POPULARITY
Wir haben hier ein ziemlich großes Problem mit der Physik im Universum. Denn Sie scheint kein Sinn zu machen, auch wenn die Berechnungen extrem präzise sind! Denn unsere besten Berechnungen zeigen, dass sich der Raum schneller ausdehnt, als wir erklären können – und je genauer wir messen, desto größer wird das Problem. Das ist keine Kleinigkeit. Wenn wir falsch liegen, bedeutet das, dass unser Verständnis von Dunkler Energie, Gravitation oder vielleicht sogar der Struktur des Universums selbst fehlerhaft ist. Seit dem Urknall ist das Universum ständig gewachsen. Mal schneller, mal langsamer, je nachdem, welche Kräfte gerade das kosmische Gleichgewicht bestimmten. Doch eines war immer klar: Die Expansion folgt bestimmten physikalischen Regeln, die wir inzwischen ziemlich gut verstanden haben – oder zumindest dachten wir das. Eine neue Studie hat jetzt anhand präziser Messungen eines über 300 Millionen Lichtjahre entfernten Galaxienhaufens bestätigt, dass der Raum um uns herum schneller zu wachsen scheint, als die Physik es erlaubt. Wie das Möglich ist, was genau hier gemessen wurde und was das für die Zukunft des Universums bedeutet, das erfährst du heute hier in diesem Video! Entropy Podcast: https://open.spotify.com/show/6rKLAIJtuDgejHv5gXsbd1 Hat dir das Video gefallen? Dann würde ich mich sehr über einen Daumen nach oben freuen! Es kostet euch nichts und lässt Youtube wissen, dass euch das Video gefällt! Und empfehlt es weiter, an genau so neugierige Entropies die hier noch nicht abonniert haben! Abonniere jetzt die Entropy, um keines der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 Zu meinen Social Media Links: https://linktr.ee/JourneyDE Discord Channel: https://discord.gg/xGtUAaAw98 Abonniere jetzt die Entropy, um keine der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 ♦ MEINE NEUE WEBSITE - WISSENSCHAFT IM ÜBERBLICK: https://www.entropywse.com ♦ MERCH: https://yvolve.shop/collections/vendors?q=Entropy ♦ PATREON: https://www.patreon.com/entropy_wse ♦ TWITTER: https://twitter.com/Entropy_channel ♦ INSTAGRAM: https://www.instagram.com/roma_perezogin/ ♦ INSTAGRAM: https://www.instagram.com/entropy_channel/ ♦ DISCORD-SERVER: https://discord.gg/xGtUAaAw98 ♦ GOODNIGHT STORIES: https://open.spotify.com/show/5Mz5jx2lm7DXN3FizSigoJ
Das europäische Weltraumteleskop Euclid soll die Verteilung von Dunkler Materie und Dunkler Energie im All erforschen. Gleichsam zum Aufwärmen hat es vorab Tausende von Galaxien im Perseus-Haufen aufgenommen – und damit Himmelsfans verzückt. Lorenzen, Dirk www.deutschlandfunk.de, Sternzeit
Warum ist unser Himmel eigentlich dunkel und nicht gleißend hell? Schließlich, so argumentierte 1823 bereits der deutsche Astronom Heinrich Wilhelm Olbers, müsste der Blick eines Beobachters in einem unendlichen Universum eigentlich in jeder beliebigen Richtung irgendwann auf einen Stern treffen und daher der Nachthimmel so hell wie die Sonnenoberfläche sein. Warum dies nicht so ist, was uns aber dieses sogenannte „Olberssche Paradoxon“ stattdessen über die Beschaffenheit des Universums verrät, erklären unsere beiden Himmelspaziergänger Susanne und Paul gleich zu Beginn unserer heutigen Podcastfolge. Nach diesem lockeren kosmologischen Warm-Up, wenden sich die beiden Astro-Experten dann den großen ‚dunklen‘ Fragen des Universums zu: Was genau ist eigentlich diese geheimnisvolle „Dunkle Materie“, von der alle sprechen? Warum wird sie auch als „Geburtshelferin für Sterne und Galaxien“ bezeichnet und könnte ihre Existenz tatsächlich Galaxienansammlungen wie den riesigen „Coma-Haufen“ erklären? Was unterscheidet sie von „Dunkler Energie“? Und wie schließen wir wiederum auf deren Existenz? Begleitet Susanne und Paul auf ihrem ebenso unterhaltsamen wie informativen Spaziergang durch die Kosmologie und erfahrt, was aus astronomischer Sicht „die Welt im Innersten zusammenhält“!
Thomas, Juliawww.deutschlandfunkkultur.de, InterviewDirekter Link zur Audiodatei
Die dunkle Jahreszeit neigt sich ganz langsam dem Ende entgegen, doch wir haben noch ein paar spannende, dunkle Themen für euch! Nachdem wir uns mit Dunkler Energie und Dunkler Materie befasst haben, nähren wir uns dem großen Thema "schwarze Löcher". Doch bevor wir damit starten, müssen wir uns ein paar Grundlagen widmen. Wie zum Beispiel Einsteins Relativitätstheorie. Und genau damit starten wir in der heutigen Folge - genauer gesagt mit der Speziellen Relativitätstheorie. Was es damit auf sich hat und noch viel mehr rund um die Relativitätstheorie, erfahrt ihr in der heutigen Folge ALLwissen.
Deutsche Astrophysiker wollen mit dem Röntgenteleskop eROSITA dunkle Energie im Weltraum nachweisen. Das Projekt startet voraussichtlich am Freitag mit einer russischen Trägerrakete vom Weltraumbahnhof Baikonur
Über den Versuch an Bord der ISS den letzten Geheimnissen des Universums auf die Spur zu kommen RZ038 Alpha-Magnet-Spektrometer In den letzten zehn Jahren hat sich das Verständnis des Universums grundlegend gewandelt. Durch zahlreiche wissenschaftliche Entdeckungen und Erkenntnisse wurden die bisherigen Annahmen auf den Kopf gestellt. Um die Fragen nach dem Wesen von Dunkler Materie und Dunkler Energie zu beantworten müssen neue Wege gegangen werden. Dabei spielt das auf der Internationalen Raumstation installierte Alpha-Magnet-Spektrometer (AMS) eine Schlüsselrolle. Das vom DLR geförderte und von zahlreichen Wissenschaftlern in kurzer Zeit entwickelte neuartige Messsystem beobachtet und analysiert rund um die Uhr eintreffende kosmische Strahlung und sucht dabei nach Atomen und Elementarteilchen, die weiteren Aufschluss über die genaueren Umstände des Urknalls und der generellen Beschaffenheit des Universums geben sollen. Dauer: 2 Stunden Aufnahme: 25.05.2012 Quelle: http://raumzeit-podcast.de/2012/06/01/rz038-alpha-magnet-spektrometer/
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Die Forschungsergebnisse der letzten Jahre haben gezeigt, dass das Universum bei weitem nicht nur aus baryonischer Materie besteht. Tatsächlich scheinen 72% aus sogenannter Dunkler Energie zu bestehen, während selbst vom verbleibenden Teil nur etwa ein Fünftel baryonischer Materie zugeordnet werden kann. Der Rest besteht aus Dunkler Materie, deren Beschaffenheit bis heute nicht mit Sicherheit geklärt ist. Ursprünglich in den Rotationskurven von Spiralgalaxien beobachtet, wurde die Notwendigkeit ihrer Existenz inzwischen auch in elliptischen Galaxien und Galaxienhaufen nachgewiesen. Tatsächlich scheint Dunkle Materie eine entscheidende Rolle in der Strukturbildung im Universum gespielt zu haben. In der Frühzeit des Universums, als die Materieverteilung im Weltraum noch äußerst gleichmäßig war und nur sehr geringe Inhomogenitäten aufwies, bildeten sie die Kondensationskeime für den gravitativen Kollaps der Materie. Numerische Simulationen haben gezeigt, dass der heute beobachtbare Entwicklungszustand des Universums erst durch die zusätzliche Masse Dunkler Materie ermöglicht wurde, die den strukturellen Kollaps erheblich beschleunigte und nur dadurch zur heute beobachtbaren Komplexität der Strukturen führen konnte. Da Dunkle Materie nicht elektromagnetisch wechselwirkt, sondern sich nur durch ihre Schwerkraft bemerkbar macht, stellt der Gravitationslinseneffekt eine ausgezeichnete Methode dar, die Existenz und Menge an Dunkler Materie nachzuweisen. Der schwache Gravitationslinseneffekt macht sich zu Nutzen, dass die intrinsischen Orientierungen der Galaxien im Weltraum keine Vorzugsrichtung haben, gleichbedeutend mit ihrer statistischen Gleichverteilung. Die gravitationsbedingte kohärente Verzerrung der Hintergrundobjekte führt zu einer Abweichung von dieser Gleichverteilung, die von den Eigenschaften der Gravitationslinsen abhängt und daher zu deren Analyse genutzt werden kann. Diese Dissertation beschreibt die Galaxy-Galaxy-Lensing-Analyse von insgesamt 89 deg^2 optischer Daten, die im Rahmen des CFHTLS-WIDE-Surveys beobachtet wurden und aus denen im Rahmen dieser Arbeit photometrische Rotverschiebungs- und Elliptizitätskataloge erzeugt wurden. Das Galaxiensample besteht aus insgesamt 5×10^6 Linsen mit Rotverschiebungen von 0.05 < z_phot ≤ 1 und einem zugehörigen Hintergrund von insgesamt 1.7×10^6 Quellen mit erfolgreich gemessenen Elliptizitäten in einem Rotverschiebungsintervall von 0.05 < z_phot ≤ 2. Unter Annahme analytischer Galaxienhaloprofile wurden für die Galaxien die Masse, das Masse-zu-Leuchtkraft-Verhältnis und die entsprechenden Halomodellprofilparameter sowie ihre Skalenrelationen bezüglich der absoluten Leuchtkraft untersucht. Dies geschah sowohl für das gesamte Linsensample als auch für Linsensamples in Abhängigkeit des SED-Typs und der Umgebungsdichte. Die ermittelten Skalenrelationen wurden genutzt, um die durchschnittlichen Werte für die Galaxienhaloparameter und eine mittlere Masse für die Galaxien in Abhängigkeit ihres SED-Typs zu bestimmen. Es ergibt sich eine Gesamtmasse von M_total = 23.2+2.8−2.5×10^11 h^{−1} M_⊙ für eine durchschnittliche Galaxie mit einer Referenzleuchtkraft von L∗ = 1.6×10^10 h^{−2} L_⊙. Die Gesamtmasse roter Galaxien bei gleicher Leuchtkraft überschreitet diejenige des entsprechenden gemischten Samples um ca. 130%, während die mittlere Masse einer blauen Galaxie ca. 65% unterhalb des Durchschnitts liegt. Die Gesamtmasse der Galaxien steigt stark mit der Umgebungsdichte an, betrachtet man die Geschwindigkeitsdispersion ist dies jedoch nicht der Fall. Dies bedeutet, dass die zentrale Galaxienmateriedichte kaum von der Umgebung sondern fast nur von der Leuchtkraft abhängt. Die Belastbarkeit der Ergebnisse wurde von zu diesem Zweck erzeugten Simulationen bestätigt. Es hat sich dabei gezeigt, dass der Effekt mehrfacher gravitativer Ablenkung an verschiedenen Galaxien angemessen berücksichtigt werden muss, um systematische Abweichungen zu vermeiden.
In den letzten zehn Jahren hat sich das Verständnis des Universums grundlegend gewandelt. Durch zahlreiche wissenschaftliche Entdeckungen und Erkenntnisse wurden die bisherigen Annahmen auf den Kopf gestellt. Um die Fragen nach dem Wesen von Dunkler Materie und Dunkler Energie zu beantworten müssen neue Wege gegangen werden. Dabei spielt das auf der Internationalen Raumstation installierte Alpha-Magnet-Spektrometer (AMS) eine Schlüsselrolle. Das vom DLR geförderte und von zahlreichen Wissenschaftlern in kurzer Zeit entwickelte neuartige Messsystem beobachtet und analysiert rund um die Uhr eintreffende kosmische Strahlung und sucht dabei nach Atomen und Elementarteilchen, die weiteren Aufschluss über die genaueren Umstände des Urknalls und der generellen Beschaffenheit des Universums geben sollen.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Aktuelle Forschungsergebnisse deuten darauf hin, dass das Universum insgesamt aus 72% Dunkler Energie, 23% nichtbaryonischer Materie und 4.5% baryonischer Materie besteht. Von dieser baryonischen Materie kann bisher nur ein neuntel sicher zugeordnet werden. Ferner laesst sich aus der Rotation von Spiralgalaxien ableiten, dass diese grosse Mengen an Dunkler Materie enthalten, die sich rein durch ihren gravitativen Einfluss auf sichtbare Objekte im Bulge und in der Scheibe der Galaxie zeigt. Dabei wird angenommen dass Bulge und Scheibe in den sog. dunklen Halo eingebettet sind, der diese unsichtbare Materie beinhaltet. Eine grundlegende Frage ist daher aus welcher Art die dunkle Materie im Halo von Spiralgalaxien besteht. Moegliche Kandidaten fuer solche Dunkle Materie sind neben schwach wechselwirkenden massiven Teilchen (WIMPs - Weakly Interacting Massive Particles) auch kompakte dunkle Objekte im Halo von Galaxien (Machos - MAssive Compact Halo Objects). Die vorliegende Doktorarbeit beschreibt die Suche nach solchen Machos im Halo unserer Nachbargalaxie Andromeda (M31). Im Falle von kompakten Objekten mit Massen im Bereich von einem milliardstel bis zum zehntausendfachen einer Sonnenmasse ermoeglicht der sogenannte Gravitationslinseneffekt deren direkten Nachweis. Dabei beeinflusst die gravitative Wirkung eines kompakten Objekts die Lichtstrahlen von im Hintergrund liegenden Sternen derart, dass das Licht durch die Relativbewegung kurzzeitig fokussiert und verstaerkt wird. Jedoch ist die Wahrscheinlichkeit, dass ein Stern eine messbare Verstaerkung aufweist, weniger als 1 : 1000000. Durch Messungen von Millionen von Sternen konnten derartige charakteristische Lichtkurven im letzten Jahrzehnt sehr zahlreich in Richtung zum Zentrum unserer Milchstrasse nachgewiesen werden. Eine noch groessere Herausforderung stellt der Nachweis von Machos in der hundertmal weiter entfernten Andromeda-Galaxie (M31) dar. Zwar erreicht uns von einzelnen Sternen von dort im Vergleich zum Milchstrassenzentrum nur ein zehntausendstel an Strahlung, jedoch lassen sich mit einer einzigen Aufnahme Millionen von Sternen gleichzeitig auf Helligkeitsaenderungen ueberpruefen. Da die Sichtlinie zum Zentrum von M31 die Halos der Milchstrasse und von M31 durchdringt, gestattet dies Rueckschluesse auf den Anteil der Machos in beiden Galaxien. Wegen der deutlich groesseren Entfernung und der damit verbundenen geringeren scheinbaren Helligkeit der Hintergrundobjekte sind die Anforderungen an die Datenanalyse ungleich hoeher. In der vorliegenden Doktorarbeit wurden daher neue Methoden entwickelt und aufgezeigt, um systematische Fehler bei der Aufnahme von Bildern zu kontrollieren und das Rauschen bei der Bildbearbeitung zu minimieren. Da die Zeitdauer eines Gravitationslinsenereignisses sehr kurz ist, mussten am Wendelstein-0.8-m-Teleskop, und waehrend einer 3-jaehrigen Phase am Calar-Alto-1.23-m-Teleskop, zehntausende Aufnahmen waehrend des Zeitraums von 1997 - 2005 gewonnen und ausgewertet werden. In dieser bezueglich der Zeitueberdeckung einmaligen Datenbasis konnten in 4 Mio. Lichtkurven insgesamt 13 Ereignisse nachgewiesen werden, die die typischen Helligkeitsaenderungen des Gravitationslinseneffekts aufweisen. Die Analyse der Lichtkurven zeigt mit den in dieser Arbeit gewonnenen theoretischen Erkenntnissen bezueglich der endlichen Groesse der Hintergrundsterne, dass alle Gravitationslinsenkandidaten mit einem Halo aus dunklen Objekten von 0.2 Sonnenmassen vereinbar sind. Waehrend die Anzahl der Detektionen im Vergleich zu frueheren theoretischen Vorhersagen deutlich geringer ausfiel, zeigten die im Rahmen dieser Doktorarbeit entwickelten theoretischen Vorhersagen eine sehr gute uebereinstimmung. Ob sich die beobachteten Gravitationslinsenereignisse wirklich durch Machos im Halo oder eventuell durch Sterne in Bulge oder Scheibe hervorgerufen wurden, soll durch weiterfuehrende Arbeiten mittels Monte-Carlo-Simulationen bezueglich der Detektionseffizienz geklaert werden. Daraus lassen sich dann quantitative Aussagen ueber die Art der dunklen Materie und den Anteil von Machos im Halo der M31 Galaxie gewinnen.