/taxicab. abs(x2-x1)+abs(y2-y1). Grid-like distance (triangle legs). Preferred for high-dim space. L2: Euclidean. sqrt((x2-x1)^2+(y2-y1)^2. sqrt(dot-product). Straight-line distance; min distance (Pythagorean triangle edge) Others: Mahalanobis, Chebyshev (p=inf), etc Dot product A type of inner product. Outer-product: lies outside the involved planes. Inner-product: dot product lies inside the planes/axes involved link. Dot product: inner product on a finite dimensional Euclidean space link Cosine (normalized dot)

    MLA 011 Practical Clustering

    Play Episode Listen Later Nov 8, 2020 34:08


    Kmeans (sklearn vs FAISS), finding n_clusters via inertia/silhouette, Agglomorative, DBSCAN/HDBSCAN

    MLA 010 NLP packages: transformers, spaCy, Gensim, NLTK

    Play Episode Listen Later Oct 28, 2020 25:33


    NLTK: swiss army knife. Gensim: LDA topic modeling, n-grams. spaCy: linguistics. transformers: high-level business NLP tasks.

    031 The Podcasts Return

    Play Episode Listen Later Oct 28, 2020 7:57


    The podcasts return with new content, especially about NLP: BERT, transformers, spaCy, Gensim, NLTK. Accompanied by a community project - Gnothi, a journal that uses AI to provide insights and resources. Website https://gnothiai.com, project https://github.com/lefnire/gnothi. Share the website on social media and email me a link/screenshot for free access to Machine Learning Applied for 3 months; contribute to the Github repository for free access for life.

    MLA 009 Charting tools

    Play Episode Listen Later Nov 6, 2018 24:00


    matplotlib, Seaborn, Bokeh, D3, Tableau, Power BI, QlikView, Excel

    MLA 008 Exploratory Data Analysis

    Play Episode Listen Later Oct 26, 2018 24:23


    EDA + charting. DataFrame info/describe, imputing strategies. Useful charts like histograms and correlation matrices.

    MLA 007 Jupyter Notebooks

    Play Episode Listen Later Oct 16, 2018 16:09


    Run your code + visualizations in the browser: iPython / Jupyter Notebooks.

    MLA 006 Salary

    Play Episode Listen Later Jul 19, 2018 18:52


    Salary based on location, gender, age, tech... from O'Reilly.

    MLA 005 Shapes & Sizes

    Play Episode Listen Later Jun 9, 2018 26:30


    Dimensions, size, and shape of Numpy ndarrays / TensorFlow tensors, and methods for transforming those.

    MLA 004 Study Tips

    Play Episode Listen Later May 28, 2018 6:45


    Two tips that helped me the most while learning ML.

    030 New Series: Machine Learning Applied

    Play Episode Listen Later May 24, 2018 5:29


    MLG: I'm rebooting this series to fix mistakes & add more shallows (Bayesian methods, Tree methods, etc). I'm adding Patreon rewards, including access to a new podcast series: Machine Learning Applied, discussing applied/practical 10-20m frequent episodes. ocdevel.com/mlg/30 for notes and resources

    MLA 003 Storage: HDF, Pickle, Postgres

    Play Episode Listen Later May 24, 2018 17:02


    Comparison of different data storage options when working with your ML models.

    MLA 002 Numpy & Pandas

    Play Episode Listen Later May 24, 2018 17:26


    MLA 001 Certificates & Degrees

    Play Episode Listen Later May 24, 2018 11:20


    Reboot on the MLG episode, with more confident recommends.

    029 Reinforcement Learning Intro

    Play Episode Listen Later Feb 5, 2018 42:27


    Introduction to reinforcement learning concepts. ocdevel.com/mlg/29 for notes and resources.

    028 Hyperparameters 2

    Play Episode Listen Later Feb 4, 2018 50:10


    Hyperparameters part 2: hyper-search, regularization, SGD optimizers, scaling. ocdevel.com/mlg/28 for notes and resources

    027 Hyperparameters 1

    Play Episode Listen Later Jan 27, 2018 46:09


    Hyperparameters part 1: network architecture. ocdevel.com/mlg/27 for notes and resources

    026 Project Bitcoin Trader

    Play Episode Listen Later Jan 26, 2018 38:20


    Community project & intro to Bitcoin/crypto + trading. ocdevel.com/mlg/26 for notes and resources

    025 Convolutional Neural Networks

    Play Episode Listen Later Oct 30, 2017 44:21


    Convnets or CNNs. Filters, feature maps, window/stride/padding, max-pooling. ocdevel.com/mlg/25 for notes and resources

    024 Tech Stack

    Play Episode Listen Later Oct 6, 2017 61:17


    TensorFlow, Pandas, Numpy, Scikit-Learn, Keras, TensorForce. ocdevel.com/mlg/24 for notes and resources

    023 Deep NLP 2

    Play Episode Listen Later Aug 20, 2017 42:45


    RNN review, bi-directional RNNs, LSTM & GRU cells. ocdevel.com/mlg/23 for notes and resources

    022 Deep NLP 1

    Play Episode Listen Later Jul 28, 2017 49:21


    Recurrent Neural Networks (RNNs) and Word2Vec. ocdevel.com/mlg/22 for notes and resources

    021 New Series: Machine Learning Applied

    Play Episode Listen Later Jul 27, 2017 1:50


    Introducing a new podcast series on Patreon: Machine Learning Applied. ocdevel.com/mlg/21 for notes and resources

    020 Natural Language Processing 3

    Play Episode Listen Later Jul 23, 2017 40:26


    Natural Language Processing classical/shallow algorithms. ocdevel.com/mlg/20 for notes and resources

    019 Natural Language Processing 2

    Play Episode Listen Later Jul 10, 2017 65:33


    Natural Language Processing classical/shallow algorithms. ocdevel.com/mlg/19 for notes and resources

    018 Natural Language Processing 1

    Play Episode Listen Later Jun 25, 2017 57:48


    Introduction to Natural Language Processing (NLP) topics. ocdevel.com/mlg/18 for notes and resources

    017 Checkpoint

    Play Episode Listen Later Jun 4, 2017 7:00


    Checkpoint - learn the material offline! ocdevel.com/mlg/17 for notes and resources

    016 Consciousness

    Play Episode Listen Later May 21, 2017 73:45


    Can AI be conscious? ocdevel.com/mlg/16 for notes and resources

    015 Performance

    Play Episode Listen Later May 7, 2017 41:24


    Performance evaluation & improvement. ocdevel.com/mlg/15 for notes and resources

    014 Shallow Algos 3

    Play Episode Listen Later Apr 23, 2017 48:07


    Speed run of Anomaly Detection, Recommenders(Content Filtering vs Collaborative Filtering), and Markov Chain Monte Carlo (MCMC). ocdevel.com/mlg/14 for notes and resources

    013 Shallow Algos 2

    Play Episode Listen Later Apr 9, 2017 55:13


    Speed run of Support Vector Machines (SVMs) and Naive Bayes Classifier. ocdevel.com/mlg/13 for notes and resources

    012 Shallow Algos 1

    Play Episode Listen Later Mar 19, 2017 53:17


    Speed-run of some shallow algorithms: K Nearest Neighbors (KNN); K-means; Apriori; PCA; Decision Trees ocdevel.com/mlg/12 for notes and resources

    011 Checkpoint

    Play Episode Listen Later Mar 7, 2017 7:45


    Checkpoint - start learning the material offline! ocdevel.com/mlg/11 for notes and resources

    010 Languages & Frameworks

    Play Episode Listen Later Mar 6, 2017 44:17


    Languages & frameworks comparison. Languages: Python, R, MATLAB/Octave, Julia, Java/Scala, C/C++. Frameworks: Hadoop/Spark, Deeplearning4J, Theano, Torch, TensorFlow. ocdevel.com/mlg/10 for notes and resources

    Claim Machine Learning Guide

    In order to claim this podcast we'll send an email to with a verification link. Simply click the link and you will be able to edit tags, request a refresh, and other features to take control of your podcast page!

    Claim Cancel