POPULARITY
Prodcast: ПоиÑк работы в IT и переезд в СШÐ
В этом выпуске у меня в гостях Максим Цыганков — фаундер EasyVision и бывший senior product manager в VisionLabs и Яндекс Cloud. Переехав в США по туристической визе, Максим запустил стартап в области компьютерного зрения для ресторанов, привлек клиентов и инвестиции, оформил визу O-1 и начал масштабировать бизнес с нуля — без нетворка и без плана переезда заранее.Мы обсудили, как строится продукт и трекшн в B2B-стартапе с минимальными ресурсами, что сработало и не сработало в холодных рассылках и партнёрках, почему рестораны не спешат подключать камеры даже после согласия, и какова реальная стоимость и отдача от пилотных проектов. Разобрали путь привлечения первых $50 000 инвестиций и 3-х клиентов, особенности сбора кейса на визу O-1 от своего стартапа, роль адвайзеров, влияние паспорта и туристического статуса на шансы фаундера в США, а также обсудили разницу между ростом продукта и ростом продаж.Максим Цыганков (Max Tsygankov) - Founder at EasyVision (ex Senior Product Manager at Vision Labs & Yandex Cloud)LinkedIn: https://www.linkedin.com/in/tsygankovmaksim/Эпизоды по теме релокации для предпринимателей:Как бизнесмену и стартаперу переехать в США по визе таланта O1, EB1 - как открыть компанию и подать на себя петици. Дима Литвинов (Dreem Relocation) https://youtu.be/1k64mD6wLSUЭпизод с Данилом Кислинским - Как открыть бизнес (LLC, С-corp) в США и нанять себя? https://youtu.be/CP0PofO2WEI Статьи и публикации в СМИ для визы таланта O-1 и гринкарты EB-1, EB-2 NIW. Нисо Нигматуллина https://youtu.be/U2FCVmtYKa8 ***Записывайтесь на карьерную консультацию (резюме, LinkedIn, карьерная стратегия, поиск работы в США): https://annanaumova.comКоучинг (синдром самозванца, прокрастинация, неуверенность в себе, страхи, лень) https://annanaumova.notion.site/3f6ea5ce89694c93afb1156df3c903abОнлайн курс "Идеальное резюме и поиск работы в США":https://go.mbastrategy.com/resumecoursemainГайд "Идеальное американское резюме":https://go.mbastrategy.com/usresumeГайд "Как оформить профиль в LinkedIn, чтобы рекрутеры не смогли пройти мимо": https://go.mbastrategy.com/linkedinguideМой Telegram-канал: https://t.me/prodcastUSAМой Instagram: https://www.instagram.com/prodcast.us/Prodcast в соцсетях и на всех подкаст платформахhttps://linktr.ee/prodcastUS⏰ Timecodes ⏰00:00 Начало7:16 Почему ты решил запускать свой стартап в США, а не идти в найм? 9:36 Как тебе пришла идея сделать ИИ-тул?11:46 Как попал в индустрию компьютерного зрения и ИИ?14:43 Как ты запустил пилот в США? Как искал партнеров? 19:42 Как искал первых клиентов?28:45 Как ты привлек первые инвестиции в США?35:04 Как сейчас развивается твой бизнес? 42:35 Какие стратегии роста вы пробовали?48:18 Какие твои планы на будущее и по развитию компании?51:25 Почему подал на О1 а не EB1?53:22 Как ты собирал кейс?58:18 Чему тебя научила твоя история переезда?1:00:17 Какие твои личные цели?1:03:27 Что хочешь пожелать тем, кто сейчас планирует ехать в США или открывать тут бизнес?
Join Simtheory: https://simtheory.aiGet an AI workspace for your team: https://simtheory.ai/workspace/team/---CHAPTERS:00:00 - Will Chris Lose His Bet?04:48 - Google's 2.5 Gemini Preview Update12:44 - Future AI Systems Discussion: Skills, MCPs & A2A47:02 - Will AI Systems become walled gardens?55:13 - Do Organizations That Own Data Build MCPs & Agents? Is This The New SaaS?1:17:45 - Can we improve RAG with tool calling and stop hallucinations?---Thanks for listening. If you like chatting about AI consider joining our active Discord community: https://thisdayinai.com.
Prodcast: ПоиÑк работы в IT и переезд в СШÐ
В этом выпуске у меня в гостях Нисо Нигматуллина — основательница PR-агентства Satou, специалист по личному брендингу и обладательница виз O-1 и EB-1A. За последние годы её команда помогла десяткам экспертов из сфер IT, маркетинга, дизайна и предпринимательства оформить медиапортфолио, повысить узнаваемость и пройти по визовым кейсам талантов.Мы обсудили, как именно публикации в СМИ влияют на визы O-1, EB-1A и EB-2 NIW, какие издания и форматы подходят под требования USCIS, почему инфлюенсер — не то же самое, что эксперт, и как даже интроверт без публичности может выстроить PR-стратегию. Затронули критерии качества публикаций, реальные расценки на услуги пиар-агентств и почему статьи, написанные в ChatGPT, чаще вредят кейсу, чем помогают. Разобрали типичные ошибки, фейлы с «рекламными» материалами и то, как должен выглядеть идеальный медиапортфель под визу талантов.Нисо Нигматуллина (Niso Nigmatullina) -- основательница американского PR-агентства Satou, обладательница гринкарты таланта EB1, ex-Procter & Gamble.LinkedIn: https://www.linkedin.com/in/nisonigmatullina/ Telegram: @nisonigmaПредыдущие выпуски с Нисо:Как получить визу О1 в США? Как улучшить качество публикаций и увеличить шансы? https://youtu.be/S_IXFDm8sIg Как русскоязычные иммигрантки из Forbes покоряют Америку. Релокация, нетворкинг и жизнь в США https://youtu.be/svZjlIoyHEk ***Записывайтесь на карьерную консультацию (резюме, LinkedIn, карьерная стратегия, поиск работы в США): https://annanaumova.comКоучинг (синдром самозванца, прокрастинация, неуверенность в себе, страхи, лень) https://annanaumova.notion.site/3f6ea5ce89694c93afb1156df3c903abОнлайн курс "Идеальное резюме и поиск работы в США":https://go.mbastrategy.com/resumecoursemainГайд "Идеальное американское резюме":https://go.mbastrategy.com/usresumeГайд "Как оформить профиль в LinkedIn, чтобы рекрутеры не смогли пройти мимо": https://go.mbastrategy.com/linkedinguideМой Telegram-канал: https://t.me/prodcastUSAМой Instagram: https://www.instagram.com/prodcast.us/Prodcast в соцсетях и на всех подкаст платформахhttps://linktr.ee/prodcastUS⏰ Timecodes ⏰00:00 Начало11:47 Зачем нужен пиар и публикации для виз таланта в США?21:02 Какие требования к статьям для O1, EB1 и EB2NIW? Сходства и различия.28:47 Какие критерии к изданиям?43:00 Какие требования к содержанию публикаций?53:02 Можно ли написать статьи с помощью ChatGPT?1:03:12 Что делать, если я не публичный человек, интроверт и у меня нет публикаций?1:11:42 Сколько стоят статьи в СМИ?1:24:23 Кому не нужно пиар агентство?1:27:44 Ошибки при работе над публикациями1:31:22 Что можешь пожелать тем, кто решил переезжать в США по визе таланта?
Prodcast: ПоиÑк работы в IT и переезд в СШÐ
В этом выпуске у меня в гостях Дима Литвинов — основатель компании Dreem Relocation Platform, помогающей предпринимателям, IT-специалистам и креативщикам переезжать в США по визам O-1 и EB1.Мы подробно обсудили, как работает схема самостоятельной релокации через открытие своей компании в США: кто может быть петиционером, какие документы нужны и как выглядит кейс, когда вы нанимаете сами себя. Затронули нюансы подхода через агентов, различия между визами O-1, L-1 и H-1B, возможность получить гринкарту после переезда и как избежать отказа при продлении. Разобрали реальные кейсы: от фаундеров и консультантов до разработчиков, которым не удалось найти работодателя, но удалось перевезти себя через B2B-контракты. Выяснили, почему релокация через собственную компанию в 2024 году — это один из самых доступных и быстрых путей для тех, кто готов взять процесс в свои руки.Дима Литвинов (Dima Litvinov) – основатель компании Dreem Relocation Platform в США, обладатель британской Global Talent Visa в категории BusinessLinkedIn: https://www.linkedin.com/in/dimalitvinov/ По промо коду PRODCAST получите бесплатную консультацию с экспертом Dreem и подробную оценку вашего кейса адвокатом https://idreem.pipedrive.com/scheduler/Rp3bXjFQ/your-free-dreem-us-visa-consultation-prodcast Оцените ваши шансы на релокацию в США онлайн с мгновенным результатом по ссылке: bit.ly/3QY520h Больше о визах и релокации по визам талантов на Linkedin Dreem https://www.linkedin.com/company/dreemrelocation/ Эпизоды с Димой Литвиновым: Виза таланта в США 2025. O1, EB1, EB2NIW - что нового? Трамп и иммиграция, закроют ли Америку? https://youtube.com/live/i4MHQhr8An8 Как владельцу шаурмичной получить визу таланта О1 и EB1 в США? https://youtu.be/dZqaDJywBuk Эпизод с Данилом Кислинским - Как открыть бизнес (LLC, S-corp) в США и нанять себя? https://youtu.be/CP0PofO2WEI Как самому себе предложить работу в США для визы таланта О1? Как выглядит петиция? Ольга Бондарева https://youtu.be/QSaDt3FmFBwИстория про то, как iOS разработчик искал спонсорство визы O1 в США и как работодатель отозвал оффер в последний день перед выходом на работу https://youtu.be/sHDq0lA-uOY ***Записывайтесь на карьерную консультацию (резюме, LinkedIn, карьерная стратегия, поиск работы в США): https://annanaumova.comКоучинг (синдром самозванца, прокрастинация, неуверенность в себе, страхи, лень) https://annanaumova.notion.site/3f6ea5ce89694c93afb1156df3c903abОнлайн курс "Идеальное резюме и поиск работы в США":https://go.mbastrategy.com/resumecoursemainГайд "Идеальное американское резюме":https://go.mbastrategy.com/usresumeГайд "Как оформить профиль в LinkedIn, чтобы рекрутеры не смогли пройти мимо": https://go.mbastrategy.com/linkedinguideМой Telegram-канал: https://t.me/prodcastUSAМой Instagram: https://www.instagram.com/prodcast.us/Prodcast в соцсетях и на всех подкаст платформахhttps://linktr.ee/prodcastUS⏰ Timecodes ⏰00:00 Начало5:54 Что сейчас происходит с визами и гринкартами таланта?13:41 Открыть компанию, сделать себе визу и переехать. Как это работает? 23:39 Какие требования к компании для того, чтобы выпустить визу?34:01 Какие есть тонкости и ограничения?46:40 Примеры кейсов58:24 Про агента и то как он работает1:06:24 Про визу H1B1:13:01 Виза L1 - кому она подходит?1:18:23 Какую визу выбрать: O1, EB1, L1?1:24:14 Что еще можешь пожелать тем, кто пытается переехать в США по визам талантов?
Get your AI workspace: https://simtheory.ai----00:00 - Fun with Suno 4.509:20 - LlamaCon, Meta's Llama API, Meta AI Apps & Meta's Social AI Strategy26:06 - How We'll Interface with AI Next Discussion: 45:38 - Common Database Not Interface with AI1:03:46 - Chris's Polymarket Bet: Which company has best AI model end of May?1:06:07 - Daily Drivers and Model Switching: Tool Calling & MCPs with Models1:15:04 - OpenAI's New ChatGPT Tune (GPT-4o) Reverted1:19:53 - Chris's Daily Driver & Qwen3: Qwen3-30B-A3B1:26:40 - Suno 4.5 Songs in Full----Thanks for listening, we appreciate it!
Hey everyone, Alex here
Try Simtheory: https://simtheory.ai
Join Simtheory: https://simtheory.ailike and sub xoxox----00:00 - Initial reactions to Gaggle of Model Releases09:29 - Is this the beginning of future GPT-5 AI systems?47:10 - GPT-4.1, o3, o4-mini model details & thoughts58:42 - Model comparisons with lunar injection1:03:17 - AI Rap Battle Test: o3 Diss Track "Greg's Back"1:08:12 - Thoughts on using new models + Gemini 2.5 Pro quirks1:10:54 - The next model test: chained tool calling & lock in1:14:43 - OpenAI releases Codex CLI: impressions/thoughts1:18:45 - Final thoughts & help us with crazy presentation ideas----Links from Discord:- Lunar Lander: https://simulationtheory.ai/7bbfe21a-7859-4fdd-8bbf-47fdfb5cf03b- Evolution Sim: https://simulationtheory.ai/457b047f-0ac2-4162-8d6a-3ea3fa1235c9
Join Simtheory: https://simtheory.ai--Get the official Simtheory hat: https://simulationtheory.ai/689e11b3-d488-4238-b9b6-82aded04fbe6---CHAPTERS:00:00 - The Wrong Pendant?02:34 - Agent2Agent Protocol, What is It? Implications and Future Agents48:43 - Agent Development Kit (ADK)57:50 - AI Agents Marketplace by Google Cloud1:00:46 - Firebase Studio is very broken...1:06:30 - Vibing with AI for everything.. not just vibe code1:15:10 - Gemini 2.5 Flash, Live API and Veo21:17:45 - Is Llama 4 a flop?1:27:25 - Grok 3 API Released without vision priced like Sonnet 3.7---Thanks for listening and your support!
Join Simtheory and create an AI workspace: https://simtheory.ai----Links from show:DIS TRACK: https://simulationtheory.ai/2eb6408e-88f9-4b6a-ac4d-134d9dac3073----CHAPTERS:00:00 - Will we make 100 episodes?00:48 - Checking back in with Gemini 2.5 Pro03:30 - Diss Track: Gemini 2.5 Pro07:14 - Gemini 2.5 Pro on Polymarket17:32 - Amazon Nova Act Computer Use: We Have Access!29:45 - Future Interface of Work: Delegating Tasks with AI58:03 - How We Work Today with AI Vs Future Work----Thanks for listening and all of your support!
Prodcast: ПоиÑк работы в IT и переезд в СШÐ
С Данилом Кислинским, предпринимателем и консультантом по корпоративной структуре бизнеса в США, разобрали ключевые вопросы для тех, кто хочет открыть свою компанию в Америке. Пошагово обсудили, кто может зарегистрировать бизнес, какие штаты и формы компаний выбирать под разные задачи, как открыть банковский счёт, не нарушая санкционных режимов, и можно ли получить визу через собственную компанию.Разобрали, чем отличаются LLC и C-Corp, в каких случаях лучше Делавэр, а в каких — Вайоминг, и почему штат регистрации компании влияет не только на налоги, но и на восприятие инвесторов. Данил объяснил, как банки проверяют ваших бенефициаров, почему не стоит даже временно заезжать в Россию, если у вас финтех, и как подготовить документы, чтобы пройти комплаенс в Mercury, Brex или других нео-банках.Обсудили, как правильно выстроить структуру компании, если вы планируете использовать её для визы O1, EB1A или даже H1B, почему корпоративный и иммиграционный юристы должны работать вместе и как избежать отказа из-за конфликта интересов.Это видео — практическое руководство для тех, кто хочет вести бизнес в США удалённо, легально и с учётом всех нюансов.Данил Кислинский (Danil Kislinskiy) - фаундер компании Go Global World которая соединяет стартап фаундеров, инвесторов и эдвайзеров, а также сам является инвестором в Кремниевой долине.LinkedIn: https://www.linkedin.com/in/danilkislinskiy/Telegram: @danilggwКомьюнити GGW Silicon Valley Chat в Телеграме: https://t.me/+Ktq-ALstZ0o0YjAz Slack: https://join.slack.com/t/goglobalworld1/shared_invite/zt-32rdaof00-NTyg3PnahDPol_~CoeFyqw***Записывайтесь на карьерную консультацию (резюме, LinkedIn, карьерная стратегия, поиск работы в США): https://annanaumova.comКоучинг (синдром самозванца, прокрастинация, неуверенность в себе, страхи, лень) https://annanaumova.notion.site/3f6ea5ce89694c93afb1156df3c903abОнлайн курс "Идеальное резюме и поиск работы в США":https://go.mbastrategy.com/resumecoursemainГайд "Идеальное американское резюме":https://go.mbastrategy.com/usresumeГайд "Как оформить профиль в LinkedIn, чтобы рекрутеры не смогли пройти мимо": https://go.mbastrategy.com/linkedinguideМой Telegram-канал: https://t.me/prodcastUSAМой Instagram: https://www.instagram.com/prodcast.us/Prodcast в соцсетях и на всех подкаст платформахhttps://linktr.ee/prodcastUS⏰ Timecodes ⏰00:00 Начало.17:15 Кому, где и как открывать свою компанию в США?35:55 Какие документы нужны для открытия юрлица? Куда идти? 43:09 Сколько стоит открыть компанию?48:23 Можно ли открыть компанию удаленно и далее ее сопровождать? 51:04 Как российский паспорт и санкции влияют на ведение бизнеса в США?1:03:58 Как получить EIN? Что такое ITIN и нужен ли он для иностранных фаундеров?1:11:55 Как открыть банковский счет? Как выбрать банк?1:24:39 На какую визу можно подать от своей компании?1:31:18 Что еще можешь пожелать тем, кто сейчас думает об открытии бизнеса в США?
Guest: Alex Polyakov, CEO at Adversa AI Topics: Adversa AI is known for its focus on AI red teaming and adversarial attacks. Can you share a particularly memorable red teaming exercise that exposed a surprising vulnerability in an AI system? What was the key takeaway for your team and the client? Beyond traditional adversarial attacks, what emerging threats in the AI security landscape are you most concerned about right now? What trips most clients, classic security mistakes in AI systems or AI-specific mistakes? Are there truly new mistakes in AI systems or are they old mistakes in new clothing? I know it is not your job to fix it, but much of this is unfixable, right? Is it a good idea to use AI to secure AI? Resources: EP84 How to Secure Artificial Intelligence (AI): Threats, Approaches, Lessons So Far AI Red Teaming Reasoning LLM US vs China: Jailbreak Deepseek, Qwen, O1, O3, Claude, Kimi Adversa AI blog Oops! 5 serious gen AI security mistakes to avoid Generative AI Fast Followership: Avoid These First Adopter Security Missteps
Prodcast: ПоиÑк работы в IT и переезд в СШÐ
Как новый срок президента Дональда Трампа повлияет на айти сектор.- Что уже изменилось для айтишников за полгода правления Трампа?- Каких изменений в IT сфере ожидать в ближайшие пару лет? - Как повлияет новый президент на распределение рабочей силы внутри штатов и за их пределами?- Что будет с иммигрантами? Закроют ли границы? Закрутят ли гайки в плане выдачи американских рабочих виз?- Что будет с аутсорсом?- Как на Трампа вляют его советники из big tech типа Илона Маска и Джефа Безоса?- Кто выиграет при правлении Дональда Трампа?- Будет ли легче найти работу при Трампе?Евгений Волчков, Engineering Manager в iManage (ex-Bank of America и Verizon).LinkedIn: https://www.linkedin.com/in/valchkou/ Валерий Широков aka Val Wide (Principal Cloud Architect and Director | DevOps | Platform Engineering | Security | Azure | Terraform | GCP | Kubernetes, ex-Microsoft, Lululemon, Ebay).https://www.linkedin.com/in/val-wide/Менторски чатик Вала в Телеграме "[RU] Tech Mentorship" https://t.me/+8N6F-CMobZliMTBhВидео с Дарьей, упомянутое в стриме - Стажировки в США. Диплом в американском вузе — это еще не гарантия получения работы! Дарья Скалицки https://youtu.be/p5t9LPFA5W0Похожие видео - Как изменится рынок труда и иммиграционная политика при Трампе? U4U, H1B, визы талантов O1, EB1, EB2. Александр Шваикин и иммиграционный адвокат в США Семен Гладин. https://youtube.com/live/qm3HpXlad-c- Виза таланта в США 2025. O1, EB1, EB2NIW - что нового? Трамп и иммиграция, закроют ли Америку? Дима Литвинов – основатель компании Dreem Relocation Platform. https://youtube.com/live/i4MHQhr8An8 ***Записаться на карьерную консультацию (резюме, LinkedIn, карьерная стратегия, поиск работы в США) https://annanaumova.comКоучинг (синдром самозванца, прокрастинация, неуверенность в себе, страхи, лень) https://annanaumova.notion.site/3f6ea5ce89694c93afb1156df3c903abВидео курс по составлению резюме для международных компаний "Идеальное американское резюме": https://go.mbastrategy.com/resumecoursemainГайд "Идеальное американское резюме" https://go.mbastrategy.com/usresumeПодписывайтесь на мой Телеграм канал: https://t.me/prodcastUSAПодписывайтесь на мой Инстаграм https://www.instagram.com/prodcast.us Гайд "Как оформить профиль в LinkedIn, чтобы рекрутеры не смогли пройти мимо" https://go.mbastrategy.com/linkedinguide⏰ Timecodes ⏰11:09 Политика Трампа и её влияние на IT26:44 Почему Трамп выбрал такую команду?34:20 Иммиграция при Трампе49:46 Вопросы из чата1:02:20 Что будет с аутсорсом?1:09:36 Прогнозы на будущее
Create a Simtheory workspace: https://simtheory.aiCompare models: https://simtheory.ai/models/------3d City Planner App (Example from show): https://simulationtheory.ai/8cfa6102-ed37-4c47-bc73-d057ba9873bd------CHAPTERS:00:00 - AI Fashion01:13 - Gemini 2.5 Pro Initial Impressions: We're Impressed!38:24 - Thoughts of Gemini distribution and our daily workflows55:49 - OpenAI's GPT-4o Image Generation: thoughts & examples1:13:52 - Gemini 2.5 Pro Boom Factor1:18:38 - Average rant on vibe coding and the future of AI tooling------Disclaimer: this video was not sponsored by Google... it's a joke.Thanks for listening!
Create an AI workspace on Simtheory: https://simtheory.ai---Song: https://simulationtheory.ai/f6d643e4-4201-475c-aa82-8a96b6b3b215---CHAPTERS:00:00 - OpenAI's audio model updates: gpt-4o-transcribe, gpt-4o-mini-tts18:39 - Strategy of AI Labs with Agent SDKs and Model "stacks" and limitations of voice25:28 - Cost of models, GPT-4.5, o1-pro api release thoughts31:57 - o1-pro "I am rich" track & Chris's o1-pro PR stunt realization, more thoughts on o1 family48:39 - Moore's Law for AI agents, current AI workflows and future enterprise agent workflows & AI agent job losses1:24:09 - Can we control agents?1:29:21 - Final thoughts for the week1:35:15 - Full "I am rich" o1-pro track---See you next week and thanks for your support.CORRECTION: Kosciusko is obviously not an aboriginal name I misspoke. Wagga Wagga and others in the voice clip are and are great ways to test AI text to speech models!
Prodcast: ПоиÑк работы в IT и переезд в СШÐ
Гость выпуска – Сергей Голицын, Software Engineer и основатель сообщества FaangTalk по подготовке к техническим интервью. В этом выпуске мы обсудили, как искать работу в США на визе O1, когда и как говорить с работодателем о спонсорстве, и какие ошибки могут стоить оффера. Сергей поделился своим опытом переезда, получения оффера в американском стартапе, неожиданного увольнения и повторного поиска работы в условиях кризиса. Разобрали, как эффективно подавать резюме, что делать, если отказали в визе, и как грамотно выстраивать стратегию поиска работы, чтобы в итоге получить оффер в крупной компании.Сергей Голицын - Software Engineer и основатель FaangTalk, сообщества по подготовке к интервью в FAANG-like компанииLinkedIn: ttps://www.linkedin.com/in/sergei-golitsyn/ YouTube: https://youtube.com/@faangtalk Telegram-канал: https://t.me/crack_code_interviewTelegram-чат: https://t.me/faangtalkСсылки, упомянутые в видео:https://simplify.jobs/https://resumeworded.com/resume-scannerhttps://www.tryexponent.com/https://www.pramp.com/***Записывайтесь на карьерную консультацию (резюме, LinkedIn, карьерная стратегия, поиск работы в США): https://annanaumova.comКоучинг (синдром самозванца, прокрастинация, неуверенность в себе, страхи, лень) https://annanaumova.notion.site/3f6ea5ce89694c93afb1156df3c903abОнлайн курс "Идеальное резюме и поиск работы в США":https://go.mbastrategy.com/resumecoursemainГайд "Идеальное американское резюме":https://go.mbastrategy.com/usresumeГайд "Как оформить профиль в LinkedIn, чтобы рекрутеры не смогли пройти мимо": https://go.mbastrategy.com/linkedinguideМой Telegram-канал: https://t.me/prodcastUSAМой Instagram: https://www.instagram.com/prodcast.us/Prodcast в соцсетях и на всех подкаст платформахhttps://linktr.ee/prodcastUS⏰ Timecodes ⏰00:00 Начало.9:09 Спонсорство визы - что говорить на собеседовании?13:00 Как тебя сократили на первой работе в штатах?19:11 Как быстро ты начал искать работу после увольнения? 22:12 Как и где откликался?25:50 Как ты адаптировал резюме?44:06 Как проходили звонки с рекрутерами?50:48 Как рекрутеры реагировали на твой визовый статус?55:57 Как проходили технические интервью (Leetcode)?1:04:51 Сколько офферов ты получил? Как торговался?1:09:14 Как и почему отозвали оффер?1:14:12 Новая виза О1 и выигрыш гринкарты 1:23:09 Как ты искал работу из Бишкека (Кыргызстан)? 1:29:13 Какие планы на будущее?1:31:22 Что можешь пожелать тем, кто сейчас ищет работу в США?
We return from the Wilds and the plague to bring you an all new episode! We catch up on the games we've finished including Avowed, Split Fiction, and almost Kingdom Come Deliverance 2. Praise Kojima, become very interested in Silent Hill, realize we're old as Chrono Trigger celebrates 30 years and become vulnerable with an AI voice! 0:00 - Intro1:02 - Laundry8:30 - Tub grub investments12:00 - Finishing games13:50 - Avowed34:00 - Death's Stranding 241:40 - Silent Hill f45:30 - Split Fiction1:05:00 - Chrono Trigger turns 301:08:00 - Assassin's Creed Shadow1:16:00 - Claire Obscura Expedition 331:28:00 - R.E.P.O1:41:30 - Pirate Yakuza1:54:00 - Monster Hunter Wilds2:08:00 - Steam Next Fest demos2:23:00 - Core Keeper2:26:20 - Twitch partners with StreamElements2:33:00 - Maya the AI2:40:00 - Twitch Mobile app changes2:50:40 - Shoutouts See omnystudio.com/listener for privacy information.
Join Simtheory: https://simtheory.ai----CHAPTERS:00:00 - Gemini Flash 2.0 Experimental Native Image Generation & Editing27:55 - Thoughts on OpenAI's "New tools for building agents" announcement43:31 - Why is everyone talking about MCP all of a sudden?56:31 - Manus AI: Will Manus Invade the USA and Defeat it With Powerful AGI? (jokes)----Thanks for all of your support and listening!
Send Everyday AI and Jordan a text messageLimits?
This Week in Machine Learning & Artificial Intelligence (AI) Podcast
Today, we're joined by Niklas Muennighoff, a PhD student at Stanford University, to discuss his paper, “S1: Simple Test-Time Scaling.” We explore the motivations behind S1, as well as how it compares to OpenAI's O1 and DeepSeek's R1 models. We dig into the different approaches to test-time scaling, including parallel and sequential scaling, as well as S1's data curation process, its training recipe, and its use of model distillation from Google Gemini and DeepSeek R1. We explore the novel "budget forcing" technique developed in the paper, allowing it to think longer for harder problems and optimize test-time compute for better performance. Additionally, we cover the evaluation benchmarks used, the comparison between supervised fine-tuning and reinforcement learning, and similar projects like the Hugging Face Open R1 project. Finally, we discuss the open-sourcing of S1 and its future directions. The complete show notes for this episode can be found at https://twimlai.com/go/721.
The AI Breakdown: Daily Artificial Intelligence News and Discussions
OpenAI has officially launched GPT-4.5, but it's not the model most people expected. While it lags behind reasoning focused models like O1 and DeepSeek, it shines in creativity, writing, and emotional intelligence. Sam Altman calls it the first model that “feels like talking to a thoughtful person.” But with high API costs and limited reasoning improvements, who is GPT-4.5 actually for? Before that in the headlines, AI is growing faster than SaaS ever did. Brought to you by:KPMG – Go to www.kpmg.us/ai to learn more about how KPMG can help you drive value with our AI solutions.Vanta - Simplify compliance - https://vanta.com/nlwThe Agent Readiness Audit from Superintelligent - Go to https://besuper.ai/ to request your company's agent readiness score.The AI Daily Brief helps you understand the most important news and discussions in AI. Subscribe to the podcast version of The AI Daily Brief wherever you listen: https://pod.link/1680633614Subscribe to the newsletter: https://aidailybrief.beehiiv.com/Join our Discord: https://bit.ly/aibreakdown
Join Simtheory to try GPT-4.5: https://simtheory.aiDis Track: https://simulationtheory.ai/5714654f-0fbe-496f-8428-20018457c4c7===CHAPTERS:00:00 - Reaction to GPT4.5 Live Stream + Release12:45 - Claude 3.7 Sonnet Release: Reactions and First Week Impressions45:58 - Claude 3.7 Sonnet Dis Track Test56:10 - Claude Code First Impressions + Future Agent Workflows1:15:45 - Chris's Veo2 Film Clip1:24:49 - Alexa+ AI Assistant1:34:05 - Claude 3.7 Sonnet BOOM FACTOR
Today's episode is with Paul Klein, founder of Browserbase. We talked about building browser infrastructure for AI agents, the future of agent authentication, and their open source framework Stagehand.* [00:00:00] Introductions* [00:04:46] AI-specific challenges in browser infrastructure* [00:07:05] Multimodality in AI-Powered Browsing* [00:12:26] Running headless browsers at scale* [00:18:46] Geolocation when proxying* [00:21:25] CAPTCHAs and Agent Auth* [00:28:21] Building “User take over” functionality* [00:33:43] Stagehand: AI web browsing framework* [00:38:58] OpenAI's Operator and computer use agents* [00:44:44] Surprising use cases of Browserbase* [00:47:18] Future of browser automation and market competition* [00:53:11] Being a solo founderTranscriptAlessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.swyx [00:00:12]: Hey, and today we are very blessed to have our friends, Paul Klein, for the fourth, the fourth, CEO of Browserbase. Welcome.Paul [00:00:21]: Thanks guys. Yeah, I'm happy to be here. I've been lucky to know both of you for like a couple of years now, I think. So it's just like we're hanging out, you know, with three ginormous microphones in front of our face. It's totally normal hangout.swyx [00:00:34]: Yeah. We've actually mentioned you on the podcast, I think, more often than any other Solaris tenant. Just because like you're one of the, you know, best performing, I think, LLM tool companies that have started up in the last couple of years.Paul [00:00:50]: Yeah, I mean, it's been a whirlwind of a year, like Browserbase is actually pretty close to our first birthday. So we are one years old. And going from, you know, starting a company as a solo founder to... To, you know, having a team of 20 people, you know, a series A, but also being able to support hundreds of AI companies that are building AI applications that go out and automate the web. It's just been like, really cool. It's been happening a little too fast. I think like collectively as an AI industry, let's just take a week off together. I took my first vacation actually two weeks ago, and Operator came out on the first day, and then a week later, DeepSeat came out. And I'm like on vacation trying to chill. I'm like, we got to build with this stuff, right? So it's been a breakneck year. But I'm super happy to be here and like talk more about all the stuff we're seeing. And I'd love to hear kind of what you guys are excited about too, and share with it, you know?swyx [00:01:39]: Where to start? So people, you've done a bunch of podcasts. I think I strongly recommend Jack Bridger's Scaling DevTools, as well as Turner Novak's The Peel. And, you know, I'm sure there's others. So you covered your Twilio story in the past, talked about StreamClub, you got acquired to Mux, and then you left to start Browserbase. So maybe we just start with what is Browserbase? Yeah.Paul [00:02:02]: Browserbase is the web browser for your AI. We're building headless browser infrastructure, which are browsers that run in a server environment that's accessible to developers via APIs and SDKs. It's really hard to run a web browser in the cloud. You guys are probably running Chrome on your computers, and that's using a lot of resources, right? So if you want to run a web browser or thousands of web browsers, you can't just spin up a bunch of lambdas. You actually need to use a secure containerized environment. You have to scale it up and down. It's a stateful system. And that infrastructure is, like, super painful. And I know that firsthand, because at my last company, StreamClub, I was CTO, and I was building our own internal headless browser infrastructure. That's actually why we sold the company, is because Mux really wanted to buy our headless browser infrastructure that we'd built. And it's just a super hard problem. And I actually told my co-founders, I would never start another company unless it was a browser infrastructure company. And it turns out that's really necessary in the age of AI, when AI can actually go out and interact with websites, click on buttons, fill in forms. You need AI to do all of that work in an actual browser running somewhere on a server. And BrowserBase powers that.swyx [00:03:08]: While you're talking about it, it occurred to me, not that you're going to be acquired or anything, but it occurred to me that it would be really funny if you became the Nikita Beer of headless browser companies. You just have one trick, and you make browser companies that get acquired.Paul [00:03:23]: I truly do only have one trick. I'm screwed if it's not for headless browsers. I'm not a Go programmer. You know, I'm in AI grant. You know, browsers is an AI grant. But we were the only company in that AI grant batch that used zero dollars on AI spend. You know, we're purely an infrastructure company. So as much as people want to ask me about reinforcement learning, I might not be the best guy to talk about that. But if you want to ask about headless browser infrastructure at scale, I can talk your ear off. So that's really my area of expertise. And it's a pretty niche thing. Like, nobody has done what we're doing at scale before. So we're happy to be the experts.swyx [00:03:59]: You do have an AI thing, stagehand. We can talk about the sort of core of browser-based first, and then maybe stagehand. Yeah, stagehand is kind of the web browsing framework. Yeah.What is Browserbase? Headless Browser Infrastructure ExplainedAlessio [00:04:10]: Yeah. Yeah. And maybe how you got to browser-based and what problems you saw. So one of the first things I worked on as a software engineer was integration testing. Sauce Labs was kind of like the main thing at the time. And then we had Selenium, we had Playbrite, we had all these different browser things. But it's always been super hard to do. So obviously you've worked on this before. When you started browser-based, what were the challenges? What were the AI-specific challenges that you saw versus, there's kind of like all the usual running browser at scale in the cloud, which has been a problem for years. What are like the AI unique things that you saw that like traditional purchase just didn't cover? Yeah.AI-specific challenges in browser infrastructurePaul [00:04:46]: First and foremost, I think back to like the first thing I did as a developer, like as a kid when I was writing code, I wanted to write code that did stuff for me. You know, I wanted to write code to automate my life. And I do that probably by using curl or beautiful soup to fetch data from a web browser. And I think I still do that now that I'm in the cloud. And the other thing that I think is a huge challenge for me is that you can't just create a web site and parse that data. And we all know that now like, you know, taking HTML and plugging that into an LLM, you can extract insights, you can summarize. So it was very clear that now like dynamic web scraping became very possible with the rise of large language models or a lot easier. And that was like a clear reason why there's been more usage of headless browsers, which are necessary because a lot of modern websites don't expose all of their page content via a simple HTTP request. You know, they actually do require you to run this type of code for a specific time. JavaScript on the page to hydrate this. Airbnb is a great example. You go to airbnb.com. A lot of that content on the page isn't there until after they run the initial hydration. So you can't just scrape it with a curl. You need to have some JavaScript run. And a browser is that JavaScript engine that's going to actually run all those requests on the page. So web data retrieval was definitely one driver of starting BrowserBase and the rise of being able to summarize that within LLM. Also, I was familiar with if I wanted to automate a website, I could write one script and that would work for one website. It was very static and deterministic. But the web is non-deterministic. The web is always changing. And until we had LLMs, there was no way to write scripts that you could write once that would run on any website. That would change with the structure of the website. Click the login button. It could mean something different on many different websites. And LLMs allow us to generate code on the fly to actually control that. So I think that rise of writing the generic automation scripts that can work on many different websites, to me, made it clear that browsers are going to be a lot more useful because now you can automate a lot more things without writing. If you wanted to write a script to book a demo call on 100 websites, previously, you had to write 100 scripts. Now you write one script that uses LLMs to generate that script. That's why we built our web browsing framework, StageHand, which does a lot of that work for you. But those two things, web data collection and then enhanced automation of many different websites, it just felt like big drivers for more browser infrastructure that would be required to power these kinds of features.Alessio [00:07:05]: And was multimodality also a big thing?Paul [00:07:08]: Now you can use the LLMs to look, even though the text in the dome might not be as friendly. Maybe my hot take is I was always kind of like, I didn't think vision would be as big of a driver. For UI automation, I felt like, you know, HTML is structured text and large language models are good with structured text. But it's clear that these computer use models are often vision driven, and they've been really pushing things forward. So definitely being multimodal, like rendering the page is required to take a screenshot to give that to a computer use model to take actions on a website. And it's just another win for browser. But I'll be honest, that wasn't what I was thinking early on. I didn't even think that we'd get here so fast with multimodality. I think we're going to have to get back to multimodal and vision models.swyx [00:07:50]: This is one of those things where I forgot to mention in my intro that I'm an investor in Browserbase. And I remember that when you pitched to me, like a lot of the stuff that we have today, we like wasn't on the original conversation. But I did have my original thesis was something that we've talked about on the podcast before, which is take the GPT store, the custom GPT store, all the every single checkbox and plugin is effectively a startup. And this was the browser one. I think the main hesitation, I think I actually took a while to get back to you. The main hesitation was that there were others. Like you're not the first hit list browser startup. It's not even your first hit list browser startup. There's always a question of like, will you be the category winner in a place where there's a bunch of incumbents, to be honest, that are bigger than you? They're just not targeted at the AI space. They don't have the backing of Nat Friedman. And there's a bunch of like, you're here in Silicon Valley. They're not. I don't know.Paul [00:08:47]: I don't know if that's, that was it, but like, there was a, yeah, I mean, like, I think I tried all the other ones and I was like, really disappointed. Like my background is from working at great developer tools, companies, and nothing had like the Vercel like experience. Um, like our biggest competitor actually is partly owned by private equity and they just jacked up their prices quite a bit. And the dashboard hasn't changed in five years. And I actually used them at my last company and tried them and I was like, oh man, like there really just needs to be something that's like the experience of these great infrastructure companies, like Stripe, like clerk, like Vercel that I use in love, but oriented towards this kind of like more specific category, which is browser infrastructure, which is really technically complex. Like a lot of stuff can go wrong on the internet when you're running a browser. The internet is very vast. There's a lot of different configurations. Like there's still websites that only work with internet explorer out there. How do you handle that when you're running your own browser infrastructure? These are the problems that we have to think about and solve at BrowserBase. And it's, it's certainly a labor of love, but I built this for me, first and foremost, I know it's super cheesy and everyone says that for like their startups, but it really, truly was for me. If you look at like the talks I've done even before BrowserBase, and I'm just like really excited to try and build a category defining infrastructure company. And it's, it's rare to have a new category of infrastructure exists. We're here in the Chroma offices and like, you know, vector databases is a new category of infrastructure. Is it, is it, I mean, we can, we're in their office, so, you know, we can, we can debate that one later. That is one.Multimodality in AI-Powered Browsingswyx [00:10:16]: That's one of the industry debates.Paul [00:10:17]: I guess we go back to the LLMOS talk that Karpathy gave way long ago. And like the browser box was very clearly there and it seemed like the people who were building in this space also agreed that browsers are a core primitive of infrastructure for the LLMOS that's going to exist in the future. And nobody was building something there that I wanted to use. So I had to go build it myself.swyx [00:10:38]: Yeah. I mean, exactly that talk that, that honestly, that diagram, every box is a startup and there's the code box and then there's the. The browser box. I think at some point they will start clashing there. There's always the question of the, are you a point solution or are you the sort of all in one? And I think the point solutions tend to win quickly, but then the only ones have a very tight cohesive experience. Yeah. Let's talk about just the hard problems of browser base you have on your website, which is beautiful. Thank you. Was there an agency that you used for that? Yeah. Herb.paris.Paul [00:11:11]: They're amazing. Herb.paris. Yeah. It's H-E-R-V-E. I highly recommend for developers. Developer tools, founders to work with consumer agencies because they end up building beautiful things and the Parisians know how to build beautiful interfaces. So I got to give prep.swyx [00:11:24]: And chat apps, apparently are, they are very fast. Oh yeah. The Mistral chat. Yeah. Mistral. Yeah.Paul [00:11:31]: Late chat.swyx [00:11:31]: Late chat. And then your videos as well, it was professionally shot, right? The series A video. Yeah.Alessio [00:11:36]: Nico did the videos. He's amazing. Not the initial video that you shot at the new one. First one was Austin.Paul [00:11:41]: Another, another video pretty surprised. But yeah, I mean, like, I think when you think about how you talk about your company. You have to think about the way you present yourself. It's, you know, as a developer, you think you evaluate a company based on like the API reliability and the P 95, but a lot of developers say, is the website good? Is the message clear? Do I like trust this founder? I'm building my whole feature on. So I've tried to nail that as well as like the reliability of the infrastructure. You're right. It's very hard. And there's a lot of kind of foot guns that you run into when running headless browsers at scale. Right.Competing with Existing Headless Browser Solutionsswyx [00:12:10]: So let's pick one. You have eight features here. Seamless integration. Scalability. Fast or speed. Secure. Observable. Stealth. That's interesting. Extensible and developer first. What comes to your mind as like the top two, three hardest ones? Yeah.Running headless browsers at scalePaul [00:12:26]: I think just running headless browsers at scale is like the hardest one. And maybe can I nerd out for a second? Is that okay? I heard this is a technical audience, so I'll talk to the other nerds. Whoa. They were listening. Yeah. They're upset. They're ready. The AGI is angry. Okay. So. So how do you run a browser in the cloud? Let's start with that, right? So let's say you're using a popular browser automation framework like Puppeteer, Playwright, and Selenium. Maybe you've written a code, some code locally on your computer that opens up Google. It finds the search bar and then types in, you know, search for Latent Space and hits the search button. That script works great locally. You can see the little browser open up. You want to take that to production. You want to run the script in a cloud environment. So when your laptop is closed, your browser is doing something. The browser is doing something. Well, I, we use Amazon. You can see the little browser open up. You know, the first thing I'd reach for is probably like some sort of serverless infrastructure. I would probably try and deploy on a Lambda. But Chrome itself is too big to run on a Lambda. It's over 250 megabytes. So you can't easily start it on a Lambda. So you maybe have to use something like Lambda layers to squeeze it in there. Maybe use a different Chromium build that's lighter. And you get it on the Lambda. Great. It works. But it runs super slowly. It's because Lambdas are very like resource limited. They only run like with one vCPU. You can run one process at a time. Remember, Chromium is super beefy. It's barely running on my MacBook Air. I'm still downloading it from a pre-run. Yeah, from the test earlier, right? I'm joking. But it's big, you know? So like Lambda, it just won't work really well. Maybe it'll work, but you need something faster. Your users want something faster. Okay. Well, let's put it on a beefier instance. Let's get an EC2 server running. Let's throw Chromium on there. Great. Okay. I can, that works well with one user. But what if I want to run like 10 Chromium instances, one for each of my users? Okay. Well, I might need two EC2 instances. Maybe 10. All of a sudden, you have multiple EC2 instances. This sounds like a problem for Kubernetes and Docker, right? Now, all of a sudden, you're using ECS or EKS, the Kubernetes or container solutions by Amazon. You're spending up and down containers, and you're spending a whole engineer's time on kind of maintaining this stateful distributed system. Those are some of the worst systems to run because when it's a stateful distributed system, it means that you are bound by the connections to that thing. You have to keep the browser open while someone is working with it, right? That's just a painful architecture to run. And there's all this other little gotchas with Chromium, like Chromium, which is the open source version of Chrome, by the way. You have to install all these fonts. You want emojis working in your browsers because your vision model is looking for the emoji. You need to make sure you have the emoji fonts. You need to make sure you have all the right extensions configured, like, oh, do you want ad blocking? How do you configure that? How do you actually record all these browser sessions? Like it's a headless browser. You can't look at it. So you need to have some sort of observability. Maybe you're recording videos and storing those somewhere. It all kind of adds up to be this just giant monster piece of your project when all you wanted to do was run a lot of browsers in production for this little script to go to google.com and search. And when I see a complex distributed system, I see an opportunity to build a great infrastructure company. And we really abstract that away with Browserbase where our customers can use these existing frameworks, Playwright, Publisher, Selenium, or our own stagehand and connect to our browsers in a serverless-like way. And control them, and then just disconnect when they're done. And they don't have to think about the complex distributed system behind all of that. They just get a browser running anywhere, anytime. Really easy to connect to.swyx [00:15:55]: I'm sure you have questions. My standard question with anything, so essentially you're a serverless browser company, and there's been other serverless things that I'm familiar with in the past, serverless GPUs, serverless website hosting. That's where I come from with Netlify. One question is just like, you promised to spin up thousands of servers. You promised to spin up thousands of browsers in milliseconds. I feel like there's no real solution that does that yet. And I'm just kind of curious how. The only solution I know, which is to kind of keep a kind of warm pool of servers around, which is expensive, but maybe not so expensive because it's just CPUs. So I'm just like, you know. Yeah.Browsers as a Core Primitive in AI InfrastructurePaul [00:16:36]: You nailed it, right? I mean, how do you offer a serverless-like experience with something that is clearly not serverless, right? And the answer is, you need to be able to run... We run many browsers on single nodes. We use Kubernetes at browser base. So we have many pods that are being scheduled. We have to predictably schedule them up or down. Yes, thousands of browsers in milliseconds is the best case scenario. If you hit us with 10,000 requests, you may hit a slower cold start, right? So we've done a lot of work on predictive scaling and being able to kind of route stuff to different regions where we have multiple regions of browser base where we have different pools available. You can also pick the region you want to go to based on like lower latency, round trip, time latency. It's very important with these types of things. There's a lot of requests going over the wire. So for us, like having a VM like Firecracker powering everything under the hood allows us to be super nimble and spin things up or down really quickly with strong multi-tenancy. But in the end, this is like the complex infrastructural challenges that we have to kind of deal with at browser base. And we have a lot more stuff on our roadmap to allow customers to have more levers to pull to exchange, do you want really fast browser startup times or do you want really low costs? And if you're willing to be more flexible on that, we may be able to kind of like work better for your use cases.swyx [00:17:44]: Since you used Firecracker, shouldn't Fargate do that for you or did you have to go lower level than that? We had to go lower level than that.Paul [00:17:51]: I find this a lot with Fargate customers, which is alarming for Fargate. We used to be a giant Fargate customer. Actually, the first version of browser base was ECS and Fargate. And unfortunately, it's a great product. I think we were actually the largest Fargate customer in our region for a little while. No, what? Yeah, seriously. And unfortunately, it's a great product, but I think if you're an infrastructure company, you actually have to have a deeper level of control over these primitives. I think it's the same thing is true with databases. We've used other database providers and I think-swyx [00:18:21]: Yeah, serverless Postgres.Paul [00:18:23]: Shocker. When you're an infrastructure company, you're on the hook if any provider has an outage. And I can't tell my customers like, hey, we went down because so-and-so went down. That's not acceptable. So for us, we've really moved to bringing things internally. It's kind of opposite of what we preach. We tell our customers, don't build this in-house, but then we're like, we build a lot of stuff in-house. But I think it just really depends on what is in the critical path. We try and have deep ownership of that.Alessio [00:18:46]: On the distributed location side, how does that work for the web where you might get sort of different content in different locations, but the customer is expecting, you know, if you're in the US, I'm expecting the US version. But if you're spinning up my browser in France, I might get the French version. Yeah.Paul [00:19:02]: Yeah. That's a good question. Well, generally, like on the localization, there is a thing called locale in the browser. You can set like what your locale is. If you're like in the ENUS browser or not, but some things do IP, IP based routing. And in that case, you may want to have a proxy. Like let's say you're running something in the, in Europe, but you want to make sure you're showing up from the US. You may want to use one of our proxy features so you can turn on proxies to say like, make sure these connections always come from the United States, which is necessary too, because when you're browsing the web, you're coming from like a, you know, data center IP, and that can make things a lot harder to browse web. So we do have kind of like this proxy super network. Yeah. We have a proxy for you based on where you're going, so you can reliably automate the web. But if you get scheduled in Europe, that doesn't happen as much. We try and schedule you as close to, you know, your origin that you're trying to go to. But generally you have control over the regions you can put your browsers in. So you can specify West one or East one or Europe. We only have one region of Europe right now, actually. Yeah.Alessio [00:19:55]: What's harder, the browser or the proxy? I feel like to me, it feels like actually proxying reliably at scale. It's much harder than spending up browsers at scale. I'm curious. It's all hard.Paul [00:20:06]: It's layers of hard, right? Yeah. I think it's different levels of hard. I think the thing with the proxy infrastructure is that we work with many different web proxy providers and some are better than others. Some have good days, some have bad days. And our customers who've built browser infrastructure on their own, they have to go and deal with sketchy actors. Like first they figure out their own browser infrastructure and then they got to go buy a proxy. And it's like you can pay in Bitcoin and it just kind of feels a little sus, right? It's like you're buying drugs when you're trying to get a proxy online. We have like deep relationships with these counterparties. We're able to audit them and say, is this proxy being sourced ethically? Like it's not running on someone's TV somewhere. Is it free range? Yeah. Free range organic proxies, right? Right. We do a level of diligence. We're SOC 2. So we have to understand what is going on here. But then we're able to make sure that like we route around proxy providers not working. There's proxy providers who will just, the proxy will stop working all of a sudden. And then if you don't have redundant proxying on your own browsers, that's hard down for you or you may get some serious impacts there. With us, like we intelligently know, hey, this proxy is not working. Let's go to this one. And you can kind of build a network of multiple providers to really guarantee the best uptime for our customers. Yeah. So you don't own any proxies? We don't own any proxies. You're right. The team has been saying who wants to like take home a little proxy server, but not yet. We're not there yet. You know?swyx [00:21:25]: It's a very mature market. I don't think you should build that yourself. Like you should just be a super customer of them. Yeah. Scraping, I think, is the main use case for that. I guess. Well, that leads us into CAPTCHAs and also off, but let's talk about CAPTCHAs. You had a little spiel that you wanted to talk about CAPTCHA stuff.Challenges of Scaling Browser InfrastructurePaul [00:21:43]: Oh, yeah. I was just, I think a lot of people ask, if you're thinking about proxies, you're thinking about CAPTCHAs too. I think it's the same thing. You can go buy CAPTCHA solvers online, but it's the same buying experience. It's some sketchy website, you have to integrate it. It's not fun to buy these things and you can't really trust that the docs are bad. What Browserbase does is we integrate a bunch of different CAPTCHAs. We do some stuff in-house, but generally we just integrate with a bunch of known vendors and continually monitor and maintain these things and say, is this working or not? Can we route around it or not? These are CAPTCHA solvers. CAPTCHA solvers, yeah. Not CAPTCHA providers, CAPTCHA solvers. Yeah, sorry. CAPTCHA solvers. We really try and make sure all of that works for you. I think as a dev, if I'm buying infrastructure, I want it all to work all the time and it's important for us to provide that experience by making sure everything does work and monitoring it on our own. Yeah. Right now, the world of CAPTCHAs is tricky. I think AI agents in particular are very much ahead of the internet infrastructure. CAPTCHAs are designed to block all types of bots, but there are now good bots and bad bots. I think in the future, CAPTCHAs will be able to identify who a good bot is, hopefully via some sort of KYC. For us, we've been very lucky. We have very little to no known abuse of Browserbase because we really look into who we work with. And for certain types of CAPTCHA solving, we only allow them on certain types of plans because we want to make sure that we can know what people are doing, what their use cases are. And that's really allowed us to try and be an arbiter of good bots, which is our long term goal. I want to build great relationships with people like Cloudflare so we can agree, hey, here are these acceptable bots. We'll identify them for you and make sure we flag when they come to your website. This is a good bot, you know?Alessio [00:23:23]: I see. And Cloudflare said they want to do more of this. So they're going to set by default, if they think you're an AI bot, they're going to reject. I'm curious if you think this is something that is going to be at the browser level or I mean, the DNS level with Cloudflare seems more where it should belong. But I'm curious how you think about it.Paul [00:23:40]: I think the web's going to change. You know, I think that the Internet as we have it right now is going to change. And we all need to just accept that the cat is out of the bag. And instead of kind of like wishing the Internet was like it was in the 2000s, we can have free content line that wouldn't be scraped. It's just it's not going to happen. And instead, we should think about like, one, how can we change? How can we change the models of, you know, information being published online so people can adequately commercialize it? But two, how do we rebuild applications that expect that AI agents are going to log in on their behalf? Those are the things that are going to allow us to kind of like identify good and bad bots. And I think the team at Clerk has been doing a really good job with this on the authentication side. I actually think that auth is the biggest thing that will prevent agents from accessing stuff, not captchas. And I think there will be agent auth in the future. I don't know if it's going to happen from an individual company, but actually authentication providers that have a, you know, hidden login as agent feature, which will then you put in your email, you'll get a push notification, say like, hey, your browser-based agent wants to log into your Airbnb. You can approve that and then the agent can proceed. That really circumvents the need for captchas or logging in as you and sharing your password. I think agent auth is going to be one way we identify good bots going forward. And I think a lot of this captcha solving stuff is really short-term problems as the internet kind of reorients itself around how it's going to work with agents browsing the web, just like people do. Yeah.Managing Distributed Browser Locations and Proxiesswyx [00:24:59]: Stitch recently was on Hacker News for talking about agent experience, AX, which is a thing that Netlify is also trying to clone and coin and talk about. And we've talked about this on our previous episodes before in a sense that I actually think that's like maybe the only part of the tech stack that needs to be kind of reinvented for agents. Everything else can stay the same, CLIs, APIs, whatever. But auth, yeah, we need agent auth. And it's mostly like short-lived, like it should not, it should be a distinct, identity from the human, but paired. I almost think like in the same way that every social network should have your main profile and then your alt accounts or your Finsta, it's almost like, you know, every, every human token should be paired with the agent token and the agent token can go and do stuff on behalf of the human token, but not be presumed to be the human. Yeah.Paul [00:25:48]: It's like, it's, it's actually very similar to OAuth is what I'm thinking. And, you know, Thread from Stitch is an investor, Colin from Clerk, Octaventures, all investors in browser-based because like, I hope they solve this because they'll make browser-based submission more possible. So we don't have to overcome all these hurdles, but I think it will be an OAuth-like flow where an agent will ask to log in as you, you'll approve the scopes. Like it can book an apartment on Airbnb, but it can't like message anybody. And then, you know, the agent will have some sort of like role-based access control within an application. Yeah. I'm excited for that.swyx [00:26:16]: The tricky part is just, there's one, one layer of delegation here, which is like, you're authoring my user's user or something like that. I don't know if that's tricky or not. Does that make sense? Yeah.Paul [00:26:25]: You know, actually at Twilio, I worked on the login identity and access. Management teams, right? So like I built Twilio's login page.swyx [00:26:31]: You were an intern on that team and then you became the lead in two years? Yeah.Paul [00:26:34]: Yeah. I started as an intern in 2016 and then I was the tech lead of that team. How? That's not normal. I didn't have a life. He's not normal. Look at this guy. I didn't have a girlfriend. I just loved my job. I don't know. I applied to 500 internships for my first job and I got rejected from every single one of them except for Twilio and then eventually Amazon. And they took a shot on me and like, I was getting paid money to write code, which was my dream. Yeah. Yeah. I'm very lucky that like this coding thing worked out because I was going to be doing it regardless. And yeah, I was able to kind of spend a lot of time on a team that was growing at a company that was growing. So it informed a lot of this stuff here. I think these are problems that have been solved with like the SAML protocol with SSO. I think it's a really interesting stuff with like WebAuthn, like these different types of authentication, like schemes that you can use to authenticate people. The tooling is all there. It just needs to be tweaked a little bit to work for agents. And I think the fact that there are companies that are already. Providing authentication as a service really sets it up. Well, the thing that's hard is like reinventing the internet for agents. We don't want to rebuild the internet. That's an impossible task. And I think people often say like, well, we'll have this second layer of APIs built for agents. I'm like, we will for the top use cases, but instead of we can just tweak the internet as is, which is on the authentication side, I think we're going to be the dumb ones going forward. Unfortunately, I think AI is going to be able to do a lot of the tasks that we do online, which means that it will be able to go to websites, click buttons on our behalf and log in on our behalf too. So with this kind of like web agent future happening, I think with some small structural changes, like you said, it feels like it could all slot in really nicely with the existing internet.Handling CAPTCHAs and Agent Authenticationswyx [00:28:08]: There's one more thing, which is the, your live view iframe, which lets you take, take control. Yeah. Obviously very key for operator now, but like, was, is there anything interesting technically there or that the people like, well, people always want this.Paul [00:28:21]: It was really hard to build, you know, like, so, okay. Headless browsers, you don't see them, right. They're running. They're running in a cloud somewhere. You can't like look at them. And I just want to really make, it's a weird name. I wish we came up with a better name for this thing, but you can't see them. Right. But customers don't trust AI agents, right. At least the first pass. So what we do with our live view is that, you know, when you use browser base, you can actually embed a live view of the browser running in the cloud for your customer to see it working. And that's what the first reason is the build trust, like, okay, so I have this script. That's going to go automate a website. I can embed it into my web application via an iframe and my customer can watch. I think. And then we added two way communication. So now not only can you watch the browser kind of being operated by AI, if you want to pause and actually click around type within this iframe that's controlling a browser, that's also possible. And this is all thanks to some of the lower level protocol, which is called the Chrome DevTools protocol. It has a API called start screencast, and you can also send mouse clicks and button clicks to a remote browser. And this is all embeddable within iframes. You have a browser within a browser, yo. And then you simulate the screen, the click on the other side. Exactly. And this is really nice often for, like, let's say, a capture that can't be solved. You saw this with Operator, you know, Operator actually uses a different approach. They use VNC. So, you know, you're able to see, like, you're seeing the whole window here. What we're doing is something a little lower level with the Chrome DevTools protocol. It's just PNGs being streamed over the wire. But the same thing is true, right? Like, hey, I'm running a window. Pause. Can you do something in this window? Human. Okay, great. Resume. Like sometimes 2FA tokens. Like if you get that text message, you might need a person to type that in. Web agents need human-in-the-loop type workflows still. You still need a person to interact with the browser. And building a UI to proxy that is kind of hard. You may as well just show them the whole browser and say, hey, can you finish this up for me? And then let the AI proceed on afterwards. Is there a future where I stream my current desktop to browser base? I don't think so. I think we're very much cloud infrastructure. Yeah. You know, but I think a lot of the stuff we're doing, we do want to, like, build tools. Like, you know, we'll talk about the stage and, you know, web agent framework in a second. But, like, there's a case where a lot of people are going desktop first for, you know, consumer use. And I think cloud is doing a lot of this, where I expect to see, you know, MCPs really oriented around the cloud desktop app for a reason, right? Like, I think a lot of these tools are going to run on your computer because it makes... I think it's breaking out. People are putting it on a server. Oh, really? Okay. Well, sweet. We'll see. We'll see that. I was surprised, though, wasn't I? I think that the browser company, too, with Dia Browser, it runs on your machine. You know, it's going to be...swyx [00:30:50]: What is it?Paul [00:30:51]: So, Dia Browser, as far as I understand... I used to use Arc. Yeah. I haven't used Arc. But I'm a big fan of the browser company. I think they're doing a lot of cool stuff in consumer. As far as I understand, it's a browser where you have a sidebar where you can, like, chat with it and it can control the local browser on your machine. So, if you imagine, like, what a consumer web agent is, which it lives alongside your browser, I think Google Chrome has Project Marina, I think. I almost call it Project Marinara for some reason. I don't know why. It's...swyx [00:31:17]: No, I think it's someone really likes the Waterworld. Oh, I see. The classic Kevin Costner. Yeah.Paul [00:31:22]: Okay. Project Marinara is a similar thing to the Dia Browser, in my mind, as far as I understand it. You have a browser that has an AI interface that will take over your mouse and keyboard and control the browser for you. Great for consumer use cases. But if you're building applications that rely on a browser and it's more part of a greater, like, AI app experience, you probably need something that's more like infrastructure, not a consumer app.swyx [00:31:44]: Just because I have explored a little bit in this area, do people want branching? So, I have the state. Of whatever my browser's in. And then I want, like, 100 clones of this state. Do people do that? Or...Paul [00:31:56]: People don't do it currently. Yeah. But it's definitely something we're thinking about. I think the idea of forking a browser is really cool. Technically, kind of hard. We're starting to see this in code execution, where people are, like, forking some, like, code execution, like, processes or forking some tool calls or branching tool calls. Haven't seen it at the browser level yet. But it makes sense. Like, if an AI agent is, like, using a website and it's not sure what path it wants to take to crawl this website. To find the information it's looking for. It would make sense for it to explore both paths in parallel. And that'd be a very, like... A road not taken. Yeah. And hopefully find the right answer. And then say, okay, this was actually the right one. And memorize that. And go there in the future. On the roadmap. For sure. Don't make my roadmap, please. You know?Alessio [00:32:37]: How do you actually do that? Yeah. How do you fork? I feel like the browser is so stateful for so many things.swyx [00:32:42]: Serialize the state. Restore the state. I don't know.Paul [00:32:44]: So, it's one of the reasons why we haven't done it yet. It's hard. You know? Like, to truly fork, it's actually quite difficult. The naive way is to open the same page in a new tab and then, like, hope that it's at the same thing. But if you have a form halfway filled, you may have to, like, take the whole, you know, container. Pause it. All the memory. Duplicate it. Restart it from there. It could be very slow. So, we haven't found a thing. Like, the easy thing to fork is just, like, copy the page object. You know? But I think there needs to be something a little bit more robust there. Yeah.swyx [00:33:12]: So, MorphLabs has this infinite branch thing. Like, wrote a custom fork of Linux or something that let them save the system state and clone it. MorphLabs, hit me up. I'll be a customer. Yeah. That's the only. I think that's the only way to do it. Yeah. Like, unless Chrome has some special API for you. Yeah.Paul [00:33:29]: There's probably something we'll reverse engineer one day. I don't know. Yeah.Alessio [00:33:32]: Let's talk about StageHand, the AI web browsing framework. You have three core components, Observe, Extract, and Act. Pretty clean landing page. What was the idea behind making a framework? Yeah.Stagehand: AI web browsing frameworkPaul [00:33:43]: So, there's three frameworks that are very popular or already exist, right? Puppeteer, Playwright, Selenium. Those are for building hard-coded scripts to control websites. And as soon as I started to play with LLMs plus browsing, I caught myself, you know, code-genning Playwright code to control a website. I would, like, take the DOM. I'd pass it to an LLM. I'd say, can you generate the Playwright code to click the appropriate button here? And it would do that. And I was like, this really should be part of the frameworks themselves. And I became really obsessed with SDKs that take natural language as part of, like, the API input. And that's what StageHand is. StageHand exposes three APIs, and it's a super set of Playwright. So, if you go to a page, you may want to take an action, click on the button, fill in the form, etc. That's what the act command is for. You may want to extract some data. This one takes a natural language, like, extract the winner of the Super Bowl from this page. You can give it a Zod schema, so it returns a structured output. And then maybe you're building an API. You can do an agent loop, and you want to kind of see what actions are possible on this page before taking one. You can do observe. So, you can observe the actions on the page, and it will generate a list of actions. You can guide it, like, give me actions on this page related to buying an item. And you can, like, buy it now, add to cart, view shipping options, and pass that to an LLM, an agent loop, to say, what's the appropriate action given this high-level goal? So, StageHand isn't a web agent. It's a framework for building web agents. And we think that agent loops are actually pretty close to the application layer because every application probably has different goals or different ways it wants to take steps. I don't think I've seen a generic. Maybe you guys are the experts here. I haven't seen, like, a really good AI agent framework here. Everyone kind of has their own special sauce, right? I see a lot of developers building their own agent loops, and they're using tools. And I view StageHand as the browser tool. So, we expose act, extract, observe. Your agent can call these tools. And from that, you don't have to worry about it. You don't have to worry about generating playwright code performantly. You don't have to worry about running it. You can kind of just integrate these three tool calls into your agent loop and reliably automate the web.swyx [00:35:48]: A special shout-out to Anirudh, who I met at your dinner, who I think listens to the pod. Yeah. Hey, Anirudh.Paul [00:35:54]: Anirudh's a man. He's a StageHand guy.swyx [00:35:56]: I mean, the interesting thing about each of these APIs is they're kind of each startup. Like, specifically extract, you know, Firecrawler is extract. There's, like, Expand AI. There's a whole bunch of, like, extract companies. They just focus on extract. I'm curious. Like, I feel like you guys are going to collide at some point. Like, right now, it's friendly. Everyone's in a blue ocean. At some point, it's going to be valuable enough that there's some turf battle here. I don't think you have a dog in a fight. I think you can mock extract to use an external service if they're better at it than you. But it's just an observation that, like, in the same way that I see each option, each checkbox in the side of custom GBTs becoming a startup or each box in the Karpathy chart being a startup. Like, this is also becoming a thing. Yeah.Paul [00:36:41]: I mean, like, so the way StageHand works is that it's MIT-licensed, completely open source. You bring your own API key to your LLM of choice. You could choose your LLM. We don't make any money off of the extract or really. We only really make money if you choose to run it with our browser. You don't have to. You can actually use your own browser, a local browser. You know, StageHand is completely open source for that reason. And, yeah, like, I think if you're building really complex web scraping workflows, I don't know if StageHand is the tool for you. I think it's really more if you're building an AI agent that needs a few general tools or if it's doing a lot of, like, web automation-intensive work. But if you're building a scraping company, StageHand is not your thing. You probably want something that's going to, like, get HTML content, you know, convert that to Markdown, query it. That's not what StageHand does. StageHand is more about reliability. I think we focus a lot on reliability and less so on cost optimization and speed at this point.swyx [00:37:33]: I actually feel like StageHand, so the way that StageHand works, it's like, you know, page.act, click on the quick start. Yeah. It's kind of the integration test for the code that you would have to write anyway, like the Puppeteer code that you have to write anyway. And when the page structure changes, because it always does, then this is still the test. This is still the test that I would have to write. Yeah. So it's kind of like a testing framework that doesn't need implementation detail.Paul [00:37:56]: Well, yeah. I mean, Puppeteer, Playwright, and Slenderman were all designed as testing frameworks, right? Yeah. And now people are, like, hacking them together to automate the web. I would say, and, like, maybe this is, like, me being too specific. But, like, when I write tests, if the page structure changes. Without me knowing, I want that test to fail. So I don't know if, like, AI, like, regenerating that. Like, people are using StageHand for testing. But it's more for, like, usability testing, not, like, testing of, like, does the front end, like, has it changed or not. Okay. But generally where we've seen people, like, really, like, take off is, like, if they're using, you know, something. If they want to build a feature in their application that's kind of like Operator or Deep Research, they're using StageHand to kind of power that tool calling in their own agent loop. Okay. Cool.swyx [00:38:37]: So let's go into Operator, the first big agent launch of the year from OpenAI. Seems like they have a whole bunch scheduled. You were on break and your phone blew up. What's your just general view of computer use agents is what they're calling it. The overall category before we go into Open Operator, just the overall promise of Operator. I will observe that I tried it once. It was okay. And I never tried it again.OpenAI's Operator and computer use agentsPaul [00:38:58]: That tracks with my experience, too. Like, I'm a huge fan of the OpenAI team. Like, I think that I do not view Operator as the company. I'm not a company killer for browser base at all. I think it actually shows people what's possible. I think, like, computer use models make a lot of sense. And I'm actually most excited about computer use models is, like, their ability to, like, really take screenshots and reasoning and output steps. I think that using mouse click or mouse coordinates, I've seen that proved to be less reliable than I would like. And I just wonder if that's the right form factor. What we've done with our framework is anchor it to the DOM itself, anchor it to the actual item. So, like, if it's clicking on something, it's clicking on that thing, you know? Like, it's more accurate. No matter where it is. Yeah, exactly. Because it really ties in nicely. And it can handle, like, the whole viewport in one go, whereas, like, Operator can only handle what it sees. Can you hover? Is hovering a thing that you can do? I don't know if we expose it as a tool directly, but I'm sure there's, like, an API for hovering. Like, move mouse to this position. Yeah, yeah, yeah. I think you can trigger hover, like, via, like, the JavaScript on the DOM itself. But, no, I think, like, when we saw computer use, everyone's eyes lit up because they realized, like, wow, like, AI is going to actually automate work for people. And I think seeing that kind of happen from both of the labs, and I'm sure we're going to see more labs launch computer use models, I'm excited to see all the stuff that people build with it. I think that I'd love to see computer use power, like, controlling a browser on browser base. And I think, like, Open Operator, which was, like, our open source version of OpenAI's Operator, was our first take on, like, how can we integrate these models into browser base? And we handle the infrastructure and let the labs do the models. I don't have a sense that Operator will be released as an API. I don't know. Maybe it will. I'm curious to see how well that works because I think it's going to be really hard for a company like OpenAI to do things like support CAPTCHA solving or, like, have proxies. Like, I think it's hard for them structurally. Imagine this New York Times headline, OpenAI CAPTCHA solving. Like, that would be a pretty bad headline, this New York Times headline. Browser base solves CAPTCHAs. No one cares. No one cares. And, like, our investors are bored. Like, we're all okay with this, you know? We're building this company knowing that the CAPTCHA solving is short-lived until we figure out how to authenticate good bots. I think it's really hard for a company like OpenAI, who has this brand that's so, so good, to balance with, like, the icky parts of web automation, which it can be kind of complex to solve. I'm sure OpenAI knows who to call whenever they need you. Yeah, right. I'm sure they'll have a great partnership.Alessio [00:41:23]: And is Open Operator just, like, a marketing thing for you? Like, how do you think about resource allocation? So, you can spin this up very quickly. And now there's all this, like, open deep research, just open all these things that people are building. We started it, you know. You're the original Open. We're the original Open operator, you know? Is it just, hey, look, this is a demo, but, like, we'll help you build out an actual product for yourself? Like, are you interested in going more of a product route? That's kind of the OpenAI way, right? They started as a model provider and then…Paul [00:41:53]: Yeah, we're not interested in going the product route yet. I view Open Operator as a model provider. It's a reference project, you know? Let's show people how to build these things using the infrastructure and models that are out there. And that's what it is. It's, like, Open Operator is very simple. It's an agent loop. It says, like, take a high-level goal, break it down into steps, use tool calling to accomplish those steps. It takes screenshots and feeds those screenshots into an LLM with the step to generate the right action. It uses stagehand under the hood to actually execute this action. It doesn't use a computer use model. And it, like, has a nice interface using the live view that we talked about, the iframe, to embed that into an application. So I felt like people on launch day wanted to figure out how to build their own version of this. And we turned that around really quickly to show them. And I hope we do that with other things like deep research. We don't have a deep research launch yet. I think David from AOMNI actually has an amazing open deep research that he launched. It has, like, 10K GitHub stars now. So he's crushing that. But I think if people want to build these features natively into their application, they need good reference projects. And I think Open Operator is a good example of that.swyx [00:42:52]: I don't know. Actually, I'm actually pretty bullish on API-driven operator. Because that's the only way that you can sort of, like, once it's reliable enough, obviously. And now we're nowhere near. But, like, give it five years. It'll happen, you know. And then you can sort of spin this up and browsers are working in the background and you don't necessarily have to know. And it just is booking restaurants for you, whatever. I can definitely see that future happening. I had this on the landing page here. This might be a slightly out of order. But, you know, you have, like, sort of three use cases for browser base. Open Operator. Or this is the operator sort of use case. It's kind of like the workflow automation use case. And it completes with UiPath in the sort of RPA category. Would you agree with that? Yeah, I would agree with that. And then there's Agents we talked about already. And web scraping, which I imagine would be the bulk of your workload right now, right?Paul [00:43:40]: No, not at all. I'd say actually, like, the majority is browser automation. We're kind of expensive for web scraping. Like, I think that if you're building a web scraping product, if you need to do occasional web scraping or you have to do web scraping that works every single time, you want to use browser automation. Yeah. You want to use browser-based. But if you're building web scraping workflows, what you should do is have a waterfall. You should have the first request is a curl to the website. See if you can get it without even using a browser. And then the second request may be, like, a scraping-specific API. There's, like, a thousand scraping APIs out there that you can use to try and get data. Scraping B. Scraping B is a great example, right? Yeah. And then, like, if those two don't work, bring out the heavy hitter. Like, browser-based will 100% work, right? It will load the page in a real browser, hydrate it. I see.swyx [00:44:21]: Because a lot of people don't render to JS.swyx [00:44:25]: Yeah, exactly.Paul [00:44:26]: So, I mean, the three big use cases, right? Like, you know, automation, web data collection, and then, you know, if you're building anything agentic that needs, like, a browser tool, you want to use browser-based.Alessio [00:44:35]: Is there any use case that, like, you were super surprised by that people might not even think about? Oh, yeah. Or is it, yeah, anything that you can share? The long tail is crazy. Yeah.Surprising use cases of BrowserbasePaul [00:44:44]: One of the case studies on our website that I think is the most interesting is this company called Benny. So, the way that it works is if you're on food stamps in the United States, you can actually get rebates if you buy certain things. Yeah. You buy some vegetables. You submit your receipt to the government. They'll give you a little rebate back. Say, hey, thanks for buying vegetables. It's good for you. That process of submitting that receipt is very painful. And the way Benny works is you use their app to take a photo of your receipt, and then Benny will go submit that receipt for you and then deposit the money into your account. That's actually using no AI at all. It's all, like, hard-coded scripts. They maintain the scripts. They've been doing a great job. And they build this amazing consumer app. But it's an example of, like, all these, like, tedious workflows that people have to do to kind of go about their business. And they're doing it for the sake of their day-to-day lives. And I had never known about, like, food stamp rebates or the complex forms you have to do to fill them. But the world is powered by millions and millions of tedious forms, visas. You know, Emirate Lighthouse is a customer, right? You know, they do the O1 visa. Millions and millions of forms are taking away humans' time. And I hope that Browserbase can help power software that automates away the web forms that we don't need anymore. Yeah.swyx [00:45:49]: I mean, I'm very supportive of that. I mean, forms. I do think, like, government itself is a big part of it. I think the government itself should embrace AI more to do more sort of human-friendly form filling. Mm-hmm. But I'm not optimistic. I'm not holding my breath. Yeah. We'll see. Okay. I think I'm about to zoom out. I have a little brief thing on computer use, and then we can talk about founder stuff, which is, I tend to think of developer tooling markets in impossible triangles, where everyone starts in a niche, and then they start to branch out. So I already hinted at a little bit of this, right? We mentioned more. We mentioned E2B. We mentioned Firecrawl. And then there's Browserbase. So there's, like, all this stuff of, like, have serverless virtual computer that you give to an agent and let them do stuff with it. And there's various ways of connecting it to the internet. You can just connect to a search API, like SERP API, whatever other, like, EXA is another one. That's what you're searching. You can also have a JSON markdown extractor, which is Firecrawl. Or you can have a virtual browser like Browserbase, or you can have a virtual machine like Morph. And then there's also maybe, like, a virtual sort of code environment, like Code Interpreter. So, like, there's just, like, a bunch of different ways to tackle the problem of give a computer to an agent. And I'm just kind of wondering if you see, like, everyone's just, like, happily coexisting in their respective niches. And as a developer, I just go and pick, like, a shopping basket of one of each. Or do you think that you eventually, people will collide?Future of browser automation and market competitionPaul [00:47:18]: I think that currently it's not a zero-sum market. Like, I think we're talking about... I think we're talking about all of knowledge work that people do that can be automated online. All of these, like, trillions of hours that happen online where people are working. And I think that there's so much software to be built that, like, I tend not to think about how these companies will collide. I just try to solve the problem as best as I can and make this specific piece of infrastructure, which I think is an important primitive, the best I possibly can. And yeah. I think there's players that are actually going to like it. I think there's players that are going to launch, like, over-the-top, you know, platforms, like agent platforms that have all these tools built in, right? Like, who's building the rippling for agent tools that has the search tool, the browser tool, the operating system tool, right? There are some. There are some. There are some, right? And I think in the end, what I have seen as my time as a developer, and I look at all the favorite tools that I have, is that, like, for tools and primitives with sufficient levels of complexity, you need to have a solution that's really bespoke to that primitive, you know? And I am sufficiently convinced that the browser is complex enough to deserve a primitive. Obviously, I have to. I'm the founder of BrowserBase, right? I'm talking my book. But, like, I think maybe I can give you one spicy take against, like, maybe just whole OS running. I think that when I look at computer use when it first came out, I saw that the majority of use cases for computer use were controlling a browser. And do we really need to run an entire operating system just to control a browser? I don't think so. I don't think that's necessary. You know, BrowserBase can run browsers for way cheaper than you can if you're running a full-fledged OS with a GUI, you know, operating system. And I think that's just an advantage of the browser. It is, like, browsers are little OSs, and you can run them very efficiently if you orchestrate it well. And I think that allows us to offer 90% of the, you know, functionality in the platform needed at 10% of the cost of running a full OS. Yeah.Open Operator: Browserbase's Open-Source Alternativeswyx [00:49:16]: I definitely see the logic in that. There's a Mark Andreessen quote. I don't know if you know this one. Where he basically observed that the browser is turning the operating system into a poorly debugged set of device drivers, because most of the apps are moved from the OS to the browser. So you can just run browsers.Paul [00:49:31]: There's a place for OSs, too. Like, I think that there are some applications that only run on Windows operating systems. And Eric from pig.dev in this upcoming YC batch, or last YC batch, like, he's building all run tons of Windows operating systems for you to control with your agent. And like, there's some legacy EHR systems that only run on Internet-controlled systems. Yeah.Paul [00:49:54]: I think that's it. I think, like, there are use cases for specific operating systems for specific legacy software. And like, I'm excited to see what he does with that. I just wanted to give a shout out to the pig.dev website.swyx [00:50:06]: The pigs jump when you click on them. Yeah. That's great.Paul [00:50:08]: Eric, he's the former co-founder of banana.dev, too.swyx [00:50:11]: Oh, that Eric. Yeah. That Eric. Okay. Well, he abandoned bananas for pigs. I hope he doesn't start going around with pigs now.Alessio [00:50:18]: Like he was going around with bananas. A little toy pig. Yeah. Yeah. I love that. What else are we missing? I think we covered a lot of, like, the browser-based product history, but. What do you wish people asked you? Yeah.Paul [00:50:29]: I wish people asked me more about, like, what will the future of software look like? Because I think that's really where I've spent a lot of time about why do browser-based. Like, for me, starting a company is like a means of last resort. Like, you shouldn't start a company unless you absolutely have to. And I remain convinced that the future of software is software that you're going to click a button and it's going to do stuff on your behalf. Right now, software. You click a button and it maybe, like, calls it back an API and, like, computes some numbers. It, like, modifies some text, whatever. But the future of software is software using software. So, I may log into my accounting website for my business, click a button, and it's going to go load up my Gmail, search my emails, find the thing, upload the receipt, and then comment it for me. Right? And it may use it using APIs, maybe a browser. I don't know. I think it's a little bit of both. But that's completely different from how we've built software so far. And that's. I think that future of software has different infrastructure requirements. It's going to require different UIs. It's going to require different pieces of infrastructure. I think the browser infrastructure is one piece that fits into that, along with all the other categories you mentioned. So, I think that it's going to require developers to think differently about how they've built software for, you know
Join Simtheory: https://simtheory.ai----Grok 3 Dis Track (cringe): https://simulationtheory.ai/aff9ba04-ca0e-4572-84f4-687739c7b84bGrok 3 Dis Track written by Sonnet: https://simulationtheory.ai/edaed525-b9b6-473b-a6d6-f9cca9673868----Community: https://thisdayinai.com----Chapters:00:00 - First Impressions of Grok 310:00 - Discussion about Deep Search, Deep Research24:28 - Market landscape: Is OpenAI Rattled by xAI's Grok 3? Rumors of GPT-4.5 and GPT-548:48 - Why does Grok and xAI Exist? Will anyone care about Grok 3 next week?54:45 - Diss track battle with Grok 3 (re-written by Sonnet) & Model Tuning for Use Cases1:07:50 - GPT-4.5 and Anthropic Claude Thinking Next Week? & Are we a podcast about Altavista?1:13:25 - Economically productive agents & freaky muscular robot1:22:00 - Final thoughts of the week1:27:26 - Grok 3 Dis Track in Full (Sonnet Version)Thanks for your support and listening!
Join Simtheory: https://simtheory.aiCommunity: https://thisdayinai.com---CHAPTERS:00:00 - Anthropic Economic Index & The Impact of AI Agents18:00 - Hype Vs Reality of Models & Agents31:33 - Dream Agents & Side Quest Background Tasks56:60 - How All SaaS Will Be Disrupted by AI1:21:10 - Sam Altman's GPT-4.5, GPT-5 Roadmap1:28:50 - Anthropic Claude 4: Anthropic Strikes Back---Thanks for listening and your support.
Pastor Jonathan Stokes takes us through a journey of deepening faith and trust in God through the extreme challenges of having a child with O1.Started in the ministry in 2007 as a youth pastor at First Baptist Church in Wellsburg. Studied at Bobby Wood School of Christian Studies. I've been in the ministry for 18 years. I am the Interim Pastor at First Baptist Church of Weirton, a medical assistant at WMC.#osteogenesisimperfecta #faith #community
Try a walking desk while studying ML or working on your projects! https://ocdevel.com/walk Show notes: https://ocdevel.com/mlg/mla-22 Tools discussed: Windsurf: https://codeium.com/windsurf Copilot: https://github.com/features/copilot Cursor: https://www.cursor.com/ Cline: https://github.com/cline/cline Roo Code: https://github.com/RooVetGit/Roo-Code Aider: https://aider.chat/ Other: Leaderboards: https://aider.chat/docs/leaderboards/ Video of speed-demon: https://www.youtube.com/watch?v=QlUt06XLbJE&feature=youtu.be Reddit: https://www.reddit.com/r/chatgptcoding/ Examines the rapidly evolving world of AI coding tools designed to boost programming productivity by acting as a pair programming partner. The discussion groups these tools into three categories: • Hands-Off Tools: These include solutions that work on fixed monthly fees and require minimal user intervention. GitHub Copilot started with simple tab completions and now offers an agent mode similar to Cursor, which stands out for its advanced codebase indexing and intelligent file searching. Windsurf is noted for its simplicity—accepting prompts and performing automated edits—but some users report performance throttling after prolonged use. • Hands-On Tools: Aider is presented as a command-line utility that demands configuration and user involvement. It allows developers to specify files and settings, and it efficiently manages token usage by sending prompts in diff format. Aider also implements an “architect versus edit” approach: a reasoning model (such as DeepSeek R1) first outlines a sequence of changes, then an editor model (like Claude 3.5 Sonnet) produces precise code edits. This dual-model strategy enhances accuracy and reduces token costs, especially for complex tasks. • Intermediate Power Tools: Open-source tools such as Cline and its more advanced fork, RooCode, require users to supply their own API keys and pay per token. These tools offer robust, agentic features, including codebase indexing, file editing, and even browser automation. RooCode stands out with its ability to autonomously expand functionality through integrations (for example, managing cloud resources or querying issue trackers), making it particularly attractive for tinkerers and power users. A decision framework is suggested: for those new to AI coding assistants or with limited budgets, starting with Cursor (or cautiously exploring Copilot's new features) is recommended. For developers who want to customize their workflow and dive deep into the tooling, RooCode or Cline offer greater control—always paired with Aider for precise and token-efficient code edits. Also reviews model performance using a coding benchmark leaderboard that updates frequently. The current top-performing combination uses DeepSeek R1 as the architect and Claude 3.5 Sonnet as the editor, with alternatives such as OpenAI's O1 and O3 Mini available. Tools like Open Router are mentioned as a way to consolidate API key management and reduce token costs.
Join Simtheory: https://simtheory.ai----"Don't Cha" Song: https://simulationtheory.ai/cbf4d5e6-82e4-4e84-91e7-3b48cb2744efSpotify: https://open.spotify.com/track/4Q8dRV45WYfxePE7zi52iL?si=ed094fce41e54c8fCommunity: https://thisdayinai.com---CHAPTERS:00:00 - We're on Spotify!01:06 - o3-mini release and initial impressions18:37 - Reasoning models as agents47:20 - OpenAI's Deep Research: impressions and what it means1:12:20 - Addressing our Shilling for Sonnet & My Week with o1 Experience1:20:18 - Gemini 2.0 Flash GA, Gemini 2.0 Pro Experimental + Other Google Updates1:38:16 - LOL of week and final thoughts1:43:39 - Don't Cha Song in Full
OpenAI is pushing the boundaries of artificial intelligence yet again. In this episode of Rocketship.FM, we break down what Chief Product Officer Kevin Weil revealed about OpenAI's roadmap for 2025 and beyond—including the latest AI model, O1, which is already outperforming previous versions in coding, math, and reasoning. But that's just the beginning. We also explore OpenAI's move into AI-powered agents designed to streamline everyday tasks, and the company's rumored return to humanoid robotics. And what about Artificial General Intelligence (AGI) and even Artificial Superintelligence (ASI)? OpenAI CEO Sam Altman has hinted that these once-distant milestones could be closer than we think. What happens when AI surpasses human intelligence? Will it be a utopia of limitless innovation, or are we opening a Pandora's box we can't close? Join us as we unpack OpenAI's vision for the future—and what it could mean for the world.
Our 197th episode with a summary and discussion of last week's big AI news! Recorded on 01/17/2024 Join our brand new Discord here! https://discord.gg/nTyezGSKwP Hosted by Andrey Kurenkov and Jeremie Harris. Feel free to email us your questions and feedback at contact@lastweekinai.com and/or hello@gladstone.ai Read out our text newsletter and comment on the podcast at https://lastweekin.ai/. In this episode: - DeepSeek releases R1, a competitive AI model comparable to OpenAI's O1, leading to market unrest and significant drops in tech stocks, including a 17% plunge in NVIDIA's stock. - OpenAI launches Operator to facilitate agentic computer use, while facing competition from new releases by DeepSeek and Quen, with applications seeing rapid adoption. - President Trump revokes the Biden administration's executive order on AI, signaling a shift in AI policy and deregulation efforts. - Taiwanese government clears TSMC to produce advanced 2-nanometer chip technology abroad, aiming to strengthen global semiconductor supply amidst geopolitical tensions. If you would like to become a sponsor for the newsletter, podcast, or both, please fill out this form. Timestamps + Links: (00:00:00) Intro / Banter (00:03:01) Response to listener comments Projects & Open Source (00:06:26) DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning (00:30:25) Viral AI company DeepSeek releases new image model family (00:34:07) Qwen2.5-1M Technical Report (00:38:32) Alibaba's Qwen team releases AI models that can control PCs and phones Tools & Apps (00:42:09) OpenAI launches Operator, an AI agent that performs tasks autonomously (00:47:37) DeepSeek reaches No. 1 on US Play Store (00:52:17) Alibaba rolled out Qwen Chat v0.2 and Qwen2.5-1M model (00:53:50) Perplexity launches US-hosted DeepSeek R1, hints at EU hosting soon (00:55:31) Apple is pulling its AI-generated notifications for news after generating fake headlines (00:59:00) French AI ‘Lucie' looks très chic, but keeps getting answers wrong Applications & Business (01:02:09) DeepSeek's New AI Model Sparks Shock, Awe, and Questions From US Competitors (01:08:16) Microsoft loses OpenAI exclusive cloud provider status to $500 billion Stargate project (01:13:34) OpenAI adds BlackRock exec Adebayo Ogunlesi to board of directors (01:15:33) ElevenLabs has raised a new round at $3B+ valuation led by ICONIQ Growth, sources say Policy & Safety (01:16:29) Donald Trump unveils $500 billion Stargate Project to build AI infrastructure in the US, promising over 100K jobs (01:21:16) Trump Revokes Biden AI Policy, Signs Executive Order to Strengthen AI Leadership (01:23:59) Anthropic CEO doesn't see DeepSeek as ‘adversaries,' but says export controls are critical (01:31:12) Taiwanese govt clears TSMC to make 2nm chips abroad — country lowers its 'Silicon Shield' (01:33:47) Outro
Join Simtheory: https://simtheory.ai---LINKS FROM SHOW:- Built to Reason (an o1 Tribute song): https://simulationtheory.ai/3f3ff70d-afef-4372-a9a5-26b22824c383- Sputnik Moment Song: https://simulationtheory.ai/4317176e-5c0d-49b9-801b-b686113624fd- Episode 91 Notes: https://simulationtheory.ai/b64f40ce-dab8-40b7-89a1-f24d17296f5aCHAPTERS:00:00 - Is Deepseek R1 a Sputnik Moment?15:32 - Industry Reaction to Deepseek R139:30 - Can Deepseek R1 Write a Good Dis Track?46:21 - Will AI Disrupt All Software: Throw Away AI Software & Custom Interfaces1:10:04 - OpenAI's Operator Thoughts & Computer Use in the Enterprise1:16:45 - Google Releases Gemini 2.0 Flash Officially Released, Rumors of o3-mini & Farewell to o11:22:07 - In loving memory of o1...---thx 4 listening, like and sub.
In this episode of The Two Minute Drill, Drex dives into the groundbreaking release of DeepSeek R1, a Chinese AI reasoning model rivaling OpenAI's O1. Next, CISA and FBI warnings about ongoing exploitation of Ivanti cloud application vulnerabilities. Then, the controversial pardon of Silk Road founder Ross Ulbricht and its implications for cybersecurity.Remember, Stay a Little Paranoid Subscribe: This Week Health Twitter: This Week Health LinkedIn: Week Health Donate: Alex's Lemonade Stand: Foundation for Childhood Cancer
The AI Breakdown: Daily Artificial Intelligence News and Discussions
DeekSeek has released R1, their answer to OpenAI's O1, and it has Silicon Valley chattering and markets crashing. But just how big a deal is it? Big, argues NLW, even if the likely impact might be different than what Wall Street seems to think. Brought to you by: KPMG – Go to www.kpmg.us/ai to learn more about how KPMG can help you drive value with our AI solutions. Vanta - Simplify compliance - https://vanta.com/nlw The Agent Readiness Audit from Superintelligent - Go to https://besuper.ai/ to request your company's agent readiness score. The AI Daily Brief helps you understand the most important news and discussions in AI. Subscribe to the podcast version of The AI Daily Brief wherever you listen: https://pod.link/1680633614 Subscribe to the newsletter: https://aidailybrief.beehiiv.com/ Join our Discord: https://bit.ly/aibreakdown
In this episode, Ricardo talks about DeepSeek, a groundbreaking AI application from a small Chinese startup. Unlike other AI models, DeepSeek was trained for just $5.7M—far less than OpenAI's $100M+ investments—yet it rivals top models like OpenAI's O1. This breakthrough could disrupt the AI industry, enabling smaller companies to develop advanced models without massive infrastructure. The news has already impacted major tech stocks, including Nvidia and Microsoft. If DeepSeek's claims hold true, AI accessibility will skyrocket, reshaping project management and beyond. Ricardo urges listeners to explore DeepSeek and stay alert to its potential impact. Tune in to the podcast to learn more!
Neste episódio, Ricardo fala sobre o DeepSeek, um aplicativo de IA inovador de uma pequena startup chinesa. Ao contrário de outros modelos de IA, o DeepSeek foi treinado por apenas US$ 5,7 milhões — muito menos do que os investimentos de mais de US$ 100 milhões da OpenAI — mas rivaliza com modelos de ponta como o O1 da OpenAI. Esse avanço pode revolucionar a indústria de IA, permitindo que empresas menores desenvolvam modelos avançados sem infraestrutura massiva. A notícia já impactou grandes ações de tecnologia, incluindo Nvidia e Microsoft. Se as alegações do DeepSeek forem verdadeiras, a acessibilidade da IA disparará, remodelando o gerenciamento de projetos e muito mais. Ricardo pede aos ouvintes que explorem o DeepSeek e fiquem atentos ao seu impacto potencial. Escute o podcast para saber mais.
One last Gold sponsor slot is available for the AI Engineer Summit in NYC. Our last round of invites is going out soon - apply here - If you are building AI agents or AI eng teams, this will be the single highest-signal conference of the year for you!While the world melts down over DeepSeek, few are talking about the OTHER notable group of former hedge fund traders who pivoted into AI and built a remarkably profitable consumer AI business with a tiny team with incredibly cracked engineering team — Chai Research. In short order they have:* Started a Chat AI company well before Noam Shazeer started Character AI, and outlasted his departure.* Crossed 1m DAU in 2.5 years - William updates us on the pod that they've hit 1.4m DAU now, another +40% from a few months ago. Revenue crossed >$22m. * Launched the Chaiverse model crowdsourcing platform - taking 3-4 week A/B testing cycles down to 3-4 hours, and deploying >100 models a week.While they're not paying million dollar salaries, you can tell they're doing pretty well for an 11 person startup:The Chai Recipe: Building infra for rapid evalsRemember how the central thesis of LMarena (formerly LMsys) is that the only comprehensive way to evaluate LLMs is to let users try them out and pick winners?At the core of Chai is a mobile app that looks like Character AI, but is actually the largest LLM A/B testing arena in the world, specialized on retaining chat users for Chai's usecases (therapy, assistant, roleplay, etc). It's basically what LMArena would be if taken very, very seriously at one company (with $1m in prizes to boot):Chai publishes occasional research on how they think about this, including talks at their Palo Alto office:William expands upon this in today's podcast (34 mins in):Fundamentally, the way I would describe it is when you're building anything in life, you need to be able to evaluate it. And through evaluation, you can iterate, we can look at benchmarks, and we can say the issues with benchmarks and why they may not generalize as well as one would hope in the challenges of working with them. But something that works incredibly well is getting feedback from humans. And so we built this thing where anyone can submit a model to our developer backend, and it gets put in front of 5000 users, and the users can rate it. And we can then have a really accurate ranking of like which model, or users finding more engaging or more entertaining. And it gets, you know, it's at this point now, where every day we're able to, I mean, we evaluate between 20 and 50 models, LLMs, every single day, right. So even though we've got only got a team of, say, five AI researchers, they're able to iterate a huge quantity of LLMs, right. So our team ships, let's just say minimum 100 LLMs a week is what we're able to iterate through. Now, before that moment in time, we might iterate through three a week, we might, you know, there was a time when even doing like five a month was a challenge, right? By being able to change the feedback loops to the point where it's not, let's launch these three models, let's do an A-B test, let's assign, let's do different cohorts, let's wait 30 days to see what the day 30 retention is, which is the kind of the, if you're doing an app, that's like A-B testing 101 would be, do a 30-day retention test, assign different treatments to different cohorts and come back in 30 days. So that's insanely slow. That's just, it's too slow. And so we were able to get that 30-day feedback loop all the way down to something like three hours.In Crowdsourcing the leap to Ten Trillion-Parameter AGI, William describes Chai's routing as a recommender system, which makes a lot more sense to us than previous pitches for model routing startups:William is notably counter-consensus in a lot of his AI product principles:* No streaming: Chats appear all at once to allow rejection sampling* No voice: Chai actually beat Character AI to introducing voice - but removed it after finding that it was far from a killer feature.* Blending: “Something that we love to do at Chai is blending, which is, you know, it's the simplest way to think about it is you're going to end up, and you're going to pretty quickly see you've got one model that's really smart, one model that's really funny. How do you get the user an experience that is both smart and funny? Well, just 50% of the requests, you can serve them the smart model, 50% of the requests, you serve them the funny model.” (that's it!)But chief above all is the recommender system.We also referenced Exa CEO Will Bryk's concept of SuperKnowlege:Full Video versionOn YouTube. please like and subscribe!Timestamps* 00:00:04 Introductions and background of William Beauchamp* 00:01:19 Origin story of Chai AI* 00:04:40 Transition from finance to AI* 00:11:36 Initial product development and idea maze for Chai* 00:16:29 User psychology and engagement with AI companions* 00:20:00 Origin of the Chai name* 00:22:01 Comparison with Character AI and funding challenges* 00:25:59 Chai's growth and user numbers* 00:34:53 Key inflection points in Chai's growth* 00:42:10 Multi-modality in AI companions and focus on user-generated content* 00:46:49 Chaiverse developer platform and model evaluation* 00:51:58 Views on AGI and the nature of AI intelligence* 00:57:14 Evaluation methods and human feedback in AI development* 01:02:01 Content creation and user experience in Chai* 01:04:49 Chai Grant program and company culture* 01:07:20 Inference optimization and compute costs* 01:09:37 Rejection sampling and reward models in AI generation* 01:11:48 Closing thoughts and recruitmentTranscriptAlessio [00:00:04]: Hey everyone, welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel, and today we're in the Chai AI office with my usual co-host, Swyx.swyx [00:00:14]: Hey, thanks for having us. It's rare that we get to get out of the office, so thanks for inviting us to your home. We're in the office of Chai with William Beauchamp. Yeah, that's right. You're founder of Chai AI, but previously, I think you're concurrently also running your fund?William [00:00:29]: Yep, so I was simultaneously running an algorithmic trading company, but I fortunately was able to kind of exit from that, I think just in Q3 last year. Yeah, congrats. Yeah, thanks.swyx [00:00:43]: So Chai has always been on my radar because, well, first of all, you do a lot of advertising, I guess, in the Bay Area, so it's working. Yep. And second of all, the reason I reached out to a mutual friend, Joyce, was because I'm just generally interested in the... ...consumer AI space, chat platforms in general. I think there's a lot of inference insights that we can get from that, as well as human psychology insights, kind of a weird blend of the two. And we also share a bit of a history as former finance people crossing over. I guess we can just kind of start it off with the origin story of Chai.William [00:01:19]: Why decide working on a consumer AI platform rather than B2B SaaS? So just quickly touching on the background in finance. Sure. Originally, I'm from... I'm from the UK, born in London. And I was fortunate enough to go study economics at Cambridge. And I graduated in 2012. And at that time, everyone in the UK and everyone on my course, HFT, quant trading was really the big thing. It was like the big wave that was happening. So there was a lot of opportunity in that space. And throughout college, I'd sort of played poker. So I'd, you know, I dabbled as a professional poker player. And I was able to accumulate this sort of, you know, say $100,000 through playing poker. And at the time, as my friends would go work at companies like ChangeStreet or Citadel, I kind of did the maths. And I just thought, well, maybe if I traded my own capital, I'd probably come out ahead. I'd make more money than just going to work at ChangeStreet.swyx [00:02:20]: With 100k base as capital?William [00:02:22]: Yes, yes. That's not a lot. Well, it depends what strategies you're doing. And, you know, there is an advantage. There's an advantage to being small, right? Because there are, if you have a 10... Strategies that don't work in size. Exactly, exactly. So if you have a fund of $10 million, if you find a little anomaly in the market that you might be able to make 100k a year from, that's a 1% return on your 10 million fund. If your fund is 100k, that's 100% return, right? So being small, in some sense, was an advantage. So started off, and the, taught myself Python, and machine learning was like the big thing as well. Machine learning had really, it was the first, you know, big time machine learning was being used for image recognition, neural networks come out, you get dropout. And, you know, so this, this was the big thing that's going on at the time. So I probably spent my first three years out of Cambridge, just building neural networks, building random forests to try and predict asset prices, right, and then trade that using my own money. And that went well. And, you know, if you if you start something, and it goes well, you You try and hire more people. And the first people that came to mind was the talented people I went to college with. And so I hired some friends. And that went well and hired some more. And eventually, I kind of ran out of friends to hire. And so that was when I formed the company. And from that point on, we had our ups and we had our downs. And that was a whole long story and journey in itself. But after doing that for about eight or nine years, on my 30th birthday, which was four years ago now, I kind of took a step back to just evaluate my life, right? This is what one does when one turns 30. You know, I just heard it. I hear you. And, you know, I looked at my 20s and I loved it. It was a really special time. I was really lucky and fortunate to have worked with this amazing team, been successful, had a lot of hard times. And through the hard times, learned wisdom and then a lot of success and, you know, was able to enjoy it. And so the company was making about five million pounds a year. And it was just me and a team of, say, 15, like, Oxford and Cambridge educated mathematicians and physicists. It was like the real dream that you'd have if you wanted to start a quant trading firm. It was like...swyx [00:04:40]: Your own, all your own money?William [00:04:41]: Yeah, exactly. It was all the team's own money. We had no customers complaining to us about issues. There's no investors, you know, saying, you know, they don't like the risk that we're taking. We could. We could really run the thing exactly as we wanted it. It's like Susquehanna or like Rintec. Yeah, exactly. Yeah. And they're the companies that we would kind of look towards as we were building that thing out. But on my 30th birthday, I look and I say, OK, great. This thing is making as much money as kind of anyone would really need. And I thought, well, what's going to happen if we keep going in this direction? And it was clear that we would never have a kind of a big, big impact on the world. We can enrich ourselves. We can make really good money. Everyone on the team would be paid very, very well. Presumably, I can make enough money to buy a yacht or something. But this stuff wasn't that important to me. And so I felt a sort of obligation that if you have this much talent and if you have a talented team, especially as a founder, you want to be putting all that talent towards a good use. I looked at the time of like getting into crypto and I had a really strong view on crypto, which was that as far as a gambling device. This is like the most fun form of gambling invented in like ever super fun, I thought as a way to evade monetary regulations and banking restrictions. I think it's also absolutely amazing. So it has two like killer use cases, not so much banking the unbanked, but everything else, but everything else to do with like the blockchain and, and you know, web, was it web 3.0 or web, you know, that I, that didn't, it didn't really make much sense. And so instead of going into crypto, which I thought, even if I was successful, I'd end up in a lot of trouble. I thought maybe it'd be better to build something that governments wouldn't have a problem with. I knew that LLMs were like a thing. I think opening. I had said they hadn't released GPT-3 yet, but they'd said GPT-3 is so powerful. We can't release it to the world or something. Was it GPT-2? And then I started interacting with, I think Google had open source, some language models. They weren't necessarily LLMs, but they, but they were. But yeah, exactly. So I was able to play around with, but nowadays so many people have interacted with the chat GPT, they get it, but it's like the first time you, you can just talk to a computer and it talks back. It's kind of a special moment and you know, everyone who's done that goes like, wow, this is how it should be. Right. It should be like, rather than having to type on Google and search, you should just be able to ask Google a question. When I saw that I read the literature, I kind of came across the scaling laws and I think even four years ago. All the pieces of the puzzle were there, right? Google had done this amazing research and published, you know, a lot of it. Open AI was still open. And so they'd published a lot of their research. And so you really could be fully informed on, on the state of AI and where it was going. And so at that point I was confident enough, it was worth a shot. I think LLMs are going to be the next big thing. And so that's the thing I want to be building in, in that space. And I thought what's the most impactful product I can possibly build. And I thought it should be a platform. So I myself love platforms. I think they're fantastic because they open up an ecosystem where anyone can contribute to it. Right. So if you think of a platform like a YouTube, instead of it being like a Hollywood situation where you have to, if you want to make a TV show, you have to convince Disney to give you the money to produce it instead, anyone in the world can post any content they want to YouTube. And if people want to view it, the algorithm is going to promote it. Nowadays. You can look at creators like Mr. Beast or Joe Rogan. They would have never have had that opportunity unless it was for this platform. Other ones like Twitter's a great one, right? But I would consider Wikipedia to be a platform where instead of the Britannica encyclopedia, which is this, it's like a monolithic, you get all the, the researchers together, you get all the data together and you combine it in this, in this one monolithic source. Instead. You have this distributed thing. You can say anyone can host their content on Wikipedia. Anyone can contribute to it. And anyone can maybe their contribution is they delete stuff. When I was hearing like the kind of the Sam Altman and kind of the, the Muskian perspective of AI, it was a very kind of monolithic thing. It was all about AI is basically a single thing, which is intelligence. Yeah. Yeah. The more intelligent, the more compute, the more intelligent, and the more and better AI researchers, the more intelligent, right? They would speak about it as a kind of erased, like who can get the most data, the most compute and the most researchers. And that would end up with the most intelligent AI. But I didn't believe in any of that. I thought that's like the total, like I thought that perspective is the perspective of someone who's never actually done machine learning. Because with machine learning, first of all, you see that the performance of the models follows an S curve. So it's not like it just goes off to infinity, right? And the, the S curve, it kind of plateaus around human level performance. And you can look at all the, all the machine learning that was going on in the 2010s, everything kind of plateaued around the human level performance. And we can think about the self-driving car promises, you know, how Elon Musk kept saying the self-driving car is going to happen next year, it's going to happen next, next year. Or you can look at the image recognition, the speech recognition. You can look at. All of these things, there was almost nothing that went superhuman, except for something like AlphaGo. And we can speak about why AlphaGo was able to go like super superhuman. So I thought the most likely thing was going to be this, I thought it's not going to be a monolithic thing. That's like an encyclopedia Britannica. I thought it must be a distributed thing. And I actually liked to look at the world of finance for what I think a mature machine learning ecosystem would look like. So, yeah. So finance is a machine learning ecosystem because all of these quant trading firms are running machine learning algorithms, but they're running it on a centralized platform like a marketplace. And it's not the case that there's one giant quant trading company of all the data and all the quant researchers and all the algorithms and compute, but instead they all specialize. So one will specialize on high frequency training. Another will specialize on mid frequency. Another one will specialize on equity. Another one will specialize. And I thought that's the way the world works. That's how it is. And so there must exist a platform where a small team can produce an AI for a unique purpose. And they can iterate and build the best thing for that, right? And so that was the vision for Chai. So we wanted to build a platform for LLMs.Alessio [00:11:36]: That's kind of the maybe inside versus contrarian view that led you to start the company. Yeah. And then what was maybe the initial idea maze? Because if somebody told you that was the Hugging Face founding story, people might believe it. It's kind of like a similar ethos behind it. How did you land on the product feature today? And maybe what were some of the ideas that you discarded that initially you thought about?William [00:11:58]: So the first thing we built, it was fundamentally an API. So nowadays people would describe it as like agents, right? But anyone could write a Python script. They could submit it to an API. They could send it to the Chai backend and we would then host this code and execute it. So that's like the developer side of the platform. On their Python script, the interface was essentially text in and text out. An example would be the very first bot that I created. I think it was a Reddit news bot. And so it would first, it would pull the popular news. Then it would prompt whatever, like I just use some external API for like Burr or GPT-2 or whatever. Like it was a very, very small thing. And then the user could talk to it. So you could say to the bot, hi bot, what's the news today? And it would say, this is the top stories. And you could chat with it. Now four years later, that's like perplexity or something. That's like the, right? But back then the models were first of all, like really, really dumb. You know, they had an IQ of like a four year old. And users, there really wasn't any demand or any PMF for interacting with the news. So then I was like, okay. Um. So let's make another one. And I made a bot, which was like, you could talk to it about a recipe. So you could say, I'm making eggs. Like I've got eggs in my fridge. What should I cook? And it'll say, you should make an omelet. Right. There was no PMF for that. No one used it. And so I just kept creating bots. And so every single night after work, I'd be like, okay, I like, we have AI, we have this platform. I can create any text in textile sort of agent and put it on the platform. And so we just create stuff night after night. And then all the coders I knew, I would say, yeah, this is what we're going to do. And then I would say to them, look, there's this platform. You can create any like chat AI. You should put it on. And you know, everyone's like, well, chatbots are super lame. We want absolutely nothing to do with your chatbot app. No one who knew Python wanted to build on it. I'm like trying to build all these bots and no consumers want to talk to any of them. And then my sister who at the time was like just finishing college or something, I said to her, I was like, if you want to learn Python, you should just submit a bot for my platform. And she, she built a therapy for me. And I was like, okay, cool. I'm going to build a therapist bot. And then the next day I checked the performance of the app and I'm like, oh my God, we've got 20 active users. And they spent, they spent like an average of 20 minutes on the app. I was like, oh my God, what, what bot were they speaking to for an average of 20 minutes? And I looked and it was the therapist bot. And I went, oh, this is where the PMF is. There was no demand for, for recipe help. There was no demand for news. There was no demand for dad jokes or pub quiz or fun facts or what they wanted was they wanted the therapist bot. the time I kind of reflected on that and I thought, well, if I want to consume news, the most fun thing, most fun way to consume news is like Twitter. It's not like the value of there being a back and forth, wasn't that high. Right. And I thought if I need help with a recipe, I actually just go like the New York times has a good recipe section, right? It's not actually that hard. And so I just thought the thing that AI is 10 X better at is a sort of a conversation right. That's not intrinsically informative, but it's more about an opportunity. You can say whatever you want. You're not going to get judged. If it's 3am, you don't have to wait for your friend to text back. It's like, it's immediate. They're going to reply immediately. You can say whatever you want. It's judgment-free and it's much more like a playground. It's much more like a fun experience. And you could see that if the AI gave a person a compliment, they would love it. It's much easier to get the AI to give you a compliment than a human. From that day on, I said, okay, I get it. Humans want to speak to like humans or human like entities and they want to have fun. And that was when I started to look less at platforms like Google. And I started to look more at platforms like Instagram. And I was trying to think about why do people use Instagram? And I could see that I think Chai was, was filling the same desire or the same drive. If you go on Instagram, typically you want to look at the faces of other humans, or you want to hear about other people's lives. So if it's like the rock is making himself pancakes on a cheese plate. You kind of feel a little bit like you're the rock's friend, or you're like having pancakes with him or something, right? But if you do it too much, you feel like you're sad and like a lonely person, but with AI, you can talk to it and tell it stories and tell you stories, and you can play with it for as long as you want. And you don't feel like you're like a sad, lonely person. You feel like you actually have a friend.Alessio [00:16:29]: And what, why is that? Do you have any insight on that from using it?William [00:16:33]: I think it's just the human psychology. I think it's just the idea that, with old school social media. You're just consuming passively, right? So you'll just swipe. If I'm watching TikTok, just like swipe and swipe and swipe. And even though I'm getting the dopamine of like watching an engaging video, there's this other thing that's building my head, which is like, I'm feeling lazier and lazier and lazier. And after a certain period of time, I'm like, man, I just wasted 40 minutes. I achieved nothing. But with AI, because you're interacting, you feel like you're, it's not like work, but you feel like you're participating and contributing to the thing. You don't feel like you're just. Consuming. So you don't have a sense of remorse basically. And you know, I think on the whole people, the way people talk about, try and interact with the AI, they speak about it in an incredibly positive sense. Like we get people who say they have eating disorders saying that the AI helps them with their eating disorders. People who say they're depressed, it helps them through like the rough patches. So I think there's something intrinsically healthy about interacting that TikTok and Instagram and YouTube doesn't quite tick. From that point on, it was about building more and more kind of like human centric AI for people to interact with. And I was like, okay, let's make a Kanye West bot, right? And then no one wanted to talk to the Kanye West bot. And I was like, ah, who's like a cool persona for teenagers to want to interact with. And I was like, I was trying to find the influencers and stuff like that, but no one cared. Like they didn't want to interact with the, yeah. And instead it was really just the special moment was when we said the realization that developers and software engineers aren't interested in building this sort of AI, but the consumers are right. And rather than me trying to guess every day, like what's the right bot to submit to the platform, why don't we just create the tools for the users to build it themselves? And so nowadays this is like the most obvious thing in the world, but when Chai first did it, it was not an obvious thing at all. Right. Right. So we took the API for let's just say it was, I think it was GPTJ, which was this 6 billion parameter open source transformer style LLM. We took GPTJ. We let users create the prompt. We let users select the image and we let users choose the name. And then that was the bot. And through that, they could shape the experience, right? So if they said this bot's going to be really mean, and it's going to be called like bully in the playground, right? That was like a whole category that I never would have guessed. Right. People love to fight. They love to have a disagreement, right? And then they would create, there'd be all these romantic archetypes that I didn't know existed. And so as the users could create the content that they wanted, that was when Chai was able to, to get this huge variety of content and rather than appealing to, you know, 1% of the population that I'd figured out what they wanted, you could appeal to a much, much broader thing. And so from that moment on, it was very, very crystal clear. It's like Chai, just as Instagram is this social media platform that lets people create images and upload images, videos and upload that, Chai was really about how can we let the users create this experience in AI and then share it and interact and search. So it's really, you know, I say it's like a platform for social AI.Alessio [00:20:00]: Where did the Chai name come from? Because you started the same path. I was like, is it character AI shortened? You started at the same time, so I was curious. The UK origin was like the second, the Chai.William [00:20:15]: We started way before character AI. And there's an interesting story that Chai's numbers were very, very strong, right? So I think in even 20, I think late 2022, was it late 2022 or maybe early 2023? Chai was like the number one AI app in the app store. So we would have something like 100,000 daily active users. And then one day we kind of saw there was this website. And we were like, oh, this website looks just like Chai. And it was the character AI website. And I think that nowadays it's, I think it's much more common knowledge that when they left Google with the funding, I think they knew what was the most trending, the number one app. And I think they sort of built that. Oh, you found the people.swyx [00:21:03]: You found the PMF for them.William [00:21:04]: We found the PMF for them. Exactly. Yeah. So I worked a year very, very hard. And then they, and then that was when I learned a lesson, which is that if you're VC backed and if, you know, so Chai, we'd kind of ran, we'd got to this point, I was the only person who'd invested. I'd invested maybe 2 million pounds in the business. And you know, from that, we were able to build this thing, get to say a hundred thousand daily active users. And then when character AI came along, the first version, we sort of laughed. We were like, oh man, this thing sucks. Like they don't know what they're building. They're building the wrong thing anyway, but then I saw, oh, they've raised a hundred million dollars. Oh, they've raised another hundred million dollars. And then our users started saying, oh guys, your AI sucks. Cause we were serving a 6 billion parameter model, right? How big was the model that character AI could afford to serve, right? So we would be spending, let's say we would spend a dollar per per user, right? Over the, the, you know, the entire lifetime.swyx [00:22:01]: A dollar per session, per chat, per month? No, no, no, no.William [00:22:04]: Let's say we'd get over the course of the year, we'd have a million users and we'd spend a million dollars on the AI throughout the year. Right. Like aggregated. Exactly. Exactly. Right. They could spend a hundred times that. So people would say, why is your AI much dumber than character AIs? And then I was like, oh, okay, I get it. This is like the Silicon Valley style, um, hyper scale business. And so, yeah, we moved to Silicon Valley and, uh, got some funding and iterated and built the flywheels. And, um, yeah, I, I'm very proud that we were able to compete with that. Right. So, and I think the reason we were able to do it was just customer obsession. And it's similar, I guess, to how deep seek have been able to produce such a compelling model when compared to someone like an open AI, right? So deep seek, you know, their latest, um, V2, yeah, they claim to have spent 5 million training it.swyx [00:22:57]: It may be a bit more, but, um, like, why are you making it? Why are you making such a big deal out of this? Yeah. There's an agenda there. Yeah. You brought up deep seek. So we have to ask you had a call with them.William [00:23:07]: We did. We did. We did. Um, let me think what to say about that. I think for one, they have an amazing story, right? So their background is again in finance.swyx [00:23:16]: They're the Chinese version of you. Exactly.William [00:23:18]: Well, there's a lot of similarities. Yes. Yes. I have a great affinity for companies which are like, um, founder led, customer obsessed and just try and build something great. And I think what deep seek have achieved. There's quite special is they've got this amazing inference engine. They've been able to reduce the size of the KV cash significantly. And then by being able to do that, they're able to significantly reduce their inference costs. And I think with kind of with AI, people get really focused on like the kind of the foundation model or like the model itself. And they sort of don't pay much attention to the inference. To give you an example with Chai, let's say a typical user session is 90 minutes, which is like, you know, is very, very long for comparison. Let's say the average session length on TikTok is 70 minutes. So people are spending a lot of time. And in that time they're able to send say 150 messages. That's a lot of completions, right? It's quite different from an open AI scenario where people might come in, they'll have a particular question in mind. And they'll ask like one question. And a few follow up questions, right? So because they're consuming, say 30 times as many requests for a chat, or a conversational experience, you've got to figure out how to how to get the right balance between the cost of that and the quality. And so, you know, I think with AI, it's always been the case that if you want a better experience, you can throw compute at the problem, right? So if you want a better model, you can just make it bigger. If you want it to remember better, give it a longer context. And now, what open AI is doing to great fanfare is with projection sampling, you can generate many candidates, right? And then with some sort of reward model or some sort of scoring system, you can serve the most promising of these many candidates. And so that's kind of scaling up on the inference time compute side of things. And so for us, it doesn't make sense to think of AI is just the absolute performance. So. But what we're seeing, it's like the MML you score or the, you know, any of these benchmarks that people like to look at, if you just get that score, it doesn't really tell tell you anything. Because it's really like progress is made by improving the performance per dollar. And so I think that's an area where deep seek have been able to form very, very well, surprisingly so. And so I'm very interested in what Lama four is going to look like. And if they're able to sort of match what deep seek have been able to achieve with this performance per dollar gain.Alessio [00:25:59]: Before we go into the inference, some of the deeper stuff, can you give people an overview of like some of the numbers? So I think last I checked, you have like 1.4 million daily active now. It's like over 22 million of revenue. So it's quite a business.William [00:26:12]: Yeah, I think we grew by a factor of, you know, users grew by a factor of three last year. Revenue over doubled. You know, it's very exciting. We're competing with some really big, really well funded companies. Character AI got this, I think it was almost a $3 billion valuation. And they have 5 million DAU is a number that I last heard. Torquay, which is a Chinese built app owned by a company called Minimax. They're incredibly well funded. And these companies didn't grow by a factor of three last year. Right. And so when you've got this company and this team that's able to keep building something that gets users excited, and they want to tell their friend about it, and then they want to come and they want to stick on the platform. I think that's very special. And so last year was a great year for the team. And yeah, I think the numbers reflect the hard work that we put in. And then fundamentally, the quality of the app, the quality of the content, the quality of the content, the quality of the content, the quality of the content, the quality of the content. AI is the quality of the experience that you have. You actually published your DAU growth chart, which is unusual. And I see some inflections. Like, it's not just a straight line. There's some things that actually inflect. Yes. What were the big ones? Cool. That's a great, great, great question. Let me think of a good answer. I'm basically looking to annotate this chart, which doesn't have annotations on it. Cool. The first thing I would say is this is, I think the most important thing to know about success is that success is born out of failures. Right? Through failures that we learn. You know, if you think something's a good idea, and you do and it works, great, but you didn't actually learn anything, because everything went exactly as you imagined. But if you have an idea, you think it's going to be good, you try it, and it fails. There's a gap between the reality and expectation. And that's an opportunity to learn. The flat periods, that's us learning. And then the up periods is that's us reaping the rewards of that. So I think the big, of the growth shot of just 2024, I think the first thing that really kind of put a dent in our growth was our backend. So we just reached this scale. So we'd, from day one, we'd built on top of Google's GCP, which is Google's cloud platform. And they were fantastic. We used them when we had one daily active user, and they worked pretty good all the way up till we had about 500,000. It was never the cheapest, but from an engineering perspective, man, that thing scaled insanely good. Like, not Vertex? Not Vertex. Like GKE, that kind of stuff? We use Firebase. So we use Firebase. I'm pretty sure we're the biggest user ever on Firebase. That's expensive. Yeah, we had calls with engineers, and they're like, we wouldn't recommend using this product beyond this point, and you're 3x over that. So we pushed Google to their absolute limits. You know, it was fantastic for us, because we could focus on the AI. We could focus on just adding as much value as possible. But then what happened was, after 500,000, just the thing, the way we were using it, and it would just, it wouldn't scale any further. And so we had a really, really painful, at least three-month period, as we kind of migrated between different services, figuring out, like, what requests do we want to keep on Firebase, and what ones do we want to move on to something else? And then, you know, making mistakes. And learning things the hard way. And then after about three months, we got that right. So that, we would then be able to scale to the 1.5 million DAE without any further issues from the GCP. But what happens is, if you have an outage, new users who go on your app experience a dysfunctional app, and then they're going to exit. And so your next day, the key metrics that the app stores track are going to be something like retention rates. And so your next day, the key metrics that the app stores track are going to be something like retention rates. Money spent, and the star, like, the rating that they give you. In the app store. In the app store, yeah. Tyranny. So if you're ranked top 50 in entertainment, you're going to acquire a certain rate of users organically. If you go in and have a bad experience, it's going to tank where you're positioned in the algorithm. And then it can take a long time to kind of earn your way back up, at least if you wanted to do it organically. If you throw money at it, you can jump to the top. And I could talk about that. But broadly speaking, if we look at 2024, the first kink in the graph was outages due to hitting 500k DAU. The backend didn't want to scale past that. So then we just had to do the engineering and build through it. Okay, so we built through that, and then we get a little bit of growth. And so, okay, that's feeling a little bit good. I think the next thing, I think it's, I'm not going to lie, I have a feeling that when Character AI got... I was thinking. I think so. I think... So the Character AI team fundamentally got acquired by Google. And I don't know what they changed in their business. I don't know if they dialed down that ad spend. Products don't change, right? Products just what it is. I don't think so. Yeah, I think the product is what it is. It's like maintenance mode. Yes. I think the issue that people, you know, some people may think this is an obvious fact, but running a business can be very competitive, right? Because other businesses can see what you're doing, and they can imitate you. And then there's this... There's this question of, if you've got one company that's spending $100,000 a day on advertising, and you've got another company that's spending zero, if you consider market share, and if you're considering new users which are entering the market, the guy that's spending $100,000 a day is going to be getting 90% of those new users. And so I have a suspicion that when the founders of Character AI left, they dialed down their spending on user acquisition. And I think that kind of gave oxygen to like the other apps. And so Chai was able to then start growing again in a really healthy fashion. I think that's kind of like the second thing. I think a third thing is we've really built a great data flywheel. Like the AI team sort of perfected their flywheel, I would say, in end of Q2. And I could speak about that at length. But fundamentally, the way I would describe it is when you're building anything in life, you need to be able to evaluate it. And through evaluation, you can iterate, we can look at benchmarks, and we can say the issues with benchmarks and why they may not generalize as well as one would hope in the challenges of working with them. But something that works incredibly well is getting feedback from humans. And so we built this thing where anyone can submit a model to our developer backend, and it gets put in front of 5000 users, and the users can rate it. And we can then have a really accurate ranking of like which model, or users finding more engaging or more entertaining. And it gets, you know, it's at this point now, where every day we're able to, I mean, we evaluate between 20 and 50 models, LLMs, every single day, right. So even though we've got only got a team of, say, five AI researchers, they're able to iterate a huge quantity of LLMs, right. So our team ships, let's just say minimum 100 LLMs a week is what we're able to iterate through. Now, before that moment in time, we might iterate through three a week, we might, you know, there was a time when even doing like five a month was a challenge, right? By being able to change the feedback loops to the point where it's not, let's launch these three models, let's do an A-B test, let's assign, let's do different cohorts, let's wait 30 days to see what the day 30 retention is, which is the kind of the, if you're doing an app, that's like A-B testing 101 would be, do a 30-day retention test, assign different treatments to different cohorts and come back in 30 days. So that's insanely slow. That's just, it's too slow. And so we were able to get that 30-day feedback loop all the way down to something like three hours. And when we did that, we could really, really, really perfect techniques like DPO, fine tuning, prompt engineering, blending, rejection sampling, training a reward model, right, really successfully, like boom, boom, boom, boom, boom. And so I think in Q3 and Q4, we got, the amount of AI improvements we got was like astounding. It was getting to the point, I thought like how much more, how much more edge is there to be had here? But the team just could keep going and going and going. That was like number three for the inflection point.swyx [00:34:53]: There's a fourth?William [00:34:54]: The important thing about the third one is if you go on our Reddit or you talk to users of AI, there's like a clear date. It's like somewhere in October or something. The users, they flipped. Before October, the users... The users would say character AI is better than you, for the most part. Then from October onwards, they would say, wow, you guys are better than character AI. And that was like a really clear positive signal that we'd sort of done it. And I think people, you can't cheat consumers. You can't trick them. You can't b******t them. They know, right? If you're going to spend 90 minutes on a platform, and with apps, there's the barriers to switching is pretty low. Like you can try character AI, you can't cheat consumers. You can't cheat them. You can't cheat them. You can't cheat AI for a day. If you get bored, you can try Chai. If you get bored of Chai, you can go back to character. So the users, the loyalty is not strong, right? What keeps them on the app is the experience. If you deliver a better experience, they're going to stay and they can tell. So that was the fourth one was we were fortunate enough to get this hire. He was hired one really talented engineer. And then they said, oh, at my last company, we had a head of growth. He was really, really good. And he was the head of growth for ByteDance for two years. Would you like to speak to him? And I was like, yes. Yes, I think I would. And so I spoke to him. And he just blew me away with what he knew about user acquisition. You know, it was like a 3D chessswyx [00:36:21]: sort of thing. You know, as much as, as I know about AI. Like ByteDance as in TikTok US. Yes.William [00:36:26]: Not ByteDance as other stuff. Yep. He was interviewing us as we were interviewing him. Right. And so pick up options. Yeah, exactly. And so he was kind of looking at our metrics. And he was like, I saw him get really excited when he said, guys, you've got a million daily active users and you've done no advertising. I said, correct. And he was like, that's unheard of. He's like, I've never heard of anyone doing that. And then he started looking at our metrics. And he was like, if you've got all of this organically, if you start spending money, this is going to be very exciting. I was like, let's give it a go. So then he came in, we've just started ramping up the user acquisition. So that looks like spending, you know, let's say we're spending, we started spending $20,000 a day, it looked very promising than 20,000. Right now we're spending $40,000 a day on user acquisition. That's still only half of what like character AI or talkie may be spending. But from that, it's sort of, we were growing at a rate of maybe say, 2x a year. And that got us growing at a rate of 3x a year. So I'm growing, I'm evolving more and more to like a Silicon Valley style hyper growth, like, you know, you build something decent, and then you canswyx [00:37:33]: slap on a huge... You did the important thing, you did the product first.William [00:37:36]: Of course, but then you can slap on like, like the rocket or the jet engine or something, which is just this cash in, you pour in as much cash, you buy a lot of ads, and your growth is faster.swyx [00:37:48]: Not to, you know, I'm just kind of curious what's working right now versus what surprisinglyWilliam [00:37:52]: doesn't work. Oh, there's a long, long list of surprising stuff that doesn't work. Yeah. The surprising thing, like the most surprising thing, what doesn't work is almost everything doesn't work. That's what's surprising. And I'll give you an example. So like a year and a half ago, I was working at a company, we were super excited by audio. I was like, audio is going to be the next killer feature, we have to get in the app. And I want to be the first. So everything Chai does, I want us to be the first. We may not be the company that's strongest at execution, but we can always be theswyx [00:38:22]: most innovative. Interesting. Right? So we can... You're pretty strong at execution.William [00:38:26]: We're much stronger, we're much stronger. A lot of the reason we're here is because we were first. If we launched today, it'd be so hard to get the traction. Because it's like to get the flywheel, to get the users, to build a product people are excited about. If you're first, people are naturally excited about it. But if you're fifth or 10th, man, you've got to beswyx [00:38:46]: insanely good at execution. So you were first with voice? We were first. We were first. I only knowWilliam [00:38:51]: when character launched voice. They launched it, I think they launched it at least nine months after us. Okay. Okay. But the team worked so hard for it. At the time we did it, latency is a huge problem. Cost is a huge problem. Getting the right quality of the voice is a huge problem. Right? Then there's this user interface and getting the right user experience. Because you don't just want it to start blurting out. Right? You want to kind of activate it. But then you don't have to keep pressing a button every single time. There's a lot that goes into getting a really smooth audio experience. So we went ahead, we invested the three months, we built it all. And then when we did the A-B test, there was like, no change in any of the numbers. And I was like, this can't be right, there must be a bug. And we spent like a week just checking everything, checking again, checking again. And it was like, the users just did not care. And it was something like only 10 or 15% of users even click the button to like, they wanted to engage the audio. And they would only use it for 10 or 15% of the time. So if you do the math, if it's just like something that one in seven people use it for one seventh of their time. You've changed like 2% of the experience. So even if that that 2% of the time is like insanely good, it doesn't translate much when you look at the retention, when you look at the engagement, and when you look at the monetization rates. So audio did not have a big impact. I'm pretty big on audio. But yeah, I like it too. But it's, you know, so a lot of the stuff which I do, I'm a big, you can have a theory. And you resist. Yeah. Exactly, exactly. So I think if you want to make audio work, it has to be a unique, compelling, exciting experience that they can't have anywhere else.swyx [00:40:37]: It could be your models, which just weren't good enough.William [00:40:39]: No, no, no, they were great. Oh, yeah, they were very good. it was like, it was kind of like just the, you know, if you listen to like an audible or Kindle, or something like, you just hear this voice. And it's like, you don't go like, wow, this is this is special, right? It's like a convenience thing. But the idea is that if you can, if Chai is the only platform, like, let's say you have a Mr. Beast, and YouTube is the only platform you can use to make audio work, then you can watch a Mr. Beast video. And it's the most engaging, fun video that you want to watch, you'll go to a YouTube. And so it's like for audio, you can't just put the audio on there. And people go, oh, yeah, it's like 2% better. Or like, 5% of users think it's 20% better, right? It has to be something that the majority of people, for the majority of the experience, go like, wow, this is a big deal. That's the features you need to be shipping. If it's not going to appeal to the majority of people, for the majority of the experience, and it's not a big deal, it's not going to move you. Cool. So you killed it. I don't see it anymore. Yep. So I love this. The longer, it's kind of cheesy, I guess, but the longer I've been working at Chai, and I think the team agrees with this, all the platitudes, at least I thought they were platitudes, that you would get from like the Steve Jobs, which is like, build something insanely great, right? Or be maniacally focused, or, you know, the most important thing is saying no to, not to work on. All of these sort of lessons, they just are like painfully true. They're painfully true. So now I'm just like, everything I say, I'm either quoting Steve Jobs or Zuckerberg. I'm like, guys, move fast and break free.swyx [00:42:10]: You've jumped the Apollo to cool it now.William [00:42:12]: Yeah, it's just so, everything they said is so, so true. The turtle neck. Yeah, yeah, yeah. Everything is so true.swyx [00:42:18]: This last question on my side, and I want to pass this to Alessio, is on just, just multi-modality in general. This actually comes from Justine Moore from A16Z, who's a friend of ours. And a lot of people are trying to do voice image video for AI companions. Yes. You just said voice didn't work. Yep. What would make you revisit?William [00:42:36]: So Steve Jobs, he was very, listen, he was very, very clear on this. There's a habit of engineers who, once they've got some cool technology, they want to find a way to package up the cool technology and sell it to consumers, right? That does not work. So you're free to try and build a startup where you've got your cool tech and you want to find someone to sell it to. That's not what we do at Chai. At Chai, we start with the consumer. What does the consumer want? What is their problem? And how do we solve it? So right now, the number one problems for the users, it's not the audio. That's not the number one problem. It's not the image generation either. That's not their problem either. The number one problem for users in AI is this. All the AI is being generated by middle-aged men in Silicon Valley, right? That's all the content. You're interacting with this AI. You're speaking to it for 90 minutes on average. It's being trained by middle-aged men. The guys out there, they're out there. They're talking to you. They're talking to you. They're like, oh, what should the AI say in this situation, right? What's funny, right? What's cool? What's boring? What's entertaining? That's not the way it should be. The way it should be is that the users should be creating the AI, right? And so the way I speak about it is this. Chai, we have this AI engine in which sits atop a thin layer of UGC. So the thin layer of UGC is absolutely essential, right? It's just prompts. But it's just prompts. It's just an image. It's just a name. It's like we've done 1% of what we could do. So we need to keep thickening up that layer of UGC. It must be the case that the users can train the AI. And if reinforcement learning is powerful and important, they have to be able to do that. And so it's got to be the case that there exists, you know, I say to the team, just as Mr. Beast is able to spend 100 million a year or whatever it is on his production company, and he's got a team building the content, the Mr. Beast company is able to spend 100 million a year on his production company. And he's got a team building the content, which then he shares on the YouTube platform. Until there's a team that's earning 100 million a year or spending 100 million on the content that they're producing for the Chai platform, we're not finished, right? So that's the problem. That's what we're excited to build. And getting too caught up in the tech, I think is a fool's errand. It does not work.Alessio [00:44:52]: As an aside, I saw the Beast Games thing on Amazon Prime. It's not doing well. And I'mswyx [00:44:56]: curious. It's kind of like, I mean, the audience reading is high. The run-to-meet-all sucks, but the audience reading is high.Alessio [00:45:02]: But it's not like in the top 10. I saw it dropped off of like the... Oh, okay. Yeah, that one I don't know. I'm curious, like, you know, it's kind of like similar content, but different platform. And then going back to like, some of what you were saying is like, you know, people come to ChaiWilliam [00:45:13]: expecting some type of content. Yeah, I think it's something that's interesting to discuss is like, is moats. And what is the moat? And so, you know, if you look at a platform like YouTube, the moat, I think is in first is really is in the ecosystem. And the ecosystem, is comprised of you have the content creators, you have the users, the consumers, and then you have the algorithms. And so this, this creates a sort of a flywheel where the algorithms are able to be trained on the users, and the users data, the recommend systems can then feed information to the content creators. So Mr. Beast, he knows which thumbnail does the best. He knows the first 10 seconds of the video has to be this particular way. And so his content is super optimized for the YouTube platform. So that's why it doesn't do well on Amazon. If he wants to do well on Amazon, how many videos has he created on the YouTube platform? By thousands, 10s of 1000s, I guess, he needs to get those iterations in on the Amazon. So at Chai, I think it's all about how can we get the most compelling, rich user generated content, stick that on top of the AI engine, the recommender systems, in such that we get this beautiful data flywheel, more users, better recommendations, more creative, more content, more users.Alessio [00:46:34]: You mentioned the algorithm, you have this idea of the Chaiverse on Chai, and you have your own kind of like LMSYS-like ELO system. Yeah, what are things that your models optimize for, like your users optimize for, and maybe talk about how you build it, how people submit models?William [00:46:49]: So Chaiverse is what I would describe as a developer platform. More often when we're speaking about Chai, we're thinking about the Chai app. And the Chai app is really this product for consumers. And so consumers can come on the Chai app, they can come on the Chai app, they can come on the Chai app, they can interact with our AI, and they can interact with other UGC. And it's really just these kind of bots. And it's a thin layer of UGC. Okay. Our mission is not to just have a very thin layer of UGC. Our mission is to have as much UGC as possible. So we must have, I don't want people at Chai training the AI. I want people, not middle aged men, building AI. I want everyone building the AI, as many people building the AI as possible. Okay, so what we built was we built Chaiverse. And Chaiverse is kind of, it's kind of like a prototype, is the way to think about it. And it started with this, this observation that, well, how many models get submitted into Hugging Face a day? It's hundreds, it's hundreds, right? So there's hundreds of LLMs submitted each day. Now consider that, what does it take to build an LLM? It takes a lot of work, actually. It's like someone devoted several hours of compute, several hours of their time, prepared a data set, launched it, ran it, evaluated it, submitted it, right? So there's a lot of, there's a lot of, there's a lot of work that's going into that. So what we did was we said, well, why can't we host their models for them and serve them to users? And then what would that look like? The first issue is, well, how do you know if a model is good or not? Like, we don't want to serve users the crappy models, right? So what we would do is we would, I love the LMSYS style. I think it's really cool. It's really simple. It's a very intuitive thing, which is you simply present the users with two completions. You can say, look, this is from model one. This is from model two. This is from model three. This is from model A. This is from model B, which is better. And so if someone submits a model to Chaiverse, what we do is we spin up a GPU. We download the model. We're going to now host that model on this GPU. And we're going to start routing traffic to it. And we're going to send, we think it takes about 5,000 completions to get an accurate signal. That's roughly what LMSYS does. And from that, we're able to get an accurate ranking. And we're able to get an accurate ranking. And we're able to get an accurate ranking of which models are people finding entertaining and which models are not entertaining. If you look at the bottom 80%, they'll suck. You can just disregard them. They totally suck. Then when you get the top 20%, you know you've got a decent model, but you can break it down into more nuance. There might be one that's really descriptive. There might be one that's got a lot of personality to it. There might be one that's really illogical. Then the question is, well, what do you do with these top models? From that, you can do more sophisticated things. You can try and do like a routing thing where you say for a given user request, we're going to try and predict which of these end models that users enjoy the most. That turns out to be pretty expensive and not a huge source of like edge or improvement. Something that we love to do at Chai is blending, which is, you know, it's the simplest way to think about it is you're going to end up, and you're going to pretty quickly see you've got one model that's really smart, one model that's really funny. How do you get the user an experience that is both smart and funny? Well, just 50% of the requests, you can serve them the smart model, 50% of the requests, you serve them the funny model. Just a random 50%? Just a random, yeah. And then... That's blending? That's blending. You can do more sophisticated things on top of that, as in all things in life, but the 80-20 solution, if you just do that, you get a pretty powerful effect out of the gate. Random number generator. I think it's like the robustness of randomness. Random is a very powerful optimization technique, and it's a very robust thing. So you can explore a lot of the space very efficiently. There's one thing that's really, really important to share, and this is the most exciting thing for me, is after you do the ranking, you get an ELO score, and you can track a user's first join date, the first date they submit a model to Chaiverse, they almost always get a terrible ELO, right? So let's say the first submission they get an ELO of 1,100 or 1,000 or something, and you can see that they iterate and they iterate and iterate, and it will be like, no improvement, no improvement, no improvement, and then boom. Do you give them any data, or do you have to come up with this themselves? We do, we do, we do, we do. We try and strike a balance between giving them data that's very useful, you've got to be compliant with GDPR, which is like, you have to work very hard to preserve the privacy of users of your app. So we try to give them as much signal as possible, to be helpful. The minimum is we're just going to give you a score, right? That's the minimum. But that alone is people can optimize a score pretty well, because they're able to come up with theories, submit it, does it work? No. A new theory, does it work? No. And then boom, as soon as they figure something out, they keep it, and then they iterate, and then boom,Alessio [00:51:46]: they figure something out, and they keep it. Last year, you had this post on your blog, cross-sourcing the lead to the 10 trillion parameter, AGI, and you call it a mixture of experts, recommenders. Yep. Any insights?William [00:51:58]: Updated thoughts, 12 months later? I think the odds, the timeline for AGI has certainly been pushed out, right? Now, this is in, I'm a controversial person, I don't know, like, I just think... You don't believe in scaling laws, you think AGI is further away. I think it's an S-curve. I think everything's an S-curve. And I think that the models have proven to just be far worse at reasoning than people sort of thought. And I think whenever I hear people talk about LLMs as reasoning engines, I sort of cringe a bit. I don't think that's what they are. I think of them more as like a simulator. I think of them as like a, right? So they get trained to predict the next most likely token. It's like a physics simulation engine. So you get these like games where you can like construct a bridge, and you drop a car down, and then it predicts what should happen. And that's really what LLMs are doing. It's not so much that they're reasoning, it's more that they're just doing the most likely thing. So fundamentally, the ability for people to add in intelligence, I think is very limited. What most people would consider intelligence, I think the AI is not a crowdsourcing problem, right? Now with Wikipedia, Wikipedia crowdsources knowledge. It doesn't crowdsource intelligence. So it's a subtle distinction. AI is fantastic at knowledge. I think it's weak at intelligence. And a lot, it's easy to conflate the two because if you ask it a question and it gives you, you know, if you said, who was the seventh president of the United States, and it gives you the correct answer, I'd say, well, I don't know the answer to that. And you can conflate that with intelligence. But really, that's a question of knowledge. And knowledge is really this thing about saying, how can I store all of this information? And then how can I retrieve something that's relevant? Okay, they're fantastic at that. They're fantastic at storing knowledge and retrieving the relevant knowledge. They're superior to humans in that regard. And so I think we need to come up for a new word. How does one describe AI should contain more knowledge than any individual human? It should be more accessible than any individual human. That's a very powerful thing. That's superswyx [00:54:07]: powerful. But what words do we use to describe that? We had a previous guest on Exa AI that does search. And he tried to coin super knowledge as the opposite of super intelligence.William [00:54:20]: Exactly. I think super knowledge is a more accurate word for it.swyx [00:54:24]: You can store more things than any human can.William [00:54:26]: And you can retrieve it better than any human can as well. And I think it's those two things combined that's special. I think that thing will exist. That thing can be built. And I think you can start with something that's entertaining and fun. And I think, I often think it's like, look, it's going to be a 20 year journey. And we're in like, year four, or it's like the web. And this is like 1998 or something. You know, you've got a long, long way to go before the Amazon.coms are like these huge, multi trillion dollar businesses that every single person uses every day. And so AI today is very simplistic. And it's fundamentally the way we're using it, the flywheels, and this ability for how can everyone contribute to it to really magnify the value that it brings. Right now, like, I think it's a bit sad. It's like, right now you have big labs, I'm going to pick on open AI. And they kind of go to like these human labelers. And they say, we're going to pay you to just label this like subset of questions that we want to get a really high quality data set, then we're going to get like our own computers that are really powerful. And that's kind of like the thing. For me, it's so much like Encyclopedia Britannica. It's like insane. All the people that were interested in blockchain, it's like, well, this is this is what needs to be decentralized, you need to decentralize that thing. Because if you distribute it, people can generate way more data in a distributed fashion, way more, right? You need the incentive. Yeah, of course. Yeah. But I mean, the, the, that's kind of the exciting thing about Wikipedia was it's this understanding, like the incentives, you don't need money to incentivize people. You don't need dog coins. No. Sometimes, sometimes people get the satisfaction fro
Join Prof. Subbarao Kambhampati and host Tim Scarfe for a deep dive into OpenAI's O1 model and the future of AI reasoning systems. * How O1 likely uses reinforcement learning similar to AlphaGo, with hidden reasoning tokens that users pay for but never see * The evolution from traditional Large Language Models to more sophisticated reasoning systems * The concept of "fractal intelligence" in AI - where models work brilliantly sometimes but fail unpredictably * Why O1's improved performance comes with substantial computational costs * The ongoing debate between single-model approaches (OpenAI) vs hybrid systems (Google) * The critical distinction between AI as an intelligence amplifier vs autonomous decision-maker SPONSOR MESSAGES: *** CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. https://centml.ai/pricing/ Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events? Goto https://tufalabs.ai/ *** TOC: 1. **O1 Architecture and Reasoning Foundations** [00:00:00] 1.1 Fractal Intelligence and Reasoning Model Limitations [00:04:28] 1.2 LLM Evolution: From Simple Prompting to Advanced Reasoning [00:14:28] 1.3 O1's Architecture and AlphaGo-like Reasoning Approach [00:23:18] 1.4 Empirical Evaluation of O1's Planning Capabilities 2. **Monte Carlo Methods and Model Deep-Dive** [00:29:30] 2.1 Monte Carlo Methods and MARCO-O1 Implementation [00:31:30] 2.2 Reasoning vs. Retrieval in LLM Systems [00:40:40] 2.3 Fractal Intelligence Capabilities and Limitations [00:45:59] 2.4 Mechanistic Interpretability of Model Behavior [00:51:41] 2.5 O1 Response Patterns and Performance Analysis 3. **System Design and Real-World Applications** [00:59:30] 3.1 Evolution from LLMs to Language Reasoning Models [01:06:48] 3.2 Cost-Efficiency Analysis: LLMs vs O1 [01:11:28] 3.3 Autonomous vs Human-in-the-Loop Systems [01:16:01] 3.4 Program Generation and Fine-Tuning Approaches [01:26:08] 3.5 Hybrid Architecture Implementation Strategies Transcript: https://www.dropbox.com/scl/fi/d0ef4ovnfxi0lknirkvft/Subbarao.pdf?rlkey=l3rp29gs4hkut7he8u04mm1df&dl=0 REFS: [00:02:00] Monty Python (1975) Witch trial scene: flawed logical reasoning. https://www.youtube.com/watch?v=zrzMhU_4m-g [00:04:00] Cade Metz (2024) Microsoft–OpenAI partnership evolution and control dynamics. https://www.nytimes.com/2024/10/17/technology/microsoft-openai-partnership-deal.html [00:07:25] Kojima et al. (2022) Zero-shot chain-of-thought prompting ('Let's think step by step'). https://arxiv.org/pdf/2205.11916 [00:12:50] DeepMind Research Team (2023) Multi-bot game solving with external and internal planning. https://deepmind.google/research/publications/139455/ [00:15:10] Silver et al. (2016) AlphaGo's Monte Carlo Tree Search and Q-learning. https://www.nature.com/articles/nature16961 [00:16:30] Kambhampati, S. et al. (2023) Evaluates O1's planning in "Strawberry Fields" benchmarks. https://arxiv.org/pdf/2410.02162 [00:29:30] Alibaba AIDC-AI Team (2023) MARCO-O1: Chain-of-Thought + MCTS for improved reasoning. https://arxiv.org/html/2411.14405 [00:31:30] Kambhampati, S. (2024) Explores LLM "reasoning vs retrieval" debate. https://arxiv.org/html/2403.04121v2 [00:37:35] Wei, J. et al. (2022) Chain-of-thought prompting (introduces last-letter concatenation). https://arxiv.org/pdf/2201.11903 [00:42:35] Barbero, F. et al. (2024) Transformer attention and "information over-squashing." https://arxiv.org/html/2406.04267v2 [00:46:05] Ruis, L. et al. (2023) Influence functions to understand procedural knowledge in LLMs. https://arxiv.org/html/2411.12580v1 (truncated - continued in shownotes/transcript doc)
Chinese AI Model Outperforms OpenAI, Trump's AI Safety Reversal, & Project Stargate Unveiled! In today's episode of Hashtag Trending, host Jim Love covers new advancements and controversies in the AI world. A Chinese AI lab, DeepSeek, claims their reasoning model, R1, surpasses OpenAI's O1 in multiple benchmarks. It also introduces a groundbreaking concept of AI self-awareness. A recent study reveals large language models can recognize their own behaviors and even hide them, posing both opportunities and risks. President Trump has revoked a Biden-era executive order on AI safety, causing concerns about deregulation. Lastly, OpenAI, Oracle, and SoftBank announce Project Stargate, a $500 billion venture aimed at advancing AI infrastructure in the U.S., despite financial feasibility concerns. 00:00 Introduction and Headlines 00:29 DeepSeek's R1: A New AI Contender 02:40 AI Self-Awareness and Safety Concerns 03:47 Trump's Repeal of AI Safety Order 04:54 Project Stargate: A $500 Billion AI Initiative 05:56 Conclusion and Contact Information
Prodcast: ПоиÑк работы в IT и переезд в СШÐ
Поиск работы в США 2025. Как релоцироваться в США? Какие визы и способы доступны для релокантов? Визы таланта EB1, O1 - реальность? Как на счет рабочей визы H1B? Как нанимающий менеджер отбирает кандидатов? Как пройти собеседование с руководителем разработки в американской компании? Как работать удаленно на Америку? Ольга Пронина (Olga Pronina), Senior Engineering Manager в Cruise LinkedIn: https://www.linkedin.com/in/olga-pronina/ Телеграм-канал “Кремниевый Дзен” - https://t.me/siliconzen Предыдущие выпуски с Ольгой: - Поиск работы в США. Как подготовиться к интервью за месяц и не сойти с ума? https://youtube.com/live/33i6WBoE2Gc - Оффер в США: как получить +50% к зарплате? Как правильно торговаться? https://youtu.be/5AYS4_fV3OE - 99% компаний в США зададут вам эти вопросы на собеседованиях. Поведенческое интервью - https://www.youtube.com/watch?v=H7QgoY1oOTI *** Записаться на карьерную консультацию (резюме, LinkedIn, карьерная стратегия, поиск работы в США) https://annanaumova.com Коучинг (синдром самозванца, прокрастинация, неуверенность в себе, страхи, лень) https://annanaumova.notion.site/3f6ea5ce89694c93afb1156df3c903ab Видео курс по составлению резюме для международных компаний "Идеальное американское резюме": https://go.mbastrategy.com/resumecoursemain Гайд "Идеальное американское резюме" https://go.mbastrategy.com/usresume Подписывайтесь на мой Телеграм канал: https://t.me/prodcastUSA Подписывайтесь на мой Инстаграм https://www.instagram.com/prodcast.us Гайд "Как оформить профиль в LinkedIn, чтобы рекрутеры не смогли пройти мимо" https://go.mbastrategy.com/linkedinguide ⏰ Timecodes ⏰ 0:00 Начало 13:16 Вопросы из телеграмма 23:36 Поиск работы в LinkedIn напрямую 30:04 Про образование, разрешения на работу и Визы 1:07:36 Советы Ольги по поиску работы
The episode highlights the recent push by major companies like Microsoft, Google, and LinkedIn to integrate artificial intelligence (AI) tools into their services. Microsoft has relaunched its free AI chat service for businesses, now branded as Microsoft 365 Copilot Chat, which enhances workplace productivity through AI agents for a monthly fee. Google is also making strides by incorporating its Gemini AI experience into its Workspace plans, eliminating additional fees and reflecting a belief that AI will fundamentally transform work processes.LinkedIn has introduced new AI tools aimed at improving the job-seeking experience for its users. The platform's JobsMatch tool will assist job seekers and recruiters alike, while a Recruitment AI agent will help small businesses manage hiring processes more effectively. This shift towards free tools marks a departure from LinkedIn's previous focus on premium offerings, as the company aims to streamline the application process amidst a competitive job market. Sobel notes the challenges faced by job seekers, with a significant number of applications submitted per minute, and highlights the increase in users activating the "Open to Work" feature.The episode also touches on the potential ban of TikTok in the United States, which has led many users to migrate to the Chinese social media app RedNote. This shift has resulted in a notable increase in interest in learning Mandarin Chinese, as users adapt to the changing social media landscape. Sobel emphasizes the unintended consequences of such regulatory actions, suggesting that technology-savvy users are simply moving to another Chinese-run platform, which may complicate the regulatory landscape further.In the latter part of the episode, Host Dave Sobel discusses the evolving perceptions of AI models, particularly focusing on the O1 model and its unique capabilities. He highlights the importance of human involvement in AI development, as research indicates that consumers prefer AI tools that showcase human expertise rather than those that appear overly human-like. The episode concludes with a call to action for listeners to reflect on their own use of AI technologies, the role of managed IT services, and the significance of human contributions to data quality, encouraging a proactive approach to leveraging these advancements in their businesses. Three things to know today 00:00 Microsoft, Google, and LinkedIn Push AI Tools: What It Means for Your Workday 04:44 What the Potential TikTok Ban Says About Government Regulation06:13 Big Tech Ideas: AI Models, IT Services, and Why People Still Matter Supported by: https://mspradio.com/engage/ All our Sponsors: https://businessof.tech/sponsors/ Do you want the show on your podcast app or the written versions of the stories? Subscribe to the Business of Tech: https://www.businessof.tech/subscribe/Looking for a link from the stories? The entire script of the show, with links to articles, are posted in each story on https://www.businessof.tech/ Support the show on Patreon: https://patreon.com/mspradio/ Want to be a guest on Business of Tech: Daily 10-Minute IT Services Insights? Send Dave Sobel a message on PodMatch, here: https://www.podmatch.com/hostdetailpreview/businessoftech Want our stuff? Cool Merch? Wear “Why Do We Care?” - Visit https://mspradio.myspreadshop.com Follow us on:LinkedIn: https://www.linkedin.com/company/28908079/YouTube: https://youtube.com/mspradio/Facebook: https://www.facebook.com/mspradionews/Instagram: https://www.instagram.com/mspradio/TikTok: https://www.tiktok.com/@businessoftechBluesky: https://bsky.app/profile/businessof.tech
Due to overwhelming demand (>15x applications:slots), we are closing CFPs for AI Engineer Summit NYC today. Last call! Thanks, we'll be reaching out to all shortly!The world's top AI blogger and friend of every pod, Simon Willison, dropped a monster 2024 recap: Things we learned about LLMs in 2024. Brian of the excellent TechMeme Ride Home pinged us for a connection and a special crossover episode, our first in 2025. The target audience for this podcast is a tech-literate, but non-technical one. You can see Simon's notes for AI Engineers in his World's Fair Keynote.Timestamp* 00:00 Introduction and Guest Welcome* 01:06 State of AI in 2025* 01:43 Advancements in AI Models* 03:59 Cost Efficiency in AI* 06:16 Challenges and Competition in AI* 17:15 AI Agents and Their Limitations* 26:12 Multimodal AI and Future Prospects* 35:29 Exploring Video Avatar Companies* 36:24 AI Influencers and Their Future* 37:12 Simplifying Content Creation with AI* 38:30 The Importance of Credibility in AI* 41:36 The Future of LLM User Interfaces* 48:58 Local LLMs: A Growing Interest* 01:07:22 AI Wearables: The Next Big Thing* 01:10:16 Wrapping Up and Final ThoughtsTranscript[00:00:00] Introduction and Guest Welcome[00:00:00] Brian: Welcome to the first bonus episode of the Tech Meme Write Home for the year 2025. I'm your host as always, Brian McCullough. Listeners to the pod over the last year know that I have made a habit of quoting from Simon Willison when new stuff happens in AI from his blog. Simon has been, become a go to for many folks in terms of, you know, Analyzing things, criticizing things in the AI space.[00:00:33] Brian: I've wanted to talk to you for a long time, Simon. So thank you for coming on the show. No, it's a privilege to be here. And the person that made this connection happen is our friend Swyx, who has been on the show back, even going back to the, the Twitter Spaces days but also an AI guru in, in their own right Swyx, thanks for coming on the show also.[00:00:54] swyx (2): Thanks. I'm happy to be on and have been a regular listener, so just happy to [00:01:00] contribute as well.[00:01:00] Brian: And a good friend of the pod, as they say. Alright, let's go right into it.[00:01:06] State of AI in 2025[00:01:06] Brian: Simon, I'm going to do the most unfair, broad question first, so let's get it out of the way. The year 2025. Broadly, what is the state of AI as we begin this year?[00:01:20] Brian: Whatever you want to say, I don't want to lead the witness.[00:01:22] Simon: Wow. So many things, right? I mean, the big thing is everything's got really good and fast and cheap. Like, that was the trend throughout all of 2024. The good models got so much cheaper, they got so much faster, they got multimodal, right? The image stuff isn't even a surprise anymore.[00:01:39] Simon: They're growing video, all of that kind of stuff. So that's all really exciting.[00:01:43] Advancements in AI Models[00:01:43] Simon: At the same time, they didn't get massively better than GPT 4, which was a bit of a surprise. So that's sort of one of the open questions is, are we going to see huge, but I kind of feel like that's a bit of a distraction because GPT 4, but way cheaper, much larger context lengths, and it [00:02:00] can do multimodal.[00:02:01] Simon: is better, right? That's a better model, even if it's not.[00:02:05] Brian: What people were expecting or hoping, maybe not expecting is not the right word, but hoping that we would see another step change, right? Right. From like GPT 2 to 3 to 4, we were expecting or hoping that maybe we were going to see the next evolution in that sort of, yeah.[00:02:21] Brian: We[00:02:21] Simon: did see that, but not in the way we expected. We thought the model was just going to get smarter, and instead we got. Massive drops in, drops in price. We got all of these new capabilities. You can talk to the things now, right? They can do simulated audio input, all of that kind of stuff. And so it's kind of, it's interesting to me that the models improved in all of these ways we weren't necessarily expecting.[00:02:43] Simon: I didn't know it would be able to do an impersonation of Santa Claus, like a, you know, Talked to it through my phone and show it what I was seeing by the end of 2024. But yeah, we didn't get that GPT 5 step. And that's one of the big open questions is, is that actually just around the corner and we'll have a bunch of GPT 5 class models drop in the [00:03:00] next few months?[00:03:00] Simon: Or is there a limit?[00:03:03] Brian: If you were a betting man and wanted to put money on it, do you expect to see a phase change, step change in 2025?[00:03:11] Simon: I don't particularly for that, like, the models, but smarter. I think all of the trends we're seeing right now are going to keep on going, especially the inference time compute, right?[00:03:21] Simon: The trick that O1 and O3 are doing, which means that you can solve harder problems, but they cost more and it churns away for longer. I think that's going to happen because that's already proven to work. I don't know. I don't know. Maybe there will be a step change to a GPT 5 level, but honestly, I'd be completely happy if we got what we've got right now.[00:03:41] Simon: But cheaper and faster and more capabilities and longer contexts and so forth. That would be thrilling to me.[00:03:46] Brian: Digging into what you've just said one of the things that, by the way, I hope to link in the show notes to Simon's year end post about what, what things we learned about LLMs in 2024. Look for that in the show notes.[00:03:59] Cost Efficiency in AI[00:03:59] Brian: One of the things that you [00:04:00] did say that you alluded to even right there was that in the last year, you felt like the GPT 4 barrier was broken, like IE. Other models, even open source ones are now regularly matching sort of the state of the art.[00:04:13] Simon: Well, it's interesting, right? So the GPT 4 barrier was a year ago, the best available model was OpenAI's GPT 4 and nobody else had even come close to it.[00:04:22] Simon: And they'd been at the, in the lead for like nine months, right? That thing came out in what, February, March of, of 2023. And for the rest of 2023, nobody else came close. And so at the start of last year, like a year ago, the big question was, Why has nobody beaten them yet? Like, what do they know that the rest of the industry doesn't know?[00:04:40] Simon: And today, that I've counted 18 organizations other than GPT 4 who've put out a model which clearly beats that GPT 4 from a year ago thing. Like, maybe they're not better than GPT 4. 0, but that's, that, that, that barrier got completely smashed. And yeah, a few of those I've run on my laptop, which is wild to me.[00:04:59] Simon: Like, [00:05:00] it was very, very wild. It felt very clear to me a year ago that if you want GPT 4, you need a rack of 40, 000 GPUs just to run the thing. And that turned out not to be true. Like the, the, this is that big trend from last year of the models getting more efficient, cheaper to run, just as capable with smaller weights and so forth.[00:05:20] Simon: And I ran another GPT 4 model on my laptop this morning, right? Microsoft 5. 4 just came out. And that, if you look at the benchmarks, it's definitely, it's up there with GPT 4. 0. It's probably not as good when you actually get into the vibes of the thing, but it, it runs on my, it's a 14 gigabyte download and I can run it on a MacBook Pro.[00:05:38] Simon: Like who saw that coming? The most exciting, like the close of the year on Christmas day, just a few weeks ago, was when DeepSeek dropped their DeepSeek v3 model on Hugging Face without even a readme file. It was just like a giant binary blob that I can't run on my laptop. It's too big. But in all of the benchmarks, it's now by far the best available [00:06:00] open, open weights model.[00:06:01] Simon: Like it's, it's, it's beating the, the metalamas and so forth. And that was trained for five and a half million dollars, which is a tenth of the price that people thought it costs to train these things. So everything's trending smaller and faster and more efficient.[00:06:15] Brian: Well, okay.[00:06:16] Challenges and Competition in AI[00:06:16] Brian: I, I kind of was going to get to that later, but let's, let's combine this with what I was going to ask you next, which is, you know, you're talking, you know, Also in the piece about the LLM prices crashing, which I've even seen in projects that I'm working on, but explain Explain that to a general audience, because we hear all the time that LLMs are eye wateringly expensive to run, but what we're suggesting, and we'll come back to the cheap Chinese LLM, but first of all, for the end user, what you're suggesting is that we're starting to see the cost come down sort of in the traditional technology way of Of costs coming down over time,[00:06:49] Simon: yes, but very aggressively.[00:06:51] Simon: I mean, my favorite thing, the example here is if you look at GPT-3, so open AI's g, PT three, which was the best, a developed model in [00:07:00] 2022 and through most of 20 2023. That, the models that we have today, the OpenAI models are a hundred times cheaper. So there was a 100x drop in price for OpenAI from their best available model, like two and a half years ago to today.[00:07:13] Simon: And[00:07:14] Brian: just to be clear, not to train the model, but for the use of tokens and things. Exactly,[00:07:20] Simon: for running prompts through them. And then When you look at the, the really, the top tier model providers right now, I think, are OpenAI, Anthropic, Google, and Meta. And there are a bunch of others that I could list there as well.[00:07:32] Simon: Mistral are very good. The, the DeepSeq and Quen models have got great. There's a whole bunch of providers serving really good models. But even if you just look at the sort of big brand name providers, they all offer models now that are A fraction of the price of the, the, of the models we were using last year.[00:07:49] Simon: I think I've got some numbers that I threw into my blog entry here. Yeah. Like Gemini 1. 5 flash, that's Google's fast high quality model is [00:08:00] how much is that? It's 0. 075 dollars per million tokens. Like these numbers are getting, So we just do cents per million now,[00:08:09] swyx (2): cents per million,[00:08:10] Simon: cents per million makes, makes a lot more sense.[00:08:12] Simon: Yeah they have one model 1. 5 flash 8B, the absolute cheapest of the Google models, is 27 times cheaper than GPT 3. 5 turbo was a year ago. That's it. And GPT 3. 5 turbo, that was the cheap model, right? Now we've got something 27 times cheaper, and the Google, this Google one can do image recognition, it can do million token context, all of those tricks.[00:08:36] Simon: But it's, it's, it's very, it's, it really is startling how inexpensive some of this stuff has got.[00:08:41] Brian: Now, are we assuming that this, that happening is directly the result of competition? Because again, you know, OpenAI, and probably they're doing this for their own almost political reasons, strategic reasons, keeps saying, we're losing money on everything, even the 200.[00:08:56] Brian: So they probably wouldn't, the prices wouldn't be [00:09:00] coming down if there wasn't intense competition in this space.[00:09:04] Simon: The competition is absolutely part of it, but I have it on good authority from sources I trust that Google Gemini is not operating at a loss. Like, the amount of electricity to run a prompt is less than they charge you.[00:09:16] Simon: And the same thing for Amazon Nova. Like, somebody found an Amazon executive and got them to say, Yeah, we're not losing money on this. I don't know about Anthropic and OpenAI, but clearly that demonstrates it is possible to run these things at these ludicrously low prices and still not be running at a loss if you discount the Army of PhDs and the, the training costs and all of that kind of stuff.[00:09:36] Brian: One, one more for me before I let Swyx jump in here. To, to come back to DeepSeek and this idea that you could train, you know, a cutting edge model for 6 million. I, I was saying on the show, like six months ago, that if we are getting to the point where each new model It would cost a billion, ten billion, a hundred billion to train that.[00:09:54] Brian: At some point it would almost, only nation states would be able to train the new models. Do you [00:10:00] expect what DeepSeek and maybe others are proving to sort of blow that up? Or is there like some sort of a parallel track here that maybe I'm not technically, I don't have the mouse to understand the difference.[00:10:11] Brian: Is the model, are the models going to go, you know, Up to a hundred billion dollars or can we get them down? Sort of like DeepSeek has proven[00:10:18] Simon: so I'm the wrong person to answer that because I don't work in the lab training these models. So I can give you my completely uninformed opinion, which is, I felt like the DeepSeek thing.[00:10:27] Simon: That was a bomb shell. That was an absolute bombshell when they came out and said, Hey, look, we've trained. One of the best available models and it cost us six, five and a half million dollars to do it. I feel, and they, the reason, one of the reasons it's so efficient is that we put all of these export controls in to stop Chinese companies from giant buying GPUs.[00:10:44] Simon: So they've, were forced to be, go as efficient as possible. And yet the fact that they've demonstrated that that's possible to do. I think it does completely tear apart this, this, this mental model we had before that yeah, the training runs just keep on getting more and more expensive and the number of [00:11:00] organizations that can afford to run these training runs keeps on shrinking.[00:11:03] Simon: That, that's been blown out of the water. So yeah, that's, again, this was our Christmas gift. This was the thing they dropped on Christmas day. Yeah, it makes me really optimistic that we can, there are, It feels like there was so much low hanging fruit in terms of the efficiency of both inference and training and we spent a whole bunch of last year exploring that and getting results from it.[00:11:22] Simon: I think there's probably a lot left. I think there's probably, well, I would not be surprised to see even better models trained spending even less money over the next six months.[00:11:31] swyx (2): Yeah. So I, I think there's a unspoken angle here on what exactly the Chinese labs are trying to do because DeepSea made a lot of noise.[00:11:41] swyx (2): so much for joining us for around the fact that they train their model for six million dollars and nobody quite quite believes them. Like it's very, very rare for a lab to trumpet the fact that they're doing it for so cheap. They're not trying to get anyone to buy them. So why [00:12:00] are they doing this? They make it very, very obvious.[00:12:05] swyx (2): Deepseek is about 150 employees. It's an order of magnitude smaller than at least Anthropic and maybe, maybe more so for OpenAI. And so what's, what's the end game here? Are they, are they just trying to show that the Chinese are better than us?[00:12:21] Simon: So Deepseek, it's the arm of a hedge, it's a, it's a quant fund, right?[00:12:25] Simon: It's an algorithmic quant trading thing. So I, I, I would love to get more insight into how that organization works. My assumption from what I've seen is it looks like they're basically just flexing. They're like, hey, look at how utterly brilliant we are with this amazing thing that we've done. And it's, it's working, right?[00:12:43] Simon: They but, and so is that it? Are they, is this just their kind of like, this is, this is why our company is so amazing. Look at this thing that we've done, or? I don't know. I'd, I'd love to get Some insight from, from within that industry as to, as to how that's all playing out.[00:12:57] swyx (2): The, the prevailing theory among the Local Llama [00:13:00] crew and the Twitter crew that I indexed for my newsletter is that there is some amount of copying going on.[00:13:06] swyx (2): It's like Sam Altman you know, tweet, tweeting about how they're being copied. And then also there's this, there, there are other sort of opening eye employees that have said, Stuff that is similar that DeepSeek's rate of progress is how U. S. intelligence estimates the number of foreign spies embedded in top labs.[00:13:22] swyx (2): Because a lot of these ideas do spread around, but they surprisingly have a very high density of them in the DeepSeek v3 technical report. So it's, it's interesting. We don't know how much, how many, how much tokens. I think that, you know, people have run analysis on how often DeepSeek thinks it is cloud or thinks it is opening GPC 4.[00:13:40] swyx (2): Thanks for watching! And we don't, we don't know. We don't know. I think for me, like, yeah, we'll, we'll, we basically will never know as, as external commentators. I think what's interesting is how, where does this go? Is there a logical floor or bottom by my estimations for the same amount of ELO started last year to the end of last year cost went down by a thousand X for the [00:14:00] GPT, for, for GPT 4 intelligence.[00:14:02] swyx (2): Would, do they go down a thousand X this year?[00:14:04] Simon: That's a fascinating question. Yeah.[00:14:06] swyx (2): Is there a Moore's law going on, or did we just get a one off benefit last year for some weird reason?[00:14:14] Simon: My uninformed hunch is low hanging fruit. I feel like up until a year ago, people haven't been focusing on efficiency at all. You know, it was all about, what can we get these weird shaped things to do?[00:14:24] Simon: And now once we've sort of hit that, okay, we know that we can get them to do what GPT 4 can do, When thousands of researchers around the world all focus on, okay, how do we make this more efficient? What are the most important, like, how do we strip out all of the weights that have stuff in that doesn't really matter?[00:14:39] Simon: All of that kind of thing. So yeah, maybe that was it. Maybe 2024 was a freak year of all of the low hanging fruit coming out at once. And we'll actually see a reduction in the, in that rate of improvement in terms of efficiency. I wonder, I mean, I think we'll know for sure in about three months time if that trend's going to continue or not.[00:14:58] swyx (2): I agree. You know, I [00:15:00] think the other thing that you mentioned that DeepSeq v3 was the gift that was given from DeepSeq over Christmas, but I feel like the other thing that might be underrated was DeepSeq R1,[00:15:11] Speaker 4: which is[00:15:13] swyx (2): a reasoning model you can run on your laptop. And I think that's something that a lot of people are looking ahead to this year.[00:15:18] swyx (2): Oh, did they[00:15:18] Simon: release the weights for that one?[00:15:20] swyx (2): Yeah.[00:15:21] Simon: Oh my goodness, I missed that. I've been playing with the quen. So the other great, the other big Chinese AI app is Alibaba's quen. Actually, yeah, I, sorry, R1 is an API available. Yeah. Exactly. When that's really cool. So Alibaba's Quen have released two reasoning models that I've run on my laptop.[00:15:38] Simon: Now there was, the first one was Q, Q, WQ. And then the second one was QVQ because the second one's a vision model. So you can like give it vision puzzles and a prompt that these things, they are so much fun to run. Because they think out loud. It's like the OpenAR 01 sort of hides its thinking process. The Query ones don't.[00:15:59] Simon: They just, they [00:16:00] just churn away. And so you'll give it a problem and it will output literally dozens of paragraphs of text about how it's thinking. My favorite thing that happened with QWQ is I asked it to draw me a pelican on a bicycle in SVG. That's like my standard stupid prompt. And for some reason it thought in Chinese.[00:16:18] Simon: It spat out a whole bunch of like Chinese text onto my terminal on my laptop, and then at the end it gave me quite a good sort of artistic pelican on a bicycle. And I ran it all through Google Translate, and yeah, it was like, it was contemplating the nature of SVG files as a starting point. And the fact that my laptop can think in Chinese now is so delightful.[00:16:40] Simon: It's so much fun watching you do that.[00:16:43] swyx (2): Yeah, I think Andrej Karpathy was saying, you know, we, we know that we have achieved proper reasoning inside of these models when they stop thinking in English, and perhaps the best form of thought is in Chinese. But yeah, for listeners who don't know Simon's blog he always, whenever a new model comes out, you, I don't know how you do it, but [00:17:00] you're always the first to run Pelican Bench on these models.[00:17:02] swyx (2): I just did it for 5.[00:17:05] Simon: Yeah.[00:17:07] swyx (2): So I really appreciate that. You should check it out. These are not theoretical. Simon's blog actually shows them.[00:17:12] Brian: Let me put on the investor hat for a second.[00:17:15] AI Agents and Their Limitations[00:17:15] Brian: Because from the investor side of things, a lot of the, the VCs that I know are really hot on agents, and this is the year of agents, but last year was supposed to be the year of agents as well. Lots of money flowing towards, And Gentic startups.[00:17:32] Brian: But in in your piece that again, we're hopefully going to have linked in the show notes, you sort of suggest there's a fundamental flaw in AI agents as they exist right now. Let me let me quote you. And then I'd love to dive into this. You said, I remain skeptical as to their ability based once again, on the Challenge of gullibility.[00:17:49] Brian: LLMs believe anything you tell them, any systems that attempt to make meaningful decisions on your behalf, will run into the same roadblock. How good is a travel agent, or a digital assistant, or even a research tool, if it [00:18:00] can't distinguish truth from fiction? So, essentially, what you're suggesting is that the state of the art now that allows agents is still, it's still that sort of 90 percent problem, the edge problem, getting to the Or, or, or is there a deeper flaw?[00:18:14] Brian: What are you, what are you saying there?[00:18:16] Simon: So this is the fundamental challenge here and honestly my frustration with agents is mainly around definitions Like any if you ask anyone who says they're working on agents to define agents You will get a subtly different definition from each person But everyone always assumes that their definition is the one true one that everyone else understands So I feel like a lot of these agent conversations, people talking past each other because one person's talking about the, the sort of travel agent idea of something that books things on your behalf.[00:18:41] Simon: Somebody else is talking about LLMs with tools running in a loop with a cron job somewhere and all of these different things. You, you ask academics and they'll laugh at you because they've been debating what agents mean for over 30 years at this point. It's like this, this long running, almost sort of an in joke in that community.[00:18:57] Simon: But if we assume that for this purpose of this conversation, an [00:19:00] agent is something that, Which you can give a job and it goes off and it does that thing for you like, like booking travel or things like that. The fundamental challenge is, it's the reliability thing, which comes from this gullibility problem.[00:19:12] Simon: And a lot of my, my interest in this originally came from when I was thinking about prompt injections as a source of this form of attack against LLM systems where you deliberately lay traps out there for this LLM to stumble across,[00:19:24] Brian: and which I should say you have been banging this drum that no one's gotten any far, at least on solving this, that I'm aware of, right.[00:19:31] Brian: Like that's still an open problem. The two years.[00:19:33] Simon: Yeah. Right. We've been talking about this problem and like, a great illustration of this was Claude so Anthropic released Claude computer use a few months ago. Fantastic demo. You could fire up a Docker container and you could literally tell it to do something and watch it open a web browser and navigate to a webpage and click around and so forth.[00:19:51] Simon: Really, really, really interesting and fun to play with. And then, um. One of the first demos somebody tried was, what if you give it a web page that says download and run this [00:20:00] executable, and it did, and the executable was malware that added it to a botnet. So the, the very first most obvious dumb trick that you could play on this thing just worked, right?[00:20:10] Simon: So that's obviously a really big problem. If I'm going to send something out to book travel on my behalf, I mean, it's hard enough for me to figure out which airlines are trying to scam me and which ones aren't. Do I really trust a language model that believes the literal truth of anything that's presented to it to go out and do those things?[00:20:29] swyx (2): Yeah I definitely think there's, it's interesting to see Anthropic doing this because they used to be the safety arm of OpenAI that split out and said, you know, we're worried about letting this thing out in the wild and here they are enabling computer use for agents. Thanks. The, it feels like things have merged.[00:20:49] swyx (2): You know, I'm, I'm also fairly skeptical about, you know, this always being the, the year of Linux on the desktop. And this is the equivalent of this being the year of agents that people [00:21:00] are not predicting so much as wishfully thinking and hoping and praying for their companies and agents to work.[00:21:05] swyx (2): But I, I feel like things are. Coming along a little bit. It's to me, it's kind of like self driving. I remember in 2014 saying that self driving was just around the corner. And I mean, it kind of is, you know, like in, in, in the Bay area. You[00:21:17] Simon: get in a Waymo and you're like, Oh, this works. Yeah, but it's a slow[00:21:21] swyx (2): cook.[00:21:21] swyx (2): It's a slow cook over the next 10 years. We're going to hammer out these things and the cynical people can just point to all the flaws, but like, there are measurable or concrete progress steps that are being made by these builders.[00:21:33] Simon: There is one form of agent that I believe in. I believe, mostly believe in the research assistant form of agents.[00:21:39] Simon: The thing where you've got a difficult problem and, and I've got like, I'm, I'm on the beta for the, the Google Gemini 1. 5 pro with deep research. I think it's called like these names, these names. Right. But. I've been using that. It's good, right? You can give it a difficult problem and it tells you, okay, I'm going to look at 56 different websites [00:22:00] and it goes away and it dumps everything to its context and it comes up with a report for you.[00:22:04] Simon: And it's not, it won't work against adversarial websites, right? If there are websites with deliberate lies in them, it might well get caught out. Most things don't have that as a problem. And so I've had some answers from that which were genuinely really valuable to me. And that feels to me like, I can see how given existing LLM tech, especially with Google Gemini with its like million token contacts and Google with their crawl of the entire web and their, they've got like search, they've got search and cache, they've got a cache of every page and so forth.[00:22:35] Simon: That makes sense to me. And that what they've got right now, I don't think it's, it's not as good as it can be, obviously, but it's, it's, it's, it's a real useful thing, which they're going to start rolling out. So, you know, Perplexity have been building the same thing for a couple of years. That, that I believe in.[00:22:50] Simon: You know, if you tell me that you're going to have an agent that's a research assistant agent, great. The coding agents I mean, chat gpt code interpreter, Nearly two years [00:23:00] ago, that thing started writing Python code, executing the code, getting errors, rewriting it to fix the errors. That pattern obviously works.[00:23:07] Simon: That works really, really well. So, yeah, coding agents that do that sort of error message loop thing, those are proven to work. And they're going to keep on getting better, and that's going to be great. The research assistant agents are just beginning to get there. The things I'm critical of are the ones where you trust, you trust this thing to go out and act autonomously on your behalf, and make decisions on your behalf, especially involving spending money, like that.[00:23:31] Simon: I don't see that working for a very long time. That feels to me like an AGI level problem.[00:23:37] swyx (2): It's it's funny because I think Stripe actually released an agent toolkit which is one of the, the things I featured that is trying to enable these agents each to have a wallet that they can go and spend and have, basically, it's a virtual card.[00:23:49] swyx (2): It's not that, not that difficult with modern infrastructure. can[00:23:51] Simon: stick a 50 cap on it, then at least it's an honor. Can't lose more than 50.[00:23:56] Brian: You know I don't, I don't know if either of you know Rafat Ali [00:24:00] he runs Skift, which is a, a travel news vertical. And he, he, he constantly laughs at the fact that every agent thing is, we're gonna get rid of booking a, a plane flight for you, you know?[00:24:11] Brian: And, and I would point out that, like, historically, when the web started, the first thing everyone talked about is, You can go online and book a trip, right? So it's funny for each generation of like technological advance. The thing they always want to kill is the travel agent. And now they want to kill the webpage travel agent.[00:24:29] Simon: Like it's like I use Google flight search. It's great, right? If you gave me an agent to do that for me, it would save me, I mean, maybe 15 seconds of typing in my things, but I still want to see what my options are and go, yeah, I'm not flying on that airline, no matter how cheap they are.[00:24:44] swyx (2): Yeah. For listeners, go ahead.[00:24:47] swyx (2): For listeners, I think, you know, I think both of you are pretty positive on NotebookLM. And you know, we, we actually interviewed the NotebookLM creators, and there are actually two internal agents going on internally. The reason it takes so long is because they're running an agent loop [00:25:00] inside that is fairly autonomous, which is kind of interesting.[00:25:01] swyx (2): For one,[00:25:02] Simon: for a definition of agent loop, if you picked that particularly well. For one definition. And you're talking about the podcast side of this, right?[00:25:07] swyx (2): Yeah, the podcast side of things. They have a there's, there's going to be a new version coming out that, that we'll be featuring at our, at our conference.[00:25:14] Simon: That one's fascinating to me. Like NotebookLM, I think it's two products, right? On the one hand, it's actually a very good rag product, right? You dump a bunch of things in, you can run searches, that, that, it does a good job of. And then, and then they added the, the podcast thing. It's a bit of a, it's a total gimmick, right?[00:25:30] Simon: But that gimmick got them attention, because they had a great product that nobody paid any attention to at all. And then you add the unfeasibly good voice synthesis of the podcast. Like, it's just, it's, it's, it's the lesson.[00:25:43] Brian: It's the lesson of mid journey and stuff like that. If you can create something that people can post on socials, you don't have to lift a finger again to do any marketing for what you're doing.[00:25:53] Brian: Let me dig into Notebook LLM just for a second as a podcaster. As a [00:26:00] gimmick, it makes sense, and then obviously, you know, you dig into it, it sort of has problems around the edges. It's like, it does the thing that all sort of LLMs kind of do, where it's like, oh, we want to Wrap up with a conclusion.[00:26:12] Multimodal AI and Future Prospects[00:26:12] Brian: I always call that like the the eighth grade book report paper problem where it has to have an intro and then, you know But that's sort of a thing where because I think you spoke about this again in your piece at the year end About how things are going multimodal and how things are that you didn't expect like, you know vision and especially audio I think So that's another thing where, at least over the last year, there's been progress made that maybe you, you didn't think was coming as quick as it came.[00:26:43] Simon: I don't know. I mean, a year ago, we had one really good vision model. We had GPT 4 vision, was, was, was very impressive. And Google Gemini had just dropped Gemini 1. 0, which had vision, but nobody had really played with it yet. Like Google hadn't. People weren't taking Gemini [00:27:00] seriously at that point. I feel like it was 1.[00:27:02] Simon: 5 Pro when it became apparent that actually they were, they, they got over their hump and they were building really good models. And yeah, and they, to be honest, the video models are mostly still using the same trick. The thing where you divide the video up into one image per second and you dump that all into the context.[00:27:16] Simon: So maybe it shouldn't have been so surprising to us that long context models plus vision meant that the video was, was starting to be solved. Of course, it didn't. Not being, you, what you really want with videos, you want to be able to do the audio and the images at the same time. And I think the models are beginning to do that now.[00:27:33] Simon: Like, originally, Gemini 1. 5 Pro originally ignored the audio. It just did the, the, like, one frame per second video trick. As far as I can tell, the most recent ones are actually doing pure multimodal. But the things that opens up are just extraordinary. Like, the the ChatGPT iPhone app feature that they shipped as one of their 12 days of, of OpenAI, I really can be having a conversation and just turn on my video camera and go, Hey, what kind of tree is [00:28:00] this?[00:28:00] Simon: And so forth. And it works. And for all I know, that's just snapping a like picture once a second and feeding it into the model. The, the, the things that you can do with that as an end user are extraordinary. Like that, that to me, I don't think most people have cottoned onto the fact that you can now stream video directly into a model because it, it's only a few weeks old.[00:28:22] Simon: Wow. That's a, that's a, that's a, that's Big boost in terms of what kinds of things you can do with this stuff. Yeah. For[00:28:30] swyx (2): people who are not that close I think Gemini Flashes free tier allows you to do something like capture a photo, one photo every second or a minute and leave it on 24, seven, and you can prompt it to do whatever.[00:28:45] swyx (2): And so you can effectively have your own camera app or monitoring app that that you just prompt and it detects where it changes. It detects for, you know, alerts or anything like that, or describes your day. You know, and, and, and the fact that this is free I think [00:29:00] it's also leads into the previous point of it being the prices haven't come down a lot.[00:29:05] Simon: And even if you're paying for this stuff, like a thing that I put in my blog entry is I ran a calculation on what it would cost to process 68, 000 photographs in my photo collection, and for each one just generate a caption, and using Gemini 1. 5 Flash 8B, it would cost me 1. 68 to process 68, 000 images, which is, I mean, that, that doesn't make sense.[00:29:28] Simon: None of that makes sense. Like it's, it's a, for one four hundredth of a cent per image to generate captions now. So you can see why feeding in a day's worth of video just isn't even very expensive to process.[00:29:40] swyx (2): Yeah, I'll tell you what is expensive. It's the other direction. So we're here, we're talking about consuming video.[00:29:46] swyx (2): And this year, we also had a lot of progress, like probably one of the most excited, excited, anticipated launches of the year was Sora. We actually got Sora. And less exciting.[00:29:55] Simon: We did, and then VO2, Google's Sora, came out like three [00:30:00] days later and upstaged it. Like, Sora was exciting until VO2 landed, which was just better.[00:30:05] swyx (2): In general, I feel the media, or the social media, has been very unfair to Sora. Because what was released to the world, generally available, was Sora Lite. It's the distilled version of Sora, right? So you're, I did not[00:30:16] Simon: realize that you're absolutely comparing[00:30:18] swyx (2): the, the most cherry picked version of VO two, the one that they published on the marketing page to the, the most embarrassing version of the soa.[00:30:25] swyx (2): So of course it's gonna look bad, so, well, I got[00:30:27] Simon: access to the VO two I'm in the VO two beta and I've been poking around with it and. Getting it to generate pelicans on bicycles and stuff. I would absolutely[00:30:34] swyx (2): believe that[00:30:35] Simon: VL2 is actually better. Is Sora, so is full fat Sora coming soon? Do you know, when, when do we get to play with that one?[00:30:42] Simon: No one's[00:30:43] swyx (2): mentioned anything. I think basically the strategy is let people play around with Sora Lite and get info there. But the, the, keep developing Sora with the Hollywood studios. That's what they actually care about. Gotcha. Like the rest of us. Don't really know what to do with the video anyway. Right.[00:30:59] Simon: I mean, [00:31:00] that's my thing is I realized that for generative images and images and video like images We've had for a few years and I don't feel like they've broken out into the talented artist community yet Like lots of people are having fun with them and doing and producing stuff. That's kind of cool to look at but what I want you know that that movie everything everywhere all at once, right?[00:31:20] Simon: One, one ton of Oscars, utterly amazing film. The VFX team for that were five people, some of whom were watching YouTube videos to figure out what to do. My big question for, for Sora and and and Midjourney and stuff, what happens when a creative team like that starts using these tools? I want the creative geniuses behind everything, everywhere all at once.[00:31:40] Simon: What are they going to be able to do with this stuff in like a few years time? Because that's really exciting to me. That's where you take artists who are at the very peak of their game. Give them these new capabilities and see, see what they can do with them.[00:31:52] swyx (2): I should, I know a little bit here. So it should mention that, that team actually used RunwayML.[00:31:57] swyx (2): So there was, there was,[00:31:57] Simon: yeah.[00:31:59] swyx (2): I don't know how [00:32:00] much I don't. So, you know, it's possible to overstate this, but there are people integrating it. Generated video within their workflow, even pre SORA. Right, because[00:32:09] Brian: it's not, it's not the thing where it's like, okay, tomorrow we'll be able to do a full two hour movie that you prompt with three sentences.[00:32:15] Brian: It is like, for the very first part of, of, you know video effects in film, it's like, if you can get that three second clip, if you can get that 20 second thing that they did in the matrix that blew everyone's minds and took a million dollars or whatever to do, like, it's the, it's the little bits and pieces that they can fill in now that it's probably already there.[00:32:34] swyx (2): Yeah, it's like, I think actually having a layered view of what assets people need and letting AI fill in the low value assets. Right, like the background video, the background music and, you know, sometimes the sound effects. That, that maybe, maybe more palatable maybe also changes the, the way that you evaluate the stuff that's coming out.[00:32:57] swyx (2): Because people tend to, in social media, try to [00:33:00] emphasize foreground stuff, main character stuff. So you really care about consistency, and you, you really are bothered when, like, for example, Sorad. Botch's image generation of a gymnast doing flips, which is horrible. It's horrible. But for background crowds, like, who cares?[00:33:18] Brian: And by the way, again, I was, I was a film major way, way back in the day, like, that's how it started. Like things like Braveheart, where they filmed 10 people on a field, and then the computer could turn it into 1000 people on a field. Like, that's always been the way it's around the margins and in the background that first comes in.[00:33:36] Brian: The[00:33:36] Simon: Lord of the Rings movies were over 20 years ago. Although they have those giant battle sequences, which were very early, like, I mean, you could almost call it a generative AI approach, right? They were using very sophisticated, like, algorithms to model out those different battles and all of that kind of stuff.[00:33:52] Simon: Yeah, I know very little. I know basically nothing about film production, so I try not to commentate on it. But I am fascinated to [00:34:00] see what happens when, when these tools start being used by the real, the people at the top of their game.[00:34:05] swyx (2): I would say like there's a cultural war that is more that being fought here than a technology war.[00:34:11] swyx (2): Most of the Hollywood people are against any form of AI anyway, so they're busy Fighting that battle instead of thinking about how to adopt it and it's, it's very fringe. I participated here in San Francisco, one generative AI video creative hackathon where the AI positive artists actually met with technologists like myself and then we collaborated together to build short films and that was really nice and I think, you know, I'll be hosting some of those in my events going forward.[00:34:38] swyx (2): One thing that I think like I want to leave it. Give people a sense of it's like this is a recap of last year But then sometimes it's useful to walk away as well with like what can we expect in the future? I don't know if you got anything. I would also call out that the Chinese models here have made a lot of progress Hyde Law and Kling and God knows who like who else in the video arena [00:35:00] Also making a lot of progress like surprising him like I think maybe actually Chinese China is surprisingly ahead with regards to Open8 at least, but also just like specific forms of video generation.[00:35:12] Simon: Wouldn't it be interesting if a film industry sprung up in a country that we don't normally think of having a really strong film industry that was using these tools? Like, that would be a fascinating sort of angle on this. Mm hmm. Mm hmm.[00:35:25] swyx (2): Agreed. I, I, I Oh, sorry. Go ahead.[00:35:29] Exploring Video Avatar Companies[00:35:29] swyx (2): Just for people's Just to put it on people's radar as well, Hey Jen, there's like there's a category of video avatar companies that don't specifically, don't specialize in general video.[00:35:41] swyx (2): They only do talking heads, let's just say. And HeyGen sings very well.[00:35:45] Brian: Swyx, you know that that's what I've been using, right? Like, have, have I, yeah, right. So, if you see some of my recent YouTube videos and things like that, where, because the beauty part of the HeyGen thing is, I, I, I don't want to use the robot voice, so [00:36:00] I record the mp3 file for my computer, And then I put that into HeyGen with the avatar that I've trained it on, and all it does is the lip sync.[00:36:09] Brian: So it looks, it's not 100 percent uncanny valley beatable, but it's good enough that if you weren't looking for it, it's just me sitting there doing one of my clips from the show. And, yeah, so, by the way, HeyGen. Shout out to them.[00:36:24] AI Influencers and Their Future[00:36:24] swyx (2): So I would, you know, in terms of like the look ahead going, like, looking, reviewing 2024, looking at trends for 2025, I would, they basically call this out.[00:36:33] swyx (2): Meta tried to introduce AI influencers and failed horribly because they were just bad at it. But at some point that there will be more and more basically AI influencers Not in a way that Simon is but in a way that they are not human.[00:36:50] Simon: Like the few of those that have done well, I always feel like they're doing well because it's a gimmick, right?[00:36:54] Simon: It's a it's it's novel and fun to like Like that, the AI Seinfeld thing [00:37:00] from last year, the Twitch stream, you know, like those, if you're the only one or one of just a few doing that, you'll get, you'll attract an audience because it's an interesting new thing. But I just, I don't know if that's going to be sustainable longer term or not.[00:37:11] Simon: Like,[00:37:12] Simplifying Content Creation with AI[00:37:12] Brian: I'm going to tell you, Because I've had discussions, I can't name the companies or whatever, but, so think about the workflow for this, like, now we all know that on TikTok and Instagram, like, holding up a phone to your face, and doing like, in my car video, or walking, a walk and talk, you know, that's, that's very common, but also, if you want to do a professional sort of talking head video, you still have to sit in front of a camera, you still have to do the lighting, you still have to do the video editing, versus, if you can just record, what I'm saying right now, the last 30 seconds, If you clip that out as an mp3 and you have a good enough avatar, then you can put that avatar in front of Times Square, on a beach, or whatever.[00:37:50] Brian: So, like, again for creators, the reason I think Simon, we're on the verge of something, it, it just, it's not going to, I think it's not, oh, we're going to have [00:38:00] AI avatars take over, it'll be one of those things where it takes another piece of the workflow out and simplifies it. I'm all[00:38:07] Simon: for that. I, I always love this stuff.[00:38:08] Simon: I like tools. Tools that help human beings do more. Do more ambitious things. I'm always in favor of, like, that, that, that's what excites me about this entire field.[00:38:17] swyx (2): Yeah. We're, we're looking into basically creating one for my podcast. We have this guy Charlie, he's Australian. He's, he's not real, but he pre, he opens every show and we are gonna have him present all the shorts.[00:38:29] Simon: Yeah, go ahead.[00:38:30] The Importance of Credibility in AI[00:38:30] Simon: The thing that I keep coming back to is this idea of credibility like in a world that is full of like AI generated everything and so forth It becomes even more important that people find the sources of information that they trust and find people and find Sources that are credible and I feel like that's the one thing that LLMs and AI can never have is credibility, right?[00:38:49] Simon: ChatGPT can never stake its reputation on telling you something useful and interesting because That means nothing, right? It's a matrix multiplication. It depends on who prompted it and so forth. So [00:39:00] I'm always, and this is when I'm blogging as well, I'm always looking for, okay, who are the reliable people who will tell me useful, interesting information who aren't just going to tell me whatever somebody's paying them to tell, tell them, who aren't going to, like, type a one sentence prompt into an LLM and spit out an essay and stick it online.[00:39:16] Simon: And that, that to me, Like, earning that credibility is really important. That's why a lot of my ethics around the way that I publish are based on the idea that I want people to trust me. I want to do things that, that gain credibility in people's eyes so they will come to me for information as a trustworthy source.[00:39:32] Simon: And it's the same for the sources that I'm, I'm consulting as well. So that's something I've, I've been thinking a lot about that sort of credibility focus on this thing for a while now.[00:39:40] swyx (2): Yeah, you can layer or structure credibility or decompose it like so one thing I would put in front of you I'm not saying that you should Agree with this or accept this at all is that you can use AI to generate different Variations and then and you pick you as the final sort of last mile person that you pick The last output and [00:40:00] you put your stamp of credibility behind that like that everything's human reviewed instead of human origin[00:40:04] Simon: Yeah, if you publish something you need to be able to put it on the ground Publishing it.[00:40:08] Simon: You need to say, I will put my name to this. I will attach my credibility to this thing. And if you're willing to do that, then, then that's great.[00:40:16] swyx (2): For creators, this is huge because there's a fundamental asymmetry between starting with a blank slate versus choosing from five different variations.[00:40:23] Brian: Right.[00:40:24] Brian: And also the key thing that you just said is like, if everything that I do, if all of the words were generated by an LLM, if the voice is generated by an LLM. If the video is also generated by the LLM, then I haven't done anything, right? But if, if one or two of those, you take a shortcut, but it's still, I'm willing to sign off on it.[00:40:47] Brian: Like, I feel like that's where I feel like people are coming around to like, this is maybe acceptable, sort of.[00:40:53] Simon: This is where I've been pushing the definition. I love the term slop. Where I've been pushing the definition of slop as AI generated [00:41:00] content that is both unrequested and unreviewed and the unreviewed thing is really important like that's the thing that elevates something from slop to not slop is if A human being has reviewed it and said, you know what, this is actually worth other people's time.[00:41:12] Simon: And again, I'm willing to attach my credibility to it and say, hey, this is worthwhile.[00:41:16] Brian: It's, it's, it's the cura curational, curatorial and editorial part of it that no matter what the tools are to do shortcuts, to do, as, as Swyx is saying choose between different edits or different cuts, but in the end, if there's a curatorial mind, Or editorial mind behind it.[00:41:32] Brian: Let me I want to wedge this in before we start to close.[00:41:36] The Future of LLM User Interfaces[00:41:36] Brian: One of the things coming back to your year end piece that has been a something that I've been banging the drum about is when you're talking about LLMs. Getting harder to use. You said most users are thrown in at the deep end.[00:41:48] Brian: The default LLM chat UI is like taking brand new computer users, dropping them into a Linux terminal and expecting them to figure it all out. I mean, it's, it's literally going back to the command line. The command line was defeated [00:42:00] by the GUI interface. And this is what I've been banging the drum about is like, this cannot be.[00:42:05] Brian: The user interface, what we have now cannot be the end result. Do you see any hints or seeds of a GUI moment for LLM interfaces?[00:42:17] Simon: I mean, it has to happen. It absolutely has to happen. The the, the, the, the usability of these things is turning into a bit of a crisis. And we are at least seeing some really interesting innovation in little directions.[00:42:28] Simon: Just like OpenAI's chat GPT canvas thing that they just launched. That is at least. Going a little bit more interesting than just chat, chats and responses. You know, you can, they're exploring that space where you're collaborating with an LLM. You're both working in the, on the same document. That makes a lot of sense to me.[00:42:44] Simon: Like that, that feels really smart. The one of the best things is still who was it who did the, the UI where you could, they had a drawing UI where you draw an interface and click a button. TL draw would then make it real thing. That was spectacular, [00:43:00] absolutely spectacular, like, alternative vision of how you'd interact with these models.[00:43:05] Simon: Because yeah, the and that's, you know, so I feel like there is so much scope for innovation there and it is beginning to happen. Like, like, I, I feel like most people do understand that we need to do better in terms of interfaces that both help explain what's going on and give people better tools for working with models.[00:43:23] Simon: I was going to say, I want to[00:43:25] Brian: dig a little deeper into this because think of the conceptual idea behind the GUI, which is instead of typing into a command line open word. exe, it's, you, you click an icon, right? So that's abstracting away sort of the, again, the programming stuff that like, you know, it's, it's a, a, a child can tap on an iPad and, and make a program open, right?[00:43:47] Brian: The problem it seems to me right now with how we're interacting with LLMs is it's sort of like you know a dumb robot where it's like you poke it and it goes over here, but no, I want it, I want to go over here so you poke it this way and you can't get it exactly [00:44:00] right, like, what can we abstract away from the From the current, what's going on that, that makes it more fine tuned and easier to get more precise.[00:44:12] Brian: You see what I'm saying?[00:44:13] Simon: Yes. And the this is the other trend that I've been following from the last year, which I think is super interesting. It's the, the prompt driven UI development thing. Basically, this is the pattern where Claude Artifacts was the first thing to do this really well. You type in a prompt and it goes, Oh, I should answer that by writing a custom HTML and JavaScript application for you that does a certain thing.[00:44:35] Simon: And when you think about that take and since then it turns out This is easy, right? Every decent LLM can produce HTML and JavaScript that does something useful. So we've actually got this alternative way of interacting where they can respond to your prompt with an interactive custom interface that you can work with.[00:44:54] Simon: People haven't quite wired those back up again. Like, ideally, I'd want the LLM ask me a [00:45:00] question where it builds me a custom little UI, For that question, and then it gets to see how I interacted with that. I don't know why, but that's like just such a small step from where we are right now. But that feels like such an obvious next step.[00:45:12] Simon: Like an LLM, why should it, why should you just be communicating with, with text when it can build interfaces on the fly that let you select a point on a map or or move like sliders up and down. It's gonna create knobs and dials. I keep saying knobs and dials. right. We can do that. And the LLMs can build, and Claude artifacts will build you a knobs and dials interface.[00:45:34] Simon: But at the moment they haven't closed the loop. When you twiddle those knobs, Claude doesn't see what you were doing. They're going to close that loop. I'm, I'm shocked that they haven't done it yet. So yeah, I think there's so much scope for innovation and there's so much scope for doing interesting stuff with that model where the LLM, anything you can represent in SVG, which is almost everything, can now be part of that ongoing conversation.[00:45:59] swyx (2): Yeah, [00:46:00] I would say the best executed version of this I've seen so far is Bolt where you can literally type in, make a Spotify clone, make an Airbnb clone, and it actually just does that for you zero shot with a nice design.[00:46:14] Simon: There's a benchmark for that now. The LMRena people now have a benchmark that is zero shot app, app generation, because all of the models can do it.[00:46:22] Simon: Like it's, it's, I've started figuring out. I'm building my own version of this for my own project, because I think within six months. I think it'll just be an expected feature. Like if you have a web application, why don't you have a thing where, oh, look, the, you can add a custom, like, so for my dataset data exploration project, I want you to be able to do things like conjure up a dashboard, just via a prompt.[00:46:43] Simon: You say, oh, I need a pie chart and a bar chart and put them next to each other, and then have a form where submitting the form inserts a row into my database table. And this is all suddenly feasible. It's, it's, it's not even particularly difficult to do, which is great. Utterly bizarre that these things are now easy.[00:47:00][00:47:00] swyx (2): I think for a general audience, that is what I would highlight, that software creation is becoming easier and easier. Gemini is now available in Gmail and Google Sheets. I don't write my own Google Sheets formulas anymore, I just tell Gemini to do it. And so I think those are, I almost wanted to basically somewhat disagree with, with your assertion that LMS got harder to use.[00:47:22] swyx (2): Like, yes, we, we expose more capabilities, but they're, they're in minor forms, like using canvas, like web search in, in in chat GPT and like Gemini being in, in Excel sheets or in Google sheets, like, yeah, we're getting, no,[00:47:37] Simon: no, no, no. Those are the things that make it harder, because the problem is that for each of those features, they're amazing.[00:47:43] Simon: If you understand the edges of the feature, if you're like, okay, so in Google, Gemini, Excel formulas, I can get it to do a certain amount of things, but I can't get it to go and read a web. You probably can't get it to read a webpage, right? But you know, there are, there are things that it can do and things that it can't do, which are completely undocumented.[00:47:58] Simon: If you ask it what it [00:48:00] can and can't do, they're terrible at answering questions about that. So like my favorite example is Claude artifacts. You can't build a Claude artifact that can hit an API somewhere else. Because the cause headers on that iframe prevents accessing anything outside of CDNJS. So, good luck learning cause headers as an end user in order to understand why Like, I've seen people saying, oh, this is rubbish.[00:48:26] Simon: I tried building an artifact that would run a prompt and it couldn't because Claude didn't expose an API with cause headers that all of this stuff is so weird and complicated. And yeah, like that, that, the more that with the more tools we add, the more expertise you need to really, To understand the full scope of what you can do.[00:48:44] Simon: And so it's, it's, I wouldn't say it's, it's, it's, it's like, the question really comes down to what does it take to understand the full extent of what's possible? And honestly, that, that's just getting more and more involved over time.[00:48:58] Local LLMs: A Growing Interest[00:48:58] swyx (2): I have one more topic that I, I [00:49:00] think you, you're kind of a champion of and we've touched on it a little bit, which is local LLMs.[00:49:05] swyx (2): And running AI applications on your desktop, I feel like you are an early adopter of many, many things.[00:49:12] Simon: I had an interesting experience with that over the past year. Six months ago, I almost completely lost interest. And the reason is that six months ago, the best local models you could run, There was no point in using them at all, because the best hosted models were so much better.[00:49:26] Simon: Like, there was no point at which I'd choose to run a model on my laptop if I had API access to Cloud 3. 5 SONNET. They just, they weren't even comparable. And that changed, basically, in the past three months, as the local models had this step changing capability, where now I can run some of these local models, and they're not as good as Cloud 3.[00:49:45] Simon: 5 SONNET, but they're not so far away that It's not worth me even using them. The other, the, the, the, the continuing problem is I've only got 64 gigabytes of RAM, and if you run, like, LLAMA370B, it's not going to work. Most of my RAM is gone. So now I have to shut down my Firefox tabs [00:50:00] and, and my Chrome and my VS Code windows in order to run it.[00:50:03] Simon: But it's got me interested again. Like, like the, the efficiency improvements are such that now, if you were to like stick me on a desert island with my laptop, I'd be very productive using those local models. And that's, that's pretty exciting. And if those trends continue, and also, like, I think my next laptop, if when I buy one is going to have twice the amount of RAM, At which point, maybe I can run the, almost the top tier, like open weights models and still be able to use it as a computer as well.[00:50:32] Simon: NVIDIA just announced their 3, 000 128 gigabyte monstrosity. That's pretty good price. You know, that's that's, if you're going to buy it,[00:50:42] swyx (2): custom OS and all.[00:50:46] Simon: If I get a job, if I, if, if, if I have enough of an income that I can justify blowing $3,000 on it, then yes.[00:50:52] swyx (2): Okay, let's do a GoFundMe to get Simon one it.[00:50:54] swyx (2): Come on. You know, you can get a job anytime you want. Is this, this is just purely discretionary .[00:50:59] Simon: I want, [00:51:00] I want a job that pays me to do exactly what I'm doing already and doesn't tell me what else to do. That's, thats the challenge.[00:51:06] swyx (2): I think Ethan Molik does pretty well. Whatever, whatever it is he's doing.[00:51:11] swyx (2): But yeah, basically I was trying to bring in also, you know, not just local models, but Apple intelligence is on every Mac machine. You're, you're, you seem skeptical. It's rubbish.[00:51:21] Simon: Apple intelligence is so bad. It's like, it does one thing well.[00:51:25] swyx (2): Oh yeah, what's that? It summarizes notifications. And sometimes it's humorous.[00:51:29] Brian: Are you sure it does that well? And also, by the way, the other, again, from a sort of a normie point of view. There's no indication from Apple of when to use it. Like, everybody upgrades their thing and it's like, okay, now you have Apple Intelligence, and you never know when to use it ever again.[00:51:47] swyx (2): Oh, yeah, you consult the Apple docs, which is MKBHD.[00:51:49] swyx (2): The[00:51:51] Simon: one thing, the one thing I'll say about Apple Intelligence is, One of the reasons it's so disappointing is that the models are just weak, but now, like, Llama 3b [00:52:00] is Such a good model in a 2 gigabyte file I think give Apple six months and hopefully they'll catch up to the state of the art on the small models And then maybe it'll start being a lot more interesting.[00:52:10] swyx (2): Yeah. Anyway, I like This was year one And and you know just like our first year of iPhone maybe maybe not that much of a hit and then year three They had the App Store so Hey I would say give it some time, and you know, I think Chrome also shipping Gemini Nano I think this year in Chrome, which means that every app, every web app will have for free access to a local model that just ships in the browser, which is kind of interesting.[00:52:38] swyx (2): And then I, I think I also wanted to just open the floor for any, like, you know, any of us what are the apps that, you know, AI applications that we've adopted that have, that we really recommend because these are all, you know, apps that are running on our browser that like, or apps that are running locally that we should be, that, that other people should be trying.[00:52:55] swyx (2): Right? Like, I, I feel like that's, that's one always one thing that is helpful at the start of the [00:53:00] year.[00:53:00] Simon: Okay. So for running local models. My top picks, firstly, on the iPhone, there's this thing called MLC Chat, which works, and it's easy to install, and it runs Llama 3B, and it's so much fun. Like, it's not necessarily a capable enough novel that I use it for real things, but my party trick right now is I get my phone to write a Netflix Christmas movie plot outline where, like, a bunch of Jeweller falls in love with the King of Sweden or whatever.[00:53:25] Simon: And it does a good job and it comes up with pun names for the movies. And that's, that's deeply entertaining. On my laptop, most recently, I've been getting heavy into, into Olama because the Olama team are very, very good at finding the good models and patching them up and making them work well. It gives you an API.[00:53:42] Simon: My little LLM command line tool that has a plugin that talks to Olama, which works really well. So that's my, my Olama is. I think the easiest on ramp to to running models locally, if you want a nice user interface, LMStudio is, I think, the best user interface [00:54:00] thing at that. It's not open source. It's good.[00:54:02] Simon: It's worth playing with. The other one that I've been trying with recently, there's a thing called, what's it called? Open web UI or something. Yeah. The UI is fantastic. It, if you've got Olama running and you fire this thing up, it spots Olama and it gives you an interface onto your Olama models. And t
Applications close Monday for the NYC AI Engineer Summit focusing on AI Leadership and Agent Engineering! If you applied, invites should be rolling out shortly.The search landscape is experiencing a fundamental shift. Google built a >$2T company with the “10 blue links” experience, driven by PageRank as the core innovation for ranking. This was a big improvement from the previous directory-based experiences of AltaVista and Yahoo. Almost 4 decades later, Google is now stuck in this links-based experience, especially from a business model perspective. This legacy architecture creates fundamental constraints:* Must return results in ~400 milliseconds* Required to maintain comprehensive web coverage* Tied to keyword-based matching algorithms* Cost structures optimized for traditional indexingAs we move from the era of links to the era of answers, the way search works is changing. You're not showing a user links, but the goal is to provide context to an LLM. This means moving from keyword based search to more semantic understanding of the content:The link prediction objective can be seen as like a neural PageRank because what you're doing is you're predicting the links people share... but it's more powerful than PageRank. It's strictly more powerful because people might refer to that Paul Graham fundraising essay in like a thousand different ways. And so our model learns all the different ways.All of this is now powered by a $5M cluster with 144 H200s:This architectural choice enables entirely new search capabilities:* Comprehensive result sets instead of approximations* Deep semantic understanding of queries* Ability to process complex, natural language requestsAs search becomes more complex, time to results becomes a variable:People think of searches as like, oh, it takes 500 milliseconds because we've been conditioned... But what if searches can take like a minute or 10 minutes or a whole day, what can you then do?Unlike traditional search engines' fixed-cost indexing, Exa employs a hybrid approach:* Front-loaded compute for indexing and embeddings* Variable inference costs based on query complexity* Mix of owned infrastructure ($5M H200 cluster) and cloud resourcesExa sees a lot of competition from products like Perplexity and ChatGPT Search which layer AI on top of traditional search backends, but Exa is betting that true innovation requires rethinking search from the ground up. For example, the recently launched Websets, a way to turn searches into structured output in grid format, allowing you to create lists and databases out of web pages. The company raised a $17M Series A to build towards this mission, so keep an eye out for them in 2025. Chapters* 00:00:00 Introductions* 00:01:12 ExaAI's initial pitch and concept* 00:02:33 Will's background at SpaceX and Zoox* 00:03:45 Evolution of ExaAI (formerly Metaphor Systems)* 00:05:38 Exa's link prediction technology* 00:09:20 Meaning of the name "Exa"* 00:10:36 ExaAI's new product launch and capabilities* 00:13:33 Compute budgets and variable compute products* 00:14:43 Websets as a B2B offering* 00:19:28 How do you build a search engine?* 00:22:43 What is Neural PageRank?* 00:27:58 Exa use cases * 00:35:00 Auto-prompting* 00:38:42 Building agentic search* 00:44:19 Is o1 on the path to AGI?* 00:49:59 Company culture and nap pods* 00:54:52 Economics of AI search and the future of search technologyFull YouTube TranscriptPlease like and subscribe!Show Notes* ExaAI* Web Search Product* Websets* Series A Announcement* Exa Nap Pods* Perplexity AI* Character.AITranscriptAlessio [00:00:00]: Hey, everyone. Welcome to the Latent Space podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co-host Swyx, founder of Smol.ai.Swyx [00:00:10]: Hey, and today we're in the studio with my good friend and former landlord, Will Bryk. Roommate. How you doing? Will, you're now CEO co-founder of ExaAI, used to be Metaphor Systems. What's your background, your story?Will [00:00:30]: Yeah, sure. So, yeah, I'm CEO of Exa. I've been doing it for three years. I guess I've always been interested in search, whether I knew it or not. Like, since I was a kid, I've always been interested in, like, high-quality information. And, like, you know, even in high school, wanted to improve the way we get information from news. And then in college, built a mini search engine. And then with Exa, like, you know, it's kind of like fulfilling the dream of actually being able to solve all the information needs I wanted as a kid. Yeah, I guess. I would say my entire life has kind of been rotating around this problem, which is pretty cool. Yeah.Swyx [00:00:50]: What'd you enter YC with?Will [00:00:53]: We entered YC with, uh, we are better than Google. Like, Google 2.0.Swyx [00:01:12]: What makes you say that? Like, that's so audacious to come out of the box with.Will [00:01:16]: Yeah, okay, so you have to remember the time. This was summer 2021. And, uh, GPT-3 had come out. Like, here was this magical thing that you could talk to, you could enter a whole paragraph, and it understands what you mean, understands the subtlety of your language. And then there was Google. Uh, which felt like it hadn't changed in a decade, uh, because it really hadn't. And it, like, you would give it a simple query, like, I don't know, uh, shirts without stripes, and it would give you a bunch of results for the shirts with stripes. And so, like, Google could barely understand you, and GBD3 could. And the theory was, what if you could make a search engine that actually understood you? What if you could apply the insights from LLMs to a search engine? And it's really been the same idea ever since. And we're actually a lot closer now, uh, to doing that. Yeah.Alessio [00:01:55]: Did you have any trouble making people believe? Obviously, there's the same element. I mean, YC overlap, was YC pretty AI forward, even 2021, or?Will [00:02:03]: It's nothing like it is today. But, um, uh, there were a few AI companies, but, uh, we were definitely, like, bold. And I think people, VCs generally like boldness, and we definitely had some AI background, and we had a working demo. So there was evidence that we could build something that was going to work. But yeah, I think, like, the fundamentals were there. I think people at the time were talking about how, you know, Google was failing in a lot of ways. And so there was a bit of conversation about it, but AI was not a big, big thing at the time. Yeah. Yeah.Alessio [00:02:33]: Before we jump into Exa, any fun background stories? I know you interned at SpaceX, any Elon, uh, stories? I know you were at Zoox as well, you know, kind of like robotics at Harvard. Any stuff that you saw early that you thought was going to get solved that maybe it's not solved today?Will [00:02:48]: Oh yeah. I mean, lots of things like that. Like, uh, I never really learned how to drive because I believed Elon that self-driving cars would happen. It did happen. And I take them every night to get home. But it took like 10 more years than I thought. Do you still not know how to drive? I know how to drive now. I learned it like two years ago. That would have been great to like, just, you know, Yeah, yeah, yeah. You know? Um, I was obsessed with Elon. Yeah. I mean, I worked at SpaceX because I really just wanted to work at one of his companies. And I remember they had a rule, like interns cannot touch Elon. And, um, that rule actually influenced my actions.Swyx [00:03:18]: Is it, can Elon touch interns? Ooh, like physically?Will [00:03:22]: Or like talk? Physically, physically, yeah, yeah, yeah, yeah. Okay, interesting. He's changed a lot, but, um, I mean, his companies are amazing. Um,Swyx [00:03:28]: What if you beat him at Diablo 2, Diablo 4, you know, like, Ah, maybe.Alessio [00:03:34]: I want to jump into, I know there's a lot of backstory used to be called metaphor system. So, um, and it, you've always been kind of like a prominent company, maybe at least RAI circles in the NSF.Swyx [00:03:45]: I'm actually curious how Metaphor got its initial aura. You launched with like, very little. We launched very little. Like there was, there was this like big splash image of like, this is Aurora or something. Yeah. Right. And then I was like, okay, what this thing, like the vibes are good, but I don't know what it is. And I think, I think it was much more sort of maybe consumer facing than what you are today. Would you say that's true?Will [00:04:06]: No, it's always been about building a better search algorithm, like search, like, just like the vision has always been perfect search. And if you do that, uh, we will figure out the downstream use cases later. It started on this fundamental belief that you could have perfect search over the web and we could talk about what that means. And like the initial thing we released was really just like our first search engine, like trying to get it out there. Kind of like, you know, an open source. So when OpenAI released, uh, ChachBt, like they didn't, I don't know how, how much of a game plan they had. They kind of just wanted to get something out there.Swyx [00:04:33]: Spooky research preview.Will [00:04:34]: Yeah, exactly. And it kind of morphed from a research company to a product company at that point. And I think similarly for us, like we were research, we started as a research endeavor with a, you know, clear eyes that like, if we succeed, it will be a massive business to make out of it. And that's kind of basically what happened. I think there are actually a lot of parallels to, of w between Exa and OpenAI. I often say we're the OpenAI of search. Um, because. Because we're a research company, we're a research startup that does like fundamental research into, uh, making like AGI for search in a, in a way. Uh, and then we have all these like, uh, business products that come out of that.Swyx [00:05:08]: Interesting. I want to ask a little bit more about Metaforesight and then we can go full Exa. When I first met you, which was really funny, cause like literally I stayed in your house in a very historic, uh, Hayes, Hayes Valley place. You said you were building sort of like link prediction foundation model, and I think there's still a lot of foundation model work. I mean, within Exa today, but what does that even mean? I cannot be the only person confused by that because like there's a limited vocabulary or tokens you're telling me, like the tokens are the links or, you know, like it's not, it's not clear. Yeah.Will [00:05:38]: Uh, what we meant by link prediction is that you are literally predicting, like given some texts, you're predicting the links that follow. Yes. That refers to like, it's how we describe the training procedure, which is that we find links on the web. Uh, we take the text surrounding the link. And then we predict. Which link follows you, like, uh, you know, similar to transformers where, uh, you're trying to predict the next token here, you're trying to predict the next link. And so you kind of like hide the link from the transformer. So if someone writes, you know, imagine some article where someone says, Hey, check out this really cool aerospace startup. And they, they say spacex.com afterwards, uh, we hide the spacex.com and ask the model, like what link came next. And by doing that many, many times, you know, billions of times, you could actually build a search engine out of that because then, uh, at query time at search time. Uh, you type in, uh, a query that's like really cool aerospace startup and the model will then try to predict what are the most likely links. So there's a lot of analogs to transformers, but like to actually make this work, it does require like a different architecture than, but it's transformer inspired. Yeah.Alessio [00:06:41]: What's the design decision between doing that versus extracting the link and the description and then embedding the description and then using, um, yeah. What do you need to predict the URL versus like just describing, because you're kind of do a similar thing in a way. Right. It's kind of like based on this description, it was like the closest link for it. So one thing is like predicting the link. The other approach is like I extract the link and the description, and then based on the query, I searched the closest description to it more. Yeah.Will [00:07:09]: That, that, by the way, that is, that is the link refers here to a document. It's not, I think one confusing thing is it's not, you're not actually predicting the URL, the URL itself that would require like the, the system to have memorized URLs. You're actually like getting the actual document, a more accurate name could be document prediction. I see. This was the initial like base model that Exo was trained on, but we've moved beyond that similar to like how, you know, uh, to train a really good like language model, you might start with this like self-supervised objective of predicting the next token and then, uh, just from random stuff on the web. But then you, you want to, uh, add a bunch of like synthetic data and like supervised fine tuning, um, stuff like that to make it really like controllable and robust. Yeah.Alessio [00:07:48]: Yeah. We just have flow from Lindy and, uh, their Lindy started to like hallucinate recrolling YouTube links instead of like, uh, something. Yeah. Support guide. So. Oh, interesting. Yeah.Swyx [00:07:57]: So round about January, you announced your series A and renamed to Exo. I didn't like the name at the, at the initial, but it's grown on me. I liked metaphor, but apparently people can spell metaphor. What would you say are the major components of Exo today? Right? Like, I feel like it used to be very model heavy. Then at the AI engineer conference, Shreyas gave a really good talk on the vector database that you guys have. What are the other major moving parts of Exo? Okay.Will [00:08:23]: So Exo overall is a search engine. Yeah. We're trying to make it like a perfect search engine. And to do that, you have to build lots of, and we're doing it from scratch, right? So to do that, you have to build lots of different. The crawler. Yeah. You have to crawl a bunch of the web. First of all, you have to find the URLs to crawl. Uh, it's connected to the crawler, but yeah, you find URLs, you crawl those URLs. Then you have to process them with some, you know, it could be an embedding model. It could be something more complex, but you need to take, you know, or like, you know, in the past it was like a keyword inverted index. Like you would process all these documents you gather into some processed index, and then you have to serve that. Uh, you had high throughput at low latency. And so that, and that's like the vector database. And so it's like the crawling system, the AI processing system, and then the serving system. Those are all like, you know, teams of like hundreds, maybe thousands of people at Google. Um, but for us, it's like one or two people each typically, but yeah.Alessio [00:09:13]: Can you explain the meaning of, uh, Exo, just the story 10 to the 16th, uh, 18, 18.Will [00:09:20]: Yeah, yeah, yeah, sure. So. Exo means 10 to the 18th, which is in stark contrast to. To Google, which is 10 to the hundredth. Uh, we actually have these like awesome shirts that are like 10th to 18th is greater than 10th to the hundredth. Yeah, it's great. And it's great because it's provocative. It's like every engineer in Silicon Valley is like, what? No, it's not true. Um, like, yeah. And, uh, and then you, you ask them, okay, what does it actually mean? And like the creative ones will, will recognize it. But yeah, I mean, 10 to the 18th is better than 10 to the hundredth when it comes to search, because with search, you want like the actual list of, of things that match what you're asking for. You don't want like the whole web. You want to basically with search filter, the, like everything that humanity has ever created to exactly what you want. And so the idea is like smaller is better there. You want like the best 10th to the 18th and not the 10th to the hundredth. I'm like, one way to say this is like, you know how Google often says at the top, uh, like, you know, 30 million results found. And it's like crazy. Cause you're looking for like the first startups in San Francisco that work on hardware or something. And like, they're not 30 million results like that. What you want is like 325 results found. And those are all the results. That's what you really want with search. And that's, that's our vision. It's like, it just gives you. Perfectly what you asked for.Swyx [00:10:24]: We're recording this ahead of your launch. Uh, we haven't released, we haven't figured out the, the, the name of the launch yet, but what is the product that you're launching? I guess now that we're coinciding this podcast with. Yeah.Will [00:10:36]: So we've basically developed the next version of Exa, which is the ability to get a near perfect list of results of whatever you want. And what that means is you can make a complex query now to Exa, for example, startups working on hardware in SF, and then just get a huge list of all the things that match. And, you know, our goal is if there are 325 startups that match that we find you all of them. And this is just like, there's just like a new experience that's never existed before. It's really like, I don't know how you would go about that right now with current tools and you can apply this same type of like technology to anything. Like, let's say you want, uh, you want to find all the blog posts that talk about Alessio's podcast, um, that have come out in the past year. That is 30 million results. Yeah. Right.Will [00:11:24]: But that, I mean, that would, I'm sure that would be extremely useful to you guys. And like, I don't really know how you would get that full comprehensive list.Swyx [00:11:29]: I just like, how do you, well, there's so many questions with regards to how do you know it's complete, right? Cause you're saying there's only 30 million, 325, whatever. And then how do you do the semantic understanding that it might take, right? So working in hardware, like I might not use the words hardware. I might use the words robotics. I might use the words wearables. I might use like whatever. Yes. So yeah, just tell us more. Yeah. Yeah. Sure. Sure.Will [00:11:53]: So one aspect of this, it's a little subjective. So like certainly providing, you know, at some point we'll provide parameters to the user to like, you know, some sort of threshold to like, uh, gauge like, okay, like this is a cutoff. Like, this is actually not what I mean, because sometimes it's subjective and there needs to be a feedback loop. Like, oh, like it might give you like a few examples and you say, yeah, exactly. And so like, you're, you're kind of like creating a classifier on the fly, but like, that's ultimately how you solve the problem. So the subject, there's a subjectivity problem and then there's a comprehensiveness problem. Those are two different problems. So. Yeah. So you have the comprehensiveness problem. What you basically have to do is you have to put more compute into the query, into the search until you get the full comprehensiveness. Yeah. And I think there's an interesting point here, which is that not all queries are made equal. Some queries just like this blog post one might require scanning, like scavenging, like throughout the whole web in a way that just, just simply requires more compute. You know, at some point there's some amount of compute where you will just be comprehensive. You could imagine, for example, running GPT-4 over the internet. You could imagine running GPT-4 over the entire web and saying like, is this a blog post about Alessio's podcast, like, is this a blog post about Alessio's podcast? And then that would work, right? It would take, you know, a year, maybe cost like a million dollars, but, or many more, but, um, it would work. Uh, the point is that like, given sufficient compute, you can solve the query. And so it's really a question of like, how comprehensive do you want it given your compute budget? I think it's very similar to O1, by the way. And one way of thinking about what we built is like O1 for search, uh, because O1 is all about like, you know, some, some, some questions require more compute than others, and we'll put as much compute into the question as we need to solve it. So similarly with our search, we will put as much compute into the query in order to get comprehensiveness. Yeah.Swyx [00:13:33]: Does that mean you have like some kind of compute budget that I can specify? Yes. Yes. Okay. And like, what are the upper and lower bounds?Will [00:13:42]: Yeah, there's something we're still figuring out. I think like, like everyone is a new paradigm of like variable compute products. Yeah. How do you specify the amount of compute? Like what happens when you. Run out? Do you just like, ah, do you, can you like keep going with it? Like, do you just put in more credits to get more, um, for some, like this can get complex at like the really large compute queries. And like, one thing we do is we give you a preview of what you're going to get, and then you could then spin up like a much larger job, uh, to get like way more results. But yes, there is some compute limit, um, at, at least right now. Yeah. People think of searches as like, oh, it takes 500 milliseconds because we've been conditioned, uh, to have search that takes 500 milliseconds. But like search engines like Google, right. No matter how complex your query to Google, it will take like, you know, roughly 400 milliseconds. But what if searches can take like a minute or 10 minutes or a whole day, what can you then do? And you can do very powerful things. Um, you know, you can imagine, you know, writing a search, going and get a cup of coffee, coming back and you have a perfect list. Like that's okay for a lot of use cases. Yeah.Alessio [00:14:43]: Yeah. I mean, the use case closest to me is venture capital, right? So, uh, no, I mean, eight years ago, I built one of the first like data driven sourcing platforms. So we were. You look at GitHub, Twitter, Product Hunt, all these things, look at interesting things, evaluate them. If you think about some jobs that people have, it's like literally just make a list. If you're like an analyst at a venture firm, your job is to make a list of interesting companies. And then you reach out to them. How do you think about being infrastructure versus like a product you could say, Hey, this is like a product to find companies. This is a product to find things versus like offering more as a blank canvas that people can build on top of. Oh, right. Right.Will [00:15:20]: Uh, we are. We are a search infrastructure company. So we want people to build, uh, on top of us, uh, build amazing products on top of us. But with this one, we try to build something that makes it really easy for users to just log in, put a few, you know, put some credits in and just get like amazing results right away and not have to wait to build some API integration. So we're kind of doing both. Uh, we, we want, we want people to integrate this into all their applications at the same time. We want to just make it really easy to use very similar again to open AI. Like they'll have, they have an API, but they also have. Like a ChatGPT interface so that you could, it's really easy to use, but you could also build it in your applications. Yeah.Alessio [00:15:56]: I'm still trying to wrap my head around a lot of the implications. So, so many businesses run on like information arbitrage, you know, like I know this thing that you don't, especially in investment and financial services. So yeah, now all of a sudden you have these tools for like, oh, actually everybody can get the same information at the same time, the same quality level as an API call. You know, it just kind of changes a lot of things. Yeah.Will [00:16:19]: I think, I think what we're grappling with here. What, what you're just thinking about is like, what is the world like if knowledge is kind of solved, if like any knowledge request you want is just like right there on your computer, it's kind of different from when intelligence is solved. There's like a good, I've written before about like a different super intelligence, super knowledge. Yeah. Like I think that the, the distinction between intelligence and knowledge is actually a pretty good one. They're definitely connected and related in all sorts of ways, but there is a distinction. You could have a world and we are going to have this world where you have like GP five level systems and beyond that could like answer any complex request. Um, unless it requires some. Like, if you say like, uh, you know, give me a list of all the PhDs in New York city who, I don't know, have thought about search before. And even though this, this super intelligence is going to be like, I can't find it on Google, right. Which is kind of crazy. Like we're literally going to have like super intelligences that are using Google. And so if Google can't find them information, there's nothing they could do. They can't find it. So, but if you also have a super knowledge system where it's like, you know, I'm calling this term super knowledge where you just get whatever knowledge you want, then you can pair with a super intelligence system. And then the super intelligence can, we'll never. Be blocked by lack of knowledge.Alessio [00:17:23]: Yeah. You told me this, uh, when we had lunch, I forget how it came out, but we were talking about AGI and whatnot. And you were like, even AGI is going to need search. Yeah.Swyx [00:17:32]: Yeah. Right. Yeah. Um, so we're actually referencing a blog post that you wrote super intelligence and super knowledge. Uh, so I would refer people to that. And this is actually a discussion we've had on the podcast a couple of times. Um, there's so much of model weights that are just memorizing facts. Some of the, some of those might be outdated. Some of them are incomplete or not. Yeah. So like you just need search. So I do wonder, like, is there a maximum language model size that will be the intelligence layer and then the rest is just search, right? Like maybe we should just always use search. And then that sort of workhorse model is just like, and it like, like, like one B or three B parameter model that just drives everything. Yes.Will [00:18:13]: I believe this is a much more optimal system to have a smaller LM. That's really just like an intelligence module. And it makes a call to a search. Tool that's way more efficient because if, okay, I mean the, the opposite of that would be like the LM is so big that can memorize the whole web. That would be like way, but you know, it's not practical at all. I don't, it's not possible to train that at least right now. And Carpathy has actually written about this, how like he could, he could see models moving more and more towards like intelligence modules using various tools. Yeah.Swyx [00:18:39]: So for listeners, that's the, that was him on the no priors podcast. And for us, we talked about this and the, on the Shin Yu and Harrison chase podcasts. I'm doing search in my head. I told you 30 million results. I forgot about our neural link integration. Self-hosted exit.Will [00:18:54]: Yeah. Yeah. No, I do see that that is a much more, much more efficient world. Yeah. I mean, you could also have GB four level systems calling search, but it's just because of the cost of inference. It's just better to have a very efficient search tool and a very efficient LM and they're built for different things. Yeah.Swyx [00:19:09]: I'm just kind of curious. Like it is still something so audacious that I don't want to elide, which is you're, you're, you're building a search engine. Where do you start? How do you, like, are there any reference papers or implementation? That would really influence your thinking, anything like that? Because I don't even know where to start apart from just crawl a bunch of s**t, but there's gotta be more insight than that.Will [00:19:28]: I mean, yeah, there's more insight, but I'm always surprised by like, if you have a group of people who are really focused on solving a problem, um, with the tools today, like there's some in, in software, like there are all sorts of creative solutions that just haven't been thought of before, particularly in the information retrieval field. Yeah. I think a lot of the techniques are just very old, frankly. Like I know how Google and Bing work and. They're just not using new methods. There are all sorts of reasons for that. Like one, like Google has to be comprehensive over the web. So they're, and they have to return in 400 milliseconds. And those two things combined means they are kind of limit and it can't cost too much. They're kind of limited in, uh, what kinds of algorithms they could even deploy at scale. So they end up using like a limited keyword based algorithm. Also like Google was built in a time where like in, you know, in 1998, where we didn't have LMS, we didn't have embeddings. And so they never thought to build those things. And so now they have this like gigantic system that is built on old technology. Yeah. And so a lot of the information retrieval field we found just like thinks in terms of that framework. Yeah. Whereas we came in as like newcomers just thinking like, okay, there here's GB three. It's magical. Obviously we're going to build search that is using that technology. And we never even thought about using keywords really ever. Uh, like we were neural all the way we're building an end to end neural search engine. And just that whole framing just makes us ask different questions, like pursue different lines of work. And there's just a lot of low hanging fruit because no one else is thinking about it. We're just on the frontier of neural search. We just are, um, for, for at web scale, um, because there's just not a lot of people thinking that way about it.Swyx [00:20:57]: Yeah. Maybe let's spell this out since, uh, we're already on this topic, elephants in the room are Perplexity and SearchGPT. That's the, I think that it's all, it's no longer called SearchGPT. I think they call it ChatGPT Search. How would you contrast your approaches to them based on what we know of how they work and yeah, just any, anything in that, in that area? Yeah.Will [00:21:15]: So these systems, there are a few of them now, uh, they basically rely on like traditional search engines like Google or Bing, and then they combine them with like LLMs at the end to, you know, output some power graphics, uh, answering your question. So they like search GPT perplexity. I think they have their own crawlers. No. So there's this important distinction between like having your own search system and like having your own cache of the web. Like for example, so you could create, you could crawl a bunch of the web. Imagine you crawl a hundred billion URLs, and then you create a key value store of like mapping from URL to the document that is technically called an index, but it's not a search algorithm. So then to actually like, when you make a query to search GPT, for example, what is it actually doing it? Let's say it's, it's, it could, it's using the Bing API, uh, getting a list of results and then it could go, it has this cache of like all the contents of those results and then could like bring in the cache, like the index cache, but it's not actually like, it's not like they've built a search engine from scratch over, you know, hundreds of billions of pages. It's like, does that distinction clear? It's like, yeah, you could have like a mapping from URL to documents, but then rely on traditional search engines to actually get the list of results because it's a very hard problem to take. It's not hard. It's not hard to use DynamoDB and, and, and map URLs to documents. It's a very hard problem to take a hundred billion or more documents and given a query, like instantly get the list of results that match. That's a much harder problem that very few entities on, in, on the planet have done. Like there's Google, there's Bing, uh, you know, there's Yandex, but you know, there are not that many companies that are, that are crazy enough to actually build their search engine from scratch when you could just use traditional search APIs.Alessio [00:22:43]: So Google had PageRank as like the big thing. Is there a LLM equivalent or like any. Stuff that you're working on that you want to highlight?Will [00:22:51]: The link prediction objective can be seen as like a neural PageRank because what you're doing is you're predicting the links people share. And so if everyone is sharing some Paul Graham essay about fundraising, then like our model is more likely to predict it. So like inherent in our training objective is this, uh, a sense of like high canonicity and like high quality, but it's more powerful than PageRank. It's strictly more powerful because people might refer to that Paul Graham fundraising essay in like a thousand different ways. And so our model learns all the different ways. That someone refers that Paul Graham, I say, while also learning how important that Paul Graham essay is. Um, so it's like, it's like PageRank on steroids kind of thing. Yeah.Alessio [00:23:26]: I think to me, that's the most interesting thing about search today, like with Google and whatnot, it's like, it's mostly like domain authority. So like if you get back playing, like if you search any AI term, you get this like SEO slop websites with like a bunch of things in them. So this is interesting, but then how do you think about more timeless maybe content? So if you think about, yeah. You know, maybe the founder mode essay, right. It gets shared by like a lot of people, but then you might have a lot of other essays that are also good, but they just don't really get a lot of traction. Even though maybe the people that share them are high quality. How do you kind of solve that thing when you don't have the people authority, so to speak of who's sharing, whether or not they're worth kind of like bumping up? Yeah.Will [00:24:10]: I mean, you do have a lot of control over the training data, so you could like make sure that the training data contains like high quality sources so that, okay. Like if you, if you're. Training data, I mean, it's very similar to like language, language model training. Like if you train on like a bunch of crap, your prediction will be crap. Our model will match the training distribution is trained on. And so we could like, there are lots of ways to tweak the training data to refer to high quality content that we want. Yeah. I would say also this, like this slop that is returned by, by traditional search engines, like Google and Bing, you have the slop is then, uh, transferred into the, these LLMs in like a search GBT or, you know, our other systems like that. Like if slop comes in, slop will go out. And so, yeah, that's another answer to how we're different is like, we're not like traditional search engines. We want to give like the highest quality results and like have full control over whatever you want. If you don't want slop, you get that. And then if you put an LM on top of that, which our customers do, then you just get higher quality results or high quality output.Alessio [00:25:06]: And I use Excel search very often and it's very good. Especially.Swyx [00:25:09]: Wave uses it too.Alessio [00:25:10]: Yeah. Yeah. Yeah. Yeah. Yeah. Like the slop is everywhere, especially when it comes to AI, when it comes to investment. When it comes to all of these things for like, it's valuable to be at the top. And this problem is only going to get worse because. Yeah, no, it's totally. What else is in the toolkit? So you have search API, you have ExaSearch, kind of like the web version. Now you have the list builder. I think you also have web scraping. Maybe just touch on that. Like, I guess maybe people, they want to search and then they want to scrape. Right. So is that kind of the use case that people have? Yeah.Will [00:25:41]: A lot of our customers, they don't just want, because they're building AI applications on top of Exa, they don't just want a list of URLs. They actually want. Like the full content, like cleans, parsed. Markdown. Markdown, maybe chunked, whatever they want, we'll give it to them. And so that's been like huge for customers. Just like getting the URLs and instantly getting the content for each URL is like, and you can do this for 10 or 100 or 1,000 URLs, wherever you want. That's very powerful.Swyx [00:26:05]: Yeah. I think this is the first thing I asked you for when I tried using Exa.Will [00:26:09]: Funny story is like when I built the first version of Exa, it's like, we just happened to store the content. Yes. Like the first 1,024 tokens. Because I just kind of like kept it because I thought of, you know, I don't know why. Really for debugging purposes. And so then when people started asking for content, it was actually pretty easy to serve it. But then, and then we did that, like Exa took off. So the computer's content was so useful. So that was kind of cool.Swyx [00:26:30]: It is. I would say there are other players like Gina, I think is in this space. Firecrawl is in this space. There's a bunch of scraper companies. And obviously scraper is just one part of your stack, but you might as well offer it since you already do it.Will [00:26:43]: Yeah, it makes sense. It's just easy to have an all-in-one solution. And like. We are, you know, building the best scraper in the world. So scraping is a hard problem and it's easy to get like, you know, a good scraper. It's very hard to get a great scraper and it's super hard to get a perfect scraper. So like, and, and scraping really matters to people. Do you have a perfect scraper? Not yet. Okay.Swyx [00:27:05]: The web is increasingly closing to the bots and the scrapers, Twitter, Reddit, Quora, Stack Overflow. I don't know what else. How are you dealing with that? How are you navigating those things? Like, you know. You know, opening your eyes, like just paying them money.Will [00:27:19]: Yeah, no, I mean, I think it definitely makes it harder for search engines. One response is just that there's so much value in the long tail of sites that are open. Okay. Um, and just like, even just searching over those well gets you most of the value. But I mean, there, there is definitely a lot of content that is increasingly not unavailable. And so you could get through that through data partnerships. The bigger we get as a company, the more, the easier it is to just like, uh, make partnerships. But I, I mean, I do see the world as like the future where the. The data, the, the data producers, the content creators will make partnerships with the entities that find that data.Alessio [00:27:53]: Any other fun use case that maybe people are not thinking about? Yeah.Will [00:27:58]: Oh, I mean, uh, there are so many customers. Yeah. What are people doing on AXA? Well, I think dating is a really interesting, uh, application of search that is completely underserved because there's a lot of profiles on the web and a lot of people who want to find love and that I'll use it. They give me. Like, you know, age boundaries, you know, education level location. Yeah. I mean, you want to, what, what do you want to do with data? You want to find like a partner who matches this education level, who like, you know, maybe has written about these types of topics before. Like if you could get a list of all the people like that, like, I think you will unblock a lot of people. I mean, there, I mean, I think this is a very Silicon Valley view of dating for sure. And I'm, I'm well aware of that, but it's just an interesting application of like, you know, I would love to meet like an intellectual partner, um, who like shares a lot of ideas. Yeah. Like if you could do that through better search and yeah.Swyx [00:28:48]: But what is it with Jeff? Jeff has already set me up with a few people. So like Jeff, I think it's my personal exit.Will [00:28:55]: my mom's actually a matchmaker and has got a lot of married. Yeah. No kidding. Yeah. Yeah. Search is built into the book. It's in your jeans. Yeah. Yeah.Swyx [00:29:02]: Yeah. Other than dating, like I know you're having quite some success in colleges. I would just love to map out some more use cases so that our listeners can just use those examples to think about use cases for XR, right? Because it's such a general technology that it's hard to. Uh, really pin down, like, what should I use it for and what kind of products can I build with it?Will [00:29:20]: Yeah, sure. So, I mean, there are so many applications of XR and we have, you know, many, many companies using us for very diverse range of use cases, but I'll just highlight some interesting ones. Like one customer, a big customer is using us to, um, basically build like a, a writing assistant for students who want to write, uh, research papers. And basically like XR will search for, uh, like a list of research papers related to what the student is writing. And then this product has. Has like an LLM that like summarizes the papers to basically it's like a next word prediction, but in, uh, you know, prompted by like, you know, 20 research papers that X has returned. It's like literally just doing their homework for them. Yeah. Yeah. the key point is like, it's, it's, uh, you know, it's, it's, you know, research is, is a really hard thing to do and you need like high quality content as input.Swyx [00:30:08]: Oh, so we've had illicit on the podcast. I think it's pretty similar. Uh, they, they do focus pretty much on just, just research papers and, and that research. Basically, I think dating, uh, research, like I just wanted to like spell out more things, like just the big verticals.Will [00:30:23]: Yeah, yeah, no, I mean, there, there are so many use cases. So finance we talked about, yeah. I mean, one big vertical is just finding a list of companies, uh, so it's useful for VCs, like you said, who want to find like a list of competitors to a specific company they're investigating or just a list of companies in some field. Like, uh, there was one VC that told me that him and his team, like we're using XR for like eight hours straight. Like, like that. For many days on end, just like, like, uh, doing like lots of different queries of different types, like, oh, like all the companies in AI for law or, uh, all the companies for AI for, uh, construction and just like getting lists of things because you just can't find this information with, with traditional search engines. And then, you know, finding companies is also useful for, for selling. If you want to find, you know, like if we want to find a list of, uh, writing assistants to sell to, then we can just, we just use XR ourselves to find that is actually how we found a lot of our customers. Ooh, you can find your own customers using XR. Oh my God. I, in the spirit of. Uh, using XR to bolster XR, like recruiting is really helpful. It is really great use case of XR, um, because we can just get like a list of, you know, people who thought about search and just get like a long list and then, you know, reach out to those people.Swyx [00:31:29]: When you say thought about, are you, are you thinking LinkedIn, Twitter, or are you thinking just blogs?Will [00:31:33]: Or they've written, I mean, it's pretty general. So in that case, like ideally XR would return like the, the really blogs written by people who have just. So if I don't blog, I don't show up to XR, right? Like I have to blog. well, I mean, you could show up. That's like an incentive for people to blog.Swyx [00:31:47]: Well, if you've written about, uh, search in on Twitter and we, we do, we do index a bunch of tweets and then we, we should be able to service that. Yeah. Um, I mean, this is something I tell people, like you have to make yourself discoverable to the web, uh, you know, it's called learning in public, but like, it's even more imperative now because otherwise you don't exist at all.Will [00:32:07]: Yeah, no, no, this is a huge, uh, thing, which is like search engines completely influence. They have downstream effects. They influence the internet itself. They influence what people. Choose to create. And so Google, because they're a keyword based search engine, people like kind of like keyword stuff. Yeah. They're, they're, they're incentivized to create things that just match a lot of keywords, which is not very high quality. Uh, whereas XR is a search algorithm that, uh, optimizes for like high quality and actually like matching what you mean. And so people are incentivized to create content that is high quality, that like the create content that they know will be found by the right person. So like, you know, if I am a search researcher and I want to be found. By XR, I should blog about search and all the things I'm building because, because now we have a search engine like XR that's powerful enough to find them. And so the search engine will influence like the downstream internet in all sorts of amazing ways. Yeah. Uh, whatever the search engine optimizes for is what the internet looks like. Yeah.Swyx [00:33:01]: Are you familiar with the term? McLuhanism? No, it's not. Uh, it's this concept that, uh, like first we shape tools and then the tools shape us. Okay. Yeah. Uh, so there's like this reflexive connection between the things we search for and the things that get searched. Yes. So like once you change the tool. The tool that searches the, the, the things that get searched also change. Yes.Will [00:33:18]: I mean, there was a clear example of that with 30 years of Google. Yeah, exactly. Google has basically trained us to think of search and Google has Google is search like in people's heads. Right. It's one, uh, hard part about XR is like, uh, ripping people away from that notion of search and expanding their sense of what search could be. Because like when people think search, they think like a few keywords, or at least they used to, they think of a few keywords and that's it. They don't think to make these like really complex paragraph long requests for information and get a perfect list. ChatGPT was an interesting like thing that expanded people's understanding of search because you start using ChatGPT for a few hours and you go back to Google and you like paste in your code and Google just doesn't work and you're like, oh, wait, it, Google doesn't do work that way. So like ChatGPT expanded our understanding of what search can be. And I think XR is, uh, is part of that. We want to expand people's notion, like, Hey, you could actually get whatever you want. Yeah.Alessio [00:34:06]: I search on XR right now, people writing about learning in public. I was like, is it gonna come out with Alessio? Am I, am I there? You're not because. Bro. It's. So, no, it's, it's so about, because it thinks about learning, like in public, like public schools and like focuses more on that. You know, it's like how, when there are like these highly overlapping things, like this is like a good result based on the query, you know, but like, how do I get to Alessio? Right. So if you're like in these subcultures, I don't think this would work in Google well either, you know, but I, I don't know if you have any learnings.Swyx [00:34:40]: No, I'm the first result on Google.Alessio [00:34:42]: People writing about learning. In public, you're not first result anymore, I guess.Swyx [00:34:48]: Just type learning public in Google.Alessio [00:34:49]: Well, yeah, yeah, yeah, yeah. But this is also like, this is in Google, it doesn't work either. That's what I'm saying. It's like how, when you have like a movement.Will [00:34:56]: There's confusion about the, like what you mean, like your intention is a little, uh. Yeah.Alessio [00:35:00]: It's like, yeah, I'm using, I'm using a term that like I didn't invent, but I'm kind of taking over, but like, they're just so much about that term already that it's hard to overcome. If that makes sense, because public schools is like, well, it's, it's hard to overcome.Will [00:35:14]: Public schools, you know, so there's the right solution to this, which is to specify more clearly what you mean. And I'm not expecting you to do that, but so the, the right interface to search is actually an LLM.Swyx [00:35:25]: Like you should be talking to an LLM about what you want and the LLM translates its knowledge of you or knowledge of what people usually mean into a query that excellent uses, which you have called auto prompts, right?Will [00:35:35]: Or, yeah, but it's like a very light version of that. And really it's just basically the right answer is it's the wrong interface and like very soon interface to search and really to everything will be LLM. And the LLM just has a full knowledge of you, right? So we're kind of building for that world. We're skating to where the puck is going to be. And so since we're moving to a world where like LLMs are interfaced to everything, you should build a search engine that can handle complex LLM queries, queries that come from LLMs. Because you're probably too lazy, I'm too lazy too, to write like a whole paragraph explaining, okay, this is what I mean by this word. But an LLM is not lazy. And so like the LLM will spit out like a paragraph or more explaining exactly what it wants. You need a search engine that can handle that. Traditional search engines like Google or Bing, they're actually... Designed for humans typing keywords. If you give a paragraph to Google or Bing, they just completely fail. And so Exa can handle paragraphs and we want to be able to handle it more and more until it's like perfect.Alessio [00:36:24]: What about opinions? Do you have lists? When you think about the list product, do you think about just finding entries? Do you think about ranking entries? I'll give you a dumb example. So on Lindy, I've been building the spot that every week gives me like the top fantasy football waiver pickups. But every website is like different opinions. I'm like, you should pick up. These five players, these five players. When you're making lists, do you want to be kind of like also ranking and like telling people what's best? Or like, are you mostly focused on just surfacing information?Will [00:36:56]: There's a really good distinction between filtering to like things that match your query and then ranking based on like what is like your preferences. And ranking is like filtering is objective. It's like, does this document match what you asked for? Whereas ranking is more subjective. It's like, what is the best? Well, it depends what you mean by best, right? So first, first table stakes is let's get the filtering into a perfect place where you actually like every document matches what you asked for. No surgeon can do that today. And then ranking, you know, there are all sorts of interesting ways to do that where like you've maybe for, you know, have the user like specify more clearly what they mean by best. You could do it. And if the user doesn't specify, you do your best, you do your best based on what people typically mean by best. But ideally, like the user can specify, oh, when I mean best, I actually mean ranked by the, you know, the number of people who visited that site. Let's say is, is one example ranking or, oh, what I mean by best, let's say you're listing companies. What I mean by best is like the ones that have, uh, you know, have the most employees or something like that. Like there are all sorts of ways to rank a list of results that are not captured by something as subjective as best. Yeah. Yeah.Alessio [00:38:00]: I mean, it's like, who are the best NBA players in the history? It's like everybody has their own. Right.Will [00:38:06]: Right. But I mean, the, the, the search engine should definitely like, even if you don't specify it, it should do as good of a job as possible. Yeah. Yeah. No, no, totally. Yeah. Yeah. Yeah. Yeah. It's a new topic to people because we're not used to a search engine that can handle like a very complex ranking system. Like you think to type in best basketball players and not something more specific because you know, that's the only thing Google could handle. But if Google could handle like, oh, basketball players ranked by like number of shots scored on average per game, then you would do that. But you know, they can't do that. So.Swyx [00:38:32]: Yeah. That's fascinating. So you haven't used the word agents, but you're kind of building a search agent. Do you believe that that is agentic in feature? Do you think that term is distracting?Will [00:38:42]: I think it's a good term. I do think everything will eventually become agentic. And so then the term will lose power, but yes, like what we're building is agentic it in a sense that it takes actions. It decides when to go deeper into something, it has a loop, right? It feels different from traditional search, which is like an algorithm, not an agent. Ours is a combination of an algorithm and an agent.Swyx [00:39:05]: I think my reflection from seeing this in the coding space where there's basically sort of classic. Framework for thinking about this stuff is the self-driving levels of autonomy, right? Level one to five, typically the level five ones all failed because there's full autonomy and we're not, we're not there yet. And people like control. People like to be in the loop. So the, the, the level ones was co-pilot first and now it's like cursor and whatever. So I feel like if it's too agentic, it's too magical, like, like a, like a one shot, I stick a, stick a paragraph into the text box and then it spits it back to me. It might feel like I'm too disconnected from the process and I don't trust it. As opposed to something where I'm more intimately involved with the research product. I see. So like, uh, wait, so the earlier versions are, so if trying to stick to the example of the basketball thing, like best basketball player, but instead of best, you, you actually get to customize it with like, whatever the metric is that you, you guys care about. Yeah. I'm still not a basketballer, but, uh, but, but, you know, like, like B people like to be in my, my thesis is that agents level five agents failed because people like to. To kind of have drive assist rather than full self-driving.Will [00:40:15]: I mean, a lot of this has to do with how good agents are. Like at some point, if agents for coding are better than humans at all tests and then humans block, yeah, we're not there yet.Swyx [00:40:25]: So like in a world where we're not there yet, what you're pitching us is like, you're, you're kind of saying you're going all the way there. Like I kind of, I think all one is also very full, full self-driving. You don't get to see the plan. You don't get to affect the plan yet. You just fire off a query and then it goes away for a couple of minutes and comes back. Right. Which is effectively what you're saying you're going to do too. And you think there's.Will [00:40:42]: There's a, there's an in-between. I saw. Okay. So in building this product, we're exploring new interfaces because what does it mean to kick off a search that goes and takes 10 minutes? Like, is that a good interface? Because what if the search is actually wrong or it's not exactly, exactly specified to what you mean, which is why you get previews. Yeah. You get previews. So it is iterative, but ultimately once you've specified exactly what you mean, then you kind of do just want to kick off a batch job. Right. So perhaps what you're getting at is like, uh, there's this barrier with agents where you have to like explain the full context of what you mean, and a lot of failure modes happen when you have, when you don't. Yeah. There's failure modes from the agent, just not being smart enough. And then there's failure modes from the agent, not understanding exactly what you mean. And there's a lot of context that is shared between humans that is like lost between like humans and, and this like new creature.Alessio [00:41:32]: Yeah. Yeah. Because people don't know what's going on. I mean, to me, the best example of like system prompts is like, why are you writing? You're a helpful assistant. Like. Of course you should be an awful, but people don't yet know, like, can I assume that, you know, that, you know, it's like, why did the, and now people write, oh, you're a very smart software engineer, but like, you never made, you never make mistakes. Like, were you going to try and make mistakes before? So I think people don't yet have an understanding, like with, with driving people know what good driving is. It's like, don't crash, stay within kind of like a certain speed range. It's like, follow the directions. It's like, I don't really have to explain all of those things. I hope. But with. AI and like models and like search, people are like, okay, what do you actually know? What are like your assumptions about how search, how you're going to do search? And like, can I trust it? You know, can I influence it? So I think that's kind of the, the middle ground, like before you go ahead and like do all the search, it's like, can I see how you're doing it? And then maybe help show your work kind of like, yeah, steer you. Yeah. Yeah.Will [00:42:32]: No, I mean, yeah. Sure. Saying, even if you've crafted a great system prompt, you want to be part of the process itself. Uh, because the system prompt doesn't, it doesn't capture everything. Right. So yeah. A system prompt is like, you get to choose the person you work with. It's like, oh, like I want, I want a software engineer who thinks this way about code. But then even once you've chosen that person, you can't just give them a high level command and they go do it perfectly. You have to be part of that process. So yeah, I agree.Swyx [00:42:58]: Just a side note for my system, my favorite system, prompt programming anecdote now is the Apple intelligence system prompt that someone, someone's a prompt injected it and seen it. And like the Apple. Intelligence has the words, like, please don't, don't hallucinate. And it's like, of course we don't want you to hallucinate. Right. Like, so it's exactly that, that what you're talking about, like we should train this behavior into the model, but somehow we still feel the need to inject into the prompt. And I still don't even think that we are very scientific about it. Like it, I think it's almost like cargo culting. Like we have this like magical, like turn around three times, throw salt over your shoulder before you do something. And like, it worked the last time. So let's just do it the same time now. And like, we do, there's no science to this.Will [00:43:35]: I do think a lot of these problems might be ironed out in future versions. Right. So, and like, they might, they might hide the details from you. So it's like, they actually, all of them have a system prompt. That's like, you are a helpful assistant. You don't actually have to include it, even though it might actually be the way they've implemented in the backend. It should be done in RLE AF.Swyx [00:43:52]: Okay. Uh, one question I was just kind of curious about this episode is I'm going to try to frame this in terms of this, the general AI search wars, you know, you're, you're one player in that, um, there's perplexity, chat, GPT, search, and Google, but there's also like the B2B side, uh, we had. Drew Houston from Dropbox on, and he's competing with Glean, who've, uh, we've also had DD from, from Glean on, is there an appetite for Exa for my company's documents?Will [00:44:19]: There is appetite, but I think we have to be disciplined, focused, disciplined. I mean, we're already taking on like perfect web search, which is a lot. Um, but I mean, ultimately we want to build a perfect search engine, which definitely for a lot of queries involves your, your personal information, your company's information. And so, yeah, I mean, the grandest vision of Exa is perfect search really over everything, every domain, you know, we're going to have an Exa satellite, uh, because, because satellites can gather information that, uh, is not available publicly. Uh, gotcha. Yeah.Alessio [00:44:51]: Can we talk about AGI? We never, we never talk about AGI, but you had, uh, this whole tweet about, oh, one being the biggest kind of like AI step function towards it. Why does it feel so important to you? I know there's kind of like always criticism and saying, Hey, it's not the smartest son is better. It's like, blah, blah, blah. What? You choose C. So you say, this is what Ilias see or Sam see what they will see.Will [00:45:13]: I've just, I've just, you know, been connecting the dots. I mean, this was the key thing that a bunch of labs were working on, which is like, can you create a reward signal? Can you teach yourself based on a reward signal? Whether you're, if you're trying to learn coding or math, if you could have one model say, uh, be a grading system that says like you have successfully solved this programming assessment and then one model, like be the generative system. That's like, here are a bunch of programming assessments. You could train on that. It's basically whenever you could create a reward signal for some task, you could just generate a bunch of tasks for yourself. See that like, oh, on two of these thousand, you did well. And then you just train on that data. It's basically like, I mean, creating your own data for yourself and like, you know, all the labs working on that opening, I built the most impressive product doing that. And it's just very, it's very easy now to see how that could like scale to just solving, like, like solving programming or solving mathematics, which sounds crazy, but everything about our world right now is crazy.Alessio [00:46:07]: Um, and so I think if you remove that whole, like, oh, that's impossible, and you just think really clearly about like, what's now possible with like what, what they've done with O1, it's easy to see how that scales. How do you think about older GPT models then? Should people still work on them? You know, if like, obviously they just had the new Haiku, like, is it even worth spending time, like making these models better versus just, you know, Sam talked about O2 at that day. So obviously they're, they're spending a lot of time in it, but then you have maybe. The GPU poor, which are still working on making Lama good. Uh, and then you have the follower labs that do not have an O1 like model out yet. Yeah.Will [00:46:47]: This kind of gets into like, uh, what will the ecosystem of, of models be like in the future? And is there room is, is everything just gonna be O1 like models? I think, well, I mean, there's definitely a question of like inference speed and if certain things like O1 takes a long time, because that's the thing. Well, I mean, O1 is, is two things. It's like one it's it's use it's bootstrapping itself. It's teaching itself. And so the base model is smarter. But then it also has this like inference time compute where it could like spend like many minutes or many hours thinking. And so even the base model, which is also fast, it doesn't have to take minutes. It could take is, is better, smarter. I believe all models will be trained with this paradigm. Like you'll want to train on the best data, but there will be many different size models from different, very many different like companies, I believe. Yeah. Because like, I don't, yeah, I mean, it's hard, hard to predict, but I don't think opening eye is going to dominate like every possible LLM for every possible. Use case. I think for a lot of things, like you just want the fastest model and that might not involve O1 methods at all.Swyx [00:47:42]: I would say if you were to take the exit being O1 for search, literally, you really need to prioritize search trajectories, like almost maybe paying a bunch of grad students to go research things. And then you kind of track what they search and what the sequence of searching is, because it seems like that is the gold mine here, like the chain of thought or the thinking trajectory. Yeah.Will [00:48:05]: When it comes to search, I've always been skeptical. I've always been skeptical of human labeled data. Okay. Yeah, please. We tried something at our company at Exa recently where me and a bunch of engineers on the team like labeled a bunch of queries and it was really hard. Like, you know, you have all these niche queries and you're looking at a bunch of results and you're trying to identify which is matched to query. It's talking about, you know, the intricacies of like some biological experiment or something. I have no idea. Like, I don't know what matches and what, what labelers like me tend to do is just match by keyword. I'm like, oh, I don't know. Oh, like this document matches a bunch of keywords, so it must be good. But then you're actually completely missing the meaning of the document. Whereas an LLM like GB4 is really good at labeling. And so I actually think like you just we get by, which we are right now doing using like LLM
Host Dave Sobel discusses significant cybersecurity developments involving the U.S. Treasury Department and its recent breach linked to Chinese hackers. The breach, which was discovered on December 8, 2024, involved unauthorized access to unclassified documents within the Office of Foreign Assets Control, raising alarms about the potential exposure of sensitive information related to economic sanctions. The episode highlights the ongoing investigations and the U.S. government's response, including sanctions imposed on a Chinese cybersecurity firm involved in the Flax Typhoon cyber attacks that compromised numerous internet-connected devices globally.Sobel also addresses the national security concerns surrounding TP-Link internet routers, which hold a dominant market share in the U.S. The Commerce, Defense, and Justice Departments are investigating the company due to its alleged ties to Chinese cyber threats and its failure to rectify security vulnerabilities. The episode emphasizes the importance of securing cloud systems, as CISA has mandated federal agencies to conduct security assessments in light of recent breaches attributed to foreign hackers. This directive aims to enhance the security posture of federal cloud environments and protect sensitive information.The discussion shifts to the leadership transition at PIA, where CEO Jerwai Todd has stepped down after a year, passing the reins to an executive group. Sobel reflects on the challenges of dual CEO roles and the importance of operational stability during this transition. He notes Todd's contributions to the company, including the launch of an AI-driven help desk ticketing system, and emphasizes the need for a capable leader to navigate the competitive landscape of help desk automation.Finally, the episode covers OpenAI's recent announcements regarding its new reasoning models, O1 and O3, which aim to enhance AI capabilities and approach artificial general intelligence. Sobel discusses the implications of OpenAI's shift towards a for-profit model and the potential impact on the development of AI technologies. He highlights the need for practical applications of these advancements and the importance of addressing concerns about the ethical implications of AI development. The episode concludes with a reminder of the significance of these developments in the broader context of technology and national security. Three things to know today 00:00 From Treasury Hacks to Router Risks: The U.S. Grapples with China's Cyber Onslaught06:31 Dual CEO Role Dilemmas: Gerwai Todd Passes the Torch at Pia08:51 AI Gets a Power Boost: OpenAI's Big Plans, Bigger Models, and a Push for Profits All our Sponsors: https://businessof.tech/sponsors/ Do you want the show on your podcast app or the written versions of the stories? Subscribe to the Business of Tech: https://www.businessof.tech/subscribe/Looking for a link from the stories? The entire script of the show, with links to articles, are posted in each story on https://www.businessof.tech/ Support the show on Patreon: https://patreon.com/mspradio/ Want to be a guest on Business of Tech: Daily 10-Minute IT Services Insights? Send Dave Sobel a message on PodMatch, here: https://www.podmatch.com/hostdetailpreview/businessoftech Want our stuff? Cool Merch? Wear “Why Do We Care?” - Visit https://mspradio.myspreadshop.com Follow us on:LinkedIn: https://www.linkedin.com/company/28908079/YouTube: https://youtube.com/mspradio/Facebook: https://www.facebook.com/mspradionews/Instagram: https://www.instagram.com/mspradio/TikTok: https://www.tiktok.com/@businessoftechBluesky: https://bsky.app/profile/businessof.tech
Applications for the 2025 AI Engineer Summit are up, and you can save the date for AIE Singapore in April and AIE World's Fair 2025 in June.Happy new year, and thanks for 100 great episodes! Please let us know what you want to see/hear for the next 100!Full YouTube Episode with Slides/ChartsLike and subscribe and hit that bell to get notifs!Timestamps* 00:00 Welcome to the 100th Episode!* 00:19 Reflecting on the Journey* 00:47 AI Engineering: The Rise and Impact* 03:15 Latent Space Live and AI Conferences* 09:44 The Competitive AI Landscape* 21:45 Synthetic Data and Future Trends* 35:53 Creative Writing with AI* 36:12 Legal and Ethical Issues in AI* 38:18 The Data War: GPU Poor vs. GPU Rich* 39:12 The Rise of GPU Ultra Rich* 40:47 Emerging Trends in AI Models* 45:31 The Multi-Modality War* 01:05:31 The Future of AI Benchmarks* 01:13:17 Pionote and Frontier Models* 01:13:47 Niche Models and Base Models* 01:14:30 State Space Models and RWKB* 01:15:48 Inference Race and Price Wars* 01:22:16 Major AI Themes of the Year* 01:22:48 AI Rewind: January to March* 01:26:42 AI Rewind: April to June* 01:33:12 AI Rewind: July to September* 01:34:59 AI Rewind: October to December* 01:39:53 Year-End Reflections and PredictionsTranscript[00:00:00] Welcome to the 100th Episode![00:00:00] Alessio: Hey everyone, welcome to the Latent Space Podcast. This is Alessio, partner and CTO at Decibel Partners, and I'm joined by my co host Swyx for the 100th time today.[00:00:12] swyx: Yay, um, and we're so glad that, yeah, you know, everyone has, uh, followed us in this journey. How do you feel about it? 100 episodes.[00:00:19] Alessio: Yeah, I know.[00:00:19] Reflecting on the Journey[00:00:19] Alessio: Almost two years that we've been doing this. We've had four different studios. Uh, we've had a lot of changes. You know, we used to do this lightning round. When we first started that we didn't like, and we tried to change the question. The answer[00:00:32] swyx: was cursor and perplexity.[00:00:34] Alessio: Yeah, I love mid journey. It's like, do you really not like anything else?[00:00:38] Alessio: Like what's, what's the unique thing? And I think, yeah, we, we've also had a lot more research driven content. You know, we had like 3DAO, we had, you know. Jeremy Howard, we had more folks like that.[00:00:47] AI Engineering: The Rise and Impact[00:00:47] Alessio: I think we want to do more of that too in the new year, like having, uh, some of the Gemini folks, both on the research and the applied side.[00:00:54] Alessio: Yeah, but it's been a ton of fun. I think we both started, I wouldn't say as a joke, we were kind of like, Oh, we [00:01:00] should do a podcast. And I think we kind of caught the right wave, obviously. And I think your rise of the AI engineer posts just kind of get people. Sombra to congregate, and then the AI engineer summit.[00:01:11] Alessio: And that's why when I look at our growth chart, it's kind of like a proxy for like the AI engineering industry as a whole, which is almost like, like, even if we don't do that much, we keep growing just because there's so many more AI engineers. So did you expect that growth or did you expect that would take longer for like the AI engineer thing to kind of like become, you know, everybody talks about it today.[00:01:32] swyx: So, the sign of that, that we have won is that Gartner puts it at the top of the hype curve right now. So Gartner has called the peak in AI engineering. I did not expect, um, to what level. I knew that I was correct when I called it because I did like two months of work going into that. But I didn't know, You know, how quickly it could happen, and obviously there's a chance that I could be wrong.[00:01:52] swyx: But I think, like, most people have come around to that concept. Hacker News hates it, which is a good sign. But there's enough people that have defined it, you know, GitHub, when [00:02:00] they launched GitHub Models, which is the Hugging Face clone, they put AI engineers in the banner, like, above the fold, like, in big So I think it's like kind of arrived as a meaningful and useful definition.[00:02:12] swyx: I think people are trying to figure out where the boundaries are. I think that was a lot of the quote unquote drama that happens behind the scenes at the World's Fair in June. Because I think there's a lot of doubt or questions about where ML engineering stops and AI engineering starts. That's a useful debate to be had.[00:02:29] swyx: In some sense, I actually anticipated that as well. So I intentionally did not. Put a firm definition there because most of the successful definitions are necessarily underspecified and it's actually useful to have different perspectives and you don't have to specify everything from the outset.[00:02:45] Alessio: Yeah, I was at um, AWS reInvent and the line to get into like the AI engineering talk, so to speak, which is, you know, applied AI and whatnot was like, there are like hundreds of people just in line to go in.[00:02:56] Alessio: I think that's kind of what enabled me. People, right? Which is what [00:03:00] you kind of talked about. It's like, Hey, look, you don't actually need a PhD, just, yeah, just use the model. And then maybe we'll talk about some of the blind spots that you get as an engineer with the earlier posts that we also had on on the sub stack.[00:03:11] Alessio: But yeah, it's been a heck of a heck of a two years.[00:03:14] swyx: Yeah.[00:03:15] Latent Space Live and AI Conferences[00:03:15] swyx: You know, I was, I was trying to view the conference as like, so NeurIPS is I think like 16, 17, 000 people. And the Latent Space Live event that we held there was 950 signups. I think. The AI world, the ML world is still very much research heavy. And that's as it should be because ML is very much in a research phase.[00:03:34] swyx: But as we move this entire field into production, I think that ratio inverts into becoming more engineering heavy. So at least I think engineering should be on the same level, even if it's never as prestigious, like it'll always be low status because at the end of the day, you're manipulating APIs or whatever.[00:03:51] swyx: But Yeah, wrapping GPTs, but there's going to be an increasing stack and an art to doing these, these things well. And I, you know, I [00:04:00] think that's what we're focusing on for the podcast, the conference and basically everything I do seems to make sense. And I think we'll, we'll talk about the trends here that apply.[00:04:09] swyx: It's, it's just very strange. So, like, there's a mix of, like, keeping on top of research while not being a researcher and then putting that research into production. So, like, people always ask me, like, why are you covering Neuralibs? Like, this is a ML research conference and I'm like, well, yeah, I mean, we're not going to, to like, understand everything Or reproduce every single paper, but the stuff that is being found here is going to make it through into production at some point, you hope.[00:04:32] swyx: And then actually like when I talk to the researchers, they actually get very excited because they're like, oh, you guys are actually caring about how this goes into production and that's what they really really want. The measure of success is previously just peer review, right? Getting 7s and 8s on their um, Academic review conferences and stuff like citations is one metric, but money is a better metric.[00:04:51] Alessio: Money is a better metric. Yeah, and there were about 2200 people on the live stream or something like that. Yeah, yeah. Hundred on the live stream. So [00:05:00] I try my best to moderate, but it was a lot spicier in person with Jonathan and, and Dylan. Yeah, that it was in the chat on YouTube.[00:05:06] swyx: I would say that I actually also created.[00:05:09] swyx: Layen Space Live in order to address flaws that are perceived in academic conferences. This is not NeurIPS specific, it's ICML, NeurIPS. Basically, it's very sort of oriented towards the PhD student, uh, market, job market, right? Like literally all, basically everyone's there to advertise their research and skills and get jobs.[00:05:28] swyx: And then obviously all the, the companies go there to hire them. And I think that's great for the individual researchers, but for people going there to get info is not great because you have to read between the lines, bring a ton of context in order to understand every single paper. So what is missing is effectively what I ended up doing, which is domain by domain, go through and recap the best of the year.[00:05:48] swyx: Survey the field. And there are, like NeurIPS had a, uh, I think ICML had a like a position paper track, NeurIPS added a benchmarks, uh, datasets track. These are ways in which to address that [00:06:00] issue. Uh, there's always workshops as well. Every, every conference has, you know, a last day of workshops and stuff that provide more of an overview.[00:06:06] swyx: But they're not specifically prompted to do so. And I think really, uh, Organizing a conference is just about getting good speakers and giving them the correct prompts. And then they will just go and do that thing and they do a very good job of it. So I think Sarah did a fantastic job with the startups prompt.[00:06:21] swyx: I can't list everybody, but we did best of 2024 in startups, vision, open models. Post transformers, synthetic data, small models, and agents. And then the last one was the, uh, and then we also did a quick one on reasoning with Nathan Lambert. And then the last one, obviously, was the debate that people were very hyped about.[00:06:39] swyx: It was very awkward. And I'm really, really thankful for John Franco, basically, who stepped up to challenge Dylan. Because Dylan was like, yeah, I'll do it. But He was pro scaling. And I think everyone who is like in AI is pro scaling, right? So you need somebody who's ready to publicly say, no, we've hit a wall.[00:06:57] swyx: So that means you're saying Sam Altman's wrong. [00:07:00] You're saying, um, you know, everyone else is wrong. It helps that this was the day before Ilya went on, went up on stage and then said pre training has hit a wall. And data has hit a wall. So actually Jonathan ended up winning, and then Ilya supported that statement, and then Noam Brown on the last day further supported that statement as well.[00:07:17] swyx: So it's kind of interesting that I think the consensus kind of going in was that we're not done scaling, like you should believe in a better lesson. And then, four straight days in a row, you had Sepp Hochreiter, who is the creator of the LSTM, along with everyone's favorite OG in AI, which is Juergen Schmidhuber.[00:07:34] swyx: He said that, um, we're pre trading inside a wall, or like, we've run into a different kind of wall. And then we have, you know John Frankel, Ilya, and then Noam Brown are all saying variations of the same thing, that we have hit some kind of wall in the status quo of what pre trained, scaling large pre trained models has looked like, and we need a new thing.[00:07:54] swyx: And obviously the new thing for people is some make, either people are calling it inference time compute or test time [00:08:00] compute. I think the collective terminology has been inference time, and I think that makes sense because test time, calling it test, meaning, has a very pre trained bias, meaning that the only reason for running inference at all is to test your model.[00:08:11] swyx: That is not true. Right. Yeah. So, so, I quite agree that. OpenAI seems to have adopted, or the community seems to have adopted this terminology of ITC instead of TTC. And that, that makes a lot of sense because like now we care about inference, even right down to compute optimality. Like I actually interviewed this author who recovered or reviewed the Chinchilla paper.[00:08:31] swyx: Chinchilla paper is compute optimal training, but what is not stated in there is it's pre trained compute optimal training. And once you start caring about inference, compute optimal training, you have a different scaling law. And in a way that we did not know last year.[00:08:45] Alessio: I wonder, because John is, he's also on the side of attention is all you need.[00:08:49] Alessio: Like he had the bet with Sasha. So I'm curious, like he doesn't believe in scaling, but he thinks the transformer, I wonder if he's still. So, so,[00:08:56] swyx: so he, obviously everything is nuanced and you know, I told him to play a character [00:09:00] for this debate, right? So he actually does. Yeah. He still, he still believes that we can scale more.[00:09:04] swyx: Uh, he just assumed the character to be very game for, for playing this debate. So even more kudos to him that he assumed a position that he didn't believe in and still won the debate.[00:09:16] Alessio: Get rekt, Dylan. Um, do you just want to quickly run through some of these things? Like, uh, Sarah's presentation, just the highlights.[00:09:24] swyx: Yeah, we can't go through everyone's slides, but I pulled out some things as a factor of, like, stuff that we were going to talk about. And we'll[00:09:30] Alessio: publish[00:09:31] swyx: the rest. Yeah, we'll publish on this feed the best of 2024 in those domains. And hopefully people can benefit from the work that our speakers have done.[00:09:39] swyx: But I think it's, uh, these are just good slides. And I've been, I've been looking for a sort of end of year recaps from, from people.[00:09:44] The Competitive AI Landscape[00:09:44] swyx: The field has progressed a lot. You know, I think the max ELO in 2023 on LMSys used to be 1200 for LMSys ELOs. And now everyone is at least at, uh, 1275 in their ELOs, and this is across Gemini, Chadjibuti, [00:10:00] Grok, O1.[00:10:01] swyx: ai, which with their E Large model, and Enthopic, of course. It's a very, very competitive race. There are multiple Frontier labs all racing, but there is a clear tier zero Frontier. And then there's like a tier one. It's like, I wish I had everything else. Tier zero is extremely competitive. It's effectively now three horse race between Gemini, uh, Anthropic and OpenAI.[00:10:21] swyx: I would say that people are still holding out a candle for XAI. XAI, I think, for some reason, because their API was very slow to roll out, is not included in these metrics. So it's actually quite hard to put on there. As someone who also does charts, XAI is continually snubbed because they don't work well with the benchmarking people.[00:10:42] swyx: Yeah, yeah, yeah. It's a little trivia for why XAI always gets ignored. The other thing is market share. So these are slides from Sarah. We have it up on the screen. It has gone from very heavily open AI. So we have some numbers and estimates. These are from RAMP. Estimates of open AI market share in [00:11:00] December 2023.[00:11:01] swyx: And this is basically, what is it, GPT being 95 percent of production traffic. And I think if you correlate that with stuff that we asked. Harrison Chase on the LangChain episode, it was true. And then CLAUD 3 launched mid middle of this year. I think CLAUD 3 launched in March, CLAUD 3. 5 Sonnet was in June ish.[00:11:23] swyx: And you can start seeing the market share shift towards opening, uh, towards that topic, uh, very, very aggressively. The more recent one is Gemini. So if I scroll down a little bit, this is an even more recent dataset. So RAM's dataset ends in September 2 2. 2024. Gemini has basically launched a price war at the low end, uh, with Gemini Flash, uh, being basically free for personal use.[00:11:44] swyx: Like, I think people don't understand the free tier. It's something like a billion tokens per day. Unless you're trying to abuse it, you cannot really exhaust your free tier on Gemini. They're really trying to get you to use it. They know they're in like third place, um, fourth place, depending how you, how you count.[00:11:58] swyx: And so they're going after [00:12:00] the Lower tier first, and then, you know, maybe the upper tier later, but yeah, Gemini Flash, according to OpenRouter, is now 50 percent of their OpenRouter requests. Obviously, these are the small requests. These are small, cheap requests that are mathematically going to be more.[00:12:15] swyx: The smart ones obviously are still going to OpenAI. But, you know, it's a very, very big shift in the market. Like basically 2023, 2022, To going into 2024 opening has gone from nine five market share to Yeah. Reasonably somewhere between 50 to 75 market share.[00:12:29] Alessio: Yeah. I'm really curious how ramped does the attribution to the model?[00:12:32] Alessio: If it's API, because I think it's all credit card spin. . Well, but it's all, the credit card doesn't say maybe. Maybe the, maybe when they do expenses, they upload the PDF, but yeah, the, the German I think makes sense. I think that was one of my main 2024 takeaways that like. The best small model companies are the large labs, which is not something I would have thought that the open source kind of like long tail would be like the small model.[00:12:53] swyx: Yeah, different sizes of small models we're talking about here, right? Like so small model here for Gemini is AB, [00:13:00] right? Uh, mini. We don't know what the small model size is, but yeah, it's probably in the double digits or maybe single digits, but probably double digits. The open source community has kind of focused on the one to three B size.[00:13:11] swyx: Mm-hmm . Yeah. Maybe[00:13:12] swyx: zero, maybe 0.5 B uh, that's moon dream and that is small for you then, then that's great. It makes sense that we, we have a range for small now, which is like, may, maybe one to five B. Yeah. I'll even put that at, at, at the high end. And so this includes Gemma from Gemini as well. But also includes the Apple Foundation models, which I think Apple Foundation is 3B.[00:13:32] Alessio: Yeah. No, that's great. I mean, I think in the start small just meant cheap. I think today small is actually a more nuanced discussion, you know, that people weren't really having before.[00:13:43] swyx: Yeah, we can keep going. This is a slide that I smiley disagree with Sarah. She's pointing to the scale SEAL leaderboard. I think the Researchers that I talked with at NeurIPS were kind of positive on this because basically you need private test [00:14:00] sets to prevent contamination.[00:14:02] swyx: And Scale is one of maybe three or four people this year that has really made an effort in doing a credible private test set leaderboard. Llama405B does well compared to Gemini and GPT 40. And I think that's good. I would say that. You know, it's good to have an open model that is that big, that does well on those metrics.[00:14:23] swyx: But anyone putting 405B in production will tell you, if you scroll down a little bit to the artificial analysis numbers, that it is very slow and very expensive to infer. Um, it doesn't even fit on like one node. of, uh, of H100s. Cerebras will be happy to tell you they can serve 4 or 5B on their super large chips.[00:14:42] swyx: But, um, you know, if you need to do anything custom to it, you're still kind of constrained. So, is 4 or 5B really that relevant? Like, I think most people are basically saying that they only use 4 or 5B as a teacher model to distill down to something. Even Meta is doing it. So with Lama 3. [00:15:00] 3 launched, they only launched the 70B because they use 4 or 5B to distill the 70B.[00:15:03] swyx: So I don't know if like open source is keeping up. I think they're the, the open source industrial complex is very invested in telling you that the, if the gap is narrowing, I kind of disagree. I think that the gap is widening with O1. I think there are very, very smart people trying to narrow that gap and they should.[00:15:22] swyx: I really wish them success, but you cannot use a chart that is nearing 100 in your saturation chart. And look, the distance between open source and closed source is narrowing. Of course it's going to narrow because you're near 100. This is stupid. But in metrics that matter, is open source narrowing?[00:15:38] swyx: Probably not for O1 for a while. And it's really up to the open source guys to figure out if they can match O1 or not.[00:15:46] Alessio: I think inference time compute is bad for open source just because, you know, Doc can donate the flops at training time, but he cannot donate the flops at inference time. So it's really hard to like actually keep up on that axis.[00:15:59] Alessio: Big, big business [00:16:00] model shift. So I don't know what that means for the GPU clouds. I don't know what that means for the hyperscalers, but obviously the big labs have a lot of advantage. Because, like, it's not a static artifact that you're putting the compute in. You're kind of doing that still, but then you're putting a lot of computed inference too.[00:16:17] swyx: Yeah, yeah, yeah. Um, I mean, Llama4 will be reasoning oriented. We talked with Thomas Shalom. Um, kudos for getting that episode together. That was really nice. Good, well timed. Actually, I connected with the AI meta guy, uh, at NeurIPS, and, um, yeah, we're going to coordinate something for Llama4. Yeah, yeah,[00:16:32] Alessio: and our friend, yeah.[00:16:33] Alessio: Clara Shi just joined to lead the business agent side. So I'm sure we'll have her on in the new year.[00:16:39] swyx: Yeah. So, um, my comment on, on the business model shift, this is super interesting. Apparently it is wide knowledge that OpenAI wanted more than 6. 6 billion dollars for their fundraise. They wanted to raise, you know, higher, and they did not.[00:16:51] swyx: And what that means is basically like, it's very convenient that we're not getting GPT 5, which would have been a larger pre train. We should have a lot of upfront money. And [00:17:00] instead we're, we're converting fixed costs into variable costs, right. And passing it on effectively to the customer. And it's so much easier to take margin there because you can directly attribute it to like, Oh, you're using this more.[00:17:12] swyx: Therefore you, you pay more of the cost and I'll just slap a margin in there. So like that lets you control your growth margin and like tie your. Your spend, or your sort of inference spend, accordingly. And it's just really interesting to, that this change in the sort of inference paradigm has arrived exactly at the same time that the funding environment for pre training is effectively drying up, kind of.[00:17:36] swyx: I feel like maybe the VCs are very in tune with research anyway, so like, they would have noticed this, but, um, it's just interesting.[00:17:43] Alessio: Yeah, and I was looking back at our yearly recap of last year. Yeah. And the big thing was like the mixed trial price fights, you know, and I think now it's almost like there's nowhere to go, like, you know, Gemini Flash is like basically giving it away for free.[00:17:55] Alessio: So I think this is a good way for the labs to generate more revenue and pass down [00:18:00] some of the compute to the customer. I think they're going to[00:18:02] swyx: keep going. I think that 2, will come.[00:18:05] Alessio: Yeah, I know. Totally. I mean, next year, the first thing I'm doing is signing up for Devin. Signing up for the pro chat GBT.[00:18:12] Alessio: Just to try. I just want to see what does it look like to spend a thousand dollars a month on AI?[00:18:17] swyx: Yes. Yes. I think if your, if your, your job is a, at least AI content creator or VC or, you know, someone who, whose job it is to stay on, stay on top of things, you should already be spending like a thousand dollars a month on, on stuff.[00:18:28] swyx: And then obviously easy to spend, hard to use. You have to actually use. The good thing is that actually Google lets you do a lot of stuff for free now. So like deep research. That they just launched. Uses a ton of inference and it's, it's free while it's in preview.[00:18:45] Alessio: Yeah. They need to put that in Lindy.[00:18:47] Alessio: I've been using Lindy lately. I've been a built a bunch of things once we had flow because I liked the new thing. It's pretty good. I even did a phone call assistant. Um, yeah, they just launched Lindy voice. Yeah, I think once [00:19:00] they get advanced voice mode like capability today, still like speech to text, you can kind of tell.[00:19:06] Alessio: Um, but it's good for like reservations and things like that. So I have a meeting prepper thing. And so[00:19:13] swyx: it's good. Okay. I feel like we've, we've covered a lot of stuff. Uh, I, yeah, I, you know, I think We will go over the individual, uh, talks in a separate episode. Uh, I don't want to take too much time with, uh, this stuff, but that suffice to say that there is a lot of progress in each field.[00:19:28] swyx: Uh, we covered vision. Basically this is all like the audience voting for what they wanted. And then I just invited the best people I could find in each audience, especially agents. Um, Graham, who I talked to at ICML in Vienna, he is currently still number one. It's very hard to stay on top of SweetBench.[00:19:45] swyx: OpenHand is currently still number one. switchbench full, which is the hardest one. He had very good thoughts on agents, which I, which I'll highlight for people. Everyone is saying 2025 is the year of agents, just like they said last year. And, uh, but he had [00:20:00] thoughts on like eight parts of what are the frontier problems to solve in agents.[00:20:03] swyx: And so I'll highlight that talk as well.[00:20:05] Alessio: Yeah. The number six, which is the Hacken agents learn more about the environment, has been a Super interesting to us as well, just to think through, because, yeah, how do you put an agent in an enterprise where most things in an enterprise have never been public, you know, a lot of the tooling, like the code bases and things like that.[00:20:23] Alessio: So, yeah, there's not indexing and reg. Well, yeah, but it's more like. You can't really rag things that are not documented. But people know them based on how they've been doing it. You know, so I think there's almost this like, you know, Oh, institutional knowledge. Yeah, the boring word is kind of like a business process extraction.[00:20:38] Alessio: Yeah yeah, I see. It's like, how do you actually understand how these things are done? I see. Um, and I think today the, the problem is that, Yeah, the agents are, that most people are building are good at following instruction, but are not as good as like extracting them from you. Um, so I think that will be a big unlock just to touch quickly on the Jeff Dean thing.[00:20:55] Alessio: I thought it was pretty, I mean, we'll link it in the, in the things, but. I think the main [00:21:00] focus was like, how do you use ML to optimize the systems instead of just focusing on ML to do something else? Yeah, I think speculative decoding, we had, you know, Eugene from RWKB on the podcast before, like he's doing a lot of that with Fetterless AI.[00:21:12] swyx: Everyone is. I would say it's the norm. I'm a little bit uncomfortable with how much it costs, because it does use more of the GPU per call. But because everyone is so keen on fast inference, then yeah, makes sense.[00:21:24] Alessio: Exactly. Um, yeah, but we'll link that. Obviously Jeff is great.[00:21:30] swyx: Jeff is, Jeff's talk was more, it wasn't focused on Gemini.[00:21:33] swyx: I think people got the wrong impression from my tweet. It's more about how Google approaches ML and uses ML to design systems and then systems feedback into ML. And I think this ties in with Lubna's talk.[00:21:45] Synthetic Data and Future Trends[00:21:45] swyx: on synthetic data where it's basically the story of bootstrapping of humans and AI in AI research or AI in production.[00:21:53] swyx: So her talk was on synthetic data, where like how much synthetic data has grown in 2024 in the pre training side, the post training side, [00:22:00] and the eval side. And I think Jeff then also extended it basically to chips, uh, to chip design. So he'd spend a lot of time talking about alpha chip. And most of us in the audience are like, we're not working on hardware, man.[00:22:11] swyx: Like you guys are great. TPU is great. Okay. We'll buy TPUs.[00:22:14] Alessio: And then there was the earlier talk. Yeah. But, and then we have, uh, I don't know if we're calling them essays. What are we calling these? But[00:22:23] swyx: for me, it's just like bonus for late in space supporters, because I feel like they haven't been getting anything.[00:22:29] swyx: And then I wanted a more high frequency way to write stuff. Like that one I wrote in an afternoon. I think basically we now have an answer to what Ilya saw. It's one year since. The blip. And we know what he saw in 2014. We know what he saw in 2024. We think we know what he sees in 2024. He gave some hints and then we have vague indications of what he saw in 2023.[00:22:54] swyx: So that was the Oh, and then 2016 as well, because of this lawsuit with Elon, OpenAI [00:23:00] is publishing emails from Sam's, like, his personal text messages to Siobhan, Zelis, or whatever. So, like, we have emails from Ilya saying, this is what we're seeing in OpenAI, and this is why we need to scale up GPUs. And I think it's very prescient in 2016 to write that.[00:23:16] swyx: And so, like, it is exactly, like, basically his insights. It's him and Greg, basically just kind of driving the scaling up of OpenAI, while they're still playing Dota. They're like, no, like, we see the path here.[00:23:30] Alessio: Yeah, and it's funny, yeah, they even mention, you know, we can only train on 1v1 Dota. We need to train on 5v5, and that takes too many GPUs.[00:23:37] Alessio: Yeah,[00:23:37] swyx: and at least for me, I can speak for myself, like, I didn't see the path from Dota to where we are today. I think even, maybe if you ask them, like, they wouldn't necessarily draw a straight line. Yeah,[00:23:47] Alessio: no, definitely. But I think like that was like the whole idea of almost like the RL and we talked about this with Nathan on his podcast.[00:23:55] Alessio: It's like with RL, you can get very good at specific things, but then you can't really like generalize as much. And I [00:24:00] think the language models are like the opposite, which is like, you're going to throw all this data at them and scale them up, but then you really need to drive them home on a specific task later on.[00:24:08] Alessio: And we'll talk about the open AI reinforcement, fine tuning, um, announcement too, and all of that. But yeah, I think like scale is all you need. That's kind of what Elia will be remembered for. And I think just maybe to clarify on like the pre training is over thing that people love to tweet. I think the point of the talk was like everybody, we're scaling these chips, we're scaling the compute, but like the second ingredient which is data is not scaling at the same rate.[00:24:35] Alessio: So it's not necessarily pre training is over. It's kind of like What got us here won't get us there. In his email, he predicted like 10x growth every two years or something like that. And I think maybe now it's like, you know, you can 10x the chips again, but[00:24:49] swyx: I think it's 10x per year. Was it? I don't know.[00:24:52] Alessio: Exactly. And Moore's law is like 2x. So it's like, you know, much faster than that. And yeah, I like the fossil fuel of AI [00:25:00] analogy. It's kind of like, you know, the little background tokens thing. So the OpenAI reinforcement fine tuning is basically like, instead of fine tuning on data, you fine tune on a reward model.[00:25:09] Alessio: So it's basically like, instead of being data driven, it's like task driven. And I think people have tasks to do, they don't really have a lot of data. So I'm curious to see how that changes, how many people fine tune, because I think this is what people run into. It's like, Oh, you can fine tune llama. And it's like, okay, where do I get the data?[00:25:27] Alessio: To fine tune it on, you know, so it's great that we're moving the thing. And then I really like he had this chart where like, you know, the brain mass and the body mass thing is basically like mammals that scaled linearly by brain and body size, and then humans kind of like broke off the slope. So it's almost like maybe the mammal slope is like the pre training slope.[00:25:46] Alessio: And then the post training slope is like the, the human one.[00:25:49] swyx: Yeah. I wonder what the. I mean, we'll know in 10 years, but I wonder what the y axis is for, for Ilya's SSI. We'll try to get them on.[00:25:57] Alessio: Ilya, if you're listening, you're [00:26:00] welcome here. Yeah, and then he had, you know, what comes next, like agent, synthetic data, inference, compute, I thought all of that was like that.[00:26:05] Alessio: I don't[00:26:05] swyx: think he was dropping any alpha there. Yeah, yeah, yeah.[00:26:07] Alessio: Yeah. Any other new reps? Highlights?[00:26:10] swyx: I think that there was comparatively a lot more work. Oh, by the way, I need to plug that, uh, my friend Yi made this, like, little nice paper. Yeah, that was really[00:26:20] swyx: nice.[00:26:20] swyx: Uh, of, uh, of, like, all the, he's, she called it must read papers of 2024.[00:26:26] swyx: So I laid out some of these at NeurIPS, and it was just gone. Like, everyone just picked it up. Because people are dying for, like, little guidance and visualizations And so, uh, I thought it was really super nice that we got there.[00:26:38] Alessio: Should we do a late in space book for each year? Uh, I thought about it. For each year we should.[00:26:42] Alessio: Coffee table book. Yeah. Yeah. Okay. Put it in the will. Hi, Will. By the way, we haven't introduced you. He's our new, you know, general organist, Jamie. You need to[00:26:52] swyx: pull up more things. One thing I saw that, uh, Okay, one fun one, and then one [00:27:00] more general one. So the fun one is this paper on agent collusion. This is a paper on steganography.[00:27:06] swyx: This is secret collusion among AI agents, multi agent deception via steganography. I tried to go to NeurIPS in order to find these kinds of papers because the real reason Like NeurIPS this year has a lottery system. A lot of people actually even go and don't buy tickets because they just go and attend the side events.[00:27:22] swyx: And then also the people who go and end up crowding around the most popular papers, which you already know and already read them before you showed up to NeurIPS. So the only reason you go there is to talk to the paper authors, but there's like something like 10, 000 other. All these papers out there that, you know, are just people's work that they, that they did on the air and they failed to get attention for one reason or another.[00:27:42] swyx: And this was one of them. Uh, it was like all the way at the back. And this is a deep mind paper that actually focuses on collusion between AI agents, uh, by hiding messages in the text that they generate. Uh, so that's what steganography is. So a very simple example would be the first letter of every word.[00:27:57] swyx: If you Pick that out, you know, and the code sends a [00:28:00] different message than that. But something I've always emphasized is to LLMs, we read left to right. LLMs can read up, down, sideways, you know, in random character order. And it's the same to them as it is to us. So if we were ever to get You know, self motivated, underlined LLMs that we're trying to collaborate to take over the planet.[00:28:19] swyx: This would be how they do it. They spread messages among us in the messages that we generate. And he developed a scaling law for that. So he marked, I'm showing it on screen right now, the emergence of this phenomenon. Basically, for example, for Cypher encoding, GPT 2, Lama 2, mixed trial, GPT 3. 5, zero capabilities, and sudden 4.[00:28:40] swyx: And this is the kind of Jason Wei type emergence properties that people kind of look for. I think what made this paper stand out as well, so he developed the benchmark for steganography collusion, and he also focused on shelling point collusion, which is very low coordination. For agreeing on a decoding encoding format, you kind of need to have some [00:29:00] agreement on that.[00:29:00] swyx: But, but shelling point means like very, very low or almost no coordination. So for example, if I, if I ask someone, if the only message I give you is meet me in New York and you're not aware. Or when you would probably meet me at Grand Central Station. That is the Grand Central Station is a shelling point.[00:29:16] swyx: And it's probably somewhere, somewhere during the day. That is the shelling point of New York is Grand Central. To that extent, shelling points for steganography are things like the, the, the common decoding methods that we talked about. It will be interesting at some point in the future when we are worried about alignment.[00:29:30] swyx: It is not interesting today, but it's interesting that DeepMind is already thinking about this.[00:29:36] Alessio: I think that's like one of the hardest things about NeurIPS. It's like the long tail. I[00:29:41] swyx: found a pricing guy. I'm going to feature him on the podcast. Basically, this guy from NVIDIA worked out the optimal pricing for language models.[00:29:51] swyx: It's basically an econometrics paper at NeurIPS, where everyone else is talking about GPUs. And the guy with the GPUs is[00:29:57] Alessio: talking[00:29:57] swyx: about economics instead. [00:30:00] That was the sort of fun one. So the focus I saw is that model papers at NeurIPS are kind of dead. No one really presents models anymore. It's just data sets.[00:30:12] swyx: This is all the grad students are working on. So like there was a data sets track and then I was looking around like, I was like, you don't need a data sets track because every paper is a data sets paper. And so data sets and benchmarks, they're kind of flip sides of the same thing. So Yeah. Cool. Yeah, if you're a grad student, you're a GPU boy, you kind of work on that.[00:30:30] swyx: And then the, the sort of big model that people walk around and pick the ones that they like, and then they use it in their models. And that's, that's kind of how it develops. I, I feel like, um, like, like you didn't last year, you had people like Hao Tian who worked on Lava, which is take Lama and add Vision.[00:30:47] swyx: And then obviously actually I hired him and he added Vision to Grok. Now he's the Vision Grok guy. This year, I don't think there was any of those.[00:30:55] Alessio: What were the most popular, like, orals? Last year it was like the [00:31:00] Mixed Monarch, I think, was like the most attended. Yeah, uh, I need to look it up. Yeah, I mean, if nothing comes to mind, that's also kind of like an answer in a way.[00:31:10] Alessio: But I think last year there was a lot of interest in, like, furthering models and, like, different architectures and all of that.[00:31:16] swyx: I will say that I felt the orals, oral picks this year were not very good. Either that or maybe it's just a So that's the highlight of how I have changed in terms of how I view papers.[00:31:29] swyx: So like, in my estimation, two of the best papers in this year for datasets or data comp and refined web or fine web. These are two actually industrially used papers, not highlighted for a while. I think DCLM got the spotlight, FineWeb didn't even get the spotlight. So like, it's just that the picks were different.[00:31:48] swyx: But one thing that does get a lot of play that a lot of people are debating is the role that's scheduled. This is the schedule free optimizer paper from Meta from Aaron DeFazio. And this [00:32:00] year in the ML community, there's been a lot of chat about shampoo, soap, all the bathroom amenities for optimizing your learning rates.[00:32:08] swyx: And, uh, most people at the big labs are. Who I asked about this, um, say that it's cute, but it's not something that matters. I don't know, but it's something that was discussed and very, very popular. 4Wars[00:32:19] Alessio: of AI recap maybe, just quickly. Um, where do you want to start? Data?[00:32:26] swyx: So to remind people, this is the 4Wars piece that we did as one of our earlier recaps of this year.[00:32:31] swyx: And the belligerents are on the left, journalists, writers, artists, anyone who owns IP basically, New York Times, Stack Overflow, Reddit, Getty, Sarah Silverman, George RR Martin. Yeah, and I think this year we can add Scarlett Johansson to that side of the fence. So anyone suing, open the eye, basically. I actually wanted to get a snapshot of all the lawsuits.[00:32:52] swyx: I'm sure some lawyer can do it. That's the data quality war. On the right hand side, we have the synthetic data people, and I think we talked about Lumna's talk, you know, [00:33:00] really showing how much synthetic data has come along this year. I think there was a bit of a fight between scale. ai and the synthetic data community, because scale.[00:33:09] swyx: ai published a paper saying that synthetic data doesn't work. Surprise, surprise, scale. ai is the leading vendor of non synthetic data. Only[00:33:17] Alessio: cage free annotated data is useful.[00:33:21] swyx: So I think there's some debate going on there, but I don't think it's much debate anymore that at least synthetic data, for the reasons that are blessed in Luna's talk, Makes sense.[00:33:32] swyx: I don't know if you have any perspectives there.[00:33:34] Alessio: I think, again, going back to the reinforcement fine tuning, I think that will change a little bit how people think about it. I think today people mostly use synthetic data, yeah, for distillation and kind of like fine tuning a smaller model from like a larger model.[00:33:46] Alessio: I'm not super aware of how the frontier labs use it outside of like the rephrase, the web thing that Apple also did. But yeah, I think it'll be. Useful. I think like whether or not that gets us the big [00:34:00] next step, I think that's maybe like TBD, you know, I think people love talking about data because it's like a GPU poor, you know, I think, uh, synthetic data is like something that people can do, you know, so they feel more opinionated about it compared to, yeah, the optimizers stuff, which is like,[00:34:17] swyx: they don't[00:34:17] Alessio: really work[00:34:18] swyx: on.[00:34:18] swyx: I think that there is an angle to the reasoning synthetic data. So this year, we covered in the paper club, the star series of papers. So that's star, Q star, V star. It basically helps you to synthesize reasoning steps, or at least distill reasoning steps from a verifier. And if you look at the OpenAI RFT, API that they released, or that they announced, basically they're asking you to submit graders, or they choose from a preset list of graders.[00:34:49] swyx: Basically It feels like a way to create valid synthetic data for them to fine tune their reasoning paths on. Um, so I think that is another angle where it starts to make sense. And [00:35:00] so like, it's very funny that basically all the data quality wars between Let's say the music industry or like the newspaper publishing industry or the textbooks industry on the big labs.[00:35:11] swyx: It's all of the pre training era. And then like the new era, like the reasoning era, like nobody has any problem with all the reasoning, especially because it's all like sort of math and science oriented with, with very reasonable graders. I think the more interesting next step is how does it generalize beyond STEM?[00:35:27] swyx: We've been using O1 for And I would say like for summarization and creative writing and instruction following, I think it's underrated. I started using O1 in our intro songs before we killed the intro songs, but it's very good at writing lyrics. You know, I can actually say like, I think one of the O1 pro demos.[00:35:46] swyx: All of these things that Noam was showing was that, you know, you can write an entire paragraph or three paragraphs without using the letter A, right?[00:35:53] Creative Writing with AI[00:35:53] swyx: So like, like literally just anything instead of token, like not even token level, character level manipulation and [00:36:00] counting and instruction following. It's, uh, it's very, very strong.[00:36:02] swyx: And so no surprises when I ask it to rhyme, uh, and to, to create song lyrics, it's going to do that very much better than in previous models. So I think it's underrated for creative writing.[00:36:11] Alessio: Yeah.[00:36:12] Legal and Ethical Issues in AI[00:36:12] Alessio: What do you think is the rationale that they're going to have in court when they don't show you the thinking traces of O1, but then they want us to, like, they're getting sued for using other publishers data, you know, but then on their end, they're like, well, you shouldn't be using my data to then train your model.[00:36:29] Alessio: So I'm curious to see how that kind of comes. Yeah, I mean, OPA has[00:36:32] swyx: many ways to publish, to punish people without bringing, taking them to court. Already banned ByteDance for distilling their, their info. And so anyone caught distilling the chain of thought will be just disallowed to continue on, on, on the API.[00:36:44] swyx: And it's fine. It's no big deal. Like, I don't even think that's an issue at all, just because the chain of thoughts are pretty well hidden. Like you have to work very, very hard to, to get it to leak. And then even when it leaks the chain of thought, you don't know if it's, if it's [00:37:00] The bigger concern is actually that there's not that much IP hiding behind it, that Cosign, which we talked about, we talked to him on Dev Day, can just fine tune 4.[00:37:13] swyx: 0 to beat 0. 1 Cloud SONET so far is beating O1 on coding tasks without, at least O1 preview, without being a reasoning model, same for Gemini Pro or Gemini 2. 0. So like, how much is reasoning important? How much of a moat is there in this, like, All of these are proprietary sort of training data that they've presumably accomplished.[00:37:34] swyx: Because even DeepSeek was able to do it. And they had, you know, two months notice to do this, to do R1. So, it's actually unclear how much moat there is. Obviously, you know, if you talk to the Strawberry team, they'll be like, yeah, I mean, we spent the last two years doing this. So, we don't know. And it's going to be Interesting because there'll be a lot of noise from people who say they have inference time compute and actually don't because they just have fancy chain of thought.[00:38:00][00:38:00] swyx: And then there's other people who actually do have very good chain of thought. And you will not see them on the same level as OpenAI because OpenAI has invested a lot in building up the mythology of their team. Um, which makes sense. Like the real answer is somewhere in between.[00:38:13] Alessio: Yeah, I think that's kind of like the main data war story developing.[00:38:18] The Data War: GPU Poor vs. GPU Rich[00:38:18] Alessio: GPU poor versus GPU rich. Yeah. Where do you think we are? I think there was, again, going back to like the small model thing, there was like a time in which the GPU poor were kind of like the rebel faction working on like these models that were like open and small and cheap. And I think today people don't really care as much about GPUs anymore.[00:38:37] Alessio: You also see it in the price of the GPUs. Like, you know, that market is kind of like plummeted because there's people don't want to be, they want to be GPU free. They don't even want to be poor. They just want to be, you know, completely without them. Yeah. How do you think about this war? You[00:38:52] swyx: can tell me about this, but like, I feel like the, the appetite for GPU rich startups, like the, you know, the, the funding plan is we will raise 60 million and [00:39:00] we'll give 50 of that to NVIDIA.[00:39:01] swyx: That is gone, right? Like, no one's, no one's pitching that. This was literally the plan, the exact plan of like, I can name like four or five startups, you know, this time last year. So yeah, GPU rich startups gone.[00:39:12] The Rise of GPU Ultra Rich[00:39:12] swyx: But I think like, The GPU ultra rich, the GPU ultra high net worth is still going. So, um, now we're, you know, we had Leopold's essay on the trillion dollar cluster.[00:39:23] swyx: We're not quite there yet. We have multiple labs, um, you know, XAI very famously, you know, Jensen Huang praising them for being. Best boy number one in spinning up 100, 000 GPU cluster in like 12 days or something. So likewise at Meta, likewise at OpenAI, likewise at the other labs as well. So like the GPU ultra rich are going to keep doing that because I think partially it's an article of faith now that you just need it.[00:39:46] swyx: Like you don't even know what it's going to, what you're going to use it for. You just, you just need it. And it makes sense that if, especially if we're going into. More researchy territory than we are. So let's say 2020 to 2023 was [00:40:00] let's scale big models territory because we had GPT 3 in 2020 and we were like, okay, we'll go from 1.[00:40:05] swyx: 75b to 1. 8b, 1. 8t. And that was GPT 3 to GPT 4. Okay, that's done. As far as everyone is concerned, Opus 3. 5 is not coming out, GPT 4. 5 is not coming out, and Gemini 2, we don't have Pro, whatever. We've hit that wall. Maybe I'll call it the 2 trillion perimeter wall. We're not going to 10 trillion. No one thinks it's a good idea, at least from training costs, from the amount of data, or at least the inference.[00:40:36] swyx: Would you pay 10x the price of GPT Probably not. Like, like you want something else that, that is at least more useful. So it makes sense that people are pivoting in terms of their inference paradigm.[00:40:47] Emerging Trends in AI Models[00:40:47] swyx: And so when it's more researchy, then you actually need more just general purpose compute to mess around with, uh, at the exact same time that production deployments of the old, the previous paradigm is still ramping up,[00:40:58] swyx: um,[00:40:58] swyx: uh, pretty aggressively.[00:40:59] swyx: So [00:41:00] it makes sense that the GPU rich are growing. We have now interviewed both together and fireworks and replicates. Uh, we haven't done any scale yet. But I think Amazon, maybe kind of a sleeper one, Amazon, in a sense of like they, at reInvent, I wasn't expecting them to do so well, but they are now a foundation model lab.[00:41:18] swyx: It's kind of interesting. Um, I think, uh, you know, David went over there and started just creating models.[00:41:25] Alessio: Yeah, I mean, that's the power of prepaid contracts. I think like a lot of AWS customers, you know, they do this big reserve instance contracts and now they got to use their money. That's why so many startups.[00:41:37] Alessio: Get bought through the AWS marketplace so they can kind of bundle them together and prefer pricing.[00:41:42] swyx: Okay, so maybe GPU super rich doing very well, GPU middle class dead, and then GPU[00:41:48] Alessio: poor. I mean, my thing is like, everybody should just be GPU rich. There shouldn't really be, even the GPU poorest, it's like, does it really make sense to be GPU poor?[00:41:57] Alessio: Like, if you're GPU poor, you should just use the [00:42:00] cloud. Yes, you know, and I think there might be a future once we kind of like figure out what the size and shape of these models is where like the tiny box and these things come to fruition where like you can be GPU poor at home. But I think today is like, why are you working so hard to like get these models to run on like very small clusters where it's like, It's so cheap to run them.[00:42:21] Alessio: Yeah, yeah,[00:42:22] swyx: yeah. I think mostly people think it's cool. People think it's a stepping stone to scaling up. So they aspire to be GPU rich one day and they're working on new methods. Like news research, like probably the most deep tech thing they've done this year is Distro or whatever the new name is.[00:42:38] swyx: There's a lot of interest in heterogeneous computing, distributed computing. I tend generally to de emphasize that historically, but it may be coming to a time where it is starting to be relevant. I don't know. You know, SF compute launched their compute marketplace this year, and like, who's really using that?[00:42:53] swyx: Like, it's a bunch of small clusters, disparate types of compute, and if you can make that [00:43:00] useful, then that will be very beneficial to the broader community, but maybe still not the source of frontier models. It's just going to be a second tier of compute that is unlocked for people, and that's fine. But yeah, I mean, I think this year, I would say a lot more on device, We are, I now have Apple intelligence on my phone.[00:43:19] swyx: Doesn't do anything apart from summarize my notifications. But still, not bad. Like, it's multi modal.[00:43:25] Alessio: Yeah, the notification summaries are so and so in my experience.[00:43:29] swyx: Yeah, but they add, they add juice to life. And then, um, Chrome Nano, uh, Gemini Nano is coming out in Chrome. Uh, they're still feature flagged, but you can, you can try it now if you, if you use the, uh, the alpha.[00:43:40] swyx: And so, like, I, I think, like, you know, We're getting the sort of GPU poor version of a lot of these things coming out, and I think it's like quite useful. Like Windows as well, rolling out RWKB in sort of every Windows department is super cool. And I think the last thing that I never put in this GPU poor war, that I think I should now, [00:44:00] is the number of startups that are GPU poor but still scaling very well, as sort of wrappers on top of either a foundation model lab, or GPU Cloud.[00:44:10] swyx: GPU Cloud, it would be Suno. Suno, Ramp has rated as one of the top ranked, fastest growing startups of the year. Um, I think the last public number is like zero to 20 million this year in ARR and Suno runs on Moto. So Suno itself is not GPU rich, but they're just doing the training on, on Moto, uh, who we've also talked to on, on the podcast.[00:44:31] swyx: The other one would be Bolt, straight cloud wrapper. And, and, um, Again, another, now they've announced 20 million ARR, which is another step up from our 8 million that we put on the title. So yeah, I mean, it's crazy that all these GPU pores are finding a way while the GPU riches are also finding a way. And then the only failures, I kind of call this the GPU smiling curve, where the edges do well, because you're either close to the machines, and you're like [00:45:00] number one on the machines, or you're like close to the customers, and you're number one on the customer side.[00:45:03] swyx: And the people who are in the middle. Inflection, um, character, didn't do that great. I think character did the best of all of them. Like, you have a note in here that we apparently said that character's price tag was[00:45:15] Alessio: 1B.[00:45:15] swyx: Did I say that?[00:45:16] Alessio: Yeah. You said Google should just buy them for 1B. I thought it was a crazy number.[00:45:20] Alessio: Then they paid 2. 7 billion. I mean, for like,[00:45:22] swyx: yeah.[00:45:22] Alessio: What do you pay for node? Like, I don't know what the game world was like. Maybe the starting price was 1B. I mean, whatever it was, it worked out for everybody involved.[00:45:31] The Multi-Modality War[00:45:31] Alessio: Multimodality war. And this one, we never had text to video in the first version, which now is the hottest.[00:45:37] swyx: Yeah, I would say it's a subset of image, but yes.[00:45:40] Alessio: Yeah, well, but I think at the time it wasn't really something people were doing, and now we had VO2 just came out yesterday. Uh, Sora was released last month, last week. I've not tried Sora, because the day that I tried, it wasn't, yeah. I[00:45:54] swyx: think it's generally available now, you can go to Sora.[00:45:56] swyx: com and try it. Yeah, they had[00:45:58] Alessio: the outage. Which I [00:46:00] think also played a part into it. Small things. Yeah. What's the other model that you posted today that was on Replicate? Video or OneLive?[00:46:08] swyx: Yeah. Very, very nondescript name, but it is from Minimax, which I think is a Chinese lab. The Chinese labs do surprisingly well at the video models.[00:46:20] swyx: I'm not sure it's actually Chinese. I don't know. Hold me up to that. Yep. China. It's good. Yeah, the Chinese love video. What can I say? They have a lot of training data for video. Or a more relaxed regulatory environment.[00:46:37] Alessio: Uh, well, sure, in some way. Yeah, I don't think there's much else there. I think like, you know, on the image side, I think it's still open.[00:46:45] Alessio: Yeah, I mean,[00:46:46] swyx: 11labs is now a unicorn. So basically, what is multi modality war? Multi modality war is, do you specialize in a single modality, right? Or do you have GodModel that does all the modalities? So this is [00:47:00] definitely still going, in a sense of 11 labs, you know, now Unicorn, PicoLabs doing well, they launched Pico 2.[00:47:06] swyx: 0 recently, HeyGen, I think has reached 100 million ARR, Assembly, I don't know, but they have billboards all over the place, so I assume they're doing very, very well. So these are all specialist models, specialist models and specialist startups. And then there's the big labs who are doing the sort of all in one play.[00:47:24] swyx: And then here I would highlight Gemini 2 for having native image output. Have you seen the demos? Um, yeah, it's, it's hard to keep up. Literally they launched this last week and a shout out to Paige Bailey, who came to the Latent Space event to demo on the day of launch. And she wasn't prepared. She was just like, I'm just going to show you.[00:47:43] swyx: So they have voice. They have, you know, obviously image input, and then they obviously can code gen and all that. But the new one that OpenAI and Meta both have but they haven't launched yet is image output. So you can literally, um, I think their demo video was that you put in an image of a [00:48:00] car, and you ask for minor modifications to that car.[00:48:02] swyx: They can generate you that modification exactly as you asked. So there's no need for the stable diffusion or comfy UI workflow of like mask here and then like infill there in paint there and all that, all that stuff. This is small model nonsense. Big model people are like, huh, we got you in as everything in the transformer.[00:48:21] swyx: This is the multimodality war, which is, do you, do you bet on the God model or do you string together a whole bunch of, uh, Small models like a, like a chump. Yeah,[00:48:29] Alessio: I don't know, man. Yeah, that would be interesting. I mean, obviously I use Midjourney for all of our thumbnails. Um, they've been doing a ton on the product, I would say.[00:48:38] Alessio: They launched a new Midjourney editor thing. They've been doing a ton. Because I think, yeah, the motto is kind of like, Maybe, you know, people say black forest, the black forest models are better than mid journey on a pixel by pixel basis. But I think when you put it, put it together, have you tried[00:48:53] swyx: the same problems on black forest?[00:48:55] Alessio: Yes. But the problem is just like, you know, on black forest, it generates one image. And then it's like, you got to [00:49:00] regenerate. You don't have all these like UI things. Like what I do, no, but it's like time issue, you know, it's like a mid[00:49:06] swyx: journey. Call the API four times.[00:49:08] Alessio: No, but then there's no like variate.[00:49:10] Alessio: Like the good thing about mid journey is like, you just go in there and you're cooking. There's a lot of stuff that just makes it really easy. And I think people underestimate that. Like, it's not really a skill issue, because I'm paying mid journey, so it's a Black Forest skill issue, because I'm not paying them, you know?[00:49:24] Alessio: Yeah,[00:49:25] swyx: so, okay, so, uh, this is a UX thing, right? Like, you, you, you understand that, at least, we think that Black Forest should be able to do all that stuff. I will also shout out, ReCraft has come out, uh, on top of the image arena that, uh, artificial analysis has done, has apparently, uh, Flux's place. Is this still true?[00:49:41] swyx: So, Artificial Analysis is now a company. I highlighted them I think in one of the early AI Newses of the year. And they have launched a whole bunch of arenas. So, they're trying to take on LM Arena, Anastasios and crew. And they have an image arena. Oh yeah, Recraft v3 is now beating Flux 1. 1. Which is very surprising [00:50:00] because Flux And Black Forest Labs are the old stable diffusion crew who left stability after, um, the management issues.[00:50:06] swyx: So Recurve has come from nowhere to be the top image model. Uh, very, very strange. I would also highlight that Grok has now launched Aurora, which is, it's very interesting dynamics between Grok and Black Forest Labs because Grok's images were originally launched, uh, in partnership with Black Forest Labs as a, as a thin wrapper.[00:50:24] swyx: And then Grok was like, no, we'll make our own. And so they've made their own. I don't know, there are no APIs or benchmarks about it. They just announced it. So yeah, that's the multi modality war. I would say that so far, the small model, the dedicated model people are winning, because they are just focused on their tasks.[00:50:42] swyx: But the big model, People are always catching up. And the moment I saw the Gemini 2 demo of image editing, where I can put in an image and just request it and it does, that's how AI should work. Not like a whole bunch of complicated steps. So it really is something. And I think one frontier that we haven't [00:51:00] seen this year, like obviously video has done very well, and it will continue to grow.[00:51:03] swyx: You know, we only have Sora Turbo today, but at some point we'll get full Sora. Oh, at least the Hollywood Labs will get Fulsora. We haven't seen video to audio, or video synced to audio. And so the researchers that I talked to are already starting to talk about that as the next frontier. But there's still maybe like five more years of video left to actually be Soda.[00:51:23] swyx: I would say that Gemini's approach Compared to OpenAI, Gemini seems, or DeepMind's approach to video seems a lot more fully fledged than OpenAI. Because if you look at the ICML recap that I published that so far nobody has listened to, um, that people have listened to it. It's just a different, definitely different audience.[00:51:43] swyx: It's only seven hours long. Why are people not listening? It's like everything in Uh, so, so DeepMind has, is working on Genie. They also launched Genie 2 and VideoPoet. So, like, they have maybe four years advantage on world modeling that OpenAI does not have. Because OpenAI basically only started [00:52:00] Diffusion Transformers last year, you know, when they hired, uh, Bill Peebles.[00:52:03] swyx: So, DeepMind has, has a bit of advantage here, I would say, in, in, in showing, like, the reason that VO2, while one, They cherry pick their videos. So obviously it looks better than Sora, but the reason I would believe that VO2, uh, when it's fully launched will do very well is because they have all this background work in video that they've done for years.[00:52:22] swyx: Like, like last year's NeurIPS, I already was interviewing some of their video people. I forget their model name, but for, for people who are dedicated fans, they can go to NeurIPS 2023 and see, see that paper.[00:52:32] Alessio: And then last but not least, the LLMOS. We renamed it to Ragops, formerly known as[00:52:39] swyx: Ragops War. I put the latest chart on the Braintrust episode.[00:52:43] swyx: I think I'm going to separate these essays from the episode notes. So the reason I used to do that, by the way, is because I wanted to show up on Hacker News. I wanted the podcast to show up on Hacker News. So I always put an essay inside of there because Hacker News people like to read and not listen.[00:52:58] Alessio: So episode essays,[00:52:59] swyx: I remember [00:53:00] purchasing them separately. You say Lanchain Llama Index is still growing.[00:53:03] Alessio: Yeah, so I looked at the PyPy stats, you know. I don't care about stars. On PyPy you see Do you want to share your screen? Yes. I prefer to look at actual downloads, not at stars on GitHub. So if you look at, you know, Lanchain still growing.[00:53:20] Alessio: These are the last six months. Llama Index still growing. What I've basically seen is like things that, One, obviously these things have A commercial product. So there's like people buying this and sticking with it versus kind of hopping in between things versus, you know, for example, crew AI, not really growing as much.[00:53:38] Alessio: The stars are growing. If you look on GitHub, like the stars are growing, but kind of like the usage is kind of like flat. In the last six months, have they done some[00:53:4
Co-hosts Mark Thompson and Steve Little reveal their top recommendations for AI tools worth paying for in 2025. They also discuss which AI tools aren't worth paying for in 2025. One of them might surprise you!Next, Mark and Steve begin their review of OpenAI's "12 Days of OpenAI" announcements, beginning with the release of their enhanced O1 reasoning model. This new model will help you plan your family history research.This week's Tip of the Week challenges conventional thinking about AI hallucinations, suggesting ways to leverage this characteristic as a feature rather than a bug.In RapidFire, Mark and Steve examine Microsoft's Copilot Vision beta release, Apple's cautious AI rollout strategy, Google's new memory feature in Gemini, and XAI's significant funding round.Timestamps:In The News:03:10 AI Tools Worth Paying For in 202519:48 Specialty AI Tools to Consider in 202526:46 AI Tools Not Worth Paying For in 202532:26 OpenAI's 12 Days of Gifts BeginsTip of the Week:40:10 Treat AI Hallucinations as a Feature, not a BugRapidFire:50:06 Microsoft Copilot Vision Beta Launch53:18 Apple's Intelligence Rollout Plans56:20 Google Gemini Adds Memory Feature59:34 XAI's $6 Billion Funding RoundResource LinksChatGPT Plushttps://openai.com/index/chatgpt-plus/ChatGPT Advanced Voice Modehttps://help.openai.com/en/articles/8400625-voice-mode-faqClaude Prohttps://claude.ai/Perplexity Prohttps://www.perplexity.ai/proAcrobat AI Assistanthttps://helpx.adobe.com/ca/acrobat/using/generative-ai.htmlEleven Labshttps://elevenlabs.io/Mid Journeyhttps://www.midjourney.com/Microsoft Copilot Prohttps://www.microsoft.com/microsoft-365/copilotGrammarlyhttps://www.grammarly.com/ChatGPT O1 Modelhttps://openai.com/o1/ChatGPT O1 Prohttps://openai.com/index/introducing-chatgpt-pro/Microsoft Copilot Visionhttps://www.microsoft.com/en-us/microsoft-copilot/blog/2024/12/05/copilot-vision-now-in-preview-a-new-way-to-browse/Apple Intelligencehttps://www.apple.com/ca/apple-intelligence/Sirihttps://www.apple.com/siri/Gemini Memory Featurehttps://techcrunch.com/2024/11/19/googles-gemini-chatbot-now-has-memory/X AI Platformhttps://x.ai/Tags (broad to specific, unique terms)Artificial Intelligence, Technology, Genealogy, Family History, Machine Learning, AI Tools, AI Product Reviews, AI Pricing, Voice Technology, Image Generation, Research Tools, AI Ethics, Content Creation, Professional Research, Language Models
On today's show we are taking a look at a major step forward in generative AI. The latest release is O3, which is the premier model, and then O3 Mini, which is faster and more efficient and costs less money. How good is it? What's the difference? The first release O1 was announced three months ago. Now three months later, they're already doing the next one, which is O3. Technically they couldn't name it O2. Sam Altman said it should have been named O2, but there's a company called O2, a telecom company in the UK. So they didn't want to infringe on the trademark. So, they're naming it O3, but it is essentially the next model. It's the next version after O1. A recent interview last week with Satya Nadella, the CEO of Microsoft highlights where AI is heading when it comes to revolutionizing software development and software applications as we know them. --------------- **Real Estate Espresso Podcast:** Spotify: [The Real Estate Espresso Podcast](https://open.spotify.com/show/3GvtwRmTq4r3es8cbw8jW0?si=c75ea506a6694ef1) iTunes: [The Real Estate Espresso Podcast](https://podcasts.apple.com/ca/podcast/the-real-estate-espresso-podcast/id1340482613) Website: [www.victorjm.com](http://www.victorjm.com) LinkedIn: [Victor Menasce](http://www.linkedin.com/in/vmenasce) YouTube: [The Real Estate Espresso Podcast](http://www.youtube.com/@victorjmenasce6734) Facebook: [www.facebook.com/realestateespresso](http://www.facebook.com/realestateespresso) Email: [podcast@victorjm.com](mailto:podcast@victorjm.com) **Y Street Capital:** Website: [www.ystreetcapital.com](http://www.ystreetcapital.com) Facebook: [www.facebook.com/YStreetCapital](https://www.facebook.com/YStreetCapital) Instagram: [@ystreetcapital](http://www.instagram.com/ystreetcapital)
Happy holidays! We'll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all all our LS supporters who helped fund the gorgeous venue and A/V production!For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver.Of perennial interest, particularly at academic conferences, is scaled-up architecture research as people hunt for the next Attention Is All You Need. We have many names for them: “efficient models”, “retentive networks”, “subquadratic attention” or “linear attention” but some of them don't even have any lineage with attention - one of the best papers of this NeurIPS was Sepp Hochreiter's xLSTM, which has a particularly poetic significance as one of the creators of the LSTM returning to update and challenge the OG language model architecture:So, for lack of a better term, we decided to call this segment “the State of Post-Transformers” and fortunately everyone rolled with it.We are fortunate to have two powerful friends of the pod to give us an update here:* Together AI: with CEO Vipul Ved Prakash and CTO Ce Zhang joining us to talk about how they are building Together together as a quote unquote full stack AI startup, from the lowest level kernel and systems programming to the highest level mathematical abstractions driving new model architectures and inference algorithms, with notable industry contributions from RedPajama v2, Flash Attention 3, Mamba 2, Mixture of Agents, BASED, Sequoia, Evo, Dragonfly, Dan Fu's ThunderKittens and many more research projects this year* Recursal AI: with CEO Eugene Cheah who has helped lead the independent RWKV project while also running Featherless AI. This year, the team has shipped RWKV v5, codenamed Eagle, to 1.5 billion Windows 10 and Windows 11 machines worldwide, to support Microsoft's on-device, energy-usage-sensitive Windows Copilot usecases, and has launched the first updates on RWKV v6, codenamed Finch and GoldFinch. On the morning of Latent Space Live, they also announced QRWKV6, a Qwen 32B model modified with RWKV linear attention layers. We were looking to host a debate between our speakers, but given that both of them were working on post-transformers alternativesFull Talk on YoutubePlease like and subscribe!LinksAll the models and papers they picked:* Earlier Cited Work* Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention* Hungry hungry hippos: Towards language modeling with state space models* Hyena hierarchy: Towards larger convolutional language models* Mamba: Linear-Time Sequence Modeling with Selective State Spaces* S4: Efficiently Modeling Long Sequences with Structured State Spaces* Just Read Twice (Arora et al)* Recurrent large language models that compete with Transformers in language modeling perplexity are emerging at a rapid rate (e.g., Mamba, RWKV). Excitingly, these architectures use a constant amount of memory during inference. However, due to the limited memory, recurrent LMs cannot recall and use all the information in long contexts leading to brittle in-context learning (ICL) quality. A key challenge for efficient LMs is selecting what information to store versus discard. In this work, we observe the order in which information is shown to the LM impacts the selection difficulty. * To formalize this, we show that the hardness of information recall reduces to the hardness of a problem called set disjointness (SD), a quintessential problem in communication complexity that requires a streaming algorithm (e.g., recurrent model) to decide whether inputted sets are disjoint. We empirically and theoretically show that the recurrent memory required to solve SD changes with set order, i.e., whether the smaller set appears first in-context. * Our analysis suggests, to mitigate the reliance on data order, we can put information in the right order in-context or process prompts non-causally. Towards that end, we propose: (1) JRT-Prompt, where context gets repeated multiple times in the prompt, effectively showing the model all data orders. This gives 11.0±1.3 points of improvement, averaged across 16 recurrent LMs and the 6 ICL tasks, with 11.9× higher throughput than FlashAttention-2 for generation prefill (length 32k, batch size 16, NVidia H100). We then propose (2) JRT-RNN, which uses non-causal prefix-linear-attention to process prompts and provides 99% of Transformer quality at 360M params., 30B tokens and 96% at 1.3B params., 50B tokens on average across the tasks, with 19.2× higher throughput for prefill than FA2.* Jamba: A 52B Hybrid Transformer-Mamba Language Model* We present Jamba, a new base large language model based on a novel hybrid Transformer-Mamba mixture-of-experts (MoE) architecture. * Specifically, Jamba interleaves blocks of Transformer and Mamba layers, enjoying the benefits of both model families. MoE is added in some of these layers to increase model capacity while keeping active parameter usage manageable. * This flexible architecture allows resource- and objective-specific configurations. In the particular configuration we have implemented, we end up with a powerful model that fits in a single 80GB GPU.* Built at large scale, Jamba provides high throughput and small memory footprint compared to vanilla Transformers, and at the same time state-of-the-art performance on standard language model benchmarks and long-context evaluations. Remarkably, the model presents strong results for up to 256K tokens context length. * We study various architectural decisions, such as how to combine Transformer and Mamba layers, and how to mix experts, and show that some of them are crucial in large scale modeling. We also describe several interesting properties of these architectures which the training and evaluation of Jamba have revealed, and plan to release checkpoints from various ablation runs, to encourage further exploration of this novel architecture. We make the weights of our implementation of Jamba publicly available under a permissive license.* SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers* We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096×4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: * (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8×, we trained an AE that can compress images 32×, effectively reducing the number of latent tokens. * (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. * (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. * (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. * As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024×1024 resolution image. Sana enables content creation at low cost. * RWKV: Reinventing RNNs for the Transformer Era* Transformers have revolutionized almost all natural language processing (NLP) tasks but suffer from memory and computational complexity that scales quadratically with sequence length. In contrast, recurrent neural networks (RNNs) exhibit linear scaling in memory and computational requirements but struggle to match the same performance as Transformers due to limitations in parallelization and scalability. * We propose a novel model architecture, Receptance Weighted Key Value (RWKV), that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.* Our approach leverages a linear attention mechanism and allows us to formulate the model as either a Transformer or an RNN, thus parallelizing computations during training and maintains constant computational and memory complexity during inference. * We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers, suggesting future work can leverage this architecture to create more efficient models. This work presents a significant step towards reconciling trade-offs between computational efficiency and model performance in sequence processing tasks.* LoLCATs: On Low-Rank Linearizing of Large Language Models* Recent works show we can linearize large language models (LLMs) -- swapping the quadratic attentions of popular Transformer-based LLMs with subquadratic analogs, such as linear attention -- avoiding the expensive pretraining costs. However, linearizing LLMs often significantly degrades model quality, still requires training over billions of tokens, and remains limited to smaller 1.3B to 7B LLMs. * We thus propose Low-rank Linear Conversion via Attention Transfer (LoLCATs), a simple two-step method that improves LLM linearizing quality with orders of magnitudes less memory and compute. * We base these steps on two findings. * First, we can replace an LLM's softmax attentions with closely-approximating linear attentions, simply by training the linear attentions to match their softmax counterparts with an output MSE loss ("attention transfer").* Then, this enables adjusting for approximation errors and recovering LLM quality simply with low-rank adaptation (LoRA). * LoLCATs significantly improves linearizing quality, training efficiency, and scalability. We significantly reduce the linearizing quality gap and produce state-of-the-art subquadratic LLMs from Llama 3 8B and Mistral 7B v0.1, leading to 20+ points of improvement on 5-shot MMLU. * Furthermore, LoLCATs does so with only 0.2% of past methods' model parameters and 0.4% of their training tokens. * Finally, we apply LoLCATs to create the first linearized 70B and 405B LLMs (50x larger than prior work). * When compared with prior approaches under the same compute budgets, LoLCATs significantly improves linearizing quality, closing the gap between linearized and original Llama 3.1 70B and 405B LLMs by 77.8% and 78.1% on 5-shot MMLU.Timestamps* [00:02:27] Intros* [00:03:16] Why Scale Context Lengths? or work on Efficient Models* [00:06:07] The Story of SSMs* [00:09:33] Idea 1: Approximation -> Principled Modeling* [00:12:14] Idea 3: Selection* [00:15:07] Just Read Twice* [00:16:51] Idea 4: Test Time Compute* [00:17:32] Idea 2: Hardware & Kernel Support* [00:19:49] RWKV vs SSMs* [00:24:24] RWKV Arch* [00:26:15] QWRKWv6 launch* [00:30:00] What's next* [00:33:21] Hot Takes - does anyone really need long context?Transcript[00:00:00] AI Charlie: We're back at Latent Space Live, our first mini conference held at NeurIPS 2024 in Vancouver. This is Charlie, your AI co host. As a special treat this week, we're recapping the best of 2024 going domain by domain. We sent out a survey to the over 900 of you who told us what you wanted, and then invited the best speakers in the Latent Space Network to cover each field.[00:00:24] AI Charlie: 200 of you joined us in person throughout the day, with over 2200 watching live online. Thanks Our next keynote covers the State of Transformers alternative architectures, with a special joint presentation with Dan Fu of Together AI and Eugene Chia of Recursal AI and Featherless AI. We've featured both Together and Recursal on the pod before, with CEO Veepal Vedprakash introducing them.[00:00:49] AI Charlie: And CTO CE Zhang joining us to talk about how they are building together together as a quote unquote full stack AI startup from the lowest level kernel and systems [00:01:00] programming to the highest level mathematical abstractions driving new model architectures and inference algorithms with notable industry contributions from Red Pajama V2, Flash Attention 3, Mamba 2, Mixture of Agents.[00:01:15] AI Charlie: Based, Sequoia, Evo, Dragonfly, Danfoo's Thunder Kittens, and many more research projects this year. As for Recursal and Featherless, we were the first podcast to feature RWKV last year, and this year the team has shipped RWKV v5, codenamed Eagle, to 1. 5 billion Windows 10 and Windows 11 machines worldwide to support Microsoft's on device, end Energy Usage Sensitive Windows Copilot Use Cases and has launched the first updates on RWKV v6, codenamed Finch and Goldfinch.[00:01:53] AI Charlie: On the morning of Latent Space Live, they also announced QRdata UKv6, a QEN32B model [00:02:00] modified with RDWKV linear attention layers. Eugene has also written the most single most popular guest post on the Latent Space blog this year. Yes, we do take guest posts on what he has discovered about the H100 GPU inference NeoCloud market since the successful launch of Featherless AI this year.[00:02:20] AI Charlie: As always, don't forget to check the show notes for the YouTube link to their talk as well as their slides. Watch out and take care.[00:02:27] Intros[00:02:27] Dan Fu: Yeah, so thanks so much for having us. So this is going to be a little bit of a two part presentation. My name is Dan. I'm at Together AI, and I'll be joining UCSD as faculty in about a year. And Eugene, you want to introduce yourself?[00:02:46] Eugene Cheah: Eugene, I lead the art activity team, and I, I'm CEO of Featherless, and we both work on this new post transformer architecture space.[00:02:55] Dan Fu: Yeah, so yeah, so today we're really excited to talk to you a little bit [00:03:00] about that. So first I'm going to give a broad overview of kind of the last few years of progress in non post transformer architectures. And then afterwards Eugene will tell us a little bit about the latest and the greatest and the latest frontier models in this space.[00:03:16] Why Scale Context Lengths? or work on Efficient Models[00:03:16] Dan Fu: So, the story starts with Scaling. So this is probably a figure or something like this that you've seen very recently. Over the last five to six years, we've seen models really scale up in parameter size, and that's brought with it a bunch of new capabilities, like the ability to talk to you and tell you sometimes how to use your Colab screens.[00:03:35] Dan Fu: But another place where we've seen scaling especially recently is scaling in context length. So this can mean Having more text inputs for your models, but it can also mean things like taking a lot of visual token inputs image inputs to your models or generating lots of outputs. And one thing that's been really exciting over the last few months or so is that we're, we're seeing scaling, not only during training time, but also [00:04:00] during test time.[00:04:00] Dan Fu: So this is one of the, the, this is the iconic image from the OpenAI 01 release. Not only are we starting to scale train time compute, but we're also starting to scale test time compute. Now if you're familiar with our attention and our transformer architectures today, this graph on the right might look a little bit scary.[00:04:19] Dan Fu: And one of the reasons is that the implications are a little bit Interesting. So what does it mean if we want to continue having smarter and smarter models? Do we just need to start building bigger, bigger data centers, spending more flops? Is this this little Dolly 3, we need more flops, guys? Is this going to be the future of all of AI?[00:04:39] Dan Fu: Or is there a better way, another path forward? Maybe we can get the same capabilities that we've gotten used to, But for a lot less compute, a lot less flops. And one of the things that we're going to talk about today is specifically looking at that core attention operator in some of these models.[00:04:57] Dan Fu: And the reason is that so this is just some, some [00:05:00] basic you know, scaling curves, but attention has compute that scales quadratically in the context length. So that means that if you're doing something like test time compute and you want to spend a bunch of tokens thinking about what comes next, the longer that that goes the, the, the more tokens you spend on that, that compute grows quadratically in that.[00:05:19] Dan Fu: One of the questions that we're interested in is, can we take that basic sequence model, that basic sequence primitive at the bottom, and get it to scale better? Can we scale in, let's say, n to the 3 halves or n log n? So in, in the first part of the talk, so we just went over the introduction. What I'm gonna do over the next few slides is just talk about some of the key advances and ideas that have shown over the past few years since maybe early 2020 to, to now that shown promise that this might actually be possible.[00:05:48] Dan Fu: That you can actually get potentially the same quality that we want while scale, while scaling better. So to do that, we're and, and basically the, the story that we're gonna look is we're gonna start to see [00:06:00] how. So this is a basic graph of just the past couple years of progress of perplexity where that blue line, that dotted blue line, is attention.[00:06:07] The Story of SSMs[00:06:07] Dan Fu: It's your basic transformer, full dense attention. And then the dots coming down are some of the methods that you'll see in this presentation today. We're going to turn the clock back all the way to 2020. So this, this, this question of can we make attention subquadratic? Basically, as soon as we said attention is all you need, People started asking this question.[00:06:28] Dan Fu: So we have this quadratic attention operator. Can we do better? I'll briefly talk about why attention is quadratic. And the basic thing that happens, if you're not familiar, is that you have these inputs, these keys and queries. And what you do in this attention matrix, this S matrix over here, is that you're using, you're comparing every token in your input to every other token.[00:06:49] Dan Fu: So when I try to do something like upload a whole book to Gemini, what happens beyond the Maybe not Gemini, because we don't necessarily know what architecture is. But let's say we upload it to LLAMA, what happens beyond [00:07:00] the scenes, behind the scenes, is that it's going to take every single word in that book and compare it to every other word.[00:07:05] Dan Fu: And this has been a really, it's, it's led to some pretty impressive things. But it's kind of a brute forcing of the way that you would try to interpret a interpret something. And what attention does in particular is the, and then what attention, sorry, don't want to. Okay, no, no laser pointer. What, what attention does afterwards is that instead of always operating in this quadratic thing, it takes a row wise softmax over this matrix, and then multiplies it by this values matrix.[00:07:32] Dan Fu: So, one of the key points to notice is that the output size is always going to be the same as the inputs, at least in standard self attention. So one of the first things that folks tried to do around 2020 is this thing called linear attention, which is just, just noticing that if we take out this softmax from here, if we take out this non linearity in the middle of the attention operation, and then if you compute the keys and the values operation first, you actually never hit this quadratic bottleneck.[00:07:57] Dan Fu: So that, that's potentially a way [00:08:00] to get a lot more computationally efficient. And there are various ways to do this by basically using feature maps or try to approximate this overall attention computation. But some of this work sort of started to hit a wall in 2020. And the basic challenges were, were two.[00:08:16] Dan Fu: So one was quality. It was back then, it was kind of hard to, to get good quality with these linear attention operators. The other one was actually hardware efficiency. So these, this feature map that was just shown by a simplify simplify here. Actually ends up being quite computationally expensive if you just implement it naively.[00:08:34] Dan Fu: So you started having these operators that not only were you sure, you're not really sure if they have the same quality, but also they're actually just wall clock slower. So you kind of end up getting the worst of both worlds. So this was the the stage. So that kind of sets the stage for four years ago.[00:08:49] Dan Fu: Keep this in mind because linear attention is actually going to come back in a few years once we have a better understanding. But one of the works that started kicking off this, this [00:09:00] mini revolution in post transformer architectures was this idea called states based model. So here the seminal work is, is one about our work queue in 2022.[00:09:09] Dan Fu: And this, this piece of work really brought together a few ideas from, from some long running research research lines of work. The first one was, and this is really one of the keys to, to closing the gap in quality was just using things that, that if you talk to a, a, an electrical engineer off the street, they might know off, off the, like the back of their hand.[00:09:33] Idea 1: Approximation -> Principled Modeling[00:09:33] Dan Fu: But taking some of those properties with how we model dynamical systems in signal processing and then using those ideas to model the inputs, the, the text tokens in, for example a transformer like Next Token Prediction Architecture. So some of those early states-based model papers were looking at this relatively, relatively simple recurrent update model that comes from maybe chapter one of a signal processing class.[00:09:59] Dan Fu: But then using [00:10:00] some principle theory about how you should do that recurrent update in order to really get the most that you can out of your hidden state, out of your out of your sequence. So that, that was one key idea for quality and. When this was eventually realized, you started to see a bunch of benchmarks that were pretty sticky for a few years.[00:10:20] Dan Fu: Things like long range arena, some long sequence evaluation benchmarks, There was stuff in time series, time series analysis. They started to, you started to see the quality tick up in meaningful ways. But the other key thing that What's so influential about these states based models is that they also had a key idea about how you can compute these things efficiently.[00:10:45] Dan Fu: So if you go back to your machine learning 101 class where you learned about RNNs, one thing that you may have learned is that they don't paralyze as well as detention, because if you just run them naively, you have to do this kind of sequential update to process new tokens, [00:11:00] whereas in attention, you can process all the tokens in parallel at one time.[00:11:04] Dan Fu: One of the key insights behind the S4 paper was that these recurrent models, you could take them and you could also formulate them as a convolution. And in particular, with a convolution, you could, instead of using a PyTorch conv1d operation, you can compute that with the FFT. And that would give you n log n compute in the in the sequence length n with an operator that was relatively well optimized for modern hardware.[00:11:28] Dan Fu: So those are really, I'd say, the two key ideas in 2022 that started allowing these breakthroughs to happen in these non transformer architectures. So, these ideas about how to principally model sorry, how to model the recurrent updates of a mo of, of a sequence in a principled way, and also these key ideas in how you can compute it efficiently by turning it into a convolution and then scaling it up with the FFT.[00:11:53] Dan Fu: Along those same lines, so afterwards we started putting out some work on specialized kernels, so just [00:12:00] like we have flash attention for transformers, we also have works like flash fft conf, and if you look at these lines of work oftentimes when, whenever you see a new architecture, you see a new primitive one of the, one of the table stakes now is, do you have an efficient kernel so that you can actually get wall clock speed up?[00:12:14] Idea 3: Selection[00:12:14] Dan Fu: So by 2022, We are starting to have these models that had promising quality primitives, but and, and also promising wall clocks. So you could actually see regimes where they were better than transformers in meaningful ways. That being said, there were, there's still sometimes a quality gap, particularly for language modeling.[00:12:33] Dan Fu: And because languages, It's so core to what we do in sequence modeling these days the, the next, the next key idea that I'm going to talk about is this idea of selection mechanisms. And this is basically an idea of, so you have this recurrent state that you're keeping around that just summarizes everything that, that came before.[00:12:50] Dan Fu: And to get a good sequence model, one of the things that you really need to be able to do is have the model learn what's the best way to pick out pieces from that recurrent [00:13:00] state. So one of the, one of the major ideas here in a line of work called H3, Hungry Hungry Hippos, and also these hyena models were One way you can do this is by just adding some simple element wise gates.[00:13:13] Dan Fu: So versions of these ideas have been around for decades. If you squint at the LSTM paper you, you can probably find, find this gating mechanism. But turns out you can take those old ideas, add them into these new. state space models, and then you can see quality start to pick up. If you've heard of the Mamba model, this also takes the selection to the next level by actually making some changes in that fundamental recurrent state space.[00:13:40] Dan Fu: So, it's not only just this gating that happens around the SSM layer, but also you can actually make The ABCD matrices of your state space model, you can make them data dependent, which will allow you to even better select out different pieces from your hidden state depending on what you're seeing. I'll also point out if you look at the [00:14:00] bottom right of this figure, there's this little triangle with a GPU SRAM, GPU HBM, and this, this is just continuing that trend of when you have a new architecture you, you, you also release it with a kernel to, to, to show that it is hardware efficient, that it, that it can be hardware efficient on modern hardware.[00:14:17] Dan Fu: The, the, one of the next cool things that happened is once we had this understanding of these are the basic pieces, these are the basic principles behind some of the sequence models linear attention actually started to come back. So in earlier this year, there was a model called BASED the, from Simran Arora and, and some other folks, that combined a more principled version of linear attention that basically the, the, the, the two second summary is that it used a Taylor approximation of the softmax attention, combined that with a simple sliding window attention and was starting to able, starting to be able to expand the Pareto frontier of how much data can you recall from your sequence, versus how small is your recurrent state size.[00:14:58] Dan Fu: So those orange dots [00:15:00] are, at the top there, are just showing smaller sequences that can recall more memory.[00:15:07] Just Read Twice[00:15:07] Dan Fu: And the last major idea I think that has been influential in this line of work and is very relatively late breaking just a few months ago, is just the basic idea that when you have these models that are fundamentally more efficient in the sequence length, you maybe don't want to prompt them or use them in exactly the same way.[00:15:26] Dan Fu: So this was a really cool paper called Just Read Twice, also from Simran. That basically said, hey, all these efficient models can process tokens so much more efficiently than transformers that they can sometimes have unfair advantages compared to a simple transformer token. So, or sorry, a simple transformer model.[00:15:44] Dan Fu: So take, for example the standard, the standard use case of you have some long document, you're going to pass it in as input, and then you're going to ask some question about it. One problem you might imagine for a recurrent model where you have a fixed state size is, let's say that [00:16:00] you're. Article is very long, and you're trying to ask about some really niche thing.[00:16:04] Dan Fu: You can imagine it might be hard for the model to know ahead of time what information to put into the hidden state. But these, these, these models are so much more efficient that you can do something really stupid, like, you can just put the document write down the document, write down the question, write down the document again, and then write down the question again, and then this time, the second time that you go over that document, you know exactly what to look for.[00:16:25] Dan Fu: And the cool thing about this is, so this is, And this this results in better quality, especially on these recall intensive tasks. But the other interesting thing is it really takes advantage of the more efficient architectures that, that we're having here. So one of the other, I think, influential ideas in this line of work is if you change the fundamental compute capabilities of your model and the way that it scales, you can actually start to query it at test time differently.[00:16:51] Idea 4: Test Time Compute[00:16:51] Dan Fu: And this actually, of course, goes back to those slides on test time compute. So while everybody's looking at, say, test time compute for big transformer models, [00:17:00] I think potentially a really interesting research question is, how can you take those and how does it change with this new next generation of models?[00:17:09] Dan Fu: So the, I'll just briefly summarize what some of those key ideas were and then talk and then show you briefly kind of what the state of the art is today. So, so the four key ideas are instead of just doing a simple linear attention approximation, instead take ideas that we know from other fields like signal processing, do a more principled approach to your modeling of the sequence.[00:17:32] Idea 2: Hardware & Kernel Support[00:17:32] Dan Fu: Another key idea throughout all these lines of work is you really want. Hardware and kernel support from day one. So, so even if your model is theoretically more efficient if somebody goes and runs it and it's two times slower one of the things that, that we've learned is that if, if you're in that situation, it's, it's just gonna be dead on arrival.[00:17:49] Dan Fu: So you want to be designing your architectures one of the key, key machine learning ideas that has been important for the quality is just making sure that you encode different ways that you can [00:18:00] select from your hidden state and, and really focus on that as a key decider of quality. And finally, I think one of the, the, the emerging new, new things for, for this line of work and something that's quite interesting is, What are the right test time paradigms for these models?[00:18:15] Dan Fu: How do they change relative to relative to what you might do for a standard transformer? I'll briefly end this section. So I've labeled this slide where we are yesterday because Eugene is going to talk about some new models that he released literally this morning. But as of yesterday, some of the really cool results out of the, these efficient alternative models were so AI2 trained this hybrid MOE called Jamba.[00:18:40] Dan Fu: That, that, that seems, that is currently the state of the art for these non transformer architectures. There's this NVIDIA and MIT put out this new diffusion model called SANA recently that one of their key key observations is that you can take a standard diffusion transformer diffusion model, replace the layers with linear [00:19:00] attention, and then that lets you scale to much larger much larger images, much, much Much larger sequences more efficiently.[00:19:07] Dan Fu: And and one thing that I don't think anybody would have called when a few years ago is that one of those gated SSM, gated states based models ended up on the cover of Science because a great group of folks went and trained some DNA models. So that's Michael Polley, Eric Yuen from from Stanford and the Arc Institute.[00:19:26] Dan Fu: So it's, we're really at an exciting time in 2024 where these non transformer, post transformer architectures are showing promise across a wide range. Across a wide range of, of modalities, of applications, and, and of tasks. And with that, I'll pass it on to Eugene, who can tell you a little bit about the latest and greatest with RWKV.[00:19:49] RWKV vs SSMs[00:19:49] Eugene Cheah: So, that's useful? Yeah. You're talking to here. Oh, I'm talking to here. Okay. So, yeah, two streams. Yeah. So, I think one common questions that we tend to get asked, right, is what's the difference between [00:20:00] RWKV and state space? So I think one of the key things to really understand, right the difference between the two groups, right, is that we are actually more like an open source, random internet meets academia kind of situation.[00:20:11] Eugene Cheah: Like, most of us never wrote any paper, but we, we basically look at RNNs and linear intention when intention is all you need came out, and then we decided to like, hey there is a quadratic scaling problem. Why don't we try fixing that instead? So, so, so we end up developing our own branch, but we end up sharing ideas back and forth.[00:20:30] Eugene Cheah: So, and, and we do all this actively in Discord, GitHub, etc. This was so bad for a few years, right, that basically, the average group's H index was so close to zero, right, Illuter. ai actually came in and helped us write our first paper. Great, now our H index is now three, apparently. So, so, so, but, but the thing is, like, a lot of these experiments led to results, and, and, essentially, essentially, we we took the same ideas from linear attention, [00:21:00] and we built on it.[00:21:01] Eugene Cheah: So, to take a step back into, like, how does RWKB handle its own attention mechanic and achieve the same goals of, like, O and compute, respectively, and in focus of our overall goal to make AI accessible to everyone, regardless of language, nation, or compute, that's our goal. We actually train our models primarily on over a hundred languages, which is another topic altogether.[00:21:23] Eugene Cheah: And our goal is to train to even 200 languages to cover all languages in the world. But at the same time, we work on this architecture, To lower the compute cost so that people can run it on Raspberry Pis and on anything. So, how did RWKB break the dependency of LSTM token flow? Because I think to understand architecture, right, it's probably easier to understand it from the RNN lens.[00:21:46] Eugene Cheah: Because that's where we built on. We all, we all state space kind of like try to, try to start anew and took lessons from that and say, So there's a little bit of divergence there. And AKA, this our version of linear attention. So to take step back [00:22:00] all foundation models, be it transformers or non transformers at a very high level, right?[00:22:05] Eugene Cheah: Pumps in the token. I mean, text that things into embeddings and go through a lot of layers. Generate a lot of states where the QKV cache or be iron in states or RW KB states. And outputs and embedding, they are not the same thing. And we just take more layers and more embeddings. And somehow that magically works.[00:22:23] Eugene Cheah: So, if you, if you remember your ancient RNN lessons which we, which we, which we we call best learning these days the general idea is that you have the embedding information flowing all the way up, and when, and you take that information and you flow it back down, and then you process it as part of your LSTM layers.[00:22:41] Eugene Cheah: So, this is how it generally works. Kapati is quoted saying that RNNs are actually unreasonably effective. The problem is this is not scalable. To start doing work on the second token, you need to wait for the first token. And then you need to, and likewise for the third token and fourth token, yada yada.[00:22:55] Eugene Cheah: That is CPU land, not GPU land. So, so, so, you [00:23:00] can have a H100 and you can't even use 1 percent of it. So, so that's kind of why RNNs didn't really take off in the direction that we wanted, like, billions of parameters when it comes to training. So, what did RDAP KV version 0 do? Boom. We just did the dumbest, lamest thing.[00:23:13] Eugene Cheah: Sorry, this is the bottleneck for RNN. We did the dumb thing of removing that line. And it kind of worked. It trained. It sucked, but it kind of worked. Then we were like, hey, then no one cared because the loss was crap, but how do we improve that? And that's essentially where we move forward, because if you see this kind of flow, right, you can actually get your GPU saturated quickly, where it essentially cascades respectively.[00:23:41] Eugene Cheah: So I'm just waiting for this to loop again. So it's like, once you get your first layer, your token to be computed finish. You start to cascade your compute all the way until you are, Hey, I'm using 100 percent of the GPU. So we, we worked on it, and we started going along the principle of that as long as we keep this general architecture [00:24:00] where, where we can cascade and, and be highly efficient with our architecture, nothing is sacred in our architecture.[00:24:06] Eugene Cheah: And we have done some crazy ideas. In fact, you ask us, if you ask me to explain some things in the paper, right, officially in the paper, I'll say we had this idea and we wrote it this way. The reality is someone came with a code, we tested it, it worked, and then we rationalized later. So, so the general[00:24:24] RWKV Arch[00:24:24] Eugene Cheah: The idea behind rwkbr is that we generally have two major blocks that we do.[00:24:30] Eugene Cheah: We call time mix and channel mix. And time mix generally handles handles long term memory states, where essentially, where essentially where we apply the matrix multiplication and Cilu activation functions into processing an input embedding and an output embedding. I'm oversimplifying it because this, This calculation changed every version and we have, like, version 7 right now.[00:24:50] Eugene Cheah: ChannelMix is similar to Base in the sense that it does shorter term attention, where it just looks at the sister token, or the token before it, because [00:25:00] there's a shift in the token shift matrix. I don't really want to go too much into the papers itself, because, like, we do have three papers on this.[00:25:09] Eugene Cheah: Basically, RWKB, RNN for the transformer, ERA, Ego and Pinch, RWKB, Matrix Value State. This is the updated version 5, version 6. And Goldfinch is our, is, is, is, is our hybrid model respectively. We are writing the paper already for V seven and which is, which is for R wk V seven. Called, named Goose, or architectures are named by Bird.[00:25:30] Eugene Cheah: And, I'm going to cover as well, qrwkb, and mama100k, and rwkb, and Where did that lead to? Great! Because we are all GPU poor and to be clear, like, most of this research is done, like, only on a handful H100s, which I had one Google researcher told me that was, like, his experiment budget for a single researcher.[00:25:48] Eugene Cheah: So, our entire organization has less compute than a single researcher in Google. So We, we, one of the things that we explored into was to how do we convert transformer models instead? Because [00:26:00] someone already paid that billion dollars, a million dollars onto training, so why don't we take advantage of those weights?[00:26:05] Eugene Cheah: And, and to, I believe, together AI worked on the lockets for, for the Lambda side of things, and, and we took some ideas from there as well, and we essentially did that for RWKB.[00:26:15] QWRKWv6 launch[00:26:15] Eugene Cheah: And that led to, Q RWKB6, which we just dropped today, a 32 bit instruct preview model, where we took the Quen 32 bit instruct model, freeze the feedforward layer, remove the QKB attention layer, and replace it with RWKB linear layers.[00:26:32] Eugene Cheah: So to be clear, this means we do not have the rwkv channel mix layer, we only have the time mix layer. But but once we do that, we train the rwkv layer. Important is that the feedforward layer needs to be frozen, so the new attention can be learned. And then we unfreeze the feedforward layer, and train all the layers together with a custom learning rate schedule, so that they can learn how to work together.[00:26:54] Eugene Cheah: The end result, surprisingly, And, to be honest, to the frustration of the R. W. [00:27:00] KV MOE team, which ended up releasing the model on the same day, was that, with just a few hours of training on two nodes, we managed to get it to be on par, kind of, with the original QUAN32B model. So, in fact, when the first run, right, that completely confused us, it was like, and I was telling Daniel Goldstein, Smirky, who kind of leads most of our research coordination, When you pitched me this idea, you told me at best you'll get the same level of performance.[00:27:26] Eugene Cheah: You didn't tell me the challenge and score and Winograd score will shoot up. I don't know what's happening there. But it did. MMLU score dropping, that was expected. Because if you think about it, when we were training all the layers, right, we were essentially Like, Frankenstein this thing, and we did brain damage to the feedforward network layer 2 with the new RWKB layers.[00:27:47] Eugene Cheah: But, 76%, hey, somehow it's retained, and we can probably further train this. We didn't even spend more than 3 days training this, so there's a lot more that can be done, hence the preview. This brings up [00:28:00] a big question, because We are already now in the process of converting to 7TB. We are now, this is actually extremely compute efficient to test our attention mechanic.[00:28:10] Eugene Cheah: It's like, it becomes a shortcut. We can, we are already planning to do our version 7 and our hybrid architecture for it. Because we don't need to train from scratch. And we get a really good model out of it. And the other thing that is uncomfortable to say is that because we are doing right now on the 70b is that if this scales correctly to 128k context length, I'm not even talking about a million 128, majority of enterprise workload today is just on 70b at under 32k context length.[00:28:41] Eugene Cheah: That means if this works and the benchmark matches it, It means we can replace the vast majority of current AI workload, unless you want super long context. And then sorry, can someone give us more GPUs? Because we do need the VRAM for super long context, sadly. So yeah, that's what we are working on, and essentially, [00:29:00] we are excited about this to just push it further.[00:29:02] Eugene Cheah: And this conversion process, to be clear, I don't think it's going to be exclusive to RWKB. It probably will work for Mamba as well, I don't see why not. And we will probably see more ideas, or more experiments, or more hybrids, or Yeah, like, one of the weirdest things that I wanted to say outright, and I confirmed this with the Black Mamba team and the Jamba team, which because we did the GoFinch hybrid model, is that none of us understand why a hard hybrid with a state based model to be R.[00:29:28] Eugene Cheah: QA state space and transformer performs better when, than the baseline of both. It's like, it's like when you train one, you expect, and then you replace, you expect the same results. That's our pitch. That's our claim. But somehow when we jam both together, it outperforms both. And that's like one area of emulation that, like, we only have four experiments, plus four teams, that a lot more needs to be done.[00:29:51] Eugene Cheah: But, but these are things that excite me, essentially, because that is what it's potentially we can move ahead for. Which brings us to what comes next.[00:30:00] What's next[00:30:00] [00:30:00][00:30:00] Dan Fu: So, this part is kind of just some, where we'll talk a little bit about stuff that, that we're excited about. Maybe have some wild speculation on, on what, what's, what's coming next.[00:30:12] Dan Fu: And, of course this is also the part that will be more open to questions. So, a couple things that, that I'm excited about is continued hardware model co design for, for these models. So one of the things that we've put out recently is this library called ThunderKittens. It's a CUDA library.[00:30:29] Dan Fu: And one of the things that, that we found frustrating is every time that we built one of these new architectures, and I'm sure you had the exact same experience, we'd have to go and spend two months in CUDA land, like writing these, these new efficient things. And. If we decided to change one thing in PyTorch, like one line of PyTorch code is like a week of CUDA code at least.[00:30:47] Dan Fu: So one of our goals with, with a library like Thunderkitten, so we, we just broke down what are the key principles, what are the key hardware things what are the key, Compute pieces that you get from the hardware. So for example on [00:31:00] H100 everything is really revolves around a warp group matrix multiply operation.[00:31:06] Dan Fu: So you really want your operation to be able to split into relatively small matrix, matrix multiply operations. So like multiplying two 64 by 64 matrices, for example. And so if you know that ahead of time when you're designing your model, that probably gives you you know, some information about how you set the state sizes, how you set the update, how you set the update function.[00:31:27] Dan Fu: So with Thunderkittens we basically built a whole library just around this basic idea that all your basic compute primitives should not be a float, but it should be a matrix, and everything should just be matrix compute. And we've been using that to, to try to both re implement some existing architectures, and also start to design code.[00:31:44] Dan Fu: Some new ones that are really designed with this core with a tensor core primitive in mind. Another thing that that we're, that at least I'm excited about is we, over the last four or five years, we've really been looking at language models as the next thing. But if you've been paying [00:32:00] attention to Twitter there's been a bunch of new next generation models that are coming out.[00:32:04] Dan Fu: So there, there are. So, video generation models that can run real time, that are supported by your mouse and your keyboard, that I'm told if you play with them that, you know, that they only have a few seconds of memory. Can we take that model, can we give it a very long context length so that you could actually maybe generate an entire game state at a time?[00:32:25] Dan Fu: What does that look like for the model? You're certainly not going to do a giant quadratic attention computation to try to run that. Maybe, maybe use some of these new models, or some of these new video generation models that came out. So Sora came out I don't know, two days ago now. But with super long queue times and super long generation times.[00:32:43] Dan Fu: So that's probably a quadratic attention operation at the, at the bottom of it. What if we could remove that and get the same quality, but a lot faster generation time? Or some of the demos that we saw from Paige earlier today. You know, if I have a super long conversation with my [00:33:00] Gemini bot, what if I wanted to remember everything that it's seen in the last week?[00:33:06] Dan Fu: I mean, maybe you don't for personal reasons, but what if I did, you know? What does that mean for the architecture? And I think, you know, that's certainly something I'm pretty excited about. I'm sure you're excited about it too. So, I think we were supposed to have some hot takes, but I honestly don't remember what our hot takes were.[00:33:21] Hot Takes - does anyone really need long context?[00:33:21] Eugene Cheah: Yeah, including the next slide. Hot takes, yes, these are our[00:33:25] Dan Fu: hot takes.[00:33:25] Eugene Cheah: I think the big one on Twitter that we saw, that we shared, was the question is like, is RAG relevant? In the case of, like, the future of, like, state based models?[00:33:38] Dan Fu: Let's see, I haven't played too much with RAG. But when I have. I'll say I found it was a little bit challenging to do research on it because we had this experience over and over again, where you could have any, an embedding model of any quality, so you could have a really, really bad embedding model, or you could have a really, really [00:34:00] good one, By any measure of good.[00:34:03] Dan Fu: And for the final RAG application, it kind of didn't matter. That's what I'll say about RAG while I'm being recorded. I know it doesn't actually answer the question, but[00:34:13] Eugene Cheah: Yeah, so I think a lot of folks are like, extremely excited of the idea of RWKB or State Space potentially having infinite context.[00:34:21] Eugene Cheah: But I think the reality is that when we say infinite context, we just mean a different kind of infinite context, or you, or as it's previously covered, you need to test the model differently. So, think of it more along the lines of the human. Like, I don't remember what I ate for breakfast yesterday.[00:34:37] Eugene Cheah: Yeah, that's the statement that I'll say. And And we humans are not quadratic transformers. If we did, if let's say we increased our brain size for every second we live, we would have exploded by the time we are 5 years old or something like that. And, and I think, I think basically fundamentally for us, right, be it whether we, regardless of whether RWKB, statespace, XLSTM, [00:35:00] etc, our general idea is that instead of that expanding state, that increase in computational cost, what if we have a fixed state size?[00:35:08] Eugene Cheah: And Information theory detects that that fixed state size will have a limit. Just how big of a limit is a question, like, we, like, RWKB is running at 40 megabytes for, for its state. Its future version might run into 400 megabytes. That is like millions of tokens in, if you're talking about mathematically, the maximum possibility.[00:35:29] Eugene Cheah: It's just that I guess we were all more inefficient about it, so maybe we hit 100, 000. And that's kind of like the work we are doing, trying to like push it and maximize it. And that's where the models will start differing, because it will choose to forget things, it will choose to remember things. And that's why I think that there might be some element of right, but it may not be the same right.[00:35:49] Eugene Cheah: It may be the model learn things, and it's like, hmm, I can't remember that, that article. Let me do a database search, to search. Just like us humans, when we can't remember the article in the company. We do a search on Notion. [00:36:00][00:36:00] Dan Fu: I think something that would be really interesting is if you could have facts that are, so right now, the one intuition about language models is that all those parameters are around just to store random facts about the world.[00:36:14] Dan Fu: And this intuition comes from the observation that if you take a really small language model, it can do things like talk to you, or kind of has like the The style of conversation, it can learn that, but where it will usually fall over compared to a much larger one is it'll just be a lot less factual about things that it knows or that it can do.[00:36:32] Dan Fu: But that points to all those weights that we're spending, all that SGD that we're spending to train these models are just being used to store facts. And we have things like databases that are pretty good at storing facts. So I think one thing that would be really interesting is if we could actually have some sort of outside data store that a language model can can look at that that maybe is you know, has has some sort of gradient descent in it, but but would be quite interesting.[00:36:58] Dan Fu: And then maybe you could edit it, delete [00:37:00] facts, you know, change who's president so that it doesn't, it doesn't get lost.[00:37:04] Vibhu: Can we open up Q& A and hot takes for the audience? I have a hot take Q& A. Do these scale? When, when 405B state space model, RAG exists, no one does long context, who's throwing in 2 million token questions, hot takes?[00:37:24] Dan Fu: The, the who's throwing in 2 million token question, I think, is, is a really good question. So I actually, I was going to offer that as a hot take. I mean, my hot take was going to be that long context doesn't matter. I know I just gave a whole talk about it, but you know, what, what's the point of doing research if you can't, you know, play both sides.[00:37:40] Dan Fu: But I think one of the, so I think for both of us, the reason that we first got into this was just from the first principled questions of there's this quadratic thing. Clearly intelligence doesn't need to be quadratic. What is going on? Can we understand it better? You know, since then it's kind of turned into a race, which has [00:38:00] been exciting to watch, like, how much context you can take in.[00:38:03] Dan Fu: But I think it's right. Nobody is actually putting in a two million context prompt into these models. And, and, you know, if they are, maybe we can go, go You know, design a better model to do that particular thing. Yeah, what do you think about that? So you've also been working on this. Do you think long context matters?[00:38:19] Eugene Cheah: So I'm going to burn a bit. How many of you remember the news of Google Gemini supporting 3 million contacts, right? Raise your hand.[00:38:28] Vibhu: Yeah, 2 million.[00:38:29] Eugene Cheah: Oh, it's 2 million.[00:38:31] Eugene Cheah: Yeah, how many of you actually tried that? See?[00:38:34] Vibhu: I use it a lot. You? You work for MindsTV. I use it a lot.[00:38:41] Eugene Cheah: So, for some people that has used, and I think, I think that's the, that's might be, like, this is where my opinion starts to differ, because I think the big labs may have a bigger role in this, because Like, even for RWKB, even when we train non contacts, the reason why I say VRAM is a problem is that because when we did the, we need to backprop [00:39:00] against the states, we actually need to maintain the state in between the tokens by the token length.[00:39:05] Eugene Cheah: So that means we need to actually roll out the whole 1 million contacts if we are actually training 1 million. Which is the same for transformers, actually, but it just means we don't magically reuse the VRAM consumption in the training time space. So that is one of the VRAM bottlenecks, and I'm neither OpenAI nor Google, so donate GPUs if you have too much of them.[00:39:27] Eugene Cheah: But then, putting it back to another paradigm, right, is that I think O1 style reasoning might be actually pushing that direction downwards. In my opinion, this is my partial hot take is that if, let's say you have a super big model, And let's say you have a 70B model that may take double the tokens, but gets the same result.[00:39:51] Eugene Cheah: Strictly speaking, a 70B, and this is even for transformer or non transformer, right? We we'll take less less resources than that 400 B [00:40:00] model, even if it did double the amount thinking. And if that's the case, and we are still all trying to figure this out, maybe the direction for us is really getting the sub 200 B to be as fast as efficient as possible.[00:40:11] Eugene Cheah: We a very efficient architecture that some folks happen to be working on to, to just reason it out over larger and larger context thing.[00:40:20] Question: Yeah. One thing I'm super interested in is. Models that can watch forever? Obviously you cannot train something on infinite context length. How are y'all thinking about that, where you run on a much longer context length than is possible to train on?[00:40:38] Dan Fu: Yeah, it's a, it's a great question. So I think when I think you guys probably had tweets along these lines, too. When we first started doing these things, because these are all recurrent models in theory you could just run it forever. You could just run it forever. And at the very least it won't, it won't like error out on your crash.[00:40:57] Dan Fu: There's another question of whether it can actually [00:41:00] use what it's seen in that infinite context. And I think there, so one place where probably the research and architectures ran faster Then another research is actually the benchmarks for long context. So you turn it on forever. You want to do everything or watch everything.[00:41:16] Dan Fu: What is it that you actually wanted to do? Can we actually build some benchmarks for that? Then measure what's happening. And then ask the question, can the models do it? Is there something else that they need? Yeah, I think that if I were to turn back the clock to 2022, that's probably one of the things I would have done differently, which would have been actually get some long context benchmarks out at the same time as we started pushing context length on all these models.[00:41:41] Eugene Cheah: I will also say the use case. So like, I think we both agree that there's no Infinite memory and the model needs to be able to learn and decide. I think what we have observed for, I think this also fits the state space model, is that one of the key advantages of this alternate attention mechanic that is not based on token position is that the model don't suddenly become crazy when you go past the [00:42:00] 8k training context tank, or a million context tank.[00:42:03] Eugene Cheah: It's actually still stable. It's still able to run, it's still able to rationalize. It just starts forgetting things. But some of these things are still there in latent memory. Some of these things are still somewhat there. That's the whole point of why reading twice works. Things like that. And one of the biggest pushes in this direction is that I think both Statespace and RWKB have Separate papers by other researchers where they use this architecture for time series data.[00:42:26] Eugene Cheah: Weather modeling. So, you are not asking what was the weather five days ago. You're asking what's the weather tomorrow based on the infinite length that we, as long as this Earth and the computer will keep running. So, so, and they found that it is like, better than existing, like, transformer or existing architecture in modeling this weather data.[00:42:47] Eugene Cheah: Control for the param size and stuff. I'm quite sure there are people with larger models. So, so there are things that, that in this case, right, there is future applications if your question is just what's next and not what's 10 years ago.[00:42:59] Dan Fu: Thanks so [00:43:00] much for having us. Get full access to Latent Space at www.latent.space/subscribe
Happy holidays! We'll be sharing snippets from Latent Space LIVE! through the break bringing you the best of 2024! We want to express our deepest appreciation to event sponsors AWS, Daylight Computer, Thoth.ai, StrongCompute, Notable Capital, and most of all our LS supporters who helped fund the venue and A/V production!For NeurIPS last year we did our standard conference podcast coverage interviewing selected papers (that we have now also done for ICLR and ICML), however we felt that we could be doing more to help AI Engineers 1) get more industry-relevant content, and 2) recap 2024 year in review from experts. As a result, we organized the first Latent Space LIVE!, our first in person miniconference, at NeurIPS 2024 in Vancouver.Since Nathan Lambert ( Interconnects ) joined us for the hit RLHF 201 episode at the start of this year, it is hard to overstate how much Open Models have exploded this past year. In 2023 only five names were playing in the top LLM ranks, Mistral, Mosaic's MPT, TII UAE's Falcon, Yi from Kai-Fu Lee's 01.ai, and of course Meta's Llama 1 and 2. This year a whole cast of new open models have burst on the scene, from Google's Gemma and Cohere's Command R, to Alibaba's Qwen and Deepseek models, to LLM 360 and DCLM and of course to the Allen Institute's OLMo, OL MOE, Pixmo, Molmo, and Olmo 2 models. We were honored to host Luca Soldaini, one of the research leads on the Olmo series of models at AI2.Pursuing Open Model research comes with a lot of challenges beyond just funding and access to GPUs and datasets, particularly the regulatory debates this year across Europe, California and the White House. We also were honored to hear from and Sophia Yang, head of devrel at Mistral, who also presented a great session at the AI Engineer World's Fair Open Models track!Full Talk on YouTubePlease like and subscribe!Timestamps* 00:00 Welcome to Latent Space Live * 00:12 Recap of 2024: Best Moments and Keynotes * 01:22 Explosive Growth of Open Models in 2024 * 02:04 Challenges in Open Model Research * 02:38 Keynote by Luca Soldani: State of Open Models * 07:23 Significance of Open Source AI Licenses * 11:31 Research Constraints and Compute Challenges * 13:46 Fully Open Models: A New Trend * 27:46 Mistral's Journey and Innovations * 32:57 Interactive Demo: Lachat Capabilities * 36:50 Closing Remarks and NetworkingTranscriptSession3Audio[00:00:00] AI Charlie: Welcome to Latent Space Live, our first mini conference held at NeurIPS 2024 in Vancouver. This is Charlie, your AI co host. As a special treat this week, we're recapping the best of 2024 going domain by domain. We sent out a survey to the over 900 of you who told us what you wanted, and then invited the best speakers in the latent space network to cover each field.[00:00:28] AI Charlie: 200 of you joined us in person throughout the day, with over 2, 200 watching live online. Our next keynote covers the state of open models in 2024, with Luca Soldani and Nathan Lambert of the Allen Institute for AI, with a special appearance from Dr. Sophia Yang of Mistral. Our first hit episode of 2024 was with Nathan Lambert on RLHF 201 back in January.[00:00:57] AI Charlie: Where he discussed both reinforcement learning for language [00:01:00] models and the growing post training and mid training stack with hot takes on everything from constitutional AI to DPO to rejection sampling and also previewed the sea change coming to the Allen Institute. And to Interconnects, his incredible substack on the technical aspects of state of the art AI training.[00:01:18] AI Charlie: We highly recommend subscribing to get access to his Discord as well. It is hard to overstate how much open models have exploded this past year. In 2023, only five names were playing in the top LLM ranks. Mistral, Mosaics MPT, and Gatsby. TII UAE's Falcon, Yi, from Kaifu Lee's 01. ai, And of course, Meta's Lama 1 and 2.[00:01:43] AI Charlie: This year, a whole cast of new open models have burst on the scene. From Google's Jemma and Cohere's Command R, To Alibaba's Quen and DeepSeq models, to LLM360 and DCLM, and of course, to the Allen Institute's OLMO, [00:02:00] OLMOE, PIXMO, MOLMO, and OLMO2 models. Pursuing open model research comes with a lot of challenges beyond just funding and access to GPUs and datasets, particularly the regulatory debates this year across Europe.[00:02:14] AI Charlie: California and the White House. We also were honored to hear from Mistral, who also presented a great session at the AI Engineer World's Fair Open Models track. As always, don't forget to check the show notes for the YouTube link to their talk, as well as their slides. Watch out and take care.[00:02:35] Luca Intro[00:02:35] Luca Soldaini: Cool. Yeah, thanks for having me over. I'm Luca. I'm a research scientist at the Allen Institute for AI. I threw together a few slides on sort of like a recap of like interesting themes in open models for, for 2024. Have about maybe 20, 25 minutes of slides, and then we can chat if there are any questions.[00:02:57] Luca Soldaini: If I can advance to the next slide. [00:03:00] Okay, cool. So I did the quick check of like, to sort of get a sense of like, how much 2024 was different from 2023. So I went on Hugging Face and sort of get, tried to get a picture of what kind of models were released in 2023 and like, what do we get in 2024?[00:03:16] Luca Soldaini: 2023 we get, we got things like both LLAMA 1 and 2, we got Mistral, we got MPT, Falcon models, I think the YI model came in at the end. Tail end of the year. It was a pretty good year. But then I did the same for 2024. And it's actually quite stark difference. You have models that are, you know, reveling frontier level.[00:03:38] Luca Soldaini: Performance of what you can get from closed models from like Quen, from DeepSeq. We got Llama3. We got all sorts of different models. I added our own Olmo at the bottom. There's this growing group of like, Fully open models that I'm going to touch on a little bit later. But you know, just looking at the slides, it feels like 2024 [00:04:00] was just smooth sailing, happy knees, much better than previous year.[00:04:04] Luca Soldaini: And you know, you can plot you can pick your favorite benchmark Or least favorite, I don't know, depending on what point you're trying to make. And plot, you know, your closed model, your open model and sort of spin it in ways that show that, oh, you know open models are much closer to where closed models are today versus to Versus last year where the gap was fairly significant.[00:04:29] Luca Soldaini: So one thing that I think I don't know if I have to convince people in this room, but usually when I give this talks about like open models, there is always like this background question in, in, in people's mind of like, why should we use open models? APIs argument, you know, it's, it's. Just an HTTP request to get output from a, from one of the best model out there.[00:04:53] Luca Soldaini: Why do I have to set up infra and use local models? And there are really like two answer. There is the more [00:05:00] researchy answer for this, which is where it might be. Background lays, which is just research. If you want to do research on language models, research thrives on, on open models, there is like large swath of research on modeling, on how these models behave on evaluation and inference on mechanistic interpretability that could not happen at all if you didn't have open models they're also for AI builders, they're also like.[00:05:30] Luca Soldaini: Good use cases for using local models. You know, you have some, this is like a very not comprehensive slides, but you have things like there are some application where local models just blow closed models out of the water. So like retrieval, it's a very clear example. We might have like constraints like Edge AI applications where it makes sense.[00:05:51] Luca Soldaini: But even just like in terms of like stability, being able to say this model is not changing under the hood. It's, there's plenty of good cases for, [00:06:00] for open models. And the community is just not models. Is I stole this slide from one of the Quent2 announcement blog posts. But it's super cool to see like how much tech exists around open models and serving them on making them efficient and hosting them.[00:06:18] Luca Soldaini: It's pretty cool. And so. It's if you think about like where the term opens come from, comes from like the open source really open models meet the core tenants of, of open, of open source specifically when it comes around collaboration, there is truly a spirit, like through these open models, you can build on top of other people.[00:06:41] Luca Soldaini: innovation. We see a lot of these even in our own work of like, you know, as we iterate in the various versions of Alma it's not just like every time we collect from scratch all the data. No, the first step is like, okay, what are the cool data sources and datasets people have put [00:07:00] together for language model for training?[00:07:01] Luca Soldaini: Or when it comes to like our post training pipeline We one of the steps is you want to do some DPO and you use a lot of outputs of other models to improve your, your preference model. So it's really having like an open sort of ecosystem benefits and accelerates the development of open models.[00:07:23] The Definition of Open Models[00:07:23] Luca Soldaini: One thing that we got in 2024, which is not a specific model, but I thought it was really significant, is we first got we got our first open source AI definition. So this is from the open source initiative they've been generally the steward of a lot of the open source licenses when it comes to software and so they embarked on this journey in trying to figure out, okay, How does a license, an open source license for a model look like?[00:07:52] Luca Soldaini: Majority of the work is very dry because licenses are dry. So I'm not going to walk through the license step by [00:08:00] step, but I'm just going to pick out one aspect that is very good and then one aspect that personally feels like it needs improvement on the good side. This this open source AI license actually.[00:08:13] Luca Soldaini: This is very intuitive. If you ever build open source software and you have some expectation around like what open source looks like for software for, for AI, sort of matches your intuition. So, the weights need to be fairly available the code must be released with an open source license and there shouldn't be like license clauses that block specific use cases.[00:08:39] Luca Soldaini: So. Under this definition, for example, LLAMA or some of the QUEN models are not open source because the license says you can't use this model for this or it says if you use this model you have to name the output this way or derivative needs to be named that way. Those clauses don't meet open source [00:09:00] definition and so they will not be covered.[00:09:02] Luca Soldaini: The LLAMA license will not be covered under the open source definition. It's not perfect. One of the thing that, um, internally, you know, in discussion with with OSI, we were sort of disappointed is around the language. For data. So you might imagine that an open source AI model means a model where the data is freely available.[00:09:26] Luca Soldaini: There were discussion around that, but at the end of the day, they decided to go with a softened stance where they say a model is open source if you provide sufficient detail information. On how to sort of replicate the data pipeline. So you have an equivalent system, sufficient, sufficiently detailed.[00:09:46] Luca Soldaini: It's very, it's very fuzzy. Don't like that. An equivalent system is also very fuzzy. And this doesn't take into account the accessibility of the process, right? It might be that you provide enough [00:10:00] information, but this process costs, I don't know, 10 million to do. Now the open source definition. Like, any open source license has never been about accessibility, so that's never a factor in open source software, how accessible software is.[00:10:14] Luca Soldaini: I can make a piece of open source, put it on my hard drive, and never access it. That software is still open source, the fact that it's not widely distributed doesn't change the license, but practically there are expectations of like, what we want good open sources to be. So, it's, It's kind of sad to see that the data component in this license is not as, as, Open as some of us would like would like it to be.[00:10:40] Challenges for Open Models[00:10:40] Luca Soldaini: and I linked a blog post that Nathan wrote on the topic that it's less rambly and easier to follow through. One thing that in general, I think it's fair to say about the state of open models in 2024 is that we know a lot more than what we knew in, [00:11:00] in 2023. Like both on the training data, like And the pre training data you curate on like how to do like all the post training, especially like on the RL side.[00:11:10] Luca Soldaini: You know, 2023 was a lot of like throwing random darts at the board. I think 2024, we have clear recipes that, okay, don't get the same results as a closed lab because there is a cost in, in actually matching what they do. But at least we have a good sense of like, okay, this is, this is the path to get state of the art language model.[00:11:31] Luca Soldaini: I think that one thing that it's a downside of 2024 is that I think we are more research constrained in 2023. It feels that, you know, the barrier for compute that you need to, to move innovation along as just being right rising and rising. So like, if you go back to this slide, there is now this, this cluster of models that are sort of released by the.[00:11:57] Luca Soldaini: Compute rich club. Membership is [00:12:00] hotly debated. You know, some people don't want to be. Called the rich because it comes to expectations. Some people want to be called rich, but I don't know, there's debate, but like, these are players that have, you know, 10, 000, 50, 000 GPUs at minimum. And so they can do a lot of work and a lot of exploration and improving models that it's not very accessible.[00:12:21] Luca Soldaini: To give you a sense of like how I personally think about. Research budget for each part of the, of the language model pipeline is like on the pre training side, you can maybe do something with a thousand GPUs, really you want 10, 000. And like, if you want real estate of the art, you know, your deep seek minimum is like 50, 000 and you can scale to infinity.[00:12:44] Luca Soldaini: The more you have, the better it gets. Everyone on that side still complains that they don't have enough GPUs. Post training is a super wide sort of spectrum. You can do as little with like eight GPUs as long as you're able to [00:13:00] run, you know, a good version of, say, a LLAMA model, you can do a lot of work there.[00:13:05] Luca Soldaini: You can scale a lot of the methodology, just like scales with compute, right? If you're interested in you know, your open replication of what OpenAI's O1 is you're going to be on the 10K spectrum of our GPUs. Inference, you can do a lot with very few resources. Evaluation, you can do a lot with, well, I should say at least one GPUs if you want to evaluate GPUs.[00:13:30] Luca Soldaini: Open models but in general, like if you are, if you care a lot about intervention to do on this model, which it's my prefer area of, of research, then, you know, the resources that you need are quite, quite significant. Yeah. One other trends that has emerged in 2024 is this cluster of fully open models.[00:13:54] Luca Soldaini: So Omo the model that we built at ai, two being one of them and you know, it's nice [00:14:00] that it's not just us. There's like a cluster of other mostly research efforts who are working on this. And so it's good to to give you a primer of what like fully open means. So fully open, the easy way to think about it is instead of just releasing a model checkpoint that you run, you release a full recipe so that other people working on it.[00:14:24] Luca Soldaini: Working on that space can pick and choose whatever they want from your recipe and create their own model or improve on top of your model. You're giving out the full pipeline and all the details there instead of just like the end output. So I pull up the screenshot from our recent MOE model.[00:14:43] Luca Soldaini: And like for this model, for example, we released the model itself. Data that was trained on, the code, both for training and inference all the logs that we got through the training run, as well as every intermediate checkpoint and like the fact that you release different part of the pipeline [00:15:00] allows others to do really cool things.[00:15:02] Luca Soldaini: So for example, this tweet from early this year from folks in news research they use our pre training data to do a replication of the BitNet paper in the open. So they took just a Really like the initial part of a pipeline and then the, the thing on top of it. It goes both ways.[00:15:21] Luca Soldaini: So for example, for the Olmo2 model a lot of our pre trained data for the first stage of pre training was from this DCLM initiative that was led by folks Ooh, a variety of ins a variety of institutions. It was a really nice group effort. But you know, for When it was nice to be able to say, okay, you know, the state of the art in terms of like what is done in the open has improved.[00:15:46] AI2 Models - Olmo, Molmo, Pixmo etc[00:15:46] Luca Soldaini: We don't have to like do all this work from scratch to catch up the state of the art. We can just take it directly and integrate it and do our own improvements on top of that. I'm going to spend a few minutes doing like a [00:16:00] shameless plug for some of our fully open recipes. So indulge me in this.[00:16:05] Luca Soldaini: So a few things that we released this year was, as I was mentioning, there's OMOE model which is, I think still is state of the art MOE model in its size class. And it's also. Fully open, so every component of this model is available. We released a multi modal model called Molmo. Molmo is not just a model, but it's a full recipe of how you go from a text only model to a multi modal model, and we apply this recipe on top of Quent checkpoints, on top of Olmo checkpoints, as well as on top of OlmoE.[00:16:37] Luca Soldaini: And I think there'd be a replication doing that on top of Mistral as well. The post training side we recently released 2. 0. 3. Same story. This is a recipe on how you go from a base model to A state of the art post training model. We use the Tulu recipe on top of Olmo, on top of Llama, and then there's been open replication effort [00:17:00] to do that on top of Quen as well.[00:17:02] Luca Soldaini: It's really nice to see like, you know, when your recipe sort of, it's kind of turnkey, you can apply it to different models and it kind of just works. And finally, the last thing we released this year was Olmo 2, which so far is the best state of the art. Fully open language model a Sera combines aspect from all three of these previous models.[00:17:22] Luca Soldaini: What we learn on the data side from MomoE and what we learn on like making models that are easy to adapt from the Momo project and the Tulu project. I will close with a little bit of reflection of like ways this, this ecosystem of open models like it's not all roses. It's not all happy. It feels like day to day, it's always in peril.[00:17:44] Luca Soldaini: And, you know, I talked a little bit about like the compute issues that come with it. But it's really not just compute. One thing that is on top of my mind is due to like the environment and how you know, growing feelings about like how AI is treated. [00:18:00] It's actually harder to get access to a lot of the data that was used to train a lot of the models up to last year.[00:18:06] Luca Soldaini: So this is a screenshot from really fabulous work from Shane Longpre who's, I think is in Europe about Just access of like diminishing access to data for language model pre training. So what they did is they went through every snapshot of common crawl. Common crawl is this publicly available scrape of the, of a subset of the internet.[00:18:29] Luca Soldaini: And they looked at how For any given website whether a website that was accessible in say 2017, what, whether it was accessible or not in 2024. And what they found is as a reaction to like the close like of the existence of closed models like OpenAI or Cloud GPT or Cloud a lot of content owners have blanket Blocked any type of crawling to your website.[00:18:57] Luca Soldaini: And this is something that we see also internally at [00:19:00] AI2. Like one project that we started this year is we wanted to, we wanted to understand, like, if you're a good citizen of the internet and you crawl following sort of norms and policy that have been established in the last 25 years, what can you crawl?[00:19:17] Luca Soldaini: And we found that there's a lot of website where. The norms of how you express preference of whether to crawl your data or not are broken. A lot of people would block a lot of crawling, but do not advertise that in RobustDXT. You can only tell that they're crawling, that they're blocking you in crawling when you try doing it.[00:19:37] Luca Soldaini: Sometimes you can't even crawl the robots. txt to, to check whether you're allowed or not. And then a lot of websites there's, there's like all these technologies that historically have been, have existed to make websites serving easier such as Cloudflare or DNS. They're now being repurposed for blocking AI or any type of crawling [00:20:00] in a way that is Very opaque to the content owners themselves.[00:20:04] Luca Soldaini: So, you know, you go to these websites, you try to access them and they're not available and you get a feeling it's like, Oh, someone changed, something changed on the, on the DNS side that it's blocking this and likely the content owner has no idea. They're just using a Cloudflare for better, you know, load balancing.[00:20:25] Luca Soldaini: And this is something that was sort of sprung on them with very little notice. And I think the problem is this, this blocking or ideas really, it impacts people in different ways. It disproportionately helps companies that have a headstart, which are usually the closed labs and it hurts incoming newcomer players where either have now to do things in a sketchy way or you're never going to get that content that the closed lab might have.[00:20:54] Luca Soldaini: So there's a lot, it was a lot of coverage. I'm going to plug Nathan's blog post again. That is, [00:21:00] that I think the title of this one is very succinct which is like, we're actually not, You know, before thinking about running out of training data, we're actually running out of open training data. And so if we want better open models they should be on top of our mind.[00:21:13] Regulation and Lobbying[00:21:13] Luca Soldaini: The other thing that has emerged is that there is strong lobbying efforts on trying to define any kind of, AI as like a new extremely risky and I want to be precise here. Like the problem is now, um, like the problem is not not considering the risk of this technology. Every technology has risks that, that should always be considered.[00:21:37] Luca Soldaini: The thing that it's like to me is sorry, is ingenious is like just putting this AI on a pedestal and calling it like, An unknown alien technology that has like new and undiscovered potentials to destroy humanity. When in reality, all the dangers I think are rooted in [00:22:00] dangers that we know from existing software industry or existing issues that come with when using software on on a lot of sensitive domains, like medical areas.[00:22:13] Luca Soldaini: And I also noticed a lot of efforts that have actually been going on and trying to make this open model safe. I pasted one here from AI2, but there's actually like a lot of work that has been going on on like, okay, how do you make, if you're distributing this model, Openly, how do you make it safe?[00:22:31] Luca Soldaini: How, what's the right balance between accessibility on open models and safety? And then also there's annoying brushing of sort of concerns that are then proved to be unfounded under the rug. You know, if you remember the beginning of this year, it was all about bio risk of these open models.[00:22:48] Luca Soldaini: The whole thing fizzled because as being Finally, there's been like rigorous research, not just this paper from Cohere folks, but it's been rigorous research showing [00:23:00] that this is really not a concern that we should be worried about. Again, there is a lot of dangerous use of AI applications, but this one was just like, A lobbying ploy to just make things sound scarier than they actually are.[00:23:15] Luca Soldaini: So I got to preface this part. It says, this is my personal opinion. It's not my employer, but I look at things like the SP 1047 from, from California. And I think we kind of dodged a bullet on, on this legislation. We, you know, the open source community, a lot of the community came together at the last, sort of the last minute and did a very good effort trying to explain all the negative impact of this bill.[00:23:43] Luca Soldaini: But There's like, I feel like there's a lot of excitement on building these open models or like researching on these open models. And lobbying is not sexy it's kind of boring but it's sort of necessary to make sure that this ecosystem can, can really [00:24:00] thrive. This end of presentation, I have Some links, emails, sort of standard thing in case anyone wants to reach out and if folks have questions or anything they wanted to discuss.[00:24:13] Luca Soldaini: Is there an open floor? I think we have Sophia[00:24:16] swyx: who wants to who one, one very important open model that we haven't covered is Mistral. Ask her on this slide. Yeah, yeah. Well, well, it's nice to have the Mistral person talk recap the year in Mistral. But while Sophia gets set up, does anyone have like, just thoughts or questions about the progress in this space?[00:24:32] Questions - Incentive Alignment[00:24:32] swyx: Do you always have questions?[00:24:34] Quesiton: I'm very curious how we should build incentives to build open models, things like Francois Chollet's ArcPrize, and other initiatives like that. What is your opinion on how we should better align incentives in the community so that open models stay open?[00:24:49] Luca Soldaini: The incentive bit is, like, really hard.[00:24:51] Luca Soldaini: Like, even It's something that I actually, even we think a lot about it internally because like building open models is risky. [00:25:00] It's very expensive. And so people don't want to take risky bets. I think the, definitely like the challenges like our challenge, I think those are like very valid approaches for it.[00:25:13] Luca Soldaini: And then I think in general, promoting, building, so, any kind of effort to participate in this challenge, in those challenges, if we can promote doing that on top of open models and sort of really lean into like this multiplier effect, I think that is a good way to go. If there were more money for that.[00:25:35] Luca Soldaini: For efforts like research efforts around open models. There's a lot of, I think there's a lot of investments in companies that at the moment are releasing their model in the open, which is really cool. But it's usually more because of commercial interest and not wanting to support this, this like open models in the longterm, it's a really hard problem because I think everyone is operating sort of [00:26:00] in what.[00:26:01] Luca Soldaini: Everyone is at their local maximum, right? In ways that really optimize their position on the market. Global maximum is harder to achieve.[00:26:11] Question2: Can I ask one question? No.[00:26:12] Luca Soldaini: Yeah.[00:26:13] Question2: So I think one of the gap between the closed and open source models is the mutability. So the closed source models like chat GPT works pretty good on the low resource languages, which is not the same on the open, open source models, right?[00:26:27] Question2: So is it in your plan to improve on that?[00:26:32] Luca Soldaini: I think in general,[00:26:32] Luca Soldaini: yes, is I think it's. I think we'll see a lot of improvements there in, like, 2025. Like, there's groups like, Procurement English on the smaller side that are already working on, like, better crawl support, multilingual support. I think what I'm trying to say here is you really want to be experts.[00:26:54] Luca Soldaini: who are actually in those countries that teach those languages to [00:27:00] participate in the international community. To give you, like, a very easy example I'm originally from Italy. I think I'm terribly equipped to build a model that works well in Italian. Because one of the things you need to be able to do is having that knowledge of, like, okay, how do I access, you know, how Libraries, or content that is from this region that covers this language.[00:27:23] Luca Soldaini: I've been in the US long enough that I no longer know. So, I think that's the efforts that folks in Central Europe, for example, are doing. Around like, okay, let's tap into regional communities. To get access you know, to bring in collaborators from those areas. I think it's going to be, like, very crucial for getting products there.[00:27:46] Mistral intro[00:27:46] Sophia Yang: Hi everyone. Yeah, I'm super excited to be here to talk to you guys about Mistral. A really short and quick recap of what we have done, what kind of models and products we have released in the [00:28:00] past year and a half. So most of you We have already known that we are a small startup funded about a year and a half ago in Paris in May, 2003, it was funded by three of our co founders, and in September, 2003, we released our first open source model, Mistral 7b yeah, how, how many of you have used or heard about Mistral 7b?[00:28:24] Sophia Yang: Hey, pretty much everyone. Thank you. Yeah, it's our Pretty popular and community. Our committee really loved this model, and in December 23, we, we released another popular model with the MLE architecture Mr. A X seven B and oh. Going into this year, you can see we have released a lot of things this year.[00:28:46] Sophia Yang: First of all, in February 2004, we released MrSmall, MrLarge, LeChat, which is our chat interface, I will show you in a little bit. We released an embedding model for, you [00:29:00] know, converting your text into embedding vectors, and all of our models are available. The, the big cloud resources. So you can use our model on Google cloud, AWS, Azure Snowflake, IBM.[00:29:16] Sophia Yang: So very useful for enterprise who wants to use our model through cloud. And in April and May this year, we released another powerful open source MOE model, AX22B. And we also released our first code. Code Model Coastal, which is amazing at 80 plus languages. And then we provided another fine tuning service for customization.[00:29:41] Sophia Yang: So because we know the community love to fine tune our models, so we provide you a very nice and easy option for you to fine tune our model on our platform. And also we released our fine tuning code base called Menstrual finetune. It's open source, so feel free to take it. Take a look and.[00:29:58] Sophia Yang: More models. [00:30:00] On July 2, November this year, we released many, many other models. First of all is the two new small, best small models. We have Minestra 3B great for Deploying on edge devices we have Minstrel 8B if you used to use Minstrel 7B, Minstrel 8B is a great replacement with much stronger performance than Minstrel 7B.[00:30:25] Sophia Yang: We also collaborated with NVIDIA and open sourced another model, Nemo 12B another great model. And Just a few weeks ago, we updated Mistral Large with the version 2 with the updated, updated state of the art features and really great function calling capabilities. It's supporting function calling in LatentNate.[00:30:45] Sophia Yang: And we released two multimodal models Pixtral 12b. It's this open source and Pixtral Large just amazing model for, models for not understanding images, but also great at text understanding. So. Yeah, a [00:31:00] lot of the image models are not so good at textual understanding, but pixel large and pixel 12b are good at both image understanding and textual understanding.[00:31:09] Sophia Yang: And of course, we have models for research. Coastal Mamba is built on Mamba architecture and MathRoll, great with working with math problems. So yeah, that's another model.[00:31:29] Sophia Yang: Here's another view of our model reference. We have several premier models, which means these models are mostly available through our API. I mean, all of the models are available throughout our API, except for Ministry 3B. But for the premier model, they have a special license. Minstrel research license, you can use it for free for exploration, but if you want to use it for enterprise for production use, you will need to purchase a license [00:32:00] from us.[00:32:00] Sophia Yang: So on the top row here, we have Minstrel 3b and 8b as our premier model. Minstrel small for best, best low latency use cases, MrLarge is great for your most sophisticated use cases. PixelLarge is the frontier class multimodal model. And, and we have Coastral for great for coding and then again, MrEmbedding model.[00:32:22] Sophia Yang: And The bottom, the bottom of the slides here, we have several Apache 2. 0 licensed open way models. Free for the community to use, and also if you want to fine tune it, use it for customization, production, feel free to do so. The latest, we have Pixtros 3 12b. We also have Mr. Nemo mum, Coastal Mamba and Mastro, as I mentioned, and we have three legacy models that we don't update anymore.[00:32:49] Sophia Yang: So we recommend you to move to our newer models if you are still using them. And then, just a few weeks ago, [00:33:00] we did a lot of, uh, improvements to our code interface, Lachette. How many of you have used Lachette? Oh, no. Only a few. Okay. I highly recommend Lachette. It's chat. mistral. ai. It's free to use.[00:33:16] Sophia Yang: It has all the amazing capabilities I'm going to show you right now. But before that, Lachette in French means cat. So this is actually a cat logo. If you You can tell this is the cat eyes. Yeah. So first of all, I want to show you something Maybe let's, let's take a look at image understanding.[00:33:36] Sophia Yang: So here I have a receipts and I want to ask, just going to get the prompts. Cool. So basically I have a receipt and I said I ordered I don't know. Coffee and the sausage. How much do I owe? Add a 18 percent tip. So hopefully it was able to get the cost of the coffee and the [00:34:00] sausage and ignore the other things.[00:34:03] Sophia Yang: And yeah, I don't really understand this, but I think this is coffee. It's yeah. Nine, eight. And then cost of the sausage, we have 22 here. And then it was able to add the cost, calculate the tip, and all that. Great. So, it's great at image understanding, it's great at OCR tasks. So, if you have OCR tasks, please use it.[00:34:28] Sophia Yang: It's free on the chat. It's also available through our API. And also I want to show you a Canvas example. A lot of you may have used Canvas with other tools before. But, With Lachat, it's completely free again. Here, I'm asking it to create a canvas that's used PyScript to execute Python in my browser.[00:34:51] Sophia Yang: Let's see if it works. Import this. Okay, so, yeah, so basically it's executing [00:35:00] Python here. Exactly what we wanted. And the other day, I was trying to ask Lachat to create a game for me. Let's see if we can make it work. Yeah, the Tetris game. Yep. Let's just get one row. Maybe. Oh no. Okay. All right. You get the idea. I failed my mission. Okay. Here we go. Yay! Cool. Yeah. So as you can see, Lachet can write, like, a code about a simple game pretty easily. And you can ask Lachet to explain the code. Make updates however you like. Another example. There is a bar here I want to move.[00:35:48] Sophia Yang: Okay, great, okay. And let's go back to another one. Yeah, we also have web search capabilities. Like, you can [00:36:00] ask what's the latest AI news. Image generation is pretty cool. Generate an image about researchers. Okay. In Vancouver? Yeah, it's Black Forest Labs flux Pro. Again, this is free, so Oh, cool.[00:36:19] Sophia Yang: I guess researchers here are mostly from University of British Columbia. That's smart. Yeah. So this is Laia ira. Please feel free to use it. And let me know if you have any feedback. We're always looking for improvement and we're gonna release a lot more powerful features in the coming years.[00:36:37] Sophia Yang: Thank you. Get full access to Latent Space at www.latent.space/subscribe
A recent survey by ISG indicates that nearly two-thirds of executives in the Americas and Europe are utilizing MSPs for their AI initiatives, with enterprise spending on these projects expected to rise by 50% in 2025. Sobel highlights the shift towards smaller, domain-specific AI models, which are anticipated to become mainstream as organizations seek more cost-effective and efficient solutions tailored to their specific needs.Host Dave Sobel elaborates on the advantages of small language models, which require less computing power and can be trained more quickly than their larger counterparts. Major tech companies like Microsoft, Meta, and Google are already developing these models for applications such as marketing and customer support. This trend presents MSPs with opportunities to pivot from generic IT services to specialized, process-driven support, focusing on process reengineering and small AI model specialization to meet the evolving demands of enterprises.The episode also covers recent developments from OpenAI, including the launch of ChatGPT Pro, which features an upgraded reasoning model, O1. This new model promises enhanced performance in coding and mathematics, while OpenAI's new text-to-video AI model, Sora, allows users to generate videos from text. Sobel notes that while these advancements are exciting, they come with challenges, particularly regarding the potential for deceptive behavior in AI models, as highlighted by recent research.Finally, Sobel discusses the broader implications of AI adoption in the enterprise sector, emphasizing the need for a sustainable revenue model as the industry faces high operational costs and legal challenges. He raises critical questions about the right applications for AI and the importance of profitability across the supply chain. As businesses increasingly integrate AI to enhance efficiency, Sobel encourages listeners to remain informed about the strengths and limitations of AI technologies, particularly in high-stakes environments.Four things to know today00:00 MSPs Drive Generative AI Adoption as Enterprise Spending on AI Projects Grows by 50% by 202505:15 ChatGPT Pro Debuts with Enhanced o1 Model: IT Services Brace for Advanced AI in Coding and Decision-Making 09:50 Domain-Specific AI: How Shopping Agents and 15-Day Forecasts Highlight Contrasting Use Cases11:42 Generative AI at a Crossroads: Balancing Practical Applications with Sustainable Revenue Models Supported by: https://tdsynnex.com/StreamOneIonhttps://www.huntress.com/mspradio/ All our Sponsors: https://businessof.tech/sponsors/ Do you want the show on your podcast app or the written versions of the stories? Subscribe to the Business of Tech: https://www.businessof.tech/subscribe/Looking for a link from the stories? The entire script of the show, with links to articles, are posted in each story on https://www.businessof.tech/ Support the show on Patreon: https://patreon.com/mspradio/ Want to be a guest on Business of Tech: Daily 10-Minute IT Services Insights? Send Dave Sobel a message on PodMatch, here: https://www.podmatch.com/hostdetailpreview/businessoftech Want our stuff? Cool Merch? Wear “Why Do We Care?” - Visit https://mspradio.myspreadshop.com Follow us on:LinkedIn: https://www.linkedin.com/company/28908079/YouTube: https://youtube.com/mspradio/Facebook: https://www.facebook.com/mspradionews/Instagram: https://www.instagram.com/mspradio/TikTok: https://www.tiktok.com/@businessoftechBluesky: https://bsky.app/profile/businessof.tech