Podcasts about justage

  • 3PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 28, 2005LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about justage

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Inkohaerente Lichtsysteme für die Fluoreszenzdiagnostik und die Photodynamische Therapie

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19

Play Episode Listen Later Jun 28, 2005


Die endoskopische Fluoreszenzdiagnostik (FD) hat sich in den letzten Jahren zu einer vielversprechenden Alternative und Ergänzung bei der Erkennung und Behandlungunterstützung neoplastischer Veränderungen entwickelt. Die derzeit auf dem Markt verfügbaren Systeme zur endoskopischen FD besitzen jedoch noch Optimierungspotentiale, welche die klinische Durchführung der Methode weiter verbessern könnten. Ausgehend von einer Fluoreszenzanregungslichtquelle für den sichtbaren Bereich (D-light-System) ist daher ein System zur Ultraviolett (UV)-Anregung konzipiert und entwickelt worden, mit dem entscheidende Verbesserungen erzielt werden konnten. Dieses inkohärente UV-Lichtsystem beinhaltet ein optimiertes Kondensorsystems, das aus einem speziellen Filtersatz sowie einer neuen leistungsstarken UV-A emittierenden Lampe besteht. Die hohe Ausgangsleistung des UV-Lichtsystems resultiert in einer effizienten Anregung des Photosensibilisa-tors (PS) und führt somit zu einer optimalen Fluoreszenzdarstellung des Tumorgewebes. Komplettiert wird das UV-Lichtsystem durch ein spezielles Endoskop mit einem UV-transmittierenden Lichtzuführungssystem. Eine Risikobetrachtung ergab, dass unter der Berücksichtigung der geltenden Grenzwerte keine schädigende Wirkung für den Patienten durch die mit dem UV-Lichtsystem erzeugte Strahlung, bei einer Systemkonfiguration mit maximaler Lichttransmission, auftritt. Die klinisch relevanten Untersuchungsergebnisse wurden an einem Gewebephantom, in vitro an Glioblastomgewebeproben und in vivo am Tier sowie in vivo in der menschlichen Mundhöhle und Harnblase erzielt. Für eine quantitative Beurteilung des UV-Lichtsystems erfolgte der Vergleich mit dem etablierten D-light-System. Das sichtbare blaue Anregungslicht des D-light-Systems induziert auf feuchten Gewebeoberflächen störende Reflexionen, die eine Beurteilung des zu betrachtenden Areals maßgeblich erschweren können. Besonders gravierend wirkt sich dieser Nachteil bei der Visualisierung von Hirntumoren wie dem Glioblastom aus. Unter Verwendung des UV-Lichtsystems konnte erstmalig die reflexfreie Darstellung der 5-Aminolävulinsäure (5-ALS)-induzierten Protoporphyrin IX (PPIX)-Fluoreszenz in Glioblastomgewebe und der Hypericin (HYP)-induzierten Fluoreszenz in der Mundhöhle erfolgen. Eine weitere Besonderheit des UV-Lichtsystems liegt in der speziellen Art der Farbkontrastbildgebung der Fluoreszenz. Das UV-Lichtsystem erzeugt die gewebeeigene Fluoreszenz (Autofluoreszenz) im blauen und grünen Wellenlängenbereich mit deutlich höherer Effizienz als das D-Light-System. Im Gegensatz zum D-light-System, das eine vom rückgestreuten blauen Anregungslicht (Remission) dominierte Darstellung aufweist, tritt bei der Anregung durch UV-Licht keine Remission im sichtbaren Bereich auf. Daher basiert die Bilddarstellung bei der UV-Anregung auf der Erzeugung der Fluoreszenz im blauen, grünen und roten Wellenlängenbereich. Somit wird durch das UV-Anregungslicht eine Gewebedarstellung erreicht, die in der Farbgebung an ein Weißlichtbild erinnert und auch eine vergleichbare strukturelle Detailinformation liefert. Beide in dieser Arbeit untersuchten PS sind durch UV-Licht anregbar und führen zu einer kontrastreichen RotfluoreszenzDarstellung von Arealen, die diese PS selektiv eingelagert haben. Erstmalig wurde durch das UV-Lichtsystem im Tierversuch die spezifische Anreicherung von HYP im Glioblastomgewebe visualisiert bzw. bildgebend nachgewiesen. Die Verwendung des neuartigen UV-Lichtsystems in der Neurochirurgie hat signifikante Verbesserungen im Vergleich zu den derzeit auf dem Markt verfügbaren Systemen aufgezeigt und lässt somit auf einen zukünftigen klinischen Einsatz erwarten. Die klinische Praxis hat gezeigt, dass eine erfolgreiche Behandlung des oberflächlichen Harnblasenkarzinoms eine integrale Therapie der gesamten Harnblasenschleimhaut erfordert. Bei Patienten, bei denen alle konventionellen Verfahren einschließlich intravesikaler Chemotherapie und Immuntherapie mittels Bacillus Calmette-Guérin versagt haben, besteht in der Regel die Indikation zur radikalen, operativen Entfernung der Harnblase. Wird jedoch dieser Eingriff vom Patienten verweigert oder kann wegen schwerer internistische Begleiterkran-kungen keine offene Operation durchgeführt werden, so bietet derzeit die integrale Photodynamische Therapie (PDT) des oberflächlichen Harnblasenkarzinoms mittels der 5-ALS eine vielversprechende Alternative. Für dieses Verfahren wurde eine inkohärente Lichtquelle (T-light) auf der Basis einer Hochleistungs-Xenon-Kurzbogenlampe entwickelt und aufgebaut. Das Licht dieser Lampe wird über einen speziellen Einkoppelmechanismus auf die Eingangsfläche eines Quarzglaslichtleiters fokussiert und durch diesen übertragen. Am distalen Ende des Lichtleiters befindet sich ein zylinderförmiger Lichtapplikator aus Silikon, der mit Streupartikeln durchsetzt ist und so eine homogene Ausleuchtung der Harnblase gewährleistet. Lichtleiter und Lichtapplikator sind integrale Bestandteile eines eigens angepassten, flexiblen PDT-Applikationskatheters. Eine Kernkomponente der Entwicklung stellt der spezielle Einkoppelmechanismus dar, der die folgenden Funktionen aufweist. Eine manuelle Justage mit einer hohen Genauigkeit (1/100 mm) in allen drei Raumachsen gewährleistet eine effiziente Einkopplung des von der Xenon-Kurzbogenlampe erzeugten Lichts in die Quarzglasfaser. Licht, welches nicht in den Lichtleiter eingekoppelt werden kann, wird über spezielle Keramikelemente absorbiert. Die Wärmeabfuhr erfolgt über ein angepasstes Kühlsystem. Der Einsatz des inkohärenten PDT-Systems ermöglicht im Gegensatz zu kohärenten Lasersystemen die gleichzeitige Anregung aller Absorptionsbanden des PS PPIX. Die breitbandige Anregung bei der 5-ALS-PDT kann außerdem zu einem verstärkten Therapieeffekt bedingt durch zusätzlich entstehende Photoprodukte führen. Einige dieser Photoprodukte stellen selbst sehr effektive PS mit unterschiedlichen Absorptionsbanden dar. Im Rahmen einer klinischen Pilotstudie mit 12 Patienten bewies das T-light-System, dokumentiert durch histomorphologische und elektronenmikroskopische Untersuchungen sowie klinische Kurzzeitbeobachtungen, seine Effektivität in erster Linie bei der selektiven Zerstörung hochmaligner, flacher urothelialer Neoplasien, wie dem CIS ohne Schädigung des Normalurothels, der stromalen oder muskulären Schichten der Harnblase. Im Frühjahr 2005 soll mit dem T-light-System eine Studie starten, die in Verbindung mit der Substanz Hexvix die Sicherheit und Effektivität dieses neuen Verfahrens bei der Behandlung des oberflächlichen Harnblasenkarzinoms bestätigen soll. Nach positivem Verlauf der Studie soll das T-light-System produziert und auf breiter Basis klinisch eingesetzt werden.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Experimente mit einer linearen Ionenkette zur Realisierung eines Quantencomputers

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jul 19, 2004


Die in dieser Arbeit dargelegten Ergebnisse befassen sich mit Experimenten, welche den Mg-In-Ionenfallen-Quantencomputer zum Endziel haben. Als logisches Schaltelement eines solchen Quantencomputers kommen sowohl die Cirac-Zoller- als auch die Sörensen-Mölmer-Version eines CNOT-Gatters in Frage. In beiden Fällen müssen die Ionen durch Laserstrahlung gekühlt werden. Während das Cirac-Zoller-Gatter Grundzustandskühlung erfordert, wird beim Sörensen-Mölmer-Gatter lediglich der wesentlich einfacher zu erreichende Lamb-Dicke-Bereich benötigt. Aufgrund der Tatsache, daß zwei verschiedene Ionensorten für unterschiedliche Aufgaben verwendet werden, kombiniert man deren Vorzüge optimal miteinander. Zur direkten Seitenband-Kühlung verwendet man In, mit dem in unserer Arbeitsgruppe bereits Grundzustandskühlung demonstriert worden ist. Quanteninformation soll in den Mg-Ionen gespeichert werden. Da beim Sörensen-Mölmer-Gatter, solange man sich im Lamb-Dicke-Bereich befindet, die Quantenrechnung nicht von der thermischen Bewegung der Ionen abhängen, kann der heterogene Ionenkristall durch die Indiumionen kontinuierlich gekühlt werden, ohne daß die in den Mg-Ionen gespeicherte Quanteninformation dadurch beeinflußt wird. Dadurch kann die Dekohärenz der Schwingungsmoden minimiert, und die Anzahl möglicher Quantenoperationen maximiert werden. Im Rahmen dieser Arbeit wurde von Grunde auf ein neues Experiment geplant, aufgebaut und zahlreiche Versuche dazu durchgeführt. Es wurde ein völlig neuer, komplexer Vakuumrezipient entworfen und gebaut. Im Inneren des Vakuumrezipienten wurde ein schwingungsgedämpfter Aufbau einer neuartigen, selbstjustierenden Ionenfallenhalterung inklusive verbesserter Atomofenhalterung in ein kompaktes Gesamtsystem integriert. Die Falle wurde für die Speicherung zweier Ionensorten optimiert. Mit der linearen Endkappenfalle wurden zuerst Mg-Ionenkristalle erzeugt. Bei den Experimenten mit Indium konnten Mg-In-Wolken nachgewiesen werden, sowie sympathetische Kühlung von Indium durch die direkt lasergekühlten Magnesiumionen. In der neuen Vierstabfalle wurden zuerst Experimente mit einem Sekundärelektronen-Vervielfacher bei Kühlung mit Puffergas durchgeführt, wobei Speicherung von Magnesiumionen sowie von Dunkelionen aus dem Restgas nachgewiesen werden konnte. Bei diesen Messungen wurde gleichzeitig die Falle charakterisiert. Es wurden Stabilitätsdiagramm, radiale und axiale Schwingungsfrequenzen gemessen. Darüber hinaus wurden in der neuen Ionenfalle Magnesium-Ionenkristalle gespeichert und nachgewiesen. Die im Vergleich zur linearen Endkappenfalle wesentlich verbesserte Mikrobewegungskompensation demonstriert die Überlegenheit der automatischen Justage der neuen Ionenfalle.

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Structure determination of piezoelectric materials at extreme conditions

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Play Episode Listen Later Jul 4, 2002


Diese Arbeit präsentiert Ergebnisse an piezoelektrischen Materialien aus der Langasitfamilie, die unter extremen Bedingungen untersucht wurden. Die Einkristalle aus dieser Familie, vor allem La3Nb0.5Ga5.5O14 (LNG) und La3Ta0.5Ga5.5O14 (LTG), sind vielversprechende Materialien für Oberflächenwellen (OFW) –Substratmaterialien, die in der mobilen Kommunikationstechnik der Frequenzsteuerungsgeräte (mobile Kommunikation, Sensoren, usw.) und bei Hochtemperatur- OFW- Anwendung finden. Mit LNG und LTG OFW-Sensorelementen können physikalische Meßgrößen, wie Druck und Temperatur erfaßt werden. Aus diesem Grund sind die Strukturuntersuchungen an LNG und LTG bei verschiedenen Drucken und Temperaturen extrem wichtig. Die Struktur von LNG und LTG ist unter normalen Bedingungen trigonal mit der Raumgruppe P321. In der Struktur sind die schweren Atome polyedrisch von Sauerstoffatomen koordiniert. Vier Polyedertypen bilden decaedrisch-oktaedrische und tetraedrische Schichten. Diese sind in einer A-B- Stapelfolge senkrecht zur c-Achse angeordnet. Die Kristallstrukturen von LNG und LTG wurden mittels Röntgenstrukturanalyse an LNG- und LTG- Einkristallen in Hochdruck- Diamant -Stempel Zellen unter Druck bis 23GPa untersucht. Die Proben für diese Forschungsarbeit wurden von den Forschungsgruppen von B. V. Mill (Rußland) und J. Bohm (Deutschland) freundlicherweise zur Verfügung gestellt. Als druckübertragende Medien wurden Alkohol und Helium benutzt. a- Quarz Kristalle und die Rubinfluoreszenzmethode wurden zur Druckmessung herangezogen. Die Experimente mit Röntgenstrahlung wurden im eigenen Labor und am Hamburger Synchrotronstrahlungslabor (HASYLAB, Beamline D-3) durchgeführt. Die Gitterkonstanten und Reflexintensitäten von LNG und LTG wurden unter Drucken bis 22,8 beziehungsweise 16.7GPa gesammelt. Innerhalb des erforschten Druckbereichs nimmt das c/a- Verhältnis von 0,6232 bis 0,6503 für LNG und von 0,6227 bis 0,6350 für LTG zu. Folglich ist die a-Achse die an stärksten komprimierte Richtung in beiden Substanzen. Damit zeigen LNG und LTG unter Druck ein anisotropes Verhalten, das durch unterschiedliche Bindungsstärken in den Richtungen parallel zu den a- beziehungsweise c- Achsen bedingt ist. Unter hydrostatischem Druck ist die Komprimierung der c- Richtung (also zwischen den Schichten) steif, was wegen der weniger flexiblen Verknüpfung der Polyeder (gemeinsame Kanten) verständlich ist. Demgegenüber ist die Komprimierung innerhalb der ab- Ebene (also innerhalb der Schichten) größer und kann hauptsächlich durch die abnehmenden Volumina und Verzerrungen der Polyeder erreicht werden. Weil die Kristallstrukturen von LNG und LTG wegen der hohen Symmetrie und der Polyederkopplungen sehr steif sind, führt die Komprimierung dieser Strukturen zu einer Zunahme der internen Spannungen und endet bei einem Druck von 12.4(3)GPa für LNG und 11.7(3)GPa für LTG mit einem Phasenübergang in Strukturen mit niedrigerer Symmetrie. In dem untersuchten Druckbereich sind die Kompressibilitäten entlang der c-Achse fast identisch für LNG und LTG. Andererseits sind die Druckabhängigkeiten der a Gitterparameter dieser Materialien nur für die Ausgangsphase ähnlich, während die Achsenkompressibilitäten für die Hochdruckphasen von LNG und von LTG unterschiedlich sind. Die Volumenkompressibilitäten des trigonalen LNG und LTG sind 0.007GPa -1 , die entsprechenden Kompressionsmodule sind 145(3)GPa und 144(2)GPa. Der Kompressionsmechanismus von LNG und LTG kann wie folgt beschrieben werden: Eine Erhöhung des Drucks verursacht eine Reduzierung der Gittervolumina von LNG und LTG. Folglich verringern sich die Abstände zwischen den Ionen. Auf diese Weise werden die größten Kationen (La 3+ ) innerhalb der ab- Fläche verschoben, um die Abstände zwischen den positiv geladenen benachbarten Ionen (Ga 3+ /Nb 5+ (Ta 5+ )) zu maximieren. Auf die gleiche Weise bewegen sich die tetraedrisch koordinierten Ga 3+ -Ionen. Wegen der Anionen-Kationenbindungsverkürzung versuchen die Polyeder zu rotieren. Nun werden diese Drehungen durch die gemeinsamen Ecken und/oder Kanten der benachbarten Polyeder behindert. Außerdem werden diese Bewegungen durch die geringe Flexibilität begrenzt, die durch die Symmetrie (zwei- und drei- zählige Achsen) verursacht wird. So resultiert die Komprimierung hauptsächlich aus Verkleinerungen der Polyedervolumina. Folglich steigen unter zunehmenden Druck die Spannungen innerhalb der Polyeder, vor allem innerhalb der kleinsten Polyeder (GaO4-Tetraeder), wegen deren geringer Flexibilität. Bei einem Druck von 12(1)GPa resultiert die Komprimierung von LNG und LTG in einer Transformation aus der Hochsymmetriephase in eine Niedersymmetriephase. Es kann gefolgert werden, daß dieser Phasenübergang durch die Zunahme der Spannungen innerhalb der Polyeder verursacht wird. Die Hochdruckphase ist verzerrter als die ursprüngliche Phase und beinhaltet mehr Freiheitsgrade für weitere Komprimierungen. Die Hochdruckphasen von LNG und von LTG können in Strukturmodellen mit monokliner Symmetrie (Raumgruppe A2) verfeinert werden. Die Kompressionsmodule sind B0=93(2)GPa und B0=128(12)GPa für die Hochdruckphasen von LNG beziehungsweise von LTG. Die entsprechenden Kompressibilitäten der Hochdruckphasen sind 0.011GPa -1 für LNG und 0.008GPa -1 für LTG. Somit zeigen die Hochdruckphasen unterschiedliche Kompressibilität, die durch eine Nb 5+ - Ta 5+ Substitution gut erklärt werden kann. Die Kompressibilität der Hochdruckphase von LNG ist größer als der entsprechende Wert für das Hochdruckpolymorph von LTG. Dieses Phänomen kann durch die größere Verzerrung von NbO6- Polyedern im Vergleich zu TaO6- Polyedern gut erklärt werden, welche durch die höhere Polarisation der Sauerstoffanordnung bei Nb 5+ -Kationen verursacht wird. Außerdem sind die Kompressibilitäten der Hochdruckphasen größer als die entsprechenden Werte für die Ausgangsphasen von LNG und LTG. Die Beobachtung einer Zunahme der Kompressibilität weis auf zusätzliche Polyederverkippungen hin. In den meisten Fällen ergibt sich die zusätzliche Freiheit aus dem Symmetriebruch. Das erklärt eine (auf den ersten Blick ziemlich unerwartete) erhöhte Kompressibilität der Hochdruckphase. Zusätzlich kann sich durch ein anomales Elastizitätsverhalten eine Steigerung der Kompressibilität der Hochdruckphase ergeben. Bei einer Zunahme des Druckes über 22GPa hinaus wird die Komprimierung der monoklinen Kristallstruktur von LGN vermutlich zu einer drastischen Strukturänderung führen, die von Änderungen der Korrdinationszahlen begleitet ist. Wahrscheinlich werden ähnliche Prozesse auch im LTG statt finden, jedoch unter höherem Druck. Im folgenden Teil dieser Arbeit wird die thermische Expansion der Gitterparameter von LNG, LTG und La3SbZn3GeO14 (LSZG) dargestellt. Die Hochtemperaturmessungen wurden mit dem Pulverdiffraktometer im HASYLAB an der beamline B2 durchgeführt. Die Temperaturabhängigkeit der Gitterparameter von LNG und von LTG wurde an polykristallinem Material bei Temperaturen von Raumtemperatur bis 850°C durchgeführt. Die thermischen Expansionen der Gitterparameter von LNG und LTG sind in diesem Temperaturbereich fast identisch. Die thermischen Expansionskoeffizienten des Gittervolumens aV (24°C- 850°C) von LNG und LTG betragen 22.563(7)x10 -6 °C -1 beziehungsweise 20.651(7)x10 -6 °C -1 . Deutliche Veränderungen der Temperaturabhängigkeit der Gitterparameter werden für die a- Richtung beobachtet. Folglich ist das Verhalten dieser Materialien bei thermischer Expansion ebenso wie bei Komprimierung anisotrop. Für einen Vergleich des Einflusses von Druck und Temperatur auf die Gitterparameter von LNG beziehungsweise LTG wurden die Druck und Temperatur- Abhängigkeiten des c/a- Verhältnisses gemeinsam aufgetragen. Es zeigt sich, dass eine lineare Abhängigkeit besteht. Daraus läßt sich ableiten, dass die Änderung der Gitterparameter von LNG (LTG) während der Abkühlung von 850°C auf Raumtemperatur einer Änderung der Gitterparameter von LNG (LTG) unter Zunahme des Drucks um 1.4GPa entspricht. Die Substanz LSZG, welche in dieser Arbeit untersucht wurde, ist ein weiters Mitglied der Langasitfamilie. LSZG kristallisiert in der monoklinen Symmetrie, Raumgruppe A2. Die Temperaturabhängigkeit der Gitterparameter der monoklinen Phase von LSZG wurden mittels der Röntgenbeugung an polykristallinem LSZG bei Temperaturen von Raumtemperatur bis 800°C untersucht. Bei Temperaturen oberhalb 250(50)°C wurde ein Phasenübergang erster Ordnung festgestellt, welcher sich in Sprüngen der Temperaturabhängigkeiten der Gitterparameter des LSZG äußert. Die monokline Struktur der bei Raumtemperatur und Normaldruck stabilen Phase des LSZG entspricht der der Hochdruckphase von LNG beziehungsweise LTG. Es ist bekannt, daß die Änderungen der Kristallstrukturen bei steigenden Drucken und Temperaturen gegenläufig sind. Aus diesem Grund wird vermutet daß sich die monokline Kristallstruktur des LSZG bei Temperaturen oberhalb von 250(50)°C in eine trigonale Kristallstruktur (Raumgruppe P321) umwandelt, welche der Normaldruckphase von LNG beziehungsweise LTG entspricht. Für eine detailliertere Beschreibung des Phasenübergang von LSZG bei einer Temperaturerhöhung über 250(50)°C hinaus werden weitere Experimente benötigt. Zum Vergleich von strukturellen und physikalischen Eigenschaften seien auch die physikalischen Eigenschaften von LNG und LTG zusammenfassend dargestellt: 1. LNG- und LTG- Kristalle der enantiomorphen Kristallklasse 32 können im Gegensatz zu GaPO4 mittels Züchtung nach der Czochralski- Methode mit ausreichend hoher struktureller Perfektion hergestellt werden. 2. DTA- Messungen von LNG und LTG zeigen keine Änderungen des thermischen Verhaltens bis zu Temperaturen von 1400°C [5]. Da LNG und LTG vermutlich keine Phasenübergänge bis zu ihren jeweiligen Schmelzpunkten bei ungefähr 1470(30)°C haben, sind sie für piezomechanische Anwendungen bei hohen Temperaturen gut geignet. 3. Die Härte von LNG beziehungsweise LTG ist vergleichbar mit der von Quarz. 4. LNG und LTG sind chemisch inert und unlöslich in Säuren beziehungsweise Laugen. 5. Die Breite des Bandpassfilters von LNG oder LTG ist ungefähr dreimal größer als die von Quarz. Folglich sind LNG und LTG für Filter besser geeignet als Quarz. Im Lichte der Ergebnisse aus dieser Forschungsarbeit können folgende Empfehlungen gemacht werden: 1. Bezüglich der hoher Qualität dieser Materialien (die Halbwertsbreite der Reflexionen beträgt 0.0008°) und wegen des großen Streuvermögens, kann empfohlen werden, diese Kristalle als Test- Kristalle für die Justage an Einkristall- Diffraktometer und für Experimente mit harter Röntgenstrahlung zu benutzen. 2. Ebenso wie a-Quarz- Einkristalle [ 58 ], können diese Kristalle als interner Druckstandard in Einkristallhochdruckexperimenten benutzt werden, weil diese Kristalle eine große Anzahl von starken unabhängigen Reflexen besitzen. Andererseits kann die niedrigere Kompressibilität von LNG beziehungsweise LTG, im Vergleich zu a-Quarz, zu einer niedrigeren Druckmessungspräzision führen. Dieser Nachteil wird wiederum durch große Streuvermögen kompensiert. 3. LNG oder LTG können als Materialien für Drucksensoren bis zu sehr hohen Drucken verwendet werden. Wegen des Phasenübergangs von LNG und LTG ist der Einsatz lediglich auf 12(1)GPa begrenzt. 4. Die Temperaturabhängigkeit der Gitterparameter dieser Materialien zeigt keine Anomalie innerhalb des untersuchten Temperaturbereiches (24°C - 850°C). Somit wurde die thermische Stabilität von LNG und LTG bestätigt. Auf diese Weise können LNG und LTG im Austausch für Quarz als Substratmaterialien für Temperatursensoren sehr empfohlen werden.