POPULARITY
In this episode of Jets in Space, host Alfred Belen and intern Aabhushan Regmi update listeners on the team's progress in creating an internal atmosphere propulsion system using OpenFOAM. They discuss the steps taken so far, such as narrowing down the geometry and CAD models.The potential of an all-electric propulsion system is also explored, along with the technical aspects of its development. Join in the conversation and follow along as we design and build our first IAP prototype.Timestamps:(01:37) - Aabhushan's background in engineering and Open FOAM. (05:44) - overview discussion on variables that we can change within the IAP system and thrust generation.(11:41) - Changes in atmospheric pressure and how it affects thrust generation.(13:51) - Reaching the sonic barrier on spinning fan blades(16:06) - Is there a limit on how many engines we can add to the system?(19:52) - The challenge of designing and connecting opposing corridors.Resources Mentioned:OpenFoamSpoken Tutorial on OpenFOAMComputational Fluid Dynamicshttps://www.belenaerospace.com/Podcast Production Services by EveryWord Media
In this episode, we dive into the cutting-edge world of propulsion technology. Our guest, Dr. Jozsef Nagy, is a leading expert in the field of computational fluid dynamics and the open-source simulation platform OpenFOAM. Together with our host, Alfred Belen, they will explore a revolutionary new propulsion concept that uses compressed gas within a closed container to generate thrust. We'll delve into the complexities of simulating real-world conditions, including material properties, thermal effects, and more.But we'll also discuss the potential benefits of this system, including the ability to use different gases and how this would affect thrust production. And, of course, we'll be talking about the all-important thrust calculation.Are you ready for a journey into the future of propulsion technology?Tune in to this episode of "Jets in Space" and discover the possibilities that await us in the world of compressed gas propulsion. With Dr. Jozsef Nagy's expertise in OpenFOAM, this episode is bound to be an engaging and informative listen that will have you wanting to know more.Notable LinksJozsef Nagy's YouTube: https://www.youtube.com/@OpenFOAMJozsefNagyJozsef Nagy's Patreon: https://www.patreon.com/user?u=15620295Jozsef Nagy's LinkedIn: https://www.linkedin.com/in/jozsef-nagy-2b37a0a9/Jozsef Nagy's Research project: https://www.linkedin.com/showcase/82332559/admin/1Podcast Production Services by EveryWord Media
Talk Python To Me - Python conversations for passionate developers
I'm always on the look out for a good Python UI framework. This episode focuses on Dear PyGui. Dear PyGui: A fast and powerful Graphical User Interface Toolkit for Python with minimal dependencies, created by Jonathan Hoffstadt and Preston Cothren. They are here to tell us all about it. Links from the show Jonathan Hoffstadt: @jhoffs1 Preston Cothren: @toulaboy3 Dear PyGUI source: github.com Video tutorials: dearpygui.readthedocs.io Getting started tutorial: dearpygui.readthedocs.io OpenFOAM: openfoam.org Vulkan: vulkan.org Michael's Python Shorts video series The playlist: talkpython.fm/python-shorts Michael's YouTube Channel: youtube.com Watch this episode on YouTube: youtube.com Episode transcripts: talkpython.fm --- Stay in touch with us --- Subscribe on YouTube: youtube.com Follow Talk Python on Twitter: @talkpython Follow Michael on Twitter: @mkennedy Sponsors Sentry Error Monitoring, Code TALKPYTHON TopTal AssemblyAI Talk Python Training
Aidan is a Chartered Mechanical Engineer based in the United Kingdom (UK) specialising in Computational Fluid Dynamics (CFD) and heat transfer. Aidan addresses industrial fluid dynamics and heat transfer problems across a range of sectors and routinely develops solutions to complex modelling problems including: conjugate heat transfer, solid particle transport and rotor aerodynamics. In his spare time, Aidan teaches Computational Fluid Dynamics online through his popular YouTube channel 'Fluid Mechanics 101'. His aim is to encourage and inspire engineers and provide them with the tools they need to solve the worlds most challenging fluid dynamics problems. ————————————————————————————— Connect with me here: ✉️ My weekly email newsletter: jousef.substack.com
Tobias is a CFD engineer, OpenFOAM enthusiast and well known in the OpenFOAM community by contributing an enormous amount of material as well as knowledge to the world. His website provides helpful content concerning OpenFOAM®, he offers free available training videos, screencasts, cases, publications, developments, and extensions, as well as many fun simulations, are ready to use and watch for people all over the world. Tobias tries to keep the level of simulations for his costumers at a decent and sustainable level. He has a personal credo not to manipulate any numerical data, plot, or other things related to the computational fluid dynamics within a fair price. ————————————————————————————— Connect with me here: ✉️ My weekly email newsletter: jousef.substack.com
Dr. Jozsef Nagy graduated from the Vienna University of Technology in Physics and finished his PhD in Chemical Engineering. For six years he held the position of a post-doc at the Johannes Kepler University, where he worked on polymer materials. He is the Chair of the Technical Committee for Tutorials and Documentation in the OpenFOAM Governance System. At this point, He has the biggest YouTube channel with specialized tutorials for learning CFD with OpenFOAM. Currently he is a CFD engineer at eulerian-solutions e.U. His areas of interest are diverse, multiphase flows, complex materials, porous media, fire and species dispersion, Fluid-Solid Interaction (FSI) and model development and implementation as well as custom workflows for specific applications. ————————————————————————————— Connect with me here: ✉️ My weekly email newsletter: jousef.substack.com
Jennifer Huffstetler, VP and GM for Data Center Product Management at Intel, joins Chip Chat for a deep dive into the capabilities of a new class of processors: future Intel® Xeon® Scalable processors codenamed Cascade Lake advanced performance. Architected to deliver performance leadership across the widest range of demanding workloads[1], future Intel Xeon Scalable processors codenamed Cascade Lake advanced performance deliver unprecedented memory bandwidth[2] with more memory channels than any other CPU. These processors are expected to offer superior performance (results estimated based on pre-production hardware) in comparison to AMD EPYC on many demanding applications including: • Physics -- MILC up to 1.5X [quantum chromodynamics] [3] • Weather – WRF up to 1.6X [weather research and forecasting model] [4] • Manufacturing – OpenFOAM up to 1.6X [open source CFD] [5] • Life/material sciences – NAMD (APOA1) up to 2.1X [Nanoscale Molecular Dynamics] [6] • Energy – YASK (ISO3DFD) up to 3.1X [stencil benchmark] [7] For more information, please follow Jennifer on Twitter at https://twitter.com/jenhuffstetler and visit https://intel.com/hpc. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks. Performance results are based on testing or projections as of 6/2017 to 11/7/2018 and may not reflect all publicly available security updates. See configuration disclosure in https://intel.ly/2VUvY2I for details. No product can be absolutely secure. [1] Performance leadership across the widest array of demanding workloads based on https://intel.ly/2VUvY2I. [2] Native DDR memory bandwidth. [3] Future Intel Xeon Scalable processors codenamed Cascade Lake advanced performance provide up to 1.5x MILC performance in comparison to AMD EPYC 7601 (2S configuration), for details see https://intel.ly/2VUvY2I. [4] Future Intel Xeon Scalable processors codenamed Cascade Lake advanced performance provide up to 1.6x WRF performance in comparison to AMD EPYC 7601 (2S configuration), for details see https://intel.ly/2VUvY2I. [5] Future Intel Xeon Scalable processors codenamed Cascade Lake advanced performance provide up to 1.6x OpenFOAM performance in comparison to AMD EPYC 7601 (2S configuration), for details see https://intel.ly/2VUvY2I. Data collected with OpenFOAM® Foundation v5.0. This offering is not approved or endorsed by OpenCFDLimited, producer and distributor of the OpenFOAM software via www.openfoam.com, and owner of the OPENFOAM® and OpenCFD® trademarks. [6] Future Intel Xeon Scalable processors codenamed Cascade Lake advanced performance provide up to 2.1x NAMD (APOA1) performance in comparison to AMD EPYC 7601 (2S configuration), for details see https://intel.ly/2VUvY2I. [7] Future Intel Xeon Scalable processors codenamed Cascade Lake advanced performance provide up to 3.1x YASK (ISO3DFD) performance in comparison to AMD EPYC 7601 (2S configuration), for details see https://intel.ly/2VUvY2I.
Gudrun talks to Jousef Murad about the computing platform SimScale. Jousef is currently studying mechanical engineering at the Karlsruhe Institute of Technology (KIT) and focuses on turbulence modelling and computational mechanics in his Master's studies. He first learned about the existence of SimScale early in the year 2015 and started as a FEA (finite element analysis) simulation assistant in November 2016. Meanwhile he switched to Community Management and now is Community and Academic Program Manager at the company being responsible for user requests and Formula student teams all over the world. Formula student is a name for design competitions for teams of students constructing racing cars. SimScale is a cloud-based platform that gives instant access to computational fluid dynamics (CFD) and finite element analysis (FEA) simulation technology, helping engineers and designers to easily test performance, optimize durability or improve efficiency of their design. SimScale is accessible from a standard web browser and from any computer, eliminating the hurdles that accompany traditional simulation tools: high installation costs, licensing fees, deployment of high-performance computing hardware, and required updates and maintenance. Via the platform, several state-of-the-art open solvers are made available like,e.g., OpenFOAM and Meshing with SnappyHexMesh. More information about the packages being used can be found at https://www.simscale.com/open-source/ . On top of having easier access to open source software, the connected user forum is very active and helps everybody to enter the field even as a person without experience. Founded in 2012 in Munich (Germany), nowadays SimScale is an integral part of the design validation process for many companies worldwide and individual users. It is mainly used by product designers and engineers working in Architecture, Engineering & Construction or Heating, Ventilation & Air-Conditioning. Also in the Electronics, Consumer Goods and Packaging and Containers industries SimScale is useful for testing and optimizing designs in the early development stages. SimScale offers pricing plans that can be customized, from independent professionals to SMEs and multinational companies. The Community plan makes it possible to use SimScale for free, with 3000 core hours/year using up to 16 cloud computing cores. Simulation around Burj Khalifa using SimScale References Turbulence models on the English Wikipedia S. Pope: Turbulent Flows. Cambridge University Press, 2000. P. Sagaut, C. Cambon: Homogeneous Turbulence Dynamics. Cambridge University Press, 2008. Related Podcasts G. Thäter, M. Hofmanová: Turbulence, Gespräch im Modellansatz Podcast, Folge 155, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. N. Vercauteren, S. Ritterbusch: Lokale Turbulenzen, Gespräch im Modellansatz Podcast, Folge 144, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. P. Allinger, N. Stockelkamp, G. Thäter: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 53, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. B.Valsler, D. Ansell: The Science of Turbulence, The Naked Scientists Podcast, 2010.
Gudrun talks to Jousef Murad about the computing platform SimScale. Jousef is currently studying mechanical engineering at the Karlsruhe Institute of Technology (KIT) and focuses on turbulence modelling and computational mechanics in his Master's studies. He first learned about the existence of SimScale early in the year 2015 and started as a FEA (finite element analysis) simulation assistant in November 2016. Meanwhile he switched to Community Management and now is Community and Academic Program Manager at the company being responsible for user requests and Formula student teams all over the world. Formula student is a name for design competitions for teams of students constructing racing cars. SimScale is a cloud-based platform that gives instant access to computational fluid dynamics (CFD) and finite element analysis (FEA) simulation technology, helping engineers and designers to easily test performance, optimize durability or improve efficiency of their design. SimScale is accessible from a standard web browser and from any computer, eliminating the hurdles that accompany traditional simulation tools: high installation costs, licensing fees, deployment of high-performance computing hardware, and required updates and maintenance. Via the platform, several state-of-the-art open solvers are made available like,e.g., OpenFOAM and Meshing with SnappyHexMesh. More information about the packages being used can be found at https://www.simscale.com/open-source/ . On top of having easier access to open source software, the connected user forum is very active and helps everybody to enter the field even as a person without experience. Founded in 2012 in Munich (Germany), nowadays SimScale is an integral part of the design validation process for many companies worldwide and individual users. It is mainly used by product designers and engineers working in Architecture, Engineering & Construction or Heating, Ventilation & Air-Conditioning. Also in the Electronics, Consumer Goods and Packaging and Containers industries SimScale is useful for testing and optimizing designs in the early development stages. SimScale offers pricing plans that can be customized, from independent professionals to SMEs and multinational companies. The Community plan makes it possible to use SimScale for free, with 3000 core hours/year using up to 16 cloud computing cores. Simulation around Burj Khalifa using SimScale References Turbulence models on the English Wikipedia S. Pope: Turbulent Flows. Cambridge University Press, 2000. P. Sagaut, C. Cambon: Homogeneous Turbulence Dynamics. Cambridge University Press, 2008. Related Podcasts G. Thäter, M. Hofmanová: Turbulence, Gespräch im Modellansatz Podcast, Folge 155, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. N. Vercauteren, S. Ritterbusch: Lokale Turbulenzen, Gespräch im Modellansatz Podcast, Folge 144, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. P. Allinger, N. Stockelkamp, G. Thäter: Strukturoptimierung, Gespräch im Modellansatz Podcast, Folge 53, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. B.Valsler, D. Ansell: The Science of Turbulence, The Naked Scientists Podcast, 2010.
Gudrun ist für die aktuelle Episode zu Gast in der Bundesanstalt für Wasserbau (BAW) am Standort in Karlsruhe. Die BAW ist etwa so alt wie die Bundesrepublik und grob gesagt zuständig für technisch-wissenschaftliche Aufgaben in allen Bereichen des Verkehrswasserbaus an den Bundeswasserstraßen und für Spezialschiffbau. Dabei berät sie die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV). Heute ist der Hauptsitz der BAW in Karlsruhe. Daneben gibt es noch einen Standort in Hamburg. Der Anlass des Besuches ist diesmal der Abschluss der Masterarbeit von Axel Rothert zu einer Fragestellung aus der BAW in Karlsruhe. Der Titel der Arbeit ist "Hybride 2D-3D-Simulation von Strömungsprozessen im Nah- und Fernfeld von Wasserbauwerken in OpenFOAM". Sie entstand in enger Zusammenarbeit mit den Kollegen Dr.-Ing. Carsten Thorenz und Franz Simons im Referat Wasserbauwerke der BAW. Nach dem Abschlussvortrag hat sich Gudrun mit Franz Simons und Axel Rothert über die Ergebnisse der Arbeit unterhalten. Neben traditionellen mathematischen Modellen, die durch physikalische Experimente kalibriert und erprobt werden, haben sich durch den technischen Fortschritt der letzen Jahrzehnte numerische Simulationen inzwischen fest etabliert. Einerseits, um numerische Näherungslösungen für die partiellen Differentialgleichungen des mathematischen Modells zu liefern, andererseits aber auch zur Durchführung virtueller Experimente. Die Simulation von hydrodynamischen Vorgängen ist hier ein gutes Beispiel. Das Fließen von Wasser muss mit Gleichungen beschrieben werden, die wiederum numerische Lösungen brauchen, wobei durch deren Komplexität auch gleich noch Ansprüche an entweder Hochleistungsrechentechnik (und damit Parallelisierung) oder andererseits gut begründete Vereinfachungen erhoben werden müssen. Das ganze muss verlässliche Aussagen liefern, damit die BAW z.B. die Hochwasserneutralität eines Wasserbauwerks garantieren kann bevor es endgültig geplant und gebaut wird. Dabei werden in der dortigen Praxis beide Wege beschritten: man investiert in modernste Rechentechnik und benutzt erprobte Vereinfachungen im Modell. Im Kontext der Umströmung von Wasserbauwerken haben unterschiedliche Regionen verschiedene dominierende Strömungsprozesse: in der Nähe des Bauwerkes gibt es eine starke Interaktion des Fließgewässers mit dem Hindernis, aber in einiger Entfernung kann man diese Interaktion vernachlässigen und den Modellansatz vereinfachen. Deshalb sollten im Nah- und Fernbereich unterschiedliche Modelle benutzt werden. Konkret sind es in der Arbeit die tiefengemittelten Flachwassergleichungen im Fernfeld und die Reynolds-gemittelten Navier- Stokes-Gleichungen (RANS) im Nahfeld der Wasserbauwerke. Wichtig ist dann natürlich, wie diese Modelle gekoppelt werden. Da eine Informationsübertragung sowohl stromaufwärts als auch stromabwärts möglich ist, ist eine Kopplung in beide Richtungen nötig. In der vorliegenden Arbeit wurde eine vorhandene Implementierung eines Mehr-Regionen-Lösers in OpenFOAM der TU München so weiter entwickelt, dass er für die Anwendungen in der BAW geeignet ist. Dafür musste sie auf die aktuell an der BAW verwendete Version von OpenFOAM portiert und anschließend parallelisiert werden, damit praxisnahe Probleme der BAW in sinnvollen Rechenzeiten bewältigt werden können. Außerdem mussten die Implementierungen der Randbedingungen so abgeändert werden, dass allgemeine Geometrien für den Untergrund und ein trocken fallen bzw. benetzen mit Wasser möglich sind. Die Implementierung wurde anhand eines realistischen Beispiels aus dem Verkehrswasserbau bestätigt. Ein etwa 1,1km langer Flussabschnitt wurde hybrid simuliert. Dabei ist ein Staustufe, bestehend aus Wehranlagen, Schleuse und Kraftwerk enthalten. Literatur und weiterführende Informationen Boyer, F. ; Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. New York : Springer-Verlag, 2013 Gerstner, N. ; Belzner, F. ; Thorenz, C.: Simulation of Flood Scenarios with Combined 2D/3D Numerical Models. In: Lehfeldt, R. (Hrsg.) ; Kopmann, R. (Hrsg.): 11th international conference on hydroscience and engineering. Bundesanstalt für Wasserbau, Karlsruhe, 2014 Mintgen, F.: Coupling of Shallow and Non-Shallow Flow Solvers - An Open Source Framework. München, Technische Universität, Diss., 2017 Mintgen, F. ; Manhart, M.: A bi-directional coupling of 2D shallow water and 3D Reynolds-Averaged Navier-Stokes models. 2018. Begutachtet und angenommen vom Journal of Hydraulic Research. Einsehbar: DOI: 10.1080/00221686.2017.1419989 Uijttewaal, W. S.: Hydrodynamics of shallow flows: application to rivers. In: Journal of Hydraulic Research 52 (2014), Nr. 2, S. 157-172 Podcasts R. Kopman, G. Thäter: Wasserstraßen, Gespräch im Modellansatz Podcast, Folge 24, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
I enjoy all the interviews, but I particularly enjoyed this one — part-business, part-history lesson, in a good way. I’m joined by Eugene de Villiers to talk about the company he co-founded – Engys. Alongside discussing Engys, it’s products and services, we also dig into the wider world of OpenFOAM, including: • Some of the early history, before FOAM was Open • Whether the current “splitered” OpenFOAM ecosystem could actually be a good thing? • Whether another open-source CFD code could hope to displace OpenFOAM? I naturally gravitate towards OpenFOAM-related companies, it’s a self-acknowledged bias on my part. But I think you’ll get something out of this interview whether you have an interest in OpenFOAM or not - enjoy. Shownotes - https://engys.com/ - open-source CFD for enterprise - https://engys.com/products/helyx - their flagship product - https://www.linkedin.com/in/eugene-de-villiers-81833722/ - Eugene on LinkedIn
No season of this podcast would be complete without one or two OpenFOAM-related episodes, so here we are. I’m talking with Luboš Pirkl, one of the co-founders of CFD Support, a multi-faceted CFD company based in Prague, Czech Republic. We dive into some of the usual stuff that comes up when we talk OpenFOAM, but Luboš also gives us some extra insight into: • the difficult early days & how close they came to giving up • how the CFD marketplace has moved away from dedicated CFD engineers & that OpenFOAM isn’t a great fit for these new users • the decisions behind creating a vertical CFD application and why they chose the turbomachinery market • why communicating the value of your product or service is often more difficult than any of the technical aspects Shownotes • https://www.cfdsupport.com/ • https://www.cfdsupport.com/turbomachinery-cfd.html
This is a talk I gave at last year's ESI OpenFOAM conference which focussed on the OpenFOAM-related guests that have been on the show & my key takeaways from talking to them. It also gives a bit of background to why & how the podcast came about in the first place. The interviewees in question include Franjo Juretić (Creative Fields), Karim Fahssis (ZephyCloud), David Heiny (SimScale), Darrin Stephens & Chris Sideroff (Applied CCM) and Fred Mendonça (ESI OpenCFD). If you're new here then it should be a nice overview of past interviews & a bit of a rewind for those of you who've been in the podcast family for a while For the really committed, you can watch it with slides, over on YouTube – https://youtu.be/-UeABCmUBo0 Enjoy
Eva-Maria Walz und Kathrin Kadel studieren Mathematik und Verfahrenstechnik am Karlsruher Institut für Technologie (KIT) und trafen sich in einem Softwarepraktikum zu Strömungssimulationen von Mathias Krause und erhielten darauf die Chance auf ein Auslandspraktikum am City College of New York (CCNY) in den USA, von dem sie uns im Gespräch mit Gudrun Thäter erzählen. Die ersten Eindrücke waren überwältigend; auf der einen Seite Campusgebäude wie Kathedralen, auf der anderen Seite sehr viel Sicherheitspersonal und häufige Ausweiskontrollen. Nachdem die ersten organisatorischen Hürden überwunden waren, konnten sie sehr schnell in der Gruppe um Prof. Taehun Lee (Ph.D.) mitarbeiten. Ihr Thema war die Sedimentation von Partikeln einmal auf Basis von OpenFOAM und einmal auf Basis von OpenLB. Speziell ging es um die Modellierung von kreis- und kugelförmigen Partikeln und der Interaktion zweier Partikel und dem Vergleich von Ergebnissen und Performance. Die beiden wurden während ihres Praktikums sowohl von der Gruppe in New York als auch von der Gruppe in Karlsruhe weiter betreut und hatten die Gelegenheit an externen Workshops in New York teilzunehmen. Sehr spannend fanden die beiden auch den Einblick in die andere Lehr- und Lernkultur in den Vereinigten Staaten. Da das Praktikum in die Zeit der Präsidentschaftswahl 2016 fiel, war ihr Aufenthalt geprägt von rückschrittlichen Einstellungen zur Immigration, der geschlechtlichen Gleichberechtigung und Rolle der Bildung in der Gesellschaft. Neben den Reaktionen auf die Wahl in der Gesellschaft erlebten sie auch die Reaktionen der internationalen Forschungsgruppe, bei der sie zu Gast waren. Der Aufenthalt wäre ohne Baden-Württemberg-Stipendium nicht möglich gewesen und die Wohnungssuche ist in einer Stadt wie New York nur vor Ort möglich. Die Organisation für einen akademischen Aufenthalt sollte man auf jeden Fall mit viel zeitlichem Vorlauf einplanen. Die Chancen durch einen Auslandsaufenthalt sind aber immer den Aufwand für die Organisation wert.
Today is the first episode with 2 guests — Darrin Stephens & Chris Sideroff — business partners in Applied CCM, based in Australia & Canada respectively. Whilst Applied CCM have several CFD-related activities, this interview is essentially all about Caelus, their CFD software derived from OpenFOAM®. I really wanted to take this opportunity to dig into the whys & wherefores of Caelus, including: • what makes Caelus different to OpenFOAM, both in terms of features & philosophy; • why forks/derivatives detract from their parent open-source project & what they signify; • what “industrially-hardened” means in a CFD context & why Red Hat Linux was a source of inspiration; • why they have "a thing" about validation; Shownotes Applied CCM — http://www.appliedccm.com/ Caelus — https://www.caelus-cml.com/
In this episode I’m joined by Franjo Juretić, one of the founders of Creative Fields & the primary developer behind their CFD meshing toolkit - cfMesh. Franjo & I discuss how a part-time project, that would only take a couple months to finish, turned into a 13+ year journey. Along the way we cover: * how they use a freely-available, open-source product — cfMesh — to increase brand awareness & feed into their commercial offerings; * how cfMesh fits into the OpenFOAM landscape & why it’s more than just an OpenFOAM mesher; * why the problem of creating meshes for CFD will probably never be completely solved (& that’s why he enjoys it so much); * the benefits of being a small company & building direct relationships with your customers; Links http://cfmesh.com/ – For more information on cfMesh, cfMesh Pro & cfFlow https://sourceforge.net/projects/cfmesh/ – the cfMesh code repository on sourceforge https://twitter.com/CFieldsHR – Follow Creative Fields on Twitter
In this episode I’m talking with Nicolas Tonello of Renuda about running a successful CFD consultancy / development / training business. We also open the box on Code_Saturne - an open-source CFD software that you may not know too much about. Nicolas & I chat about: • why being independent is so important to them & how it benefits their clients; • how they balance their consulting, development & training activities; • how CFD can be much more than just an R&D tool; • what is Code_Saturne & why aren’t more people using it? • whether an OpenFOAM user would feel at home in Code_Saturne & some of the compelling reasons to switch; • a nugget of advice for anyone thinking of starting their own CFD consultancy; Links • http://www.renuda.com/ – Renuda Website • http://code-saturne.org/ – Code_Saturne
Today I’m joined by Fred Mendonça of OpenCFD to chat about to chat about the challenges of running a business where the primary offering (OpenFOAM®) is open-source & freely-available. We dig into: • where/how/if being open-source can have an impact on a code’s value proposition; • why fostering a community — and opening up channels to allow that community to make useful contributions — are some of the largest & most important challenges Fred faces with OpenFOAM®; • why the success of their Windows release of OpenFOAM® was both a no-brainer & a surprise; • what a classical Greek story about a feather has to do with the future of OpenFOAM®. Links http://www.openfoam.com/ — All about OpenCFD & OpenFOAM®
Peter Allinger und Nick Stockelkamp optimieren bei der Dassault Systèmes in Karlsruhe Formen, Strukturen und Strömungen im Bereich des Maschinenbaus. Anwendungsbeispiele reichen vom Zahnimplantat bis zum Schiffsdiesel und typische Optimierungskriterien sind Gewicht, Fertigungskosten und Haltbarkeit. Dabei hat sich der Fokus von einfachen Fragestellungen wie der Durchbiegung hin zu komplexen Fragestellungen wie der Geräuschentwicklung. In der Fluid-Optimierung geht es unter anderem um die Reduzierung von Druckverlusten, der Vermeidung von Turbulenzen oder auch Verbesserung von Wärmetauschern, beispielweise unterstützt durch den Löser OpenFOAM. Dabei gibt es unterschiedliche Vorhegensweisen: Man kann entweder die Veränderung der Objekte durch Hinzufügen oder Abziehen von Material hervorrufen, oder man berechnet die Sensitivität der Zielgröße bezüglich Veränderungen an den Oberflächen. Der mögliche Design-Raum wird in vielen Anwendungen mit der Finite-Elemente-Methode diskretisiert, um zu einem lösbaren Problem zu gelangen, wobei Strömungen oft mit Finite-Volument-Verfahren gelöst werden. Die zentrale Frage ist jedoch, wann man ein Bauteil als optimal bezeichnen kann. Hier hat Prof. Eckart Schnack in den 70er Jahren den Ansatz beschrieben, dass eine gleichmäßige Spannungsverteilung eines beanspruchten Bauteils ein optimales Bauteil auszeichnen kann. Im Fall von strukturmechanischen Belastungen gibt es für diesen Optimalitätsbegriff iterative Löser, jedoch sind Fragestellungen im Umfeld von Eigenwertprobleme noch ein offenes Forschungsgebiet. Literatur und Zusatzinformationen Schnack, E. "Ein Iterationsverfahren zur Optimierung von Spannungskonzentrationen." Inaugural Dissertation, Kaiserslautern University (1977).
Karen and Bradley briefly discuss and play Bradley's keynote at the Sixth Annual OpenFOAM Conference. Show Notes: Segment 0 (00:38) Bradley spoke at the Sixth Annual OpenFOAM workshop. (01:42) Segment 1 (03:20) Follow along with Bradley's slides from his talk at the Sixth Annual OpenFOAM Workshop (03:22) The sources for the slides is available. Segment 2 (53:12) Karen and Bradley discussed the talk. Bill Gates' arrest in New Mexico (Bradley incorrectly said Nevada) is discussed in Gates' Wikipedia entry. (55:20) Bradley mentioned the made-for-TV movie The Pirates of Silicon Valley. (56:26) Send feedback and comments on the cast to . You can keep in touch with Free as in Freedom on our IRC channel, #faif on irc.freenode.net, and by following Conservancy on on Twitter and and FaiF on Twitter. Free as in Freedom is produced by Dan Lynch of danlynch.org. Theme music written and performed by Mike Tarantino with Charlie Paxson on drums. The content of this audcast, and the accompanying show notes and music are licensed under the Creative Commons Attribution-Share-Alike 4.0 license (CC BY-SA 4.0).
Karen and Bradley briefly discuss and play Bradley's keynote at the Sixth Annual OpenFOAM Conference. Show Notes: Segment 0 (00:38) Bradley spoke at the Sixth Annual OpenFOAM workshop. (01:42) Segment 1 (03:20) Follow along with Bradley's slides from his talk at the Sixth Annual OpenFOAM Workshop (03:22) The sources for the slides is available. Segment 2 (53:12) Karen and Bradley discussed the talk. Bill Gates' arrest in New Mexico (Bradley incorrectly said Nevada) is discussed in Gates' Wikipedia entry. (55:20) Bradley mentioned the made-for-TV movie The Pirates of Silicon Valley. (56:26) Send feedback and comments on the cast to . You can keep in touch with Free as in Freedom on our IRC channel, #faif on irc.freenode.net, and by following Conservancy on identi.ca and and Twitter. Free as in Freedom is produced by Dan Lynch of danlynch.org. Theme music written and performed by Mike Tarantino with Charlie Paxson on drums. The content of this audcast, and the accompanying show notes and music are licensed under the Creative Commons Attribution-Share-Alike 4.0 license (CC BY-SA 4.0).