Podcasts about gehirngewebe

  • 4PODCASTS
  • 5EPISODES
  • 39mAVG DURATION
  • ?INFREQUENT EPISODES
  • Mar 30, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about gehirngewebe

Latest podcast episodes about gehirngewebe

Schlafversteher
#095 - Demenzrisiken runter - insbesondere über Schlaf und Kraftsport!

Schlafversteher

Play Episode Listen Later Mar 30, 2025 39:45


Sun, 30 Mar 2025 06:26:16 +0000 https://schlafversteher.podigee.io/95-demenz 1cabd9fe4e1d918f389f249d4e7c52bf Einsprecher Fehlender Tiefschlaf erhöht das Demenz-Risiko. Wir können jedoch einiges dafür tun, unsere Risiken zu senken. Wir können unser Verhalten so anpassen, das wir nicht nur direkt das Demenz-Risiko senken, sondern wir auch gleichzeitig den tiefen Schlaf fördern. Begrüssung Eine Verkettung wilderer Umstände hatte für unsere lange Podcast-Pause gesorgt. Michaelas neueste Gesundheitsprojekte. Andreas Sportverletzung aus Japan Euere Fragen zur letzten Folge Franziska fragt: Wieder mal eine spannende Folge von euch. Unglaublich was alles in unser Schlafuniversum gehört. Hier meine Frage: Wie schnell bemerkt man spürbare Veränderungen im Schlaf, wenn man solche Schlaf-Frequenztherapien anwendet? Jens fragt: Kann man Frequenz-Methoden auch bei Kindern oder älteren Menschen einsetzen – gibt es Altersgrenzen? Das Thema de Woche: Demenzrisiken In Deutschland leiden rund 1,8 Millionen Menschen an Demenz. Die meisten von ihnen sind von der Alzheimer-Krankheit betroffen. 440.000.neue Erkrankungen kommen pro Jahr hinzu. Demenz steht als Überbegriff für eine Gruppe von Symptomen, die mit einem fortschreitenden Verlust von kognitiven Fähigkeiten (Gedächtnis, Denken und Orientierung) einhergehen. Sekundäre Demenzen (körperliche Störung) Vaskuläre Demenz (Durchblutungsstörungen im Gehirn) Alzheimer-Krankheit (Verlust von Nervenzellen und Ablagerungen) Bei Demenz sterben Gehirnzellen ab, was zu einem Verlust der Kommunikationsfähigkeit zwischen den Nervenzellen führt. Häufig sind dabei abnorme Ablagerungen wie Beta-Amyloid-Plaques und Tau-Protein-Tangles zu erkennen, die das normale Gehirngewebe schädigen. Eine Diagnosestellung erfolgt durch kognitive Tests und bildgebende Verfahren wie MRT oder PET, die die typischen strukturellen und funktionellen Veränderungen im Gehirn sichtbar machen. Wissenschaftlich bestätigt! Fortschritte in den Therapien (ganz kurz) Seit Jahren wartet man auf den großen Durchbruch in den Therapien. Immer bessere Medikamente, welche jedoch immer nur den Fortschritt der Erkrankung verlangsamen können. Im Vorteil sind Menschen, welche ihr Gehirn mehrfach vernetzt haben und immer unterschiedliche Denkwege gegangen sind. Das Fortschreiten der Erkrankung betrifft diese Menschen weniger, da sie den Verlust von einzelnen Zellen/Wegen besser mit alternativen Wegen kompensieren können. Das beschäftigt alle: Ich möchte nicht daran erkranken! Sich aktiv gegen Demenz zu wenden, das beschäftigt wiederum NICHT alle. Bei Demenz helfen nur zwei Dinge: Das Gehirn für den Fall multivernetzt vorbereiten Denn Eintritt der Erkrankung möglichst weit an das Lebensende zu verschieben - also Risiken vermeiden, Das vergessen wir ständig: die Risikofaktoren Normale Risiken: Mangelnde Bewegung, Übergewicht und einhergehen Erkrankungen: …. Mangelnde geistige Beschäftigungen und Herausforderungen: … Vermeidbare Gifte: … Top-Risiken: Sportverletzungen (Boxen, …) Genetische Veranlagung Schlafmangel Das Alter Wenn wir das gewusst hätten: Krafttraining und Myokine Studien zeigen, dass insbesondere Kraftsport zu einer vermehrten Ausschüttung von Myokinen führt. Schätzungen zufolge produzieren die Muskeln insgesamt etwa 600 verschiedene Myokine. Während intensiver Muskelarbeit schütten die Skelettmuskeln Myokine aus, die im gesamten Körper, auch im Gehirn, wirken. Myokine werden nicht ausschließlich beim Kraftsport ausgeschüttet. Sie entstehen bei jeder Form von Muskelkontraktion: Diese Botenstoffe können Entzündungsprozesse reduzieren, die Neubildung von Nervenzellen fördern und so zur Prävention von Demenz beitragen. Sie können sogar Krebsrisiken senken. Insbesondere Irisin Studien haben gezeigt, dass Irisin in Tiermodellen Alzheimer-Symptome mildern konnten. Selbst kleine Zuwächse an Muskelmasse (etwa 30 Gramm bei einer Person von 1,75 m) kann das Alzheimer-Risiko um bis zu 12 % senken. Wiederholung muss sein: Tiefschlaf Plaques ausspülen Im Tiefschlaf tritt ein Reinigungsprozess in Gang … Zusammengefasst: Im Tiefschlaf erweitert sich der Raum zwischen den Gehirnzellen wodurch die CSF (Flüssigkeiten) vermehrt in das Hirngewebe eindringen kann. Dieser tägliche „Aufräumprozess“ ist essenziell, um die Ansammlung schädlicher Substanzen zu verhindern und die Gesundheit des Gehirns zu fördern. Wann: Insbesondere In der ersten Nachthälfte! Unsere Tipps heute: 1) Krafttraining und viel Bewegung 2) Ruhe und geistige Herausforderungen abwechseln lassen 3) Ernährung 4) Alles für den Tiefschlaf tun Bei Fragen oder dem Wunsch mitzumachen: info@schlafversteher.de (wir behandeln euere Daten vertraulich) Überall da, wo es Podcasts gibt: https://www.schlafversteher.de/abos/ Mehr Infos finden Sie hier: https://www.schlafversteher.de Die Schlafversteher, eine Produktion der vAL Ton, Schnitt und unsere unermüdliche Gastgeberin: Michaela von Aichberger Redaktion und unser unnachgiebiger Experte: Andreas Lange full no Demenz,Alzheimer Michaela von Aichberger & Andreas L

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 07/07
Zum Einfluss von 17β-Östradiol und Progesteron auf die neurologische Funktion und die Gehirnmorphologie sowie auf molekulare Aspekte der zerebralen Inflammation und Exzitotoxizität vier Tage nach herzchirurgisch typischer extrakorporaler Zirkulation mit 4

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 07/07

Play Episode Listen Later Jul 12, 2014


Ziel der vorliegenden Studie ist es, den Einfluss von 17β-Östradiol und/oder Progesteron auf die neurologische Funktion in vivo sowie auf die neuronale Morphologie und auf molekulare Aspekte der zerebralen Inflammation und Exzitotoxizität in vitro im Zeitraum von 4 Tagen nach herzchirurgisch typischer extrakorporaler Zirkulation (EKZ) mit 45 min tief hypothermem Kreislaufstillstand („deep hypothermic circulatory arrest“, DHCA) in einem Versuchsmodell an der Ratte zu untersuchen. 100 weibliche Sprague-Dawley-Ratten wurden in 5 Versuchsgruppen (n = 20) randomisiert: Eine Gruppe wurde scheinkastriert (Gruppe „Intakt“); die 4 weiteren Gruppen wurden kastriert und je nach Gruppenzugehörigkeit mit einem subkutanen Hormonimplantat versehen: Plazebo (Gruppe „Plazebo“), 17β-Östradiol (Gruppe „Östrogen“), Progesteron (Gruppe „Progesteron“) sowie 17β-Östradiol- und Progesteron (Gruppe „Progesteron + Östrogen“, „P+Ö“). 4 Wochen nach Kastration/Scheinkastration und gegebenenfalls nach Hormon-/Plazebo-Supplementierung wurden die Tiere mit Isofluran (2,0 – 2,5 Vol% in 40 % O2) anästhesiert, intubiert, katheterisiert, mithilfe der EKZ über 30 min auf 16 °C rektale Körpertemperatur abgekühlt und der DHCA wurde für einen Zeitraum von 45 min durchgeführt. Anschließend wurden die Tiere mittels EKZ über 40 min auf 35,5 °C rektale Körpertemperatur wiedererwärmt, die EKZ beendet, die Tiere 1 Stunde nachbeatmet und eine Telemetrie-Transmittersonde intraperitoneal eingesetzt, bevor die Anästhesie beendet, und die Tiere bei Einsetzen der Spontanatmung extubiert wurden. Die postoperative telemetrische Überwachung umfasste Körpertemperatur und Herzfrequenz, letztere gekoppelt mit einem Alarmsystem, um Tiere bei Bedarf (Herzfrequenz < 150 Schläge/min) rechtzeitig euthanasieren zu können. Alle Tiere wurden am präoperativen Tag 1 (Tag –1) neurologisch untersucht sowie an den postoperativen Tagen 1, 2, 3 und 4, sofern sie überlebt haben. Am postoperativen Tag 4 wurden die Tiere in tiefer Isoflurannarkose zur Blut- und Serum-Gewinnung entblutet sowie deren Gehirne entnommen und tiefgefroren (–80 °C). In Hämatoxylin-Eosin (HE-) gefärbten Gehirnschnitten wurde die Anzahl intakter und geschädigter Neurone lichtmikroskopisch in den Bereichen Striatum (Bregma –0,3 mm), Kortex und Hippokampus (Bregma –3,3 mm) ermittelt. Die TNFα-Konzentration im Serum der Tiere wurde mittels Enzyme-linked Immunosorbent Assay bestimmt. Die zerebrale Expression von Östrogenrezeptor α (ERα), von Östrogenrezeptor β (ERβ), von „Excitatory Amino Acid Transporter 1“ (EAAT1), von „Glutamat Transporter 1b“ (GLT-1b), von „CXC-Motiv-Chemokinrezeptor 2“, (CXCR2), von Interleukin-8 (IL-8) und von induzierbarer Stickoxid Synthase (iNOS) erfolgte mit dem Western-Blot-Verfahren. Die durchgeführten Auswertungen erfolgten für eine nach spezifischen Kriterien getroffene Auswahl von jeweils 5 überlebenden Tieren und 5 euthanasierten Tieren pro Versuchsgruppe. Die statistische Datenanalyse wurde mithilfe allgemeiner linearer Modelle mit post-hoc einfaktorieller Varianzanalyse und Bonferroni-t-Tests bzw. Kruskal-Wallis und post-hoc Mann-Whitney U (p < 0,05) durchgeführt. Die Ergebnisse zeigen keine Versuchsgruppen-spezifischen Unterschiede bei den intra- und postoperativen physiologischen Parametern. Die Serumkonzentrationen von TNFα, die Gehirnmorphologie und die neurologische Funktion zeigten sich vom Versuchsansatz unbeeinflusst. Beim Nachweis der Expression von Rezeptor-, Transporter- und Entzündungsproteinen im Gehirngewebe mittels Western-Blot-Verfahren zeigten sich bei einigen Proteinen Versuchsgruppen-spezifische Unterschiede: Die vorzeitig euthanasierten Tiere der Gruppe „Plazebo“ zeigten eine niedrigere Expression von ERβ als die überlebenden Tiere dieser Gruppe und als die ebenfalls vorzeitig euthanasierten Gruppen „Östrogen“ und „P+Ö“. Des Weiteren exprimierten die überlebenden Tiere der Gruppe „P+Ö“ signifikant mehr EAAT1 im Gehirn als die vorzeitig euthanasierten Tiere dieser Gruppe und auch als die überlebenden Tiere der „Plazebo“-Gruppe. Zusätzlich zeigte sich, dass physiologische hormonelle Schwankungen im Rahmen des Zyklusgeschehens bei der gemeinsamen Wirkung von 17β-Östradiol und Progesteron (Gruppe „Intakt“) im Rahmen der postoperativen zerebralen Inflammation sowohl vorteilhaft (reduzierte iNOS-Expression) als auch von Nachteil (erhöhte IL-8-Expression) gegenüber einer Substituion dieser beiden Hormone (Gruppe „P+Ö“) sein können. Zusammenfassend gesehen bieten aus der Vielzahl der untersuchten Parameter und Faktoren insbesondere die für die zerebrale Inflammation und Exzitotoxizität typischen spezifischen Proteine ausreichend Potential für weiterführende, tierexperimentell ähnlich gestaltete Untersuchungen. Langfristig könnten hier zusätzliche Tierversuchsmodelle wie z. B. Alterung, Diabetes, Atherosklerose und Hypertension eine weitere Annäherung an humanklinische Verhältnisse ermöglichen.

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19
Monoklonale Antikörper für die Analyse der Genexpression in neuronalen Geweben

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 04/19

Play Episode Listen Later Jun 9, 2005


Monoklonale Antikörper sind unverzichtbare Hilfsmittel, um Proteinkomplexe aus Zellen zu isolieren oder Proteine in Gewebeschnitten zu lokalisieren. Sie dienen auch dazu, Entwicklungsvorgänge aufzuklären. Dabei wird als Modellorganismus für Vertebraten oft der Zebrafisch gewählt, da er sich asaisonal vermehrt, eine zahlreiche Nachkommenschaft hat und sowohl die Befruchtung als auch die Entwicklung außerhalb des Mutterleibs erfolgt. Im Rahmen dieser Arbeit wurden monoklonale Antikörper generiert, die spezifisch mit neuronalen Geweben und Organen des Zebrafisches reagieren. Zur Immunisierung wurde Gehirngewebe des Zebrafisches verwendet. Immunisiert wurden Ratten. Antikörperbildende B-Zellen aus der Ratte wurden mit einer Mausmyelom-Zelllinie fusioniert. Proteine von Interesse wurden mit Hilfe der Antikörper aus Zelllysaten des Zebrafisch-Gehirns immunpräzipitiert und durch Elektrophorese in Polyacrylamidgelen aufgetrennt. Die durch Antikörper detektierbaren Banden wurden ausgeschnitten und die enthaltenen Proteine mit massenspektrometrischen Techniken identifiziert. In einem weiteren Ansatz diente eine in λ-Phagen einklonierte Genbank der Expression der Proteine. Die Proteine wurden ebenfalls mit monoklonalen Antikörpern identifiziert. Die Phagen, die diese Proteine produzierten, wurden vermehrt und die für das Protein kodierende DNA sequenziert. Wir haben unsere Anstrengungen vor allem auf Proteine neuronalen Ursprungs konzentriert, weil diese Strukturen in den Fischen besonders deutlich markiert wurden. Histologische Untersuchungen an anderen Spezies ergaben, dass die Antikörper mit neuronalen Strukturen vieler Spezies reagierten, was auf eine hohe Konservierung der Proteine in der Phylogenese schließen lässt. Aus drei Fusionen mit Milzzellen von immunisierten Ratten wurden 2400 Zellüberstände erzeugt, die auf ihre Immunglobulin-Subklasse getestet wurden. IgG-positive Überstände wurden auf histologischen Schnitten untersucht. Schließlich wurden 17 Klone etabliert, die mit Nervengewebe des Zebrafisches reagierten, und weitere 9 Klone, die sowohl mit neuronalen Zellen des Zebrafisches als auch mit neuronalem Gewebe anderer Spezies reagierten. Die von den einzelnen Antikörpern erkannten Proteine wurden entweder massenspektrometrisch oder mittels einer Expressionsgenbank, die aus drei Tage alten Zebrafischlarven hergestellt wurde, identifiziert. Es wurden Antikörper gegen folgende Proteine gefunden: 1. Tenascin R 2. Plasticin 3. TOPAP 4. VAT-1 Es wurden 16 monoklonale Antikörper, die gegen fünf verschiedene humane Antigene hergestellt worden waren, auf Kreuzreaktivität mit Zebrafischgehirn getestet. Die Antikörper reagierten sowohl mit dem Hirn des Zebrafisches als auch mit dem Hirn acht verschiedener Säugerspezies. Im zweiten Teil der Arbeit wurde der Versuch unternommen, gezielt gegen ein Fusionskonstrukt, das Teile des humanen Parkins enthielt, monoklonale Antikörper herzustellen. Aus vier Fusionen wurden nur drei spezifisch mit dem Antigen reagierende Antikörper selektiert, die auch im Western-Blot mit Parkin reagierten. In vivo wurde das Antigen in histologischen Schnitten jedoch nicht erkannt.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Positionsklonierung des Locus für das Myoklonus-Dystonia-Syndrom (MDS) und Untersuchung des Epsilon-Sarkoglykan-Gens (SGCE) auf genomische Prägung

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Sep 2, 2004


Das Ziel der Arbeit bestand darin, anhand molekulargenetischer Untersuchungen das krankheitsverursachende Gen für das Myoklonus-Dystonia-Syndrom (MDS) in den vorliegenden MDS-Familien zu identifizieren. Außerdem sollte die Vererbung dieses Gens und die molekularen Ursachen seiner allelspezifischen Expression analysiert werden, um einen Beitrag zur Erforschung der genetischen Ursachen des MDS zu leisten. Mit einem positionellen Klonierungsansatz sollte das krankheitsverursachende Gen für das MDS identifiziert werden. Kopplungsanalysen des MDS auf Chr. 7q21 - 22 waren dafür eine wesentliche Voraussetzung. In der Kandidatenregion sollten mit Hilfe eines Annotationsprogramms bekannte und neue Gene identifiziert und eine vollständige Transkriptkarte von diesem Bereich erstellt werden. Neu vorhergesagte Gene mussten experimentell verifiziert und vervollständigt werden. Eine Mutationsanalyse der identifizierten Kandidatengene für das MDS sollte vorgenommen werden. Die Vererbung des MDS erfolgte nach einem dominanten Erbschema, das jedoch keine vollständige Penetranz besitzt. Familienstammbaumanalysen zeigten, dass die Transmission der Erkrankung abhängig vom Geschlecht des krankheitsübertragenden Elternteils ist. Daher sollte eine mögliche genomische Prägung des in MDS-Patienten mutierten Gens in genomischer DNA und auf transkriptioneller Ebene untersucht werden. Die differentielle Methylierung von Cytosinen in CpG-Dinukleotiden ist ein epigenetischer Mechanismus zur Prägung von Genen und kann der Identifizierung geprägter Gene dienen. Die Etablierung der genomischen Bisulfitsequenzierung war die Voraussetzung, um den Methylierungsstatus von CpG-Dinukleotiden im Promotorbereich von SGCE in Lymphoblasten und Gehirngewebe zu analysieren. Die maternale Prägung des SGCE-Gens sollte auf Expressionsebene verifiziert werden. Eine monoallelische Expression des SGCE-Gens wurde in cDNA von genomisch heterozygoten SGCE-Mutationsträgern untersucht. Die differentielle Expression der elterlichen Allele sollte in cDNAs uniparentaler Disomien von Chromosom 7 überprüft werden. Da einige geprägte Gene physikalisch gekoppelt vorliegen, wurden benachbarte Gene auf monoallelische Expression analysiert. Um einen besseren Einblick in die Vererbung des MDS zu bekommen, sollte der Fall einer maternalen Transmission näher untersucht werden, der im Widerspruch zu einer maternalen Prägung des Krankheitsgens steht.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Die vorliegende Arbeit stellt eine Charakterisierung der im Jahr 1995 von Wissenschaftlern der Firma Abbott Diagnostics (North Chicago, USA) entdeckten flaviähnlichen, im Tamarinen vorkommenden GB-Viren, GBV-A und GBV-B, sowie des humanen GB-Virus-C dar. GBV-A und GBV-B sind beide im sogenannten “GB-Agens H205”, das als Referenzmaterial dient, vorhanden. GBV-A und GBV-B wurden isoliert und charakterisiert. Da GBV-A im Gehirngewebe in höheren Konzentrationen als GBV-B vorhanden war, gelang die Isolierung von GBV-A durch eine Tamarinpassage mit verdünntem inokuliertem Gehirnmaterial. GBV-B wurde durch Tamarinpassage des Serums eines Affen, der nach Ausheilen der GBV-A-Infektion noch GBV-B-RNA positiv war, in reiner Form gewonnen. In Re- und Kreuzinfektionsstudien mit Tamarinen konnte eine homologe Immunität gegen den gleichen Erreger, aber das Fehlen einer Kreuzimmunität gegen den anderen Erreger gezeigt werden. Die Untersuchung von histologischen Schnitten der Organe infizierter Krallenaffen mit Hilfe der in situ-Hybridisierung gab Aufschluß über den Ort der Replikation dieser Viren. GBV-B ist der Erreger einer Hepatitis bei Krallenaffen und war mit einer für dieses Virus spezifischen Sonde durch Hybridisierung im Zytoplasma von Hepatozyten nachzuweisen. Mit einer für GBV-A spezifischen Sonde wurde dieses Virus nur in Gehirngewebe nachgewiesen. Für das humane GBV-C wurde der Lymphknoten, genauer das Zytoplasma der Lymphozyten, als Replikationsort ermittelt. Eine Leberpathogenität dieses Virus konnte nicht gefunden werden. Klinische Studien könnten eine Assoziation von GBV-C mit Erkrankungen des lymphatischen Systems untersuchen. Entsprechend der Lokalisation des Hybridisierungssignals im Bereich der Lymphknotenrinde (überwiegend B-Lymphozyten) konnten, nach Auftrennung von PBMCs mit Hilfe des MACS-Systems in einzelne Zellfraktionen, die B-Lymphozyten als hauptsächlicher Replikationsort wahrscheinlich gemacht werden. Weitere Hinweise auf die Replikation von GBV-C in Lymphozyten lieferte die in vitro-Infektion von PBMCs durch GBV-C mit einem anschließend beobachteten Anstieg der GBV-C-Konzentration im Kulturüberstand. In knochenmarktransplantierten Patienten wurde durch weitgehende Zerstörung des Knochenmarks ein Absinken der GBV-C-Konzentration gezeigt. Nach der Regeneration des lymphatischen Systems wurde häufig die ursprüngliche GBV-C-Konzentration wieder erreicht. Auch dieses Ergebnis läßt sich durch die Replikation von GBV-C in Zellen des lymphatischen Systems erklären. Zur Bestimmung der Prävalenz von GBV-C wurde ein Enzymimmuntest zum Nachweis von E2-Antikörpern mit rekombinanten Virusproteinen und monoklonalen Antikörpern gegen dieses Virus entwickelt. Ein 39 As langes Peptid im C-Terminus eines C-terminal verkürzten E2-Proteins war die antikörperbindende Domäne des monoklonalen Antikörpers. Für GBV-C hatten Hämophile, Homosexuelle und Prostituierte ein erhöhtes Infektionsrisiko. Deshalb ist neben dem parenteralen Übertragungsweg auch die sexuelle Übertragung des Virus bedeutend. Für eine sexuelle Übertragung des Virus spricht, daß bei Homosexuellen das Vorhandensein von Antikörpern gegen GBV-C mit der Anamnese einer durchgemachten Syphilis oder Gonorrhoe korreliert. Normalerweise führt die Produktion von E2-Antikörpern zu einer Elimination von GBV-C und einem Ausheilen der Infektion.