POPULARITY
Short Story - shorte Folge - Wort-Assoziationen sind heute auf der Tagesordnung - das alles immer mit Bezug zur Schule! Leeeeeeet's go!(Liest das hier eigentlich irgendjemand - fragen für'n Freund)
Jeder Abschied kann ein neuer Anfang sein... Diese letzte Folge ist der Anfang der Sommerpause. Bevor wir euch jedoch für ein paar Wochen entlassen, haben wir noch eine pickepackevolle Folge für euch am Start. Es wird ein Berühmtheitstraum durch das endoplasmatische Retikulum zerstört, wir heben wieder ab in den Space-Talk und es wird über unfassbar tiefgehende Themen gesprochen, wie zum Beispiel Subway Surfer. Mit einer neuen Ausgabe der Gameshow und eine umfangreichen Top 5 können wir mit gutem Gewissens in die Sommerpause starten. Bis bald und viel Spaß! Netflix and Chill: Superstore - Netflix Leben nach Butscha - Trauma und Hoffnung - ARD Mediathek The Boys - Staffel 3 - Amazon Prime Die Verurteilten - Netflix HeBe Music Selection (Spotify): https://sptfy.com/5ha6 HeBe Music Selection (YouTube): https://bit.ly/3qbSS56 Twitter: twitter.com/aHeBeproduction Instagram: instagram.com/aHeBeproduction
Eukaryoten haben einen Zellkern, Prokaryoten dagegen nicht. Doch das ist nur einer von vielen Unterschieden. Prokaryoten fehlt nicht nur der Zellkern, sie enthalten gar keine membranumhüllten Organellen. Kein endoplasmatisches Retikulum, keine Dictyosomen, keine Chloroplasten, keine Mitochondrien und so weiter. Doch wie entwickelte sich ausgehend von einfachen Prokaryoten die komplexe Vielfalt der eukaryotischen Zellen? Mit dieser Frage beschäftigen wir uns heute im Biofunk. Und wir werden sehen, dass am Anfang dieser Entwicklung nicht der Zellkern stand. Sondern das Mitochondrium … Weitere Infos auf www.BiOfunk.net
Wissensreise für (angehende) Heilpraktikerinnen und Heilpraktiker
In Folge 2 beschäftigen wird uns mit dem aktiven und passiven Stofftransport und klären dabei die Begriffe Diffusion, Osmose, Zellteilung und Reduktionsteilung. Ein Begleitvideo findest du unter: https://youtu.be/EIFlBcacpnc Fragen, die wir in dieser Folge klären werden sein: Wie kommen Stoffe in die Zelle und aus der Zelle heraus? Und warum muss Stofftransport überhaupt sein? Was ist der Unterschied zwischen Filtration, Diffusion und Osmose? Wie vermehrt sich eine Zelle und worin unterscheidet sich die Zellteilung einer "normalen" Zelle von der einer Keimzelle? Viel Spaß beim Lernen! UPDATE: David hat mich auf einen Fehler hingewiesen, vielen Dank dafür, David! In Minute 2:01 spreche ich von der Synthese von Membranproteinen im glatten endoplasmatischen Retikulum. Die werden aber im rauen endoplasmatischen Retikulum produziert. Also, sorry für den Versprecher. Zum Glück brauchen wir das aber nicht so tief wissen :-) Hier kannst du mich und den Podcast unterstützen: https://steadyhq.com/wissensreise
Das endoplasmatische Retikulum der deutschen YouTube Szene ist wieder am Start und bringt euch auch heute auf den neusten Stand. Hier ist da Video zur Sendung: https://youtu.be/mmzU4lQsWc0
Folge 002 - Die Pflanzenzelle und ihre Bestandteile | Der Aufbau der Pflanzenzelle Show Notes: Bitte unterstützt den Biologie Passion Podcast finanziell ➤ paypal.me/biologiepassionpdcst Hier gehts zum zugehörigen Blogartikel auf meiner Webseite. Wenn dir die Podcastfolge gefallen hat, würde mich eine kurze Bewertung auf iTunes freuen. Trag dich in meinen Newsletter ein, wenn du über neue Podcastfolgen informiert werden willst. Vielen Dank fürs Zuhören!
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06
Ziel der vorliegenden Arbeit war es, einen neuen Wirkstoff für die Therapie des Morbus Alzheimer zu entwickeln. Morbus Alzheimer ist die häufigste Demenzerkrankung in Deutschland (1). Charakteristisch für diese neurodegenerative Erkrankung ist die zu-nehmende Verschlechterung der kognitiven Leistungsfähigkeit, die mit einem Untergang von Nervenzellen und Synapsen einhergeht. Für die neuropathologische Diagnose des Morbus Alzheimer ist der Nachweis von extrazellulären Aβ-Plaques und intrazellulären versilberbaren Strukturen, den sogenannten neurofibrillären Bündeln (tangles) entscheidend (5). Die Enzyme, die zu der Bildung dieser Aggregate, die im Wesentlichen aus fehlgefalteten körpereigenen Proteinen, dem β-Amyloid bzw. dem Tau-Protein bestehen, beitragen, sind die primären Zielmoleküle in der Wirkstoffentwicklung auf diesem Gebiet in den letzten 20 Jahren gewesen. So wurde eine große Zahl von Wirkstoffen bzw. thera-peutischen Ansätzen identifiziert, die effektiv in vitro und in vivo die Bildung dieser Aggregate inhibieren (1). Die erhofften Effekte auf die alters- und amyloid-abhängigen Defizite bei der Lern- und Gedächtnisleistung konnten durch klinische Studien jedoch nicht belegt werden (73). Eine mögliche Erklärung für den Misserfolg dieser sehr auf-wändigen Studien ist, dass Veränderungen durch Ablagerungen von fibrillärem Aβ bzw. Tau zu irreversiblen Schädigungen führen und somit eine ausschließlich auf Aβ- bzw. Tau fokussierte Therapie nach Ausbruch der Krankheit möglicherweise nicht ausrei-chend ist. Mit den in der Arbeitsgruppe etablierten zellbasierten Assays ist es möglich, Wirkstoffe zu identifizieren, die die Störung der Speicherung von Kalzium im endoplasmatischen Retikulum (ER), einen pathophysiologisch relevanten Mechanismus der Pathogenese des Morbus Alzheimer, modulieren (120). Dieser Ansatz verfolgt somit nicht die seit Jahren praktizierte Strategie, die Aβ- bzw. Tau-Aggregation direkt zu hemmen, sondern der für die Akkumulation dieser Proteine ursächlichen Schädigung von Nervenzellen und deren synaptischen Kontakten entgegenzuwirken. Ziel war es, innovative Wirkstoffe zu entwickeln, die Störungen der zytosolischen Kalziumkonzentration bzw. der Kal-ziumfreisetzung aus dem ER in einer frühen Phase der neuronalen Schädigung normali-sieren. Optimierte Vertreter der neu entdeckten Strukturklasse der Tetrahydrocarbazolamine stabilisieren in der Tat die Kalziumfreisetzung aus dem ER, verbessern den Energiehaushalt der Zelle und verringern die Bildung toxischer Aβ-Peptide. Der genaue Wirkmechanismus der Tetrahydrocarbazolamine konnte in dieser Arbeit jedoch nicht entschlüsselt werden und wird Gegenstand zukünftiger Forschungs-projekte sein müssen. Als mögliches Target bieten sich zum Beispiel IP3-Rezeptoren an. Eine mögliche Interaktion mit diesen könnte dazu führen, dass weniger Kalzium aus dem endoplasmatischen Retikulum in das Zytosol austritt. Die identifizierten Verbindungen haben zusätzlich einen positiven Effekt auf die Aktivität der Mitochondrien, was wiederum zu einer Steigerung der Energiebereitstellung der Zelle führt und einen Effekt auf die Produktion von Aβ-Peptiden hat (56). Auch Kalzium beeinflusst über eine indirekte Hemmung der β-Sekretase die Menge an gebildetem Aβ (157). In Folge dessen wirken Tetrahydrocarbazolamine sehr wahrscheinlich über verschiedene Mechanismen auf die Bildung der toxischen Aβ-Peptide. Eine synergistische Verstärkung ist daher durchaus denkbar. Tetrahydrocarbazolamine besitzen somit eine Wirkung auf drei verschiedene Mechanismen, die bereits zu Beginn der Pathogenese von Morbus Alz-heimer eine wichtige Rolle spielen. Zurzeit befinden sich nach den uns zugänglichen Informationen keine anderen Substanzen in der präklinischen oder klinischen Entwick-lung, die ein ähnlich breites Wirkprofil aufweisen. In den anschließend durchgeführten Therapieversuchen in transgenen Mausmodellen des Morbus Alzheimer konnte allerdings kein Effekt auf die Anzahl und Größe von Plaques festgestellt werden. Dies ist vermutlich vor allem der kurzen Behandlungsdauer zuzuschreiben. Eine längere Behandlung mit gea_133 war auf Grund einer Lebertoxizität, die wahrscheinlich ursächlich für das Sterben der Tiere in der 3. Behandlungswoche war, nicht möglich. Ein zentraler Punkt der zukünftigen Erforschung dieser Substanzklasse wird die Entwicklung und Testung von Derivaten sein, die keine Lebertoxizität aufweisen.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 03/06
Vorangegangene Studien zeigten, dass das Prion-Protein (PrP) an der ER-Membran in verschiedenen topologischen Isoformen synthetisiert wird und teilweise sogar im Zytosol vorliegen kann. Sowohl die ER-Signalsequenz als auch die hydrophobe Domäne von PrP wurden dabei als Domänen identifiziert, die eine Rolle in der Translokation spielen. Die hier durchgeführte Analyse des ER-Imports von PrP und verschiedenen chimären Proteinen hat nun erstmals gezeigt, dass auch der Faltungszustand von Polypeptiden Einfluss auf deren Translokation ins ER-Lumen haben kann. Die vorliegende Studie ergab, dass - unabhängig von der Primärstruktur - ein gewisses Maß an α-helikalen Bereichen notwendig für einen produktiven ER-Import ist. Sowohl die Länge der Polypeptide als auch posttranslationelle Modifikationen wie die GPI-Verankerung, die N-Glykosylierung oder die Ausbildung einer Disulfidbrücke beeinflussen die Translokation nicht. Darüber hinaus deuten die Ergebnisse der vorliegenden Arbeit darauf hin, dass Proteine mit ausgedehnten unstrukturierten Domänen am N-Terminus einer kotranslokationalen Qualitätskontrolle unterliegen und noch vor der Translokation ins ER-Lumen einer proteasomalen Degradierung im Zytosol zugeführt werden. Die in dieser Doktorarbeit dargestellten Ergebnisse legen daher die Vermutung nahe, dass die Ausbildung von Sekundärstrukturen vor oder während der Translokation die weitere Biogenese des naszierenden Polypeptids beeinflusst. Die gewonnenen Erkenntnisse können dazu beitragen die physiologischen aber auch die möglichen pathophysiologischen Konsequenzen der Regulation der Translokation besser zu verstehen. Der zweite Teil der Arbeit erbrachte erstmals experimentelle Evidenzen, dass trotz sehr geringer Sequenzhomologie zwischen den PrP-Homologen im Zebrabärbling (Danio rerio) und Säugetier-PrP die charakteristischen posttranslationalen Modifikationen, wie beispielsweise die komplexe Glykosylierung und der C-terminale GPI-Anker, konserviert sind. Die neu etablierten Zellkulturmodelle zur Analyse von PrP-homologen Proteinen deuten auf eine evolutionär konservierte Funktion von PrP hin und könnten dazu beitragen, neue Einsichten in die physiologische Aktivität von PrP zu gewinnen.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Mon, 9 Feb 2004 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/1772/ https://edoc.ub.uni-muenchen.de/1772/1/Heske_Johanna.pdf Heske, Johanna
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Ribonukleoproteinpartikel (RNPs) sind Komplexe aus RNA und Proteinen, die entscheidende Funktionen bei Prozessen wie Translation, Telomer-Synthese, Protein-Import in das endoplasmatische Retikulum oder RNA-Prozessierung übernehmen. Obwohl stets neue Beispiele die Bedeutung von RNPs untermauern, sind grundlegende Aspekte ihrer Funktion noch unklar. So stellte sich zu Beginn dieser Arbeit die Frage, wie sich die Komponenten von RNPs zu funktionellen Gebilden zusammenlagern. In frühen in-vitro-Studien war beobachtet worden, dass sich RNPs spontan ausbilden und dieser Vorgang keine weiteren Faktoren benötigt. Daraus war die Hypothese abgeleitet worden, dass dies möglicherweise auch der in vivo Situation entsprechen könnte. Unerwartete Einblicke in die Biogenese von RNPs lieferten schliesslich Studien zum "survival motor neurons"-Protein (SMN), dem Krankheitsgenprodukt der spinalen Muskelatrophie. Antikörper gegen SMN und seinem Bindungspartner Gemin2 inhibierten in Xenopus laevis Oocyten die Ausformung von RNP-Untereinheiten des Spleißosoms - den U snRNPs und nährten den Verdacht, dass diese Proteine Hilfsfaktoren der U snRNP-Biogenese sein könnten. Das Ziel der vorliegenden Arbeit war daher, mechanistische Details über die Zusammenlagerung von U snRNPs in vivo zu ermitteln und die Rolle von SMN und Gemin2 zu untersuchen. Die wesentlichen Schritte der Biogenese von U snRNPs können experimentell in X. laevis Oocyten verfolgt werden. Nach dem Export der U snRNAs U1, U2, U4 und U5 in das Cytosol lagern sich dort jeweils sieben sogenannte Sm-Protein an ein gemeinsames Motiv der U snRNAs an und formen so die Grundstruktur jedes U snRNPs, die Sm-Core-Domäne. Hierauf folgen die Hypermethylierung der U snRNA-Kappe und der Import der Sm-Core-Domäne in den Zellkern, wo sich U snRNP-spezifische Proteine anlagern, ehe die reifen snRNPs am Spleißprozess teilnehmen. In der vorliegenden Arbeit wurde zunächst ein zellfreies System entwickelt, durch das die Zusammenlagerung von U snRNPs in der Komplexität des Cytosols untersucht werden konnte. Unter Verwendung von Extrakten aus Xenopus laevis-Eiern oder HeLa-Zellen konnte gezeigt werden, dass die Ausbildung der Sm-Core-Domäne, entgegen bisheriger Vermutungen, nicht spontan erfolgt, sondern Energie in Form von ATP benötigt. Aus Depletionsversuchen wurde deutlich, dass SMN unter diesen zellähnlichen Bedingungen für die snRNP-Biogenese unbedingt erforderlich ist. SMN, dies zeigten immunbiochemische Reinigungen, ist in der Zelle mit 17 verschiedenen Proteinen assoziiert, die hier erstmals vollständig identifiziert wurden. Dieser SMN-Komplex enthält bereits alle Sm-Proteine, jedoch keine U snRNAs. Anhand direkten Sm-Protein-Transferstudien wurde klar, dass der SMN-Komplex allein nicht nur notwendig sondern auch hinreichend für die Ausbildung der Sm-Core-Domäne, ist. Dennoch konnte mit dem pICln-Komplex ein Proteinkomplex entdeckt werden, der mit dem SMN-Komplex interagiert und dessen Aktivität erheblich steigert. Der pICln-Komplex enthält eine neuartige Methyltransferase, die Arginylreste in den Sm-Proteinen B/B’, D1 und D3 zu symmetrischen Dimethylargininen modifiziert. Es ist bekannt, dass hierdurch die Bindung von Sm-Proteinen an SMN verstärkt wird. Die vorliegenden Daten weisen darauf hin, dass SMN- und pICln-Komplexe eine funktionelle Einheit bilden, in der Modifikation und Transfer der Sm-Proteine koordiniert ablaufen. Erste Erkenntnisse aus Versuchen mit HeLa-Zellen und Patientenzelllinien deuten an, dass reduzierte Menge des SMN-Komplexes mit einer reduzierten U snRNP-Zusammenlagerungsaktivität einhergehen, und dass dies einen biochemischen Defekt in Spinaler Muskelatrophie darstellen könnte. In einem weiteren Projekt wurde mit Hilfe von Datenbankanalysen und biochemischen Strategien das SMN-homologe Protein SMNrp identifiziert und charakterisiert. Biochemische Studien zeigten, dass SMNrp eine Komponente des U2 snRNPs ist und eine essentielle Rolle beim Spleißen ausführt. Kernextrakte die kein SMNrp enthalten wiesen einen Defekt der Spleißosomen-Zusammenlagerung auf der Stufe des „prä-Spleißosoms“ auf. SMNrp ist demnach ein Zusammenlagerungsfaktor des Spleißosoms und bezüglich dieser Funktion dem U snRNP-Zusammenlagerungsfaktor SMN ähnlich.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Der Tonus der glatten Muskulatur wird einerseits direkt durch Aktivierung des kontraktilen Apparates und andererseits über Veränderungen der intrazellulären Calciumkonzentration gesteuert. NO freisetzende Pharmaka aktivieren die lösliche Guanylylzyklase und führen über den cGMP/cGMP-Kinase abhängigen Signalweg zur Erschlaffung der glatten Muskulatur. Wie die Kinase dieses Signal vermittelt ist noch weitgehend unklar, wobei schon einige Substrate der cGMP-Kinase I bekannt sind. In der Mikrosomenfraktion glatter Muskeln wurde ein stabiler Komplex der cGMP-Kinase I und ihrer Substrate IRAG und IP3-Rezeptor Typ I beschrieben, der für die Steuerung des Calciumausstroms aus Speichern des sarkoplasmatischen Retikulums verantwortlich ist. In der vorliegenden Arbeit sollte dieser mikrosomale Komplex genauer untersucht und die beteiligten Proteine gereinigt und charakterisiert werden. Dies geschah vor allem durch Co- Immunpräzipitationen mit spezifischen Antikörpern und Affinitätschromatographie mit cGMP-Agarose. Die Identifizierung der gereinigten Proteine erfolgte durch MALDI-TOF Analyse und Immunoblot, wobei Substrate der Kinase nach cGMP-abhängiger Phosphorylierung mit radioaktiv markiertem ATP detektiert wurden. Der Komplex wurde aus dem glatten Muskel der Trachea von Rindern aufgereinigt und seine Bestandteile isoliert. Dabei ergab sich die Assoziation von Phospholamban, einem Substrat der cGMP-Kinase, das den Calcium Rücktransport durch die Ca2+-ATPase in Speichervesikel des sarkoplasmatischen Retikulums moduliert. Die Interaktion von Phospholamban mit der cGMP-Kinase I β und dem IP3-Rezeptor Typ I konnte nach heterologer Expression der Komponenten in COS 7 Zellen bestätigt werden. Dazu wurde Phospholamban aus cDNA des Herzens der Maus kloniert und mit je einer der beiden Isoformen der cGMP-Kinase I α und β, dem IP3-Rezeptor Typ I und IRAG in COS 7 Zellen exprimiert. Weiterhin konnte die Assoziation des Komplexes an die zytoskelettalen Proteine α-Aktin und Calponin H1 gezeigt werden. Das Zytoskelett kann einerseits zur Stabilisierung des Komplexes im glatten Muskel beitragen. Andererseits kann der Komplex Membranproteine mitdem Zytoskelett verbinden und einen direkten Einfluss auf die Calcium unabhängige Kontraktion der Zelle haben. Als einzige Funktion von Phospholamban ist bisher die Regulation der Ca2+-ATPase beschrieben worden, daher wurde deren Assoziation an den funktionellen Komplex untersucht. Dazu wurde der Komplex an cGMP-Agarose gereinigt und nach Elution eine Co-Immunpräzipitation mit den spezifischen Antikörpern der Komplexbestandteile durchgeführt. Die differenzierte Auftrennung über zwei Säulen deckte die Existenz zweier Proteinkomplexe auf, die über das Zytoskelett miteinander verbunden sind. Einer besteht aus Phospholamban und der Ca2+-ATPase und steuert die Aufnahme von Calcium in intrazelluläre Speicher, der andere enthält einen geringeren Teil Phospholamban, die cGMP-Kinase I β und ihre Substrate IRAG und den IP3-Rezeptor Typ I. Dieser zweite Komplex reguliert wahrscheinlich den Calciumausstrom aus dem sarkoplasmatischen Retikulum.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Die endogene Präsentation von intrazellulären Antigenen auf MHC-Klasse-II-Molekülen ist von zentraler Bedeutung für eine Reihe immunologischer Prozesse. Die diesem Präsentationsweg zugrundeliegenden molekularen Mechanismen sind noch weitgehend unverstanden. Ziel dieser Arbeit war es, einen Beitrag zum Verständnis der molekularen Abläufe zu leisten, die an diesem endogenen MHC-Klasse-II-Präsentationsweg beteiligt sind. Am Beispiel des zytoplasmatischen/nukleären Modellantigens Neomycin-Phosphotransferase (NeoR) und eines Modellantigen-spezifischen, MHC-Klasse-II-restringierten CD4+ T-Zell Klons wurde der endogene Präsentationsweg in nicht-professionellen und professionellen antigenpräsentierenden Zellen untersucht. Eine Beteiligung von Schlüsselkomponenten des MHC-Klasse-I-Präsentationsweges konnte durch die Verwendung chemischer und biologischer Inhibitoren ebenso ausgeschlossen werden, wie eine vorzeitige Beladung von neu-synthetisierten MHC-Klasse-II-Molekülen im endoplasmatischen Retikulum. Dagegen erwies sich die endogene Präsentation des Modellantigens abhängig von endosomaler/lysosomaler Prozessierung. Durch biochemische und zellbiologische Methoden konnte nachgewiesen werden, daß das Antigen als intaktes Protein in Endosomen/Lysosomen gelangt. Eine mögliche Sekretion des Antigens und anschließende Wiederaufnahme in endosomale Kompartimente konnte durch Zellkulturüberstand- Transferexperimente als Transportmechanismus ausgeschlossen werden. Durch Inhibitor-Studien und der Beschreibung der Endosomen als Eintrittsort des Antigens in das endosomale/lysosomale System konnte gezeigt werden, daß ein Signalsequenz-vermittelter Import in Lysosomen durch Hitzeschockproteine nicht als Mechanismus in Frage kommt. Dagegen wies die Expression Autophagie-assoziierter Proteine in den verwendeten Zellinien auf eine mögliche Beteiligung dieses zytoplasmatischen Abbauvorganges an der Präsentation des Antigens hin. Eine Inhibition der Autophagie führte zu einer Stabilisierung und Anreicherung des Proteins im Zytoplasma sowie zu einer verminderten Aufnahme des Antigens in das endosomale/lysosomale Kompartiment. Die verminderte Aufnahme korrelierte mit einer starken Abnahme der MHC-Klasse-II-restringierten Präsentation des Antigens. Diese Ergebnisse identifizieren Autophagie am Beispiel des Modellantigens NeoR als den verantwortlichen molekularen Mechanismus für die endogene MHC-Klasse-II-restringierte Antigenpräsentation.