POPULARITY
2011 hat Papst Benedikt XVI. vor dem Deutschen Bundestag eine hervorragende Rede gehalten, in der er das Anliegen moderner philosophischer Bewegungen aufgriff, die die Eigenwerte der Natur wieder in den Blickpunkt rücken. Ich zeige die Haltlosigkeit der Kritik, die Theologen an ihr geübt haben.
Wer redet in unserer modernen Wohlfühlgesellschaft denn noch über solche Themen? Heute geht es den meisten unserer Mitmenschen doch sehr entschieden um Selbstverwirklichung, Karriere, finanzielle Sicherheit für Einkommen und Urlaub. Kurzum, es geht eben um Haben und Sein und um ein Leben der Superlative und die Eigenwerte des egoistischen Lustanspruchs! Heute ernten wir die Früchte [...]
Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf Sebastian auf Arne Rick und sie unterhielten sich über die DIN-Norm 4149 zu Erdbebensicherem Bauen. Die DIN4149 legt fest, nach welchen Auslegungszahlen man planen, und welchen Verfahren man Gebäude bauen darf, um sie "erdbebensicher" gemäß der Norm nennen zu dürfen. Erdbeben sind in Deutschland allgemein nicht sehr häufig, aber es gibt Gebiete in denen ein deutlich höheres Erbebenrisiko besteht, wie beispielsweise in Aachen und dem Erdbebengebiet Kölner Bucht (aktuelle Erdbeben) in der Erdbebenzone 3. Mit der Erdbebenzone 1 für Karlsruhe sind wir auch in einem gefährdeten Bereich (Erdbeben in Karlsruhe), wenn auch nicht im gleichen Maße. Südlich von Tübingen gibt es eine weitere Erbebenzone 3 (aktuelle Erdbeben). Erdbebenzonen in Deutschland. CC-BY 2.0 Störfix In der Auslegung werden Erdbeben als ein Katastrophen-Lastfall angenommen, und die Bemessung richtet sich auf die schwersten Erdbeben, die statistisch alle 475 Jahre auftreten können. Die ehemalige Munitionsfabrik, die nun u.a. das ZKM, die HfG und gerade die GPN18 beinhaltet, steht schon seit über 100 Jahren, und wird auch noch länger stehen, so ist dies eine für Gebäude realistische Zeitskala. In der Auslegung spielt das Gewicht der Gebäude eine große Rolle, denn die zu verarbeitende Kraft bestimmt sich nach Newton aus der Masse und Beschleunigung. In Karlsruhe muss mit einer Spitzenbodenbeschleunigung von bis zu 0.4g bzw. 3.9m/s^2 rechnen. Wie unterschiedlich dabei die Bewegung ausfallen kann, ist an verschiedenen Seismogrammen ersichtlich, die den Verlauf des Bebens mit einem Stift auf einem durchlaufenden Blatt darstellen. Die Modellierung von Erdbeben beginnt mit dem Erdbebenherd, über dem sich auf der Erdoberfläche das Epizentrum befindet. Idealisiert bewegen sich seismische Wellen vom Epizentrum aus als Raumwellen kugelförmig aus, zusätzlich gibt es aber auch Oberflächenwellen wie Rayleigh- oder Love-Wellen, die sich idealisiert kreisförmig um das Epizentrum ausbreiten. Da die horizontale Beschleunigung die stärkste Wirkung auf Gebäude hat, vereinfacht die Norm den Einfluss von Erdbeben auf Horizontalbeschleunigungen und Bodeneinflüsse. Während Erdbeben für Gebäude ein Problem darstellen können, so sind sie für die Seismische Tomographie die Informationsquelle, um Einblicke in die Erde zu erhalten. Mit optimaler Versuchsplanung kann man dafür auch die Aufstellorte optimieren, um ein möglichst optimales Bild zu erhalten, wie wir aus Modell012: Erdbeben und Optimale Versuchsplanung schon wissen. Natürlich müssen alle relevanten Lastfälle berücksichtigt werden, so kann in Karlsruhe die Windlast sich als Flächenlast teilweise stärker als der Lastfall durch Erdbeben auswirken. Das Haus wird dabei oft als Einmassenschwinger gesehen, bei aufwendigeren Geometrien aber auch als Mehrmassenschwinger, und die unterschiedlichen Belastungen in der maximalen Auslenkung in maximale statische horizontale Ersatzkräfte umgerechnet und damit vergleichbar gemacht. Ein wichtiger Startpunkt ist die Auswahl der Bemessungssituation und das Semiprobabilistische Teilsicherheitssystem, als Weiterentwicklung des Sicherheitsfaktors, bzw. der Aufteilung in verschiedene Eurocodes, die auch noch eine national unterschiedliche Behandlung ermöglichen. Bei der Lastbestimmung berücksichtigt man ständige Lasten, eine hauptsächliche nicht-ständige Last, die Haupteinwirkung, und weitere nicht-ständige Lasten, die aber durch einen probabilistischen Faktor abgemindert werden, da nicht alle nicht-ständige Lasten gleichzeitig auftreten. Aus der Festigkeit des Baumaterials wird nun die maximale Spannung berechnet, die es aufnehmen kann, und diese muss den Einwirkungen bestehen können. Eigentlich ist die DIN4149 durch den deutlich umfangreicheren Eurocode 8 abgelöst, doch ist aktuell noch die DIN4149 anzuwenden, da der Eurocode 8 zum Zeitpunkt der Aufnahme noch nicht in die technischen Baubestimmungen aufgenommen wurden. Eine Besonderheit der Bemessungssituation für erdbebensicheres Bauen ist, dass hier ein Katastrophenlastfall angenommen wird, und es daher keine allgemeinen Sicherheitsfaktoren mehr gibt. Es geht dabei nicht um den Erhalt des Gebäudes, sondern nur um die Möglichkeit Menschenleben schützen zu können. Ein Bedeutungsbeiwert beschreibt die Bedeutung des Gebäudes für Katastrophenfälle, beispielsweise haben hier landwirtschaftliche Gebäude einen Wert von 0,8 während Krankenhäuser den Wert 1,4 haben. Weiterhin wird die Nutzung durch einen Nutzungsbeiwert beschrieben, die die Belastung des Gebäudes durch die Nutzung beschreiben- diese können ständig, wie im Fall von Bibliotheken sein, oder sich häufig ändernd, wie durch Menschen, die das Gebäude besuchen. Aus dem anzusetzenden Gewicht und der Beschleunigung durch die Erdmase kann man mit dem Modell des Einmassenschwingers die modellierte Schwingung des Gebäudes simulieren. Aus dieser Simulation erhält man das Antwortspektrum des Gebäudes für unterschiedliche Erdbeben. Bildet man hier die einhüllende Kurve bzw. Hüllkurve, die in der Synthesizer-Musik auch über das ADSR-Modell beschrieben werden kann. Die Nachschwingzeiten von sehr hohen Gebäuden können so lange sein, dass es förmlich zu tanzenden Hochhäusern kommen kann. Der wichtige Wert der Schwingzeit wird durch eine vereinfachte Gebäudegeometrie berechnet. Da das Gebäude aber mehrere Resonanzfrequenzen beziehungsweise Eigenwerte der Steifigkeitsmatrix besitzt, gibt es zu jedem Mode eine eigene Schwingzeit. Die verschiedenen Schwingungen in den Teilmodellen überlagern sich in der Multimoden-Modell dann im vollen Modell. Diese vereinfachenden Verfahren ermöglichen meisst schon mit wenig Rechenaufwand sehr gute Ergebnisse, jedoch stößt das Vorgehen bei sehr verwinkelten und komplexen Baustrukturen an Grenzen- eine Verwendung des Ein- oder Mehrschwingermodells ist bei einem Gebäude wie dem Aachenmünchener Direktionsgebäude nicht denkbar. Bei der weiteren Betrachtung hat die Baugrundklasse einen wichtigen Einfluss, da diese beispielsweise bei kiesigem Untergrund die Erdbeschleunigung erheblich abschwächen kann. Der Dämpfungsbeiwert beschreibt die durch Prozesse wie Reibung dissipierte Energie. Weiterhin beschreibt der Verhaltensbeiwert die Plastitzität von Werkstoffen in Gebäuden, durch die ebenso die Schwingungsenergie verbraucht wird. Speziell werden Gebäude dazu in Duktulitätsklassen eingeteilt. Eine besondere Rolle spielen hier die Zustandsklassen, beispielsweise beim Beton und Stahlbeton: Man geht davon aus, dass der Beton im normalen Zustand von kleinen Rissen durchzogen ist, und damit in Zustandsklasse 2 liegt. In der Alterung, aber auch durch Einwirkung von äußeren Kräften wie Erdbeben, kommt es zu einem Risswachstum. Risse können mathematisch durch Bifurkationen beschrieben werden, und erzeugen sehr schnell äußerst komplexe Problemstellungen. Im Katastrophenfall erlauben wir für Stahlbeton die Zustandsklasse 3, wo der Beton gerissen sein kann und der Stahl beginnt sich zu verbiegen. Auch wenn das Gebäude danach dringenden Reparaturbedarf besitzt, so wird so viel von der Erdbebenenergie durch die Materialien verbraucht. Ein großes Problem sind dabei aber die Verbindungen, da gehärtete Schrauben spröde reißen. Ebenso haben Schweißnähte immer kleine Nahtfehler, die versagen können. Ein Ausweg sind hier so groß ausgelegte Verbindungen, so dass diese im Extremfall die Rotationsfähigkeit erhaltende Fließgelenke ausbilden und somit ein Versagen möglichst nicht in der Verbindung auftritt. An der Hochschule Karlsruhe besucht Arne eine Vorlesung von Prof. Dr. Jan Akkermann und hat sich im Zuge seines Master-Studiums mit dem Projekt beschäftigt, einem Gebäude der Hochschule ein neues Geschoss zu planen. Literatur und weiterführende Informationen A. Ötes: Die neue Erdbebennorm DIN 4149, Universität Dortmund. A. Rick: The Basics of Audio compressors, Gulaschprogrammiernacht, 2018.Seismische Sonifikationen Z. Peng: Earthquake Music J. N. Louie, The Sound of Seismic, 2015 D. V. Rogers: Sounds of Seismic - Earth System Soundscape, 2013. Podcasts S. Wollherr: Erdbeben und Optimale Versuchsplanung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 12, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013. http://modellansatz.de/erdbeben S. Wollherr: Bruchzonen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 136, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bruchzonen A. Rick: Bézier Stabwerke, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke
L7.1 Eigenwerte, Eigenvektoren, Ähnlichkeitstransf., charakt. Polynom, Diagonalisierung. L7.2 Hermitesche und symm. Matrizen.
L5.4 Kriterien für Invertierbarkeit einer Matrix. L5 Unitäre & orthgonale Matrizen. L6 Determinanten - Definition, Eigenschaften.
Diesmal traf sich Gudrun zum Gespräch mit Anke Pohl, die zur Zeit am Max-Planck-Institut für Mathematik in Bonn arbeitet. Das Thema der Unterhaltung ist Mathematisches Quantenchaos. Anke Pohl untersucht nämlich, welchen Zusammenhang die geometrischen und spektralen Eigenschaften Riemannscher Mannigfaltigkeiten haben. Historisch ist das Interesse an diesen Eigenschaften und ihren Wechselwirkungen bei physikalischen Betrachtungen entstanden, wie z.B. bei den Studien der Schwingungen einer Membran. Im Jahre 1910 vermuteten Lorentz und Sommerfeld, dass der Flächeninhalt einer Membran (die ein Beispiel für eine Riemannsche Mannigfaltigkeit ist) durch die (Ober-)töne dieser Membran (die durch die Eigenwerte eines gewissen Operators bestimmt sind, der die Schwingungen der Membran beschreibt) bestimmt sind. Bereits kurze Zeit später gelang es Hermann Weyl, diese Vermutung mathematisch zu beweisen. Im Laufe der Zeit ist die Untersuchung solcher Zusammenhänge zu einem Teilgebiet der Mathematik und Mathematischen Physik angewachsen, welches sowohl hinsichtlich Motivation als auch in Bezug auf Methoden eng mit diversen anderen Teilgebieten der Mathematik, wie z.B. der Geometrie, der Zahlentheorie und der Analysis, zusammenhängt. Und auch heute noch liefern physikalische Erkenntnisse und Intuitionen gute Heuristiken bzw. sind wegweisend für mathematische Ansätze. Aktuelle große Vermutungen mit sowohl mathematischer als auch physikalischer Motivation sind beispielsweise die Rudnick-Sarnak Vermutung über eindeutige Quantenergodizität auf gewissen kompakten Riemannschen Mannigfaltigkeiten (Gleichverteilung von Eigenfunktionen im Mittel bei wachsendem Eigenwert; für den Beweis von eindeutiger arithmetischer Quantenergodizität wurde E. Lindenstrauss 2010 eine Fieldsmedaille verliehen), die Phillips-Sarnak Vermutung über die (Nicht-)Existenz von quadrat-integrierbaren Eigenfunktionen auf gewissen nicht-arithmetischen Mannigfaltigkeiten, die Sarnaksche Vermutung über das Größenwachstum von Eigenfunktionen bei wachsendem Eigenwert, oder die Sjöstrandsche Vermutung über die asymptotische Anzahl von Resonanzen in Streifen bei hyperbolischen Flächen unendlichen Inhalts. Details und weiterführende Informationen zu diesen und anderen Vermutungen sind beispielsweise in den Übersichtsartikel in den untenstehenden Referenzen enthalten. Anke Pohls befasst sich zur Zeit mit bestimmten Flüssen, den sogenannten geodätischen Flüssen, auf einer speziellen Klasse von Riemannschen Mannigfaltigkeiten. Als erste, recht elementare, Beispiele für Mannigfaltigkeiten kann man sich zunächst Oberflächen vorstellen. Wenn man auf ihnen Größen definiert hat, die zum Messen von Abständen und Winkel dienen, werden sie Riemannsche Mannigfaltigkeit genannt. Wie bei den oben genannten Membranen sind Geodäten. Mathematisch werden die Schwingungen als Lösungen des Laplaceoperators in der zugrundeliegenden Geometrie beschrieben bzw. mit Hilfe der Eigenwerte und Eigenfunktionen des Operators. Aus der Anschauung ist klar, dass die Schwingungen von den geometrischen Eigenschaften der Fläche abhängen. Wenn z.B. die Fläche oder Membran eingerissen ist oder ein Loch hat, klingt sie anders als wenn sie geschlossen ist bzw. gut eingespannt ist. Für kompakte Flächen ist bekannt, dass es unendlich viele solcher Eigenfunktionen gibt. Je nach Grad der Offenheit (also z.B. eine Fläche mit Riss oder Loch) ist es jedoch schwierig zu sagen, wie sich die Schar der Lösungen verändert. Ein interessantes Beispiel wäre z.B. zu betrachten, dass an einer Stelle die eingespannte Fläche im Unendlichen verankert ist, aber das darunterliegende Volumen endlich ist. Vorstellen kann man sich das etwa so, dass man an dieser Stelle die Fläche samt ihren Abständen unendlich weit zieht. Man fragt sich dann, ob eine Welle auf der Fläche auch diese Singularität überlebt. Ein methodischer Ansatz, solche und andere Fragen zu studieren, ist es, Beziehungen zu anderen Objekten, vor allem rein geometrischen, zu finden. Selbergs Beweis zur Unendlichkeit der Anzahl der Eigenfunktionen auf gewissen hyperbolischen Flächen zeigt zunächst, dass die Eigenwerte der Eigenfunktionen (spektrale Objekte) durch die Längen der geschlossenen Geodäten (geometrische Objekte) bestimmt sind. Genauer, sie sind unter den Nullstellen einer generierenden Zetafunktion für das Längenspektrum der Geodäten. Ausnutzung zusätzlicher Eigenschaften der Flächen, wie z.B. Kompaktheit oder zusätzliche Symmetrien, erlaubt dann (manchmal) zu bestimmen, ob Nullstellen existieren und ob sie von Eigenwerten stammen. Anke Pohl schaut sich die Geodäten auf bestimmten hyperbolischen Flächen an, diskretisiert sie und findet ein assoziiertes diskretes dynamisches System auf dem reellen Zahlenstrahl. Für dieses diskrete System sucht sie gewisse invariante Größen, z. B. invariante Maße oder Dichten. Genauer fragt sie nach Eigenfunktionen des assoziierten Transferoperators mit gewissen Parametern (inversen Temperaturen). An dieser Stelle sieht man wieder einen Einfluss aus der Physik: Transferoperatoren entstammen dem thermodynamischen Formalismus der statistischen Mechanik. Sie zeigt dann, dass die Eigenfunktionen dieser Transferoperatoren bijektiv zu den L_2 Eigenfunktionen des Laplaceoperators der hyperbolischen Flächen sind. Da die Eigenfunktionen der Transferoperatoren alleine durch die geschlossenen Geodäten bestimmt sind und somit also geometrische Objekte der Fläche sind, stellt auch sie eine Beziehung zwischen gewissen geometrischen und gewissen spektralen Objekten dieser Flächen her. Zum Abschluss noch eine kurze Erklärung zur Bezeichnung "Quantenchaos" für dieses Themengebiet: Der Laplaceoperator ist gerade, bis auf Skalierung, der Schrödingeroperator in der Physik. Quantenmechanisch werden seine L_2 Eigenfunktionen als gebundene Zustände verstanden. Das zugehörige Objekt in der klassischen Mechanik ist gerade das Hamiltonsche Vektorfeld des geodätischen Flusses, d. h. die Bildungsvorschrift für die Geodäten oder die Bewegungsvorschrift für Kugeln auf der Fläche. Das Korrespondenzprinzip der Physik besagt nun, dass im Grenzfall (hier: Eigenwerte der Eigenfunktionen gehen gegen unendlich) die Gesetze der Quantenmechanik in die der klassischen Mechanik übergehen sollten. Hier fragt man also gerade danach, wie die spektralen und die geometrischen Eigenschaften Riemannscher Mannigfaltigen wechselwirken. Daraus ergibt sich der Bestandteil "Quanten" in "Quantenchaos". Der Bestandteil "Chaos" ist wie folgt motiviert: Bei den in diesem Gebiet studierten Flüssen verhalten sich Bahnen, die sehr nah beieinander starten, typischerweise nach recht kurzer Zeit sehr unterschiedlich. Mit anderen Worten, kleine Änderungen in den Anfangsbedingungen wirken sich typischerweise sehr stark aus, d.h., das System ist in gewisser Weise chaotisch. Frau Pohl hat Mathematik an der TU Clausthal studiert, an der Universität Paderborn promoviert und habilitiert gerade an der Universität Göttingen. Literatur und Zusatzinformationen William P. Thurston: The Geometry and Topology of Three-Manifolds, Mathematical Sciences Research Institute, 2002. A. Pohl: Symbolic dynamics for the geodesic flow on locally symmetric good orbifolds of rank one, Dissertation Uni Paderborn, 2009. A.Pohl: A dynamical approach to Maass cusp forms, arXiv preprint arXiv:1208.6178, 2012. M. Möller und A. Pohl: Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory and Dynamical Systems 33.01: 247-283, 2013. P. Sarnak: Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc 48: 211-228, 2012. S. Zelditch: Recent developments in mathematical quantum chaos, Current developments in mathematics 2009: 115-204, 2010.