Podcasts about Langlands

  • 64PODCASTS
  • 100EPISODES
  • 1h 2mAVG DURATION
  • 1MONTHLY NEW EPISODE
  • Jan 11, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about Langlands

Latest podcast episodes about Langlands

Principio de Incertidumbre
El programa Langlands y las matemáticas modernas (11/01/25)

Principio de Incertidumbre

Play Episode Listen Later Jan 11, 2025


Un equipo de matemáticos ha demostrado la conjetura geométrica de Langlands, un hito que redefine nuestra comprensión de las matemáticas modernas. Este logro, fruto de 30 años de trabajo y más de 800 páginas de demostración, conecta "continentes" matemáticos como la teoría de números, la geometría algebraica y la teoría de representaciones. Nos lo explica José María Tornero Sánchez, profesor en el Departamento de Álgebra de la Universidad de Sevilla.

The Heal My Health Podcast
71. Ellen Langlands Movere - How Mobility Practice Can Support Longevity, Improve Training, Prevent Injury, and Increase Wellbeing

The Heal My Health Podcast

Play Episode Listen Later Dec 2, 2024 51:10


In today's episode, I sit down with Ellen Langlands, a mobility and strength coach, and the owner of Movere, a mobility and strength coaching business. We explore what a mobility practice entails and its benefits for longevity and strength training. Ellen also shares her personal health journey, the challenges she faced, and how they ultimately inspired her to become a coach with a focus on mobility.Connect with Heal my Health:Website: healmyhealth.com.auInstagram: https://www.instagram.com/healmyhealth/TikTok: sallywhyte_Contact: info@healmyhealth.com.auConnect with Ellen:Instagram: https://www.instagram.com/ellenlanglands/Disclaimer:The Heal My Health Podcast is for information purposes only and is not intended to diagnose, treat, or substitute medical advice. Listeners of this podcast should seek professional medical advice before making any changes to their current lifestyle. Any use of information from this podcast used by listeners is done so at their own risk. 

Diecast Movie Review Podcast
252 - Jamie Langlands Interview, The Cellar, The R.I.P. Man

Diecast Movie Review Podcast

Play Episode Listen Later Oct 28, 2024 64:06


252 - Jamie Langlands Interview, The Cellar, The R.I.P. Man On this episode, Steven interviews filmmaker Jamie Langlands about The Cellar and The R.I.P. Man! The Cellar is currently out on the festival circuit, but you can still purchase it at the link below as a perk from its Indiegogo campaign. You can also support his current film by going to its Indiegogo too, at the other link below. The Cellar: https://igg.me/at/The-cellar/x#/ The R.I.P. Man: https://igg.me/at/rXK7YVhhuX8/x#/ Please send feedback to DieCastMoviePodcast@gmail.com or leave us a message on our Facebook page. Thanks for listening!

Theories of Everything with Curt Jaimungal
Monumental Breakthrough in Mathematics (Part 2) | Edward Frenkel

Theories of Everything with Curt Jaimungal

Play Episode Listen Later Oct 2, 2024 140:26


Edward Frenkel is a renowned mathematician, professor of University of California, Berkeley, member of the American Academy of Arts and Sciences, and winner of the Herman Weyl Prize in Mathematical Physics. In this episode, Edward Frenkel discusses the recent monumental proof in the Langlands program, explaining its significance and how it advances understanding in modern mathematics. SPONSOR (THE ECONOMIST): As a listener of TOE you can get a special 20% off discount to The Economist and all it has to offer! Visit https://www.economist.com/toe Check out Edward Frenkel's New York Times Bestselling book "Love and Math" at https://amzn.to/4gPAVn1. Also, please consider following Edward on Linkedin at https://www.linkedin.com/in/edfrenkel/ LINKS: •⁠ Edward Frenkel's Twitter: https://x.com/edfrenkel •⁠ ⁠Edward Frenkel's Official Website: https://edwardfrenkel.com •⁠ Edward Frenkel's YouTube: https://youtube.com/@edfrenkel •⁠ Edward Frenkel's Instagram: https://www.instagram.com/edfrenkel •⁠ Edward Frenkel's SoundCloud (DJ Moonstein): https://soundcloud.com/moonstein •⁠ ⁠Edward Frenkel's 1st TOE Episode: https://www.youtube.com/watch?v=n_oPMcvHbAc •⁠ Andre Weil's letter on “Rosetta Stone” of Math: https://www.ams.org/notices/200503/fea-weil.pdf •⁠ ⁠"Proof of the Geometric Langlands Conjecture" (Papers): https://people.mpim-bonn.mpg.de/gaitsgde/GLC/ •⁠ Etingof-Frenkel-Kazhdan, “A general framework for the Analytic Langlands Correspondence” https://arxiv.org/abs/2311.03743 •⁠ Yuri Manin's book “Mathematics and Physics”: https://www.amazon.com/Mathematics-Physics-Progress-Mathematical/dp/1489967842 •⁠ Edward Frenkel's papers: https://edwardfrenkel.com/frenkel-biblio.pdf •⁠ Edward Frenkel's previous lecture on TOE (Part 1): https://www.youtube.com/watch?v=RX1tZv_Nv4Y •⁠ Mathematics and Physics (book): https://www.amazon.com/Mathematics-Physics-Progress-English-Russian/dp/3764330279 •⁠ Richard Borcherds on TOE: https://www.youtube.com/watch?v=U3pQWkE2KqM TOE'S TOP LINKS: - Support TOE on Patreon: https://patreon.com/curtjaimungal (early access to ad-free audio episodes!) - Listen to TOE on Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e - Become a YouTube Member Here: https://www.youtube.com/channel/UCdWIQh9DGG6uhJk8eyIFl1w/join - Join TOE's Newsletter 'TOEmail' at https://www.curtjaimungal.org TIMESTAMPS: 00:00 - Edward's Previous Appearance on TOE 01:15 - Discoveries in Mathematics 04:31 - Langland's Program 11:02 - Counting Problem 14:58 - Symmetries of the Unit Disc 26:55 - Part 1 of Edward's Talk 30:20 - Shimura-Taniyama-Weil Conjecture 40:02 - Quick Recap 42:38 - Langlands Dual Group 51:50 - Rosetta Stone of Math 01:00:10 - Riemann Surfaces 01:10:20 - Proof of the Geometric Langlands Conjecture 01:21:42 - Tribute to Legends 01:26:02 - Langlands Correspondence for Riemann Surface 01:43:30 - Galois Groups 01:53:33 - Other Objects Involved 02:10:40 - Outro / Support TOE SPONSORS (please check them out to support TOE): - THE ECONOMIST: As a listener of TOE, you can now enjoy full digital access to The Economist. Get a 20% off discount by visiting: https://www.economist.com/toe - INDEED: Get your jobs more visibility at https://indeed.com/theories ($75 credit to book your job visibility) - HELLOFRESH: For FREE breakfast for life go to https://www.HelloFresh.com/freetheoriesofeverything - PLANET WILD: Want to restore the planet's ecosystems and see your impact in monthly videos? The first 150 people to join Planet Wild will get the first month for free at https://planetwild.com/r/theoriesofeverything/join or use my code EVERYTHING9 later. Other Links: - Twitter: https://twitter.com/TOEwithCurt - Discord Invite: https://discord.com/invite/kBcnfNVwqs - iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-with-curt-jaimungal/id1521758802 - Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything #science #physics #math #podcast #sciencepodcast #maths Learn more about your ad choices. Visit megaphone.fm/adchoices

ITmedia NEWS
数学の超難問「幾何学的ラングランズ予想」を証明か? 計1000ページ以上の証明論文を米研究者らが公開

ITmedia NEWS

Play Episode Listen Later May 24, 2024 0:25


数学の超難問「幾何学的ラングランズ予想」を証明か? 計1000ページ以上の証明論文を米研究者らが公開。 米イェール大学などに所属する研究者らは、数学の超難解「幾何学的ラングランズ予想」を証明したと主張する5つの論文(計1000ページ以上)を「Proof of the geometric Langlands conjecture」と題したWebページで公開した。

Like An Adult
How To Kiss An Italian - Iain Langlands

Like An Adult

Play Episode Listen Later May 8, 2024 31:30


Iain Langlands tiptoes into the podcast and boy does he put on a show. We give some top notch advice to a a man whos girlfriend kiss's an Italian man, Costco and welches fruit snacks.   The Hell Ya Podcast hosted by Mikel Nordstrom will be giving questionable advice every single week. With the help of a different very funny guest every week, we will solve all the problems one problem at a time. Instagram: https://www.instagram.com/mikelnordstrom/ https://www.instagram.com/thehellyapodcast/ https://www.mikelnordstrom.com/

Petersfield Community Radio
Alastair Langlands tells us about his up coming talk at the Petersfield Bookshop "Hampshire Through Writer's eyes"

Petersfield Community Radio

Play Episode Listen Later Apr 7, 2024 15:03


Jack Finch had the pleasure of visiting Alastair's legendary cottage in Selborne to hear all about his talk "Hampshire through writer's eyes" which details the Literary inspiration that county has provided for many writers over centuries. based on Alastair's publication from a few years ago of the same name we hear about his up coming talk on the 11th of April at Petersfield Bookshop which pays homage to the rich history of literary icons connected to this county and the unique features that make Hampshire what it is.See omnystudio.com/listener for privacy information.

The Shift Podcast
The Shift with Shaye: Nursing during an inland tsunami with Grace Langlands

The Shift Podcast

Play Episode Listen Later Feb 18, 2024 36:10


Petersfield Community Radio
Bedales Library where Alistair Langlands talks to Alan Cosh

Petersfield Community Radio

Play Episode Listen Later Feb 8, 2024 12:38


Alistair Langlands a retired lecturer at Bedales and author talks to Alan Cosh in the Memorial Bedales Library.See omnystudio.com/listener for privacy information.

4BC Wide World of Sports Podcast
FULL SHOW: 4BC Wide World of Sports with Peter Psaltis, January 31st, 2024

4BC Wide World of Sports Podcast

Play Episode Listen Later Jan 31, 2024 36:47


Listen to the full Wide World of Sports show with Peter Psaltis [00:00:00] OPENER - World Series Cup memories [00:13:45] Around The Grounds [00:19:06] Racket Giveaway [00:34:13] Dolphins train at Langlands [00:36:13] CLOSERSee omnystudio.com/listener for privacy information.

Theories of Everything with Curt Jaimungal
Peter Woit: Unification, Twistors, and the Death of String Theory

Theories of Everything with Curt Jaimungal

Play Episode Listen Later Dec 6, 2023 185:02


YouTube link https://youtu.be/9z3JYb_g2QsProf. Peter Woit discusses string theory, its decline, and introduces his graviweak unification theory using Euclidean twistor in Euclidean spacetime. TIMESTAMPS:- 00:00:00 Introduction- 00:00:00 String theory's fundamental issues | Mathematicians' challenges- 00:02:20 Spacetime and twistor theory insights- 00:20:00 Bundles & diffeomorphism groups- 00:38:34 Spinors as a spacetime point- 00:46:57 Dominance of string theory & Ed Witten's influence- 00:54:17 Quest for quantum gravity- 01:03:22 String theory's lack of predictive power  - 01:09:33 Machine learning meets theoretical physics- 01:18:56 Personal attacks vs. intellectual debate- 01:24:49 Mathematicians vs. Physicists | Academic silos- 01:37:15 Developing a contrarian view & the origin of 'Not Even Wrong'- 01:40:54 Langlands & representation theory- 01:48:51 Spacetime is NOT doomed- 01:58:47 Sean Carroll's crisis in physics (odd responses to criticism)- 02:13:21 Differentiable structures by dimension- 02:26:10 Gravi-weak unification & chirality- 02:32:57 Chern-Simons theory- 02:42:20 Gravity as torsion or curvature- 02:50:07 Category theory in physics- 02:56:43 Defining a fulfilling life - Patreon: https://patreon.com/curtjaimungal (early access to ad-free audio episodes!)- Crypto: https://tinyurl.com/cryptoTOE- PayPal: https://tinyurl.com/paypalTOE- Twitter: https://twitter.com/TOEwithCurt- Discord Invite: https://discord.com/invite/kBcnfNVwqs- iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-with-curt-jaimungal/id1521758802- Pandora: https://pdora.co/33b9lfP- Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e- Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything- TOE Merch: https://tinyurl.com/TOEmerch LINKS MENTIONED:- Not Even Wrong (Peter Woit's Blog): https://www.math.columbia.edu/~woit/wordpress- Not Even Wrong (Peter Woit's Book): https://amzn.to/40NFeaK- Spacetime is Right-Handed (Peter Woit's Article): https://www.math.columbia.edu/~woit/righthanded.pdf | https://www.math.columbia.edu/~woit/wordpress- Podcast w/ Edward Frankel: https://youtu.be/n_oPMcvHbAc- The Elegant Universe (Brian Greene): https://amzn.to/3sNmk7x- The Trouble With Physics (Lee Smolin): https://amzn.to/47lCCUj- Podcast w/ Sabina Hossenfelder on TOE: https://youtu.be/walaNM7KiYA- Podcast w/ Stephon Alexander Part 1: https://youtu.be/VETxb96a3qk  - Podcast w/ Stephon Alexander Λ Sal Pais: https://youtu.be/PE4C7OI7Frg- Podcast w/ Eric Weinstein: https://youtu.be/KElq_MLO1kw- Podcast w/ Stephen Wolfram Part 1: https://youtu.be/1sXrRc3Bhrs- Podcast w/ Stephen Wolfram Part 2: https://youtu.be/xHPQ_oSsJgg- Podcast w/ Jonathan Oppenheim: https://youtu.be/NKOd8imBa2s

Theories of Everything with Curt Jaimungal
Peter Woit: Unification, Spinors, Twistors, String Theory

Theories of Everything with Curt Jaimungal

Play Episode Listen Later Nov 22, 2023 192:32


YouTube Link: https://www.youtube.com/watch?v=9z3JYb_g2Qs Prof. Peter Woit discusses string theory, its decline, and introduces his graviweak unification theory using Euclidean twistor in Euclidean spacetime. TIMESTAMPS: - 00:00:00 Introduction - 00:00:00 String theory's fundamental issues | Mathematicians' challenges - 00:02:20 Spacetime and twistor theory insights - 00:20:00 Bundles & diffeomorphism groups - 00:38:34 Spinors as a spacetime point - 00:46:57 Dominance of string theory & Ed Witten's influence - 00:54:17 Quest for quantum gravity - 01:03:22 String theory's lack of predictive power - 01:09:33 Machine learning meets theoretical physics - 01:18:56 Personal attacks vs. intellectual debate - 01:24:49 Mathematicians vs. Physicists | Academic silos - 01:37:15 Developing a contrarian view & the origin of 'Not Even Wrong' - 01:40:54 Langlands & representation theory - 01:48:51 Spacetime is NOT doomed - 01:58:47 Sean Carroll's crisis in physics (odd responses to criticism) - 02:13:21 Differentiable structures by dimension - 02:26:10 Gravi-weak unification & chirality - 02:32:57 Chern-Simons theory - 02:42:20 Gravity as torsion or curvature - 02:50:07 Category theory in physics - 02:56:43 Defining a fulfilling life - Patreon: https://patreon.com/curtjaimungal (early access to ad-free audio episodes!) - Crypto: https://tinyurl.com/cryptoTOE - PayPal: https://tinyurl.com/paypalTOE - Twitter: https://twitter.com/TOEwithCurt - Discord Invite: https://discord.com/invite/kBcnfNVwqs - iTunes: https://podcasts.apple.com/ca/podcast... - Pandora: https://pdora.co/33b9lfP - Spotify: https://open.spotify.com/show/4gL14b9... - Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeveryt... - TOE Merch: https://tinyurl.com/TOEmerch LINKS MENTIONED: - Not Even Wrong (Peter Woit's Blog): https://www.math.columbia.edu/~woit/w... - Not Even Wrong (Peter Woit's Book): https://amzn.to/40NFeaK - Spacetime is Right-Handed (Peter Woit's Article): https://www.math.columbia.edu/~woit/r... - Podcast w/ Edward Frankel: https://youtu.be/n_oPMcvHbAc - The Elegant Universe (Brian Greene): https://amzn.to/3sNmk7x - The Trouble With Physics (Lee Smolin): https://amzn.to/47lCCUj - Podcast w/ Sabina Hossenfelder on TOE: https://youtu.be/walaNM7KiYA - Podcast w/ Stephon Alexander Part 1: https://youtu.be/VETxb96a3qk - Podcast w/ Stephon Alexander Λ Sal Pais: https://youtu.be/PE4C7OI7Frg - Podcast w/ Eric Weinstein: https://youtu.be/KElq_MLO1kw - Podcast w/ Stephen Wolfram Part 1: https://youtu.be/1sXrRc3Bhrs - Podcast w/ Stephen Wolfram Part 2: https://youtu.be/xHPQ_oSsJgg - Podcast w/ Jonathan Oppenheim: https://youtu.be/NKOd8imBa2s

Georgetown First United Methodist Sermons (KY)
”The Way Forward is the Way Down” - Bryan Langlands

Georgetown First United Methodist Sermons (KY)

Play Episode Listen Later Oct 1, 2023 28:42


RNZ: Morning Report
Investigations launched into how boat ran aground in Banks Peninsula

RNZ: Morning Report

Play Episode Listen Later Sep 26, 2023 3:25


A marine conservationist who spent time on the Austro Carina says fishing boats often tow their lines close to Banks Peninsula. Peter Langlands has spent many hours on board fishing trawlers as an observer - including the Austro Carina in the 1990s. Two investigations have been launched into how the 25-metre vessel, which was carrying thousands of litres of diesel, ran aground at Red Bluff. Peter Langlands says the area it was working in is a very productive fishery. Langlands spoke to Ingrid Hipkiss.

Principle of Hospitality - The Podcast
Ep 254 - Evolving a loved cafe brand with so much heritage Jets (Anita) Langlands from LaMarzocco

Principle of Hospitality - The Podcast

Play Episode Listen Later Aug 3, 2023 50:49


Ep 254 - Evolving a loved cafe brand with so much heritage Jets (Anita) Langlands from LaMarzoccoIn this episode, we're revisiting a fan-favorite conversation with Jets Langlands from La Marzocco, where we explore the evolution of a beloved cafe brand with a rich heritage.Jets takes us on a journey as she shares her early experiences in the industry and her deep love for coffee. We discuss the enduring appeal of the La Marzocco brand within the cafe industry and its iconic status among coffee enthusiasts worldwide.The conversation then delves into the topic of automation and its impact on the industry. Jets provides insights into the future of baristas and how their roles may evolve alongside advancing technology.From a marketing perspective, Jets shares her strategies for evolving a brand with a strong heritage while staying true to its essence. We also explore how La Marzocco embraces change and innovation while maintaining their core values.Join us as we revisit this enlightening discussion, gaining valuable insights into the coffee industry and the journey of iconic brands like La Marzocco.Please find our guest information here:Website: https://au.lamarzocco.com/Instagram: https://www.instagram.com/lamarzoccoau/Please find us here at POH:Website: https://principleofhospitality.com/Instagram: https://www.instagram.com/principle_of_hospitality/Mentioned in this episode:Fine Food Australia returns this September to Sydney and will occupy the entire ICC Sydney – that's 4 levels of Fine Food! Fine Food has been the leading trade event for all food —from retail to hospitality, manufacturing to bakery for nearly 4 decades Visiting Fine Food will be the recipe to fast-track your business for commercial success. Just a reminder that this is a free event to attend, so make sure you register at finefoodaustralia.com.au Fine Food Australia Square POS 2Hospo is all about connection – with your customers and your team. But what if your tools could also connect? That's where Square comes in... Square for Restaurants connects your front of house to your back of house. Your team to their schedules. And connects new revenue streams with your marketing – to reach new customers. Whether you have one location or many, Square has everything your business needs to connect your vision to reality. Website: https://squareup.com/au/en/point-of-sale/restaurantsSquare POS 2Hospo is all about connection – with your customers and your team. But what if your tools could also connect? That's where Square comes in... Square for Restaurants connects your front of house to your back of house. Your team to their schedules. And connects new revenue streams with your marketing – to reach new customers. Whether you have one location or many, Square has everything your business needs to connect your vision to reality. Website: https://squareup.com/au/en/point-of-sale/restaurants

Vox&Hops
Armstrong Metalfest 2023 with Bretton Melanson & Sean Langlands

Vox&Hops

Play Episode Listen Later Jun 16, 2023 53:18


Bretton Melanson, Sean Langlands & I have a conversation about the soundtrack of their youths, their 1st shows, building Armstrong Metalfest, complications along the way, the future of the festival & their hangover cures. Throughout this chat, Bretton drank Strange Fellows Brewing's "Jongleur" the 4.5% Belgian Style Wit, Sean drank Whistler Brewing's "Mountaineer Pilsner" the 5% lightly hopped pilsner & I enjoyed LaBrosse's "Groove - Motueka" the 6.5% Mono Hop IPA. Armstrong Metalfest 2023 that will take place on July 14th & 15th in Armstrong British Columbia. Armstrong Metalfest 2023 will feature performances by: Warbringer, Fallujah, Enterprise Earth, The Zenith Passage, Vale of Pnath, Striker and many more! Tickets are now available here: https://armstrongmetalfest.ca/tickets/ Make sure to check out Vox&Hops' Brewtal Awakenings Playlist which has been curated by the Metal Architect Jerry Monk himself on either Spotify or Apple Music. This playlist is packed with all the freshest, sickest & most extreme albums each week! Episode Links: Website: https://www.voxandhops.com/ Join The Vox&Hops Mailing List: http://eepurl.com/hpu9F1 Join The Vox&Hops Thirsty Thursday Gang: https://www.facebook.com/groups/162615188480022 Armstrong Metalfest: https://armstrongmetalfest.ca/ Strange Fellows Brewing: https://strangefellowsbrewing.com/portfolios/jongleur/ Whistler Brewing: https://www.whistlerbeer.com/mountaineerpilsner LaBrosse: https://www.labrosse.com/ Artist Spotlight: Nomad: https://nomadbc.bandcamp.com/album/the-mountain Vox&Hops Brewtal Awakenings Playlist: https://www.voxandhops.com/p/brewtal-awakenings-metal-playlist/ Sound Talent Media: https://soundtalentmedia.com/  Evergreen Podcasts: https://evergreenpodcasts.com/ SUPPORT THE PODCAST: Vox&Hops Metal Podcast Merchandise: https://www.indiemerchstore.com/collections/vendors?q=Vox%26Hops Use the Promo Code: VOXHOPS10 to save 10% off your entire purchase. Pitch Black North: https://www.pitchblacknorth.com/ Use the Promo Code: VOXHOPS15 to save 15% off your entire purchase. Heartbeat Hot Sauce: https://www.heartbeathotsauce.com/ Use the Promo Code: VOXHOPS15 to save 15% off your entire purchase.

Redefining Sales with Abbie White
Jenny Daniher and Mark Langlands: Business Class Mentorship at 30,000 Feet

Redefining Sales with Abbie White

Play Episode Listen Later Apr 17, 2023 40:12


Are you ready for another exciting episode of Sales Redefined? We sure hope so, because we've got a real treat for you today!  We were lucky enough to sit down with two truly inspiring Aussie entrepreneurs: Jenny Daniher, the co-founder of Garlicious Grown, and Mark Langlands, owner of L&W Sports Communications Pty Ltd.   And you won't believe how they got here... Thanks to American Express and Qantas Business Rewards, they were able to experience a one-of-a-kind Business Class mentoring journey!   Here are the key insights from the conversation: Why juggling five balls is overrated and you should focus on one. How to identify the right team members and how to attract and retain top talent. Why you need to create a clear roadmap to achieve your goals.   So, what are you waiting for? Boil the kettle and get your earphones at the ready. Happy listening!   Check out Jenny Daniher: ► Website: http://www.garliciousgrown.com.au ► LinkedIn: https://www.linkedin.com/in/jenny-daniher/?originalSubdomain=au Check out Mark Langlands: ► Website: https://lwsc.com.au/ ► LinkedIn: https://www.linkedin.com/in/mark-langlands-64a1373b/ Follow Sales Redefined on: ► LinkedIn: https://www.linkedin.com/company/salesredefined/ ► Subscribe to SMarketing Lowdown ► Download the whitepaper here: https://whitepaper.salesredefined.com.au Enjoyed this episode and want more? Redefining Sales Podcast Playlist: https://tinyurl.com/Redefining-Sales-Podcast #sponsored #paidpartnership #advert #BusinessClassMentorship #Entrepreneurship #BusinessTips #AmericanExpress #QantasBusinessRewards

Formes automorphes (chaire internationale) - Bảo Châu Ngô
Séminaire - Tamas Hausel : Mirror Symmetry and Big Algebras

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later Apr 14, 2023 62:13


Bảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2022-2023Théorie géométrique des représentationsSéminaire - Tamas Hausel : Mirror Symmetry and Big AlgebrasRésuméFirst we recall the mirror symmetry identification of the coordinate ring of certain very stable upward flows in the Hitchin system and the Kirillov algebra for the minuscule representation of the Langlands dual group via the equivariant cohomology of the cominuscule flag variety (e.g. complex Grassmannian). In turn we discuss a conjectural extension of this picture to non-very stable upward flows in terms of a big commutative subalgebra of the Kirillov algebra, which also ringifies the equivariant intersection cohomology of the corresponding affine Schubert variety.Tamas Hausel, IST Austria 1998 : PhD University of Cambridge 1998-1999 : Post-doctoral member IAS Princeton 1999-2002 : Miller Research Fellow, UC Berkeley 2002-2007 : Assistant and Associate Professor, UT Austin 2005-2012 : Royal Society URF, Oxford 2012-2016 : Chair of Geometry, EPF Lausanne 2016- : Hausel group, IST Austria

The Rugby League Digest
The Super League War - Chapter 35 - Two Tones (Part 2)

The Rugby League Digest

Play Episode Listen Later Mar 28, 2023 74:30


In this episode we discuss Super League's legacy on international rugby league, fireworks over developing nations, the Japanese pipe dream, an Anzac Day furore, Langlands defects to Super League, the Super League test vs City Country, eligibility farces abound, the Nikau vs Blackmore feud, NZ wins the test, a truncated UK tour, open letter news, referee controversy, the black mark of the asterisk on rep careers, ARL test matches, the embarrassing but arguable necessary Rest of the World reboot, NZRL playing footsies with the ARL, premature compromise ideas and much more! Hosted on Acast. See acast.com/privacy for more information.

The Unadulterated Intellect
#2 – Terence Tao, Jacob Lurie, Simon Donaldson, Maxim Kontsevich, Richard Taylor, and Yuri Milner: 2015 Breakthrough Math Panel

The Unadulterated Intellect

Play Episode Listen Later Mar 18, 2023 48:11


Support me by becoming wiser and more knowledgeable – check out books by or related to these intellectuals for sale on Amazon: Terence Tao - https://amzn.to/4cACjHV Jacob Lurie - https://amzn.to/3U5NIZr Simon Donaldson - https://amzn.to/3x99r9w Maxim Kontsevich - https://amzn.to/3VxbPRL If you purchase a book through this link, I will earn a 4.5% commission and be extremely delighted. But if you just want to read and aren't ready to add a new book to your collection yet, I'd recommend checking out the ⁠⁠⁠Internet Archive⁠⁠⁠, the largest free digital library in the world. If you're really feeling benevolent you can buy me a coffee or donate over at ⁠https://ko-fi.com/theunadulteratedintellect⁠⁠. I would seriously appreciate it! __________________________________________________ Terence Chi-Shen Tao (born 17 July 1975) is an Australian mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide. Tao won the Fields Medal in 2006 and won the Royal Medal and Breakthrough Prize in Mathematics in 2014. He is also a 2006 MacArthur Fellow. Tao has been the author or co-author of over three hundred research papers. He is widely regarded as one of the greatest living mathematicians and has been referred to as the "Mozart of mathematics". Jacob Alexander Lurie (born December 7, 1977) is an American mathematician who is a professor at the Institute for Advanced Study. Lurie is a 2014 MacArthur Fellow. Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London. Maxim Lvovich Kontsevich (born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques and a distinguished professor at the University of Miami. He received the Henri Poincaré Prize in 1997, the Fields Medal in 1998, the Crafoord Prize in 2008, the Shaw Prize and Breakthrough Prize in Fundamental Physics in 2012, and the Breakthrough Prize in Mathematics in 2015. Richard Lawrence Taylor (born 19 May 1962) is a British mathematician working in the field of number theory. He is currently the Barbara Kimball Browning Professor in Humanities and Sciences at Stanford University. Taylor received the 2015 Breakthrough Prize in Mathematics "for numerous breakthrough results in the theory of automorphic forms, including the Taniyama–Weil conjecture, the local Langlands conjecture for general linear groups, and the Sato–Tate conjecture." He also received the 2007 Shaw Prize in Mathematical Sciences for his work on the Langlands program with Robert Langlands. He also served on the Mathematical Sciences jury for the Infosys Prize from 2012 to 2014. Yuri Borisovich (Bentsionovich) Milner (born 11 November 1961) is a Soviet-born Israeli entrepreneur, investor, physicist and scientist . He is a cofounder and former chairperson of internet company Mail.Ru Group (now VK) and a founder of investment firm DST Global. Through DST Global, Milner is an investor in Byju's, Facebook, Wish, and many others. In 2012 Milner's personal investments included a stake in 23andMe, Habito, Planet Labs, minority stake in a real estate investments startup, Cadre in 2017. Audio source ⁠here⁠⁠ --- Support this podcast: https://podcasters.spotify.com/pod/show/theunadulteratedintellect/support

Healthcare Interior Design 2.0
Episode 57, Part 1, Bryan Langlands, FAIA, FACHA, EDAC, LEED GA, Principal and Edwin Beltran, NCIDQ, IIDA, ASSOC. AIA, Principal, Lead Interior Designer, NBBJ Architecture

Healthcare Interior Design 2.0

Play Episode Listen Later Jan 17, 2023 26:37


Cheryl's guests today on the podcast are two very special souls; Bryan Langlands, FAIA, FACHA, EDAC, LEED GA Principal NBBJ Architecture and Edwin Beltran NCIDQ, FIIDA, ASSOC. AIA, Partner, Lead Interior Designer, NBBJ Architecture. In part 1 of today's episode, Bryan shares the concept of “Moments of Generosity in Planning” and how, without comprising the budget, this method of planning, deeply improves the experience of patients and caregivers alike in ways you might not think of. Edwin shares the design concept he practices called Essentialism and how it plays a role in a value driven design. This and so much more about what's happening now in healthcare design, planning and architecture on part 1 of today's episode. Learn more about Bryan Langlands, Edwin Beltran and NBBJ  by visiting: http://www.nbbj.com/. In Part 1 of Cheryl's conversation with Bryan and Edwin, they discuss: What happened during COVID and more specifically, what NBBJ projects failed? With COVID, design budgets were slashed in healthcare projects. Learn how Bryan responded by creating what he calls, “Moments of Generosity in Planning.” Listen to Bryan share examples of “Moments of Generosity” including what the benefits are of bringing light (from strategically placed windows) into the nursing station and caregivers areas of a hospital? What are the financial benefits of using “Moments of Generosity in Planning?” What does Edwin mean when he says, “Economy is extremely important today without compromising a value driven design or decreasing the budget?” Edwin has referred to the word “Essentialism” to describe his approach to design with current projects. What is Essentialism and how does it play a role in a value driven design? The world is changing quickly. The Center for Health Design is committed to providing the healthcare design and senior living design industries with the latest research, best practices and innovations. The Center can help you solve today's biggest healthcare challenges and make a difference in care, safety, medical outcomes, and the bottom line.  Find out more at healthdesign.org. Additional support for this podcast comes from our industry partners: The American Academy of Healthcare Interior Designers The Nursing Institute for Healthcare Design Learn more about how to become a Certified Healthcare Interior Designer®  by visiting the American Academy of Healthcare Interior Designers at: https://aahid.org/. Connect to a community interested in supporting clinician involvement in design and construction of the built environment by visiting The Nursing Institute for Healthcare Design at https://www.nursingihd.com/ FEATURED PRODUCT The prevention of nosocomial infections is of paramount importance. Did you know that bathrooms and showers – particularly in shared spaces – are a veritable breeding ground for pathogen, some of which we see in the form of mold and the build-up of toxic bio films on surfaces. Body fats and soap scums provide a rich food sauce for micro-organisms such as airborne bacteria Serratia Marcescens, which thrive in humid conditions. We know that people with weakened immune systems are so much more vulnerable to the illnesses associated with infection and let's face it, none of us go into the shower with an expectation that we might get sick. So how do we keep those shower walls clean? Well let's think big – BIG TILES. Porcelanosa have developed XXL Hygienic Ceramic Tiles that are 5 feet long - which means just one piece fits the wall of a shower or tub surround. XTONE Porcelain slabs are 10 feet high which means a floor to ceiling surface with no joints. Why does this matter? Well hygienic glaze will not harbor pathogen and surface impurities are easily removed to prevent build up – it is reassuring to know the evidence - INTERNATONAL STANDARDS Test ISO 10545 - Resistance to Stains -  has determined these surfaces can be easily cleaned and the most difficult contaminants washed away, greatly reducing the need for aggressive chemicals. Think about this…When we unload our dishwasher our ceramic tableware is sparkling clean, sanitized and fresh to use - again and again. The principle is the same with large ceramic walls - So, when planning the shower surrounds for your facilities please reach out to Porcelanosa. The designer in you will love the incredible options and your specification will deliver the longest & best lifecycle value bar none.

Healthcare Interior Design 2.0
EPISODE 57, Part 2, Bryan Langlands, FAIA, FACHA, EDAC, LEED GA, Principal and Edwin Beltran, NCIDQ, IIDA, ASSOC. AIA, Principal, Lead Interior Designer, NBBJ Architecture

Healthcare Interior Design 2.0

Play Episode Listen Later Jan 17, 2023 32:06


On Part 2 of today's episode, Cheryl continues her rich and deep conversation with Bryan Langlands, FAIA, FACHA, EDAC, LEED GA, Principal NBBJ Architecture and Edwin Beltran NCIDQ, FIIDA, ASSOC. AIA, Partner, Lead Interior Designer, NBBJ Architecture. Edwin shares the deeper meaning of Essentialism in Design and what it means to humanity. Bryan shares how he led the charge in addressing the dilemma of overcrowding in our nation's emergency departments by calling for the recognition of a new type of treatment space for lower-acuity patients. Part 2 of today's conversation will continue to inspire and warm your heart. Learn more about Bryan Langlands, Edwin Beltran and NBBJ by visiting: http://www.nbbj.com/. In Part 2 of Cheryl's conversation with Bryan Langlands and Edwin Beltran they discuss: Edwin dives deeper into the concept of Essentialism in Design and gives specific examples of how this approach creates the sense of belonging and connection. How does color and texture achieve the sense of warmth and belonging? Essentialism is a branch of minimalism, but how is Essentialism different from minimalism? Bryan is a prolific and generous influencer of healthcare in many ways. What does he mean when he says, “What I find interesting is that we can effect change and regulation.” Brian shares more about what he has learned from sitting on a Guideline Committee that sets guidelines every 4 years in healthcare. Bryan leads the charge in addressing the dilemma of overcrowding in our nation's emergency departments by calling for the recognition of a new type of treatment space for lower-acuity patients. His push for delivering “the right care at the right time in the right place” is resulting in the first major change to emergency department allowable requirements via the Facility Guidelines Institute (FGI) regulatory guidelines, which set the minimum requirements enforced in 44 states and federal agencies. What is Edwin seeing regarding FGI Regulatory Guidelines? How did Edwin and Bryan arrive at their careers in healthcare? Learn about their origin stories. What does the future of healthcare and architecture design hold from Edwin and Bryan's perspective? The world is changing quickly. The Center for Health Design is committed to providing the healthcare design and senior living design industries with the latest research, best practices and innovations. The Center can help you solve today's biggest healthcare challenges and make a difference in care, safety, medical outcomes, and the bottom line.  Find out more at healthdesign.org. Additional support for this podcast comes from our industry partners: The American Academy of Healthcare Interior Designers The Nursing Institute for Healthcare Design Learn more about how to become a Certified Healthcare Interior Designer®  by visiting the American Academy of Healthcare Interior Designers at: https://aahid.org/. Connect to a community interested in supporting clinician involvement in design and construction of the built environment by visiting The Nursing Institute for Healthcare Design at https://www.nursingihd.com/ FEATURED PRODUCT The prevention of nosocomial infections is of paramount importance. Did you know that bathrooms and showers – particularly in shared spaces – are a veritable breeding ground for pathogen, some of which we see in the form of mold and the build-up of toxic bio films on surfaces. Body fats and soap scums provide a rich food sauce for micro-organisms such as airborne bacteria Serratia Marcescens, which thrive in humid conditions. We know that people with weakened immune systems are so much more vulnerable to the illnesses associated with infection and let's face it, none of us go into the shower with an expectation that we might get sick. So how do we keep those shower walls clean? Well let's think big – BIG TILES. Porcelanosa have developed XXL Hygienic Ceramic Tiles that are 5 feet long - which means just one piece fits the wall of a shower or tub surround. XTONE Porcelain slabs are 10 feet high which means a floor to ceiling surface with no joints. Why does this matter? Well hygienic glaze will not harbor pathogen and surface impurities are easily removed to prevent build up – it is reassuring to know the evidence - INTERNATONAL STANDARDS Test ISO 10545 - Resistance to Stains -  has determined these surfaces can be easily cleaned and the most difficult contaminants washed away, greatly reducing the need for aggressive chemicals. Think about this…When we unload our dishwasher our ceramic tableware is sparkling clean, sanitized and fresh to use - again and again. The principle is the same with large ceramic walls - So, when planning the shower surrounds for your facilities please reach out to Porcelanosa. The designer in you will love the incredible options and your specification will deliver the longest & best lifecycle value bar none.

RNZ: Nights
Peter Langlands

RNZ: Nights

Play Episode Listen Later Dec 23, 2022 19:36


Peter Langlands is on a mission to promote wild foods and foraging in New Zealand. He's been foraging most of his life and is up for any challenge. With Summer in full swing, we asked Peter to share some foraging tips.

Principle of Hospitality - The Podcast
Ep 215 - Jets Langlands from La Marzocco as we discuss evolving a loved cafe brand with so much heritage

Principle of Hospitality - The Podcast

Play Episode Listen Later Nov 3, 2022 51:00


Ep 215 - Jets Langlands from La Marzocco as we discuss evolving a loved cafe brand with so much heritage Founded in 1927 by Giuseppe and Bruno Bambi, La Marzocco had its beginnings in Florence, Italy.  It is one of the most well-known coffee machine brands in the world and sets itself apart by being one of the most innovative, stylish and powerful machines.. Even today, highly specialized personnel supervise each stage in the production of every single machine, hand-crafted to order for each and every client. So today I feel fortunate to sit down with the Group Marketing Manager La Marzocco Australia, Jets Langlands on this week's podcast. In this podcast we discuss: -How she started out in the industry and get to love coffee. -The definite love for the La Marzocco brand in the cafe industry. -Her thoughts on automation in the industry, and what a barista look like in coming years. -From a marketing standpoint, how she evolves a brand with so much heritage. -How a brand that is so iconic like La Marzocco changing for the future. Please find our guest information here: Website: https://au.lamarzocco.com/ (https://au.lamarzocco.com/) Instagram: https://www.instagram.com/lamarzoccoau/ (https://www.instagram.com/lamarzoccoau/) Please find us here at POH: Website: https://principleofhospitality.com/ (https://principleofhospitality.com/) Instagram: https://www.instagram.com/principle_of_hospitality/ (https://www.instagram.com/principle_of_hospitality/) Mentioned in this episode: Free Brand Strategy Session with Principle Design Principle Design is making brands happen in cafes, restaurants, bars, and venues by crafting experiences that give customers a reason to choose you. They can help you deliver memorable culinary experiences through innovative design and authentic brand storytelling. If your operation is in need of branding, a website, menu, coaster, uniform, signage or packaging design or even social media services, then Principle Design is your next contact. For a limited time only, Principle Design is offering the POH community free brand strategy sessions! Visit our bio for more information. https://principle-of-hospitality.captivate.fm/free-brand-strategy-session- (Principle Design ) Free Brand Strategy Session with Principle Design Principle Design is making brands happen in cafes, restaurants, bars, and venues by crafting experiences that give customers a reason to choose you. They can help you deliver memorable culinary experiences through innovative design and authentic brand storytelling. If your operation is in need of branding, a website, menu, coaster, uniform, signage or packaging design or even social media services, then Principle Design is your next contact. For a limited time only, Principle Design is offering the POH community free brand strategy sessions! Visit our bio for more information. https://principle-of-hospitality.captivate.fm/free-brand-strategy-session- (Principle Design )

Witches of Scotland
EPISODE 63 - JUDITH LANGLANDS SCOTT - CONFESSIONS AND LIES - WITCHES OF FORFAR PART TWO

Witches of Scotland

Play Episode Listen Later Oct 17, 2022 84:56


Zoe and Claire speak to the fabulously knowledgeable Judith Langlands Scott about witch confessions in Forfar, John Kincaid's “expert” expenses and find out where following the money trail gets you on the hunt to uncover the details of those killed as witches

Innovative Legal Leadership
BT Group Plc: Jeff Langlands - Treating Legal Like a Business

Innovative Legal Leadership

Play Episode Listen Later Sep 29, 2022 41:43 Transcription Available


It's easy to overthink the little things. Sometimes, the corporate legal ladder can look like Mt. Everest, but something as simple as a positive attitude can help you reach the summit. You just have to be willing to escape your comfort zone and go for it. Jeff Langlands, General Counsel of Corporate, Digital, and Networks at BT Group Plc and Director of EE Limited, spoke with us about setting his stall out in becoming a GC. Join us as we discuss: Opportunities for “the next challenge” (15:55) Traits Jeff looks for as a mentor (22:29) Notable differences between in-house and external firms (25:37)   Check out these resources we mentioned during the podcast: - BT Group Plc - EE Limited - DLA Piper Hear more stories by following Innovative Legal Leadership on Apple Podcasts, Spotify, or any podcast platform. Listening on a desktop & can't see the links? Just search for Innovative Legal Leadership in your favorite podcast player.

Innovative Legal Leadership
BT Group Plc: Jeff Langlands - Treating Legal Like a Business

Innovative Legal Leadership

Play Episode Listen Later Sep 29, 2022 41:43 Transcription Available


It's easy to overthink the little things. Sometimes, the corporate legal ladder can look like Mt. Everest, but something as simple as a positive attitude can help you reach the summit. You just have to be willing to escape your comfort zone and go for it. Jeff Langlands, General Counsel of Corporate, Digital, and Networks at BT Group Plc and Director of EE Limited, spoke with us about setting his stall out in becoming a GC. Join us as we discuss: Opportunities for “the next challenge” (15:55) Traits Jeff looks for as a mentor (22:29) Notable differences between in-house and external firms (25:37)   Check out these resources we mentioned during the podcast: - BT Group Plc - EE Limited - DLA Piper Hear more stories by following Innovative Legal Leadership on Apple Podcasts, Spotify, or any podcast platform. Listening on a desktop & can't see the links? Just search for Innovative Legal Leadership in your favorite podcast player.

Lloyd Burr Live
Invercargill hotel unable to open restaurant due to immigration delays

Lloyd Burr Live

Play Episode Listen Later Sep 29, 2022 9:11


Migrants chefs remain stuck overseas due to long wait times for paperwork causing a delay in the opening of the Langlands hotel in Invercargill.See omnystudio.com/listener for privacy information.

The Mark Perlberg CPA Podcast
EP 018 - Manage Risk and Reduce Taxes Using Captive Insurance Companies w/ Keith Langlands

The Mark Perlberg CPA Podcast

Play Episode Listen Later Sep 7, 2022 55:15


Join me and Keith Langlands, CPA as will discuss one of my favorite tax strategies - Captive Insurance Companies! This can be a powerful tool to self-insure against a wide variety of risks in your business, and will be structured in a way that can save you millions in taxes over the life of your business. Some of the many potential tax benefits include:- Moving Income from 1040 to C-Corps with Lower Tax Brackets- Qualifying for More Qualified Business Income Deductions- Converting Ordinary Income to Capital Gains Income- Creating Tax Advantage Vehicles to Invest in Securities- Shifting and Timing of Income and Exit Tax Planning OpportunitiesIn this webinar we will discuss:- How to Create Captive Insurance Companies- What Kinds of Businesses Benefit from Captive Insurance Companies- Risk Reduction Benefits of Captive Insurance Companies- Tax Benefits of Setting up a Captive for Your Business

Chasing Daylight Podcast
Chip Shots Founder Keith Langlands

Chasing Daylight Podcast

Play Episode Listen Later Jul 15, 2022 38:17


Episode 172Something is exciting coming to the Vegas Valley in 2023, and it's called Chip Shots.When it opens up, Chip Shots will be an indoor private club featuring state-of-the-art hitting bays and simulators, along with some other amenities its members will thoroughly enjoy. A full-service bar with gaming, a cigar bar/lounge, a restaurant, conference rooms, and much more.The brainchild behind Chip Shots is Keith Langlands. In this episode, Keith and his marketing director Lauren McDougall joined me to talk about how the idea has gone from concept to reality and what the experience will be like once the doors open. With the golf blowing up ever since the pandemic, places like Chip Shots, I feel, are going to be popping up all over the country. Keith, and his flagship location, are doing their best to make a name for themselves in this exploding market, and I, for one, cannot wait to see it for myself come 2023!Here are some links to get additional information about the soon-to-be Las Vegas location. https://chipshots.club/ Please check out @airbar26 and save $10 off your order with the code "BB10."The Chasing Daylight is the official podcast of The Breakfast Ball Golf Blog, and this episode was brought to you by Chasing Aces GolfFormidable OpponentsFunny and intense arguments about what is "the best" in the world of movies, music,...Listen on: Apple Podcasts Spotify

Beyond the Paint
Episode 159: Digital Art (Part 1 of 2)

Beyond the Paint

Play Episode Listen Later Jun 8, 2022 26:36


A two-part episode, join me in an exploration with Digital Art as a practice and medium. This episode dives into Digital Art through four categories or themes; installation, film, video and animation, Virtual Reality, Sound Environments. In part two, we will journey into artists who use digital art as a means of expression. David Hockney, emerging New England artist Ande Ja Johnson an the Digitial Collagist Eugenia Loli. .Text: Paul, Christiane. "Digital Art." London: Thames and Hudson, 2008; writers Penny Rafferty, Molly Gottschalk, Oliver Grau, Dr Karen Leader, Sarah Urist Green of the Art Assignment; Brooklyn Museum, Tate Museum, Museum of Modern Art..Special thanks to this episode's sponsor: Nine 90 Branding (Follow @nine90brand on IG)Image credit: Langlands and Bell, "Osama Bin Laden's Hideout in Afghanistan," 2002

Borderlines
#70 - The Importance of Compassion, with David Langlands, a 37-year Officer at CBSA

Borderlines

Play Episode Listen Later Apr 13, 2022 75:18


David Langlands is a recently retired 37-year officer of the Canada Border Services Agency. He worked at land, sea, air and even mail points of entry. We discuss his career, interacting with refugee claimants and people fleeing dire circumstances, compassion, how he once found a zip-log bag labeled Antrhax in someone's suitcase, whether all CBSA interactions with applicants should be recorded, and more.

Well Far: The Running Podcast
RERUN: 20+ race day tips and how to hustle hard with Camilla Langlands and Adrienne Herbert

Well Far: The Running Podcast

Play Episode Listen Later Apr 10, 2022 51:09


Anticipating pre-race nerves Amy kicks off this week's episode with marathon pacer Camilla Langlands who, along with her mother, has completed nearly 150 marathons. Together they share inside know-how on exactly what to expect on the day - from what to pack in your clear bag, the best time and place to warm up and exactly how cosy you should get with your pacer. We then step out on a run with Adrienne Herbert and learn about her running journey through success and injury and how to hustle hard when life throws you curve balls.How to find out more about today's experts:Camilla Langlands, Website: www.thisishowwerun.comAdrienne Herbert, Instagram: @adrienne_ldn See acast.com/privacy for privacy and opt-out information.

Let's Do Lunch on River Radio
Let's Do Lunch Ft. Cressida Langlands from Free From Food Awards

Let's Do Lunch on River Radio

Play Episode Listen Later Jan 7, 2022 57:37


with Jenny Tschiesche

The Nonlinear Library: LessWrong Top Posts
Is Success the Enemy of Freedom? (Full) by alkjash

The Nonlinear Library: LessWrong Top Posts

Play Episode Listen Later Dec 12, 2021 13:38


Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Is Success the Enemy of Freedom? (Full), published by alkjash on LessWrong. Write a Review This is a linkpost for/ I. Parables A. Anna is a graduate student studying p-adic quasicoherent topology. It's a niche subfield of mathematics where Anna feels comfortable working on neat little problems with the small handful of researchers interested in this topic. Last year, Anna stumbled upon a connection between her pet problem and algebraic matroid theory, solving a big open conjecture in the matroid Langlands program. Initially, she was over the moon about the awards and the Quanta articles, but now that things have returned to normal, her advisor is pressuring her to continue working with the matroid theorists with their massive NSF grants and real-world applications. Anna hasn't had time to think about p-adic quasicoherent topology in months. B. Ben is one of the top Tetris players in the world, infamous for his signature move: the reverse double T-spin. Ben spent years perfecting this move, which requires lightning fast reflexes and nerves of steel, and has won dozens of tournaments on its back. Recently, Ben felt like his other Tetris skills needed work and tried to play online without using his signature move, but was greeted by a long string of losses: the Tetris servers kept matching him with the other top players in the world, who absolutely stomped him. Discouraged, Ben gave up on the endeavor and went back to practicing the reverse double T-spin. C. Clara was just promoted to be the youngest Engineering Director at a mid-sized software startup. She quickly climbed the ranks, thanks to her amazing knowledge of all things object-oriented and her excellent communication skills. These days, she finds her schedule packed with what the company needs: back-to-back high-level strategy meetings preparing for the optics of the next product launch, instead of what she loves: rewriting whole codebases in Haskell++. D. Deborah started her writing career as a small-time crime novelist, who split her time between a colorful cast of sleuthy protagonists. One day, her spunky children's character Detective Dolly blew up in popularity due to a Fruit Loops advertising campaign. At the beginning of every month, Deborah tells herself she's going to finally kill off Dolly and get to work on that grand historical romance she's been dreaming about. At the end of every month, Deborah's husband comes home with the mortgage bills for their expensive bayside mansion, paid for with “Dolly money,” and Deborah starts yet another Elementary School Enigma. E. While checking his email in the wee hours of the morning, Professor Evan Evanson notices an appealing seminar announcement: “A Gentle Introduction to P-adic Quasicoherent Topology (Part the First).” Ever since being exposed to the topic in his undergraduate matroid theory class, Evan has always wanted to learn more. He arrives bright and early on the day of the seminar and finds a prime seat, but as others file into the lecture hall, he's greeted by a mortifying realization: it's a graduate student learning seminar, and he's the only faculty member present. Squeezing in his embarrassment, Evan sits through the talk and learns quite a bit of fascinating new mathematics. For some reason, even though he enjoyed the experience, Evan never comes back for Part the Second. F. Whenever Frank looks back to his college years, he remembers most fondly the day he was kicked out of the conservative school newspaper for penning a provocative piece about jailing all billionaires. Although he was a mediocre student with a medium-sized drinking problem, on that day Frank felt like a man with principles. A real American patriot in the ranks of Patrick Henry or Thomas Jefferson. After college, Frank met a girl who helped him sort himself out and get sober, a...

The Red V Podcast
Episode 95: Russell Cox Part Two: ”His white boots didn‘t come into it, the needle didn‘t come in to it, we were hurt”

The Red V Podcast

Play Episode Listen Later Nov 9, 2021 60:44


This week's podcast is stacked full of Dragons goodness! We recap and reveal the 2022 NRL draw and what the early season fixtures mean for the Dragons. Plus talk about the Feagai twins re-signing news as well as some some young lads signing on for the Dragons SG Ball squads.  Also we play part two of our engrossing chat with Russell Cox. Russell talks about the 1970's at St George including the infamous 1975 Grand Final and the 1977 Grand Finals against Parramatta.  What it was like to play with Langlands and Smith, coaching, post life footy and plenty of entertaining stories! Listen via Podbean, Spotify, Apple Podcasts, Google Podcasts, Stitcher and all other good podcast providers 

Team Ten Eight
Officer David Langlands

Team Ten Eight

Play Episode Play 36 sec Highlight Listen Later Oct 23, 2021 35:45


David Langlands is a decorated 37-year officer of the Canada Border Services Agency who has been awarded the Queen's Golden and Diamond Jubilee medals as well as the Peace Officer Exemplary Service Medal and bar; and has been recognized for a number of significant drug interdictions over his career.He's worked at land, sea, air and even mail points of entry and you  might even recognize him from the hit show Border Security. On this episode we learn a little about what it's like working on Canada's "front line" as David talks about his experience on 9/11 while working at one of Canada's busiest airports, his role in a major drug interdiction and just how far border security in Canada has come over four decades.  Shimona & Associates Mortgage Consulting Mortgage Broker

Chalke Talk
131. Peter Ginn & Alex Langlands (2017)

Chalke Talk

Play Episode Listen Later Oct 1, 2021 45:27


Full Steam Ahead: How the Railways Made BritainAfter their hugely popular BBC TV series, Alex Langlands and Peter Ginn talk about Britain's railways from their birth to their heyday and beyond, showing how steam locomotives shaped the emergence of the country as a world power and how the railways changed and affected the lives of us all. See acast.com/privacy for privacy and opt-out information.

The Health Foundation podcast
12: The most challenging job in the country: Being chief executive of the NHS – with Sir Alan Langlands

The Health Foundation podcast

Play Episode Listen Later Sep 28, 2021 46:19


Being chief executive of the NHS is one of the most challenging jobs in the country.    Since the role started in 1985 there have been nine postholders, with Amanda Pritchard taking over from Sir Simon Stevens this year. Like her predecessors she faces formidable challenges ahead: managing the pandemic's impact, tackling waiting lists, boosting technology, managing a growing population of older people with multiple conditions and dealing with workforce shortages to name a few.   The role means being a leader and a national figure, working with the NHS itself as well as with government, the media and the wider health sector. The bandwidth needed to do the job is huge. How is it doable? Our Chief Executive Dr Jennifer Dixon discusses with Sir Alan Langlands, NHS chief executive number four, from 1994–2000. After leaving the NHS, Alan went onto a number of roles including Principal and Vice Chancellor of the University of Dundee, chief executive of the Higher Education Funding Council, Vice Chancellor of the University of Leeds and chair of the Health Foundation (2009–2017).   Related content Listen to our podcast episode on the Wanless Review and read the related publication, The most expensive breakfast in history Listen to our podcast episode with Rt Hon Jeremy Hunt MP Read more about the role of health secretary in Glaziers and window breakers Explore NHS policy developments in the Thatcher years, Major years and Blair years in our Policy Navigator Read more about 'targets and terror' Read more about the NHS internal market (see 'the context' by Jennifer Dixon)

The Poor Prole's Almanac
The Return of Craft with Alex Langlands

The Poor Prole's Almanac

Play Episode Listen Later Jul 19, 2021 61:54


In this episode, we chat with Alex Langlands, former star of the BBC Historic Farms Series', including Wartime Farms, Victorian Farms, Medieval Farms, Edwardian Farms, and Tales from the Green Valley. Alex is also the author of Craeft; An Inquiry Into the Origins and True Meaning of Traditional Crafts.   We talk about the role of Crafts as a method to reintegrate humanity into nature and to build better relationships with our ecology.   To check out his work, visit his Youtube Channel Shedcrafter:  https://www.youtube.com/watch?v=zZ4HLEEoVLs&feature=youtu.be His book is also available wherever you get your books, but

Collège de France (Sciences et technologies)
09 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later Jun 11, 2021 126:35


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
09 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later Jun 11, 2021 126:35


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Collège de France (Sciences et technologies)
08 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later Jun 4, 2021 110:24


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
08 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later Jun 4, 2021 110:24


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Let Me Introduce You with Jane Milton
Let Me Introduce You To Retail Expert and passionate advocate of the best quality foods from everyday staples to luxury treats, Bruce Langlands

Let Me Introduce You with Jane Milton

Play Episode Listen Later Jun 3, 2021 48:22


A great conversation with Bruce Langlands about lessons learned in retail, specifically food and drink, and how to win and retain customers in both retail and restaurants within retail businesses. From M&S in UK and overseas, to Irish food retail with its wonderful small producers and artisan products, then on into Harrods and Selfridges, Bruce has met very different customers in each, and yet, what they want and how to keep them happy may not be dis-similar. If your business sells to retailers or wants to, there are some real gems in here that you can't afford to miss. See acast.com/privacy for privacy and opt-out information.

Judeslist
Langlands & Bell: The Past is Never Dead

Judeslist

Play Episode Listen Later May 31, 2021 49:50


In this episode, I speak with London-based artists Ben Langlands & Nikki Bell about their explorative work of linking people and architecture.  We speak about their commissioned work as "war artists" that documented the trilogy for "The house of Osama bin Laden" in Afganistan.As well as their current major solo exhibition in Accra " The Past is never Dead" which explores the architecture of the slave castles dotted along the coastal shores of Ghana.You can find out more about their work at http://www.langlandsandbell.com/ and https://www.instagram.com/langlandsandbell/?hl=en This exhibition is currently showing at Gallery1957 from 20 May – 2 July 2021.Kindly support the podcast by leaving a short review on Apple Podcasts/iTunes, it would really make a difference. #judeslist

Collège de France (Sciences et technologies)
07 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later May 28, 2021 117:50


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
07 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later May 28, 2021 117:50


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Collège de France (Sciences et technologies)
06 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later May 21, 2021 124:21


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
06 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later May 21, 2021 124:21


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

PreserveCast
The Origins and True Meaning of Traditional Crafts With BBC's Alex Langlands

PreserveCast

Play Episode Listen Later May 17, 2021 47:15


To regular listeners of PreserveCast, you know that I’m a huge fan of the BBC “farm” series – which have explored Tudor, Victorian, Edwardian and other eras of British history. Alex Langlands rounds out our interviews with each of the presenters from the series – and Alex also recently published a new book, Craeft: An Inquiry into the Origins and True Meaning of Traditional Crafts, which is a perfect topic of conversation at a moment when the world is almost entirely virtual. 

Collège de France (Sciences et technologies)
05 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later May 14, 2021 113:52


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
05 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later May 14, 2021 113:52


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Collège de France (Sciences et technologies)
04 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later May 7, 2021 113:28


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
04 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later May 7, 2021 113:28


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Collège de France (Sciences et technologies)
03 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later Apr 16, 2021 123:45


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
03 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later Apr 16, 2021 123:45


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Collège de France (Sciences et technologies)
02 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later Apr 9, 2021 11:53


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
02 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later Apr 9, 2021 11:53


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Collège de France (Sciences et technologies)
01 - Dualité des fibrations de Hitchin et endoscopie

Collège de France (Sciences et technologies)

Play Episode Listen Later Apr 2, 2021 90:03


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Dualité des fibrations de Hitchin et endoscopie La fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Formes automorphes (chaire internationale) - Bảo Châu Ngô
01 - Dualité des fibrations de Hitchin et endoscopie

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later Apr 2, 2021 90:03


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Dualité des fibrations de Hitchin et endoscopieLa fibration de Hitchin est un système complètement intégrale algébrique qui a d'abord apparu en mathématiques physiques. Ce système doté d'une géométrie particulièrement riche a émergé comme un objet central dans le programme de Langlands géométrique, dans des travaux de Beilinson-Drinfeld, Laumon, Witten, en particulier par le biais d'une dualité remarquable entre les fibrations de Hitchin des groupes duaux an sens de Langlands, découverte par Hausel-Thaddeus et Donagi-Pantev. Il a également joué un rôle central dans la démonstration du lemme fondamental de Langlands-Shelstad dans le programme de Langlands arithmétique. Cette première démonstration est la combinaision d'une étude fine de la géométrie de la fibration de Hitchin inspirée par la théorie d'endoscopie automorphe et celle du théorème de décomposition de Beilinson-Bernstein-Deligne dans ce cadre particulier. Récemment, Groechenig, Wyss et Ziegler ont proposé une nouvelle démonstration du lemme fondamental basée aussi sur la géométrie de de la fibration de Hitchin mais au lieu de l'étude difficile des faisceaux pervers dans la décomposition de Beilinson-Bernstein-Deligne, ils font appelle à l'intégration p-adique. Au-delà de cette innovation technique, la dualité des fibrations de Hitchin joue un rôle majeur dans cette nouvelle preuve. Mon cours portera sur ces développements en mettant l'accent sur ce phénomène de dualité dans les fibrations de Hitchin.

Behind The Screen
'Zack Snyder's Justice League' - Zack Snyder, Kevin Smith, & Anders Langlands

Behind The Screen

Play Episode Listen Later Mar 23, 2021 38:35


On this episode, Carolyn tackles the highly anticipated Zack Snyder version of 'Justice League' with the director, Zack Snyder, and the visual effects supervisors from Weta Digital, Kevin Smith and Anders Langlands. Together, they tell us how this version of the movie came to be and what went into making it a reality for the fans. In this podcast series, Carolyn Giardina, Tech Editor for The Hollywood Reporter, extends her coverage of the filmmaking crafts. She will be talking with the cinematographers, editors, production designers, composers, visual effects supervisors, and other leading artists that bring the magic of motion pictures to theaters. Subscribe now to receive episodes of this inspired new series that shines a light on the artists that spend most of their time behind the screen. Hosted by: Carolyn GiardinaProduced by: Matthew Whitehurst Learn more about your ad choices. Visit megaphone.fm/adchoices

Shots in the Walk-In
Episode 22- Australia Pt. 1 w/ Dave Langlands

Shots in the Walk-In

Play Episode Listen Later Mar 9, 2021 49:52


Dave joins the ladies from Melbourne, Australia and catches them up about how things are going down there with Covid and explains how he helped put together the coolest sounding brew pub ever.

Greenthumbs in Canterbury
Greenthumbs in Canterbury - Foraging with Peter Langlands

Greenthumbs in Canterbury

Play Episode Listen Later Feb 8, 2021 58:04


Out and About With the Canterbury Horticultural Society

Just Havin a Crack
Ep 28 Barry Muir "BLOODY COCKROACHES"

Just Havin a Crack

Play Episode Listen Later Dec 11, 2020 62:52


Today's guest on #JustHavinaCrack will go down in folk law as the person who called New South Welshman #cockroaches.#BarryMuir, Barry was an outstanding halfback playing for Australia in an era of #RugbyLeague was willing and no inch was given on the field. Langlands, Raper, Gasnier and Kelly were some of the greats Barry played with. Barry is synonymous with the phrase cockroach, a term he used for the NSW players in the interstate series before #StateofOrigin began. Barry was the coach of #Queensland at the time. Barry is a legend in Rugby League.  Without Barry, there are no Cockroaches.

The Country Footy Prez Podcast
Episode 3: Spotswood's Michele Langlands

The Country Footy Prez Podcast

Play Episode Listen Later Nov 11, 2020 36:02


Michele is just one of those people you meet along the journey who put a smile on your face when you listen to them speak. For this episode, she reflects on her 43 year Spotswood journey, which now sees her at the helm of this culturally diverse football family. We talk about the effects of the lockdown on suburban businesses and the role football and netball clubs are going to play in bringing people back together.See omnystudio.com/listener for privacy information.

Collège de France (Général)
Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Général)

Play Episode Listen Later Mar 12, 2020 56:52


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Général)
Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes - VIDEO

Collège de France (Général)

Play Episode Listen Later Mar 12, 2020 56:52


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Sciences et technologies)
Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Sciences et technologies)

Play Episode Listen Later Mar 12, 2020 56:52


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Sciences et technologies)
Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes - VIDEO

Collège de France (Sciences et technologies)

Play Episode Listen Later Mar 12, 2020 56:52


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Formes automorphes (chaire internationale) - Bảo Châu Ngô
Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Formes automorphes (chaire internationale) - Bảo Châu Ngô

Play Episode Listen Later Mar 12, 2020 56:52


xBảo Châu NgôCollège de FranceFormes automorphes (chaire internationale)Année 2020 - 2021Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Général)
Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes - VIDEO

Collège de France (Général)

Play Episode Listen Later Mar 12, 2020 56:52


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Général)
Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Collège de France (Général)

Play Episode Listen Later Mar 12, 2020 56:52


xBảo Châu Ngô Collège de France Formes automorphes (chaire internationale) Année 2020 - 2021 Leçon inaugurale : La fonctorialité de Langlands et l'équation fonctionnelle des fonctions L automorphes

Pure Dog Talk
371 – Pugs: Mischievous and Charming Companions CAN Work | Pure Dog Talk

Pure Dog Talk

Play Episode Listen Later Mar 2, 2020 47:08


Pugs: Mischievous and Charming Companions CAN WorkThree long-time breeders join host Laura Reeves to talk about all things Pugs. Kim Langlands, Brenda Belmonte and Patti Kolesar Stoltz share the joy of Pug dogs, their companionship, their functionality, their snoring and their health. Ancient history[caption id="attachment_7742" align="alignleft" width="225"] Patti Kolesar Stoltz[/caption] “The exact origin of our breed is actually lost in antiquity,” Kolesar Stoltz said. “What we do know is that the Pug is of Chinese origin … he was known in the Orient as early as 700 BC … the breed was developed as one of three short faced dogs bred in China for the Imperial court … it's believed that the Pug found his way to the western world via Dutch merchant traders … because when people from the Western world, at that time, would go to China and conquer, they would bring back presents for their Royals. Pugs were one of the presents that they brought back and they became the favored of monarchs throughout Europe. There is no doubt that the Royal patronage helped to establish the popularity of the breed. In fact, Pug dogs were twice the most popular breed in Europe, in the late 1600s and during the Victorian era… the wonderful thing about Pugs being so popular in the Victorian era is we can visually follow our breed through history because it was very often the favorite subject depicted in many forms of art -- early paintings, sculptures, porcelains, so we can follow his history … the breed has a wonderful temperament. They make ideal companions. We were admitted to the American Kennel Club in 1885. We are the largest of the toy breeds and we are one of the most mischievous, also the most fun. And we still remain dignified loving and trusting of everybody.” Myth busting[caption id="attachment_7745" align="alignright" width="242"] Brenda Belmonte[/caption] It's a pervasive myth that these flat nose breeds can't breathe normally, Belmonte noted, therefore they can't do normal things. “It's unfair to our breed to just assume that because it's a Pug it's unhealthy,” Belmonte added, noting her work with the breed in nosework, agility and obedience. “I think the general public needs to hear that and they need to see what our pugs can do so that we can combat this belief that, ‘Oh my gosh our pugs are unhealthy,’ that’s very, very far from the fact. As a [caption id="attachment_7740" align="alignleft" width="300"] Belmonte's pug competing in nosework.[/caption] breeder and somebody who's been in the breed a long time, I truly believe that good breeders have the best interest of their dog’s health at heart. So yes, it's about being a good, responsible breeder and it's about knowing that these dogs can breathe normally and they can do the things other dogs can do.” Healthy habitsLanglands observed that, although the breed has evolved as time has gone on, the brachycephalic dogs were never intended to run marathons. [caption id="attachment_7743" align="alignright" width="300"] Kim Langlands[/caption] “This is a breed (that is) more than capable of doing agility and other performance events and going out and being good little happy pets and going for walks,” Langlands said. “They’re as healthy as people want them to be and take care of them to be. If you take good care of your dog, you're going to have a happy healthy pet … and that includes taking care of their teeth, their nose roll, their weight. I mean the weight is a huge issue.” Color questionsKolesar Stoltz, who heads up education for the Pug Dog Club of America, reminds our audience that pugs come in fawn or black. Period. “Fawn has various shades of real light blonde to what we call an apricot fawn, which has got a very, very pale, pale orange tinge to it… the fawn dogs also have black guard hairs … the fawn dogs all have black masks and black hairs and usually black in their head wrinkle. The black dogs are black … black can be various shades of black depending on if your... Support this podcast

Roosters Radio
Grassroots to Greatness | Kevin Junee

Roosters Radio

Play Episode Listen Later Apr 30, 2019 37:03


To celebrate this week's "Grassroots to Greatness" lunch we talk to club legend and life member Kevin Junee. Kevin talks about his junior career and playing against immortals Langlands, Raper and Gasnier.He also shares with us the innovative coaching methods of Jack Gibson.Kevin talks about 1966 when the club didn't win a game, his 1970 Rothmans medal win and shares his views on our current halves pairing of Cooper Cronk and Luke Keary.We also look ahead to Saturday night's match against the Tigers and look back at our Anzac Day victory over St George.

Well Far: The Running Podcast
20+ race day tips and how to hustle hard with Camilla Langlands and Adrienne Herbert

Well Far: The Running Podcast

Play Episode Listen Later Mar 30, 2019 51:40


Anticipating pre-race nerves Amy kicks off this week's episode with marathon pacer Camilla Langlands who, along with her mother, has completed nearly 150 marathons. Together they share inside know-how on exactly what to expect on the day - from what to pack in your clear bag, the best time and place to warm up and exactly how cosy you should get with your pacer. We then step out on a run with Adrienne Herbert and learn about her running journey through success and injury and how to hustle hard when life throws you curve balls. How to find out more about today's experts: Camilla Langlands, Website: www.thisishowwerun.com Adrienne Herbert, Instagram: @adrienne_ldn

New Books Network
Alexander Langlands, "Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts" (Norton, 2017)

New Books Network

Play Episode Listen Later Mar 4, 2019 57:05


Alexander Langlands is a British archaeologist, historian, writer, and broadcaster.  His most recent book, Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts, was published by Norton to great acclaim in 2017 and has just been reissued as a paperback.  Cræft is an antiquated spelling of “craft” and in the book, Langlands explores what the word meant when it first appeared in English over a thousand years ago. Our modern understanding of the term, Langlands argues, is at some remove from its original meaning.  When it first began to appear in the writings of Anglo-Saxons, the term referred to “power or skill in the context of knowledge, ability, and a kind of learning” (17). In Cræft, Langlands combines scholarly research with personal anecdotes as he discusses a range of pursuits which he himself has undertaken, including hay-making, hedgerow planting, dry wall building, and roof thatching. Folklorist Millie Rahn describes Cræft as follows: “This beautifully-written book is basically a cautionary tale about the loss of knowledge, wisdom, power, and skill embedded in tradition, and our ignoring that knowledge at our peril. It's not a treatise; more a paean to the human condition. Not the first to lament our intellectual, spiritual, and physical disconnect with the modern world, or acknowledge the periodic arts and crafts revivals, the writer says we have the power to transform our world and ourselves if we go back to our roots as humans, as ‘makers’. That's where he distinguishes ‘craeft’ from the art and connoisseurship of ‘craft’-- the whole cycle of ‘making’ rooted (all puns intended) in our agricultural processes.” Rachel Hopkin is a UK born, US based folklorist and radio producer and is currently a PhD candidate at the Ohio State University. Learn more about your ad choices. Visit megaphone.fm/adchoices

New Books in Popular Culture
Alexander Langlands, "Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts" (Norton, 2017)

New Books in Popular Culture

Play Episode Listen Later Mar 3, 2019 57:05


Alexander Langlands is a British archaeologist, historian, writer, and broadcaster.  His most recent book, Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts, was published by Norton to great acclaim in 2017 and has just been reissued as a paperback.  Cræft is an antiquated spelling of “craft” and in the book, Langlands explores what the word meant when it first appeared in English over a thousand years ago. Our modern understanding of the term, Langlands argues, is at some remove from its original meaning.  When it first began to appear in the writings of Anglo-Saxons, the term referred to “power or skill in the context of knowledge, ability, and a kind of learning” (17). In Cræft, Langlands combines scholarly research with personal anecdotes as he discusses a range of pursuits which he himself has undertaken, including hay-making, hedgerow planting, dry wall building, and roof thatching. Folklorist Millie Rahn describes Cræft as follows: “This beautifully-written book is basically a cautionary tale about the loss of knowledge, wisdom, power, and skill embedded in tradition, and our ignoring that knowledge at our peril. It's not a treatise; more a paean to the human condition. Not the first to lament our intellectual, spiritual, and physical disconnect with the modern world, or acknowledge the periodic arts and crafts revivals, the writer says we have the power to transform our world and ourselves if we go back to our roots as humans, as ‘makers’. That's where he distinguishes ‘craeft’ from the art and connoisseurship of ‘craft’-- the whole cycle of ‘making’ rooted (all puns intended) in our agricultural processes.” Rachel Hopkin is a UK born, US based folklorist and radio producer and is currently a PhD candidate at the Ohio State University. Learn more about your ad choices. Visit megaphone.fm/adchoices

New Books in History
Alexander Langlands, "Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts" (Norton, 2017)

New Books in History

Play Episode Listen Later Mar 3, 2019 57:05


Alexander Langlands is a British archaeologist, historian, writer, and broadcaster.  His most recent book, Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts, was published by Norton to great acclaim in 2017 and has just been reissued as a paperback.  Cræft is an antiquated spelling of “craft” and in the book, Langlands explores what the word meant when it first appeared in English over a thousand years ago. Our modern understanding of the term, Langlands argues, is at some remove from its original meaning.  When it first began to appear in the writings of Anglo-Saxons, the term referred to “power or skill in the context of knowledge, ability, and a kind of learning” (17). In Cræft, Langlands combines scholarly research with personal anecdotes as he discusses a range of pursuits which he himself has undertaken, including hay-making, hedgerow planting, dry wall building, and roof thatching. Folklorist Millie Rahn describes Cræft as follows: “This beautifully-written book is basically a cautionary tale about the loss of knowledge, wisdom, power, and skill embedded in tradition, and our ignoring that knowledge at our peril. It's not a treatise; more a paean to the human condition. Not the first to lament our intellectual, spiritual, and physical disconnect with the modern world, or acknowledge the periodic arts and crafts revivals, the writer says we have the power to transform our world and ourselves if we go back to our roots as humans, as ‘makers’. That's where he distinguishes ‘craeft’ from the art and connoisseurship of ‘craft’-- the whole cycle of ‘making’ rooted (all puns intended) in our agricultural processes.” Rachel Hopkin is a UK born, US based folklorist and radio producer and is currently a PhD candidate at the Ohio State University. Learn more about your ad choices. Visit megaphone.fm/adchoices

New Books in European Studies
Alexander Langlands, "Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts" (Norton, 2017)

New Books in European Studies

Play Episode Listen Later Mar 3, 2019 57:05


Alexander Langlands is a British archaeologist, historian, writer, and broadcaster.  His most recent book, Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts, was published by Norton to great acclaim in 2017 and has just been reissued as a paperback.  Cræft is an antiquated spelling of “craft” and in the book, Langlands explores what the word meant when it first appeared in English over a thousand years ago. Our modern understanding of the term, Langlands argues, is at some remove from its original meaning.  When it first began to appear in the writings of Anglo-Saxons, the term referred to “power or skill in the context of knowledge, ability, and a kind of learning” (17). In Cræft, Langlands combines scholarly research with personal anecdotes as he discusses a range of pursuits which he himself has undertaken, including hay-making, hedgerow planting, dry wall building, and roof thatching. Folklorist Millie Rahn describes Cræft as follows: “This beautifully-written book is basically a cautionary tale about the loss of knowledge, wisdom, power, and skill embedded in tradition, and our ignoring that knowledge at our peril. It's not a treatise; more a paean to the human condition. Not the first to lament our intellectual, spiritual, and physical disconnect with the modern world, or acknowledge the periodic arts and crafts revivals, the writer says we have the power to transform our world and ourselves if we go back to our roots as humans, as ‘makers’. That's where he distinguishes ‘craeft’ from the art and connoisseurship of ‘craft’-- the whole cycle of ‘making’ rooted (all puns intended) in our agricultural processes.” Rachel Hopkin is a UK born, US based folklorist and radio producer and is currently a PhD candidate at the Ohio State University. Learn more about your ad choices. Visit megaphone.fm/adchoices

New Books in Folklore
Alexander Langlands, "Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts" (Norton, 2017)

New Books in Folklore

Play Episode Listen Later Mar 3, 2019 57:05


Alexander Langlands is a British archaeologist, historian, writer, and broadcaster.  His most recent book, Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts, was published by Norton to great acclaim in 2017 and has just been reissued as a paperback.  Cræft is an antiquated spelling of “craft” and in the book, Langlands explores what the word meant when it first appeared in English over a thousand years ago. Our modern understanding of the term, Langlands argues, is at some remove from its original meaning.  When it first began to appear in the writings of Anglo-Saxons, the term referred to “power or skill in the context of knowledge, ability, and a kind of learning” (17). In Cræft, Langlands combines scholarly research with personal anecdotes as he discusses a range of pursuits which he himself has undertaken, including hay-making, hedgerow planting, dry wall building, and roof thatching. Folklorist Millie Rahn describes Cræft as follows: “This beautifully-written book is basically a cautionary tale about the loss of knowledge, wisdom, power, and skill embedded in tradition, and our ignoring that knowledge at our peril. It's not a treatise; more a paean to the human condition. Not the first to lament our intellectual, spiritual, and physical disconnect with the modern world, or acknowledge the periodic arts and crafts revivals, the writer says we have the power to transform our world and ourselves if we go back to our roots as humans, as ‘makers’. That's where he distinguishes ‘craeft’ from the art and connoisseurship of ‘craft’-- the whole cycle of ‘making’ rooted (all puns intended) in our agricultural processes.” Rachel Hopkin is a UK born, US based folklorist and radio producer and is currently a PhD candidate at the Ohio State University. Learn more about your ad choices. Visit megaphone.fm/adchoices

New Books in Art
Alexander Langlands, "Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts" (Norton, 2017)

New Books in Art

Play Episode Listen Later Mar 3, 2019 57:05


Alexander Langlands is a British archaeologist, historian, writer, and broadcaster.  His most recent book, Cræft: An Inquiry into the Origins and True Meaning of Traditional Crafts, was published by Norton to great acclaim in 2017 and has just been reissued as a paperback.  Cræft is an antiquated spelling of “craft” and in the book, Langlands explores what the word meant when it first appeared in English over a thousand years ago. Our modern understanding of the term, Langlands argues, is at some remove from its original meaning.  When it first began to appear in the writings of Anglo-Saxons, the term referred to “power or skill in the context of knowledge, ability, and a kind of learning” (17). In Cræft, Langlands combines scholarly research with personal anecdotes as he discusses a range of pursuits which he himself has undertaken, including hay-making, hedgerow planting, dry wall building, and roof thatching. Folklorist Millie Rahn describes Cræft as follows: “This beautifully-written book is basically a cautionary tale about the loss of knowledge, wisdom, power, and skill embedded in tradition, and our ignoring that knowledge at our peril. It's not a treatise; more a paean to the human condition. Not the first to lament our intellectual, spiritual, and physical disconnect with the modern world, or acknowledge the periodic arts and crafts revivals, the writer says we have the power to transform our world and ourselves if we go back to our roots as humans, as ‘makers’. That's where he distinguishes ‘craeft’ from the art and connoisseurship of ‘craft’-- the whole cycle of ‘making’ rooted (all puns intended) in our agricultural processes.” Rachel Hopkin is a UK born, US based folklorist and radio producer and is currently a PhD candidate at the Ohio State University. Learn more about your ad choices. Visit megaphone.fm/adchoices

Ekko
Dagbok fra Ekspedisjon Langlands - Dag 4

Ekko

Play Episode Listen Later Aug 9, 2018 28:07


For det mest prestisjefylte kontoret i Princeton er Einsteins gamle kontor. Han som har det nå, heter Robert Langlands, og er vinner av årets Abelpris. I en uke har vi forsøkt å sirkle inn både mannen og ideene hans.

nrk einsteins dagbok langlands ekspedisjon robert langlands
Ekko
Dagbok fra Ekspedisjon Langlands - Dag 3

Ekko

Play Episode Listen Later Aug 9, 2018 28:55


I vår la Ekko ut på en reise for å se om vi kunne klare å forstå hva årets Abelprisvinner har gjort. På veien snubla vi over de tre store fra Norsk matematikk. Det viste seg at de hadde vært med å bygge veien.

Ekko
Dagbok fra Ekspedisjon Langlands - Dag 2

Ekko

Play Episode Listen Later Aug 7, 2018 30:11


Få universiteter i verden er like myteomspunnet som Princeton i USA. Vi drar dit for å prøve å skjønne litt mer av hva den legendariske Canadiske matematikeren Robert Langlands drev med.

united states nrk dagbok langlands canadiske ekspedisjon robert langlands
Ekko
Dagbok fra Ekspedisjon Langlands - Dag 1

Ekko

Play Episode Listen Later Aug 6, 2018 24:59


Da noen tenkte dypt nok på dette, på 1800-tallet, åpnet dette opp enorme uutforskete områder. Hele kontinenter i matematikken. Og dermed i forståelsen av hvordan verden rundt oss henger sammen.

Ekko
Dagbok fra Ekspedisjon Langlands - Dag 1

Ekko

Play Episode Listen Later May 14, 2018 24:27


Reporter Torkild Jemterud skriver dagbok fra sin ekspedisjon til et fremmed kontinent: Abelprisvinner Langlands matematikk.

Coffee Break: Señal y Ruido
Ep156:JWST Retrasado; Multiverso Póstumo de Hawking; Programa de Langlands; Galaxia sin Materia Oscura; Augurios del Sol

Coffee Break: Señal y Ruido

Play Episode Listen Later Mar 29, 2018 148:48


La tertulia semanal en la que repasamos las últimas noticias de la actualidad científica. En el episodio de hoy: Inminente caída de la estación espacial china Tiangong-1; Nuevo retraso del futuro telescopio espacial James Webb Space Telescope; Pospuesta la decisión del sitio para el TMT; Estrella de Tabby; Metaestabilidad del Universo; Salida suave a la inflación eterna: El paper póstumo de Stephen Hawking; Maldacena, premiado con la prestigiosa medalla Lorentz; Una galaxia sin materia oscura; El programa de Langlands; ¿Está cambiando el Sol?. En la foto, de izquierda a derecha y de arriba abajo: Héctor Socas, Alberto Aparici, Francis Villatoro. Todos los comentarios vertidos durante la tertulia representan únicamente la opinión de quien los hace… y a veces ni eso. CB:SyR es una colaboración entre el Área de Investigación y la Unidad de Comunicación y Cultura Científica (UC3) del Instituto de Astrofísica de Canarias.

Coffee Break: Señal y Ruido
Ep156:JWST Retrasado; Multiverso Póstumo de Hawking; Programa de Langlands; Galaxia sin Materia Oscura; Augurios del Sol

Coffee Break: Señal y Ruido

Play Episode Listen Later Mar 29, 2018 148:48


La tertulia semanal en la que repasamos las últimas noticias de la actualidad científica. En el episodio de hoy: Inminente caída de la estación espacial china Tiangong-1; Nuevo retraso del futuro telescopio espacial James Webb Space Telescope; Pospuesta la decisión del sitio para el TMT; Estrella de Tabby; Metaestabilidad del Universo; Salida suave a la inflación eterna: El paper póstumo de Stephen Hawking; Maldacena, premiado con la prestigiosa medalla Lorentz; Una galaxia sin materia oscura; El programa de Langlands; ¿Está cambiando el Sol?. En la foto, de izquierda a derecha y de arriba abajo: Héctor Socas, Alberto Aparici, Francis Villatoro. Todos los comentarios vertidos durante la tertulia representan únicamente la opinión de quien los hace… y a veces ni eso. CB:SyR es una colaboración entre el Área de Investigación y la Unidad de Comunicación y Cultura Científica (UC3) del Instituto de Astrofísica de Canarias.

Coffee Break: Señal y Ruido
Ep155: Galaxia Reliquia; Ondas Magnéticas en el Sol; Langlands, Premio Abel 2018; Agujeros Negros en Latín

Coffee Break: Señal y Ruido

Play Episode Listen Later Mar 22, 2018 133:42


La tertulia semanal en la que repasamos las últimas noticias de la actualidad científica. En el episodio de hoy: Curso exprés de latín; NGC 1277, la Jordi Hurtado de las galaxias; Ondas de Alfvén y magnetohidrodinámica solar; Robert Langlands, premio Abel 2018. En la foto, de izquierda a derecha y de arriba abajo: Francis Villatoro, Héctor Socas, Nacho Trujillo. Todos los comentarios vertidos durante la tertulia representan únicamente la opinión de quien los hace… y a veces ni eso. CB:SyR es una colaboración entre el Área de Investigación y la Unidad de Comunicación y Cultura Científica (UC3) del Instituto de Astrofísica de Canarias.

Coffee Break: Señal y Ruido
Ep155: Galaxia Reliquia; Ondas Magnéticas en el Sol; Langlands, Premio Abel 2018; Agujeros Negros en Latín

Coffee Break: Señal y Ruido

Play Episode Listen Later Mar 22, 2018 133:42


La tertulia semanal en la que repasamos las últimas noticias de la actualidad científica. En el episodio de hoy: Curso exprés de latín; NGC 1277, la Jordi Hurtado de las galaxias; Ondas de Alfvén y magnetohidrodinámica solar; Robert Langlands, premio Abel 2018. En la foto, de izquierda a derecha y de arriba abajo: Francis Villatoro, Héctor Socas, Nacho Trujillo. Todos los comentarios vertidos durante la tertulia representan únicamente la opinión de quien los hace… y a veces ni eso. CB:SyR es una colaboración entre el Área de Investigación y la Unidad de Comunicación y Cultura Científica (UC3) del Instituto de Astrofísica de Canarias.

CCT  Summer Edition
Remembering Graeme Langlands

CCT Summer Edition

Play Episode Listen Later Jan 20, 2018 7:17


"He was built like a pretzel, he could run like a hare, no one ever got past him"  

The Andy Social Podcast
85 - Dave Langlands (The Eternal, Foresters Pub And Terminus Hotel)

The Andy Social Podcast

Play Episode Listen Later Jun 29, 2017 46:16


Most people know Dave Langlands as the bass player for Melbourne metal band The Eternal. What many might not know, however, is that Dave manages both the Terminus Hotel and Foresters Pub & Dining in the city's inner suburbs and is also a craft beer connoisseur, being the Managing Director for Australian Beer Exports and Export Sales Manager for Read More The post Episode 85 - Dave Langlands (The Eternal, Foresters Pub and Terminus Hotel) appeared first on The Andy Social Podcast.

BBC Good Food Show Summer /  BBC Gardeners’ World Live - Birmingham NEC 13 - 16 June 2019
Jamie Langlands APL Garden No. 3 BBC Gardeners World Live 2017

BBC Good Food Show Summer / BBC Gardeners’ World Live - Birmingham NEC 13 - 16 June 2019

Play Episode Listen Later Jun 16, 2017 7:09


Jamie Langlands of Pro-Gardens talks on day 2 of BBC Gardeners World 2017 about thier Clic Sargent sponsored Show Garden on APL Avenue

good food haymarket world live langlands gardeners world cre8media show gardens clic sargent bbc good food show good food show interviews
RNZ: The Weekend
The Great Outdoors - Peter Langlands

RNZ: The Weekend

Play Episode Listen Later Jan 13, 2017 21:18


Conservationist, forager, angler and former fisheries observer Peter Langlands talks about the many threats to our lakes and waterways. Lynn Freeman asked the Cantabrian how the earthquakes affected Christchurch birds, as there was talk that they left the city.

Modellansatz
L-Funktionen

Modellansatz

Play Episode Listen Later Jun 11, 2015 59:51


Eine alte Fragestellung lautet, was die Summe der Kehrwerte aller natürlicher Zahlen ist. Mit anderen Worten: existiert der Grenzwert der Harmonischen Reihe ? Die Antwort, die man im ersten Semester kennenlernen ist: Diese Reihe ist divergiert, der Wert ist nicht endlich. Über die spannenden Entwicklungen in der Zahlentheorie, die sich daraus ergaben, berichtet Fabian Januszewski im Gespräch mit Gudrun Thäter. Eine verwandte Fragestellung zur harmonischen Reihe lautet: Wie steht es um den Wert von ? Diese Frage wurde im 17. Jahrhundert aufgeworfen und man wußte, daß der Wert dieser Reihe endlich ist. Allerdings kannte man den exakten Wert nicht. Diese Frage war als das sogannte Basel-Problem bekannt. Eine ähnliche Reihe ist Ihr Wert läßt sich elementar bestimmen. Dies war lange bekannt, und das Basel-Problem war ungleich schwieriger: Es blieb fast einhundert Jahre lang ungelöst. Erst Leonhard Euler löste es 1741: Die Riemann'sche -Funktion Die Geschichte der L-Reihen beginnt bereits bei Leonhard Euler, welcher im 18. Jahrhundert im Kontext des Basel-Problems die Riemann'sche -Funktion' entdeckte und zeigte, dass sie der Produktformel genügt, wobei die Menge der Primzahlen durchläuft und eine reelle Variable ist. Diese Tatsache ist äquivalent zum Fundamentalsatz der Arithmetik: jede natürliche Zahl besitzt eine eindeutige Primfaktorzerlegung. Eulers Lösung des Basel-Problems besagt, daß und diese Formel läßt sich auf alle geraden positiven Argumente verallgemeinern: , wobei die -te Bernoulli-Zahl bezeichnet. Im 19. Jahrhundert zeigte Bernhard Riemann, dass die a priori nur für konvergente Reihe eine holomorphe Fortsetzung auf besitzt, einer Funktionalgleichung der Form genügt und einen einfachen Pol mit Residuum bei aufweist. Letztere Aussage spiegelt die Tatsache wieder, dass in jedes Ideal ein Hauptideal ist und die einzigen multiplikativ invertierbaren Elemente sind. Weiterhin weiß viel über die Verteilung von Primzahlen. Setzen wir dann zeigte Riemann, daß die so definierte vervollständigte Riemann'sche -Funktion auf ganz holomorph ist und der Funktionalgleichung genügt. Da die -Funktion Pole bei nicht-positiven ganzzahligen Argumenten besitzt, ergibt sich hieraus die Existenz und Lage der sogenannten "trivialen Nullstellen" von : für . Konzeptionell sollte man sich den Faktor als Eulerfaktor bei vorstellen. John Tate zeigte in seiner berühmten Dissertation, daß dies tatsächlich sinnvoll ist: Die endlichen Eulerfaktoren werden von Tate als Integrale über interpretiert, und der "unendliche" Eulerfaktor ist ebenfalls durch ein entsprechendes Integral über gegeben. Er legte damit den Grundstein für weitreichende Verallgemeinerungen. Die Riemann'sche -Funktion ist der Prototyp einer -Funktion, einem Begriff, der langsam Schritt für Schritt verallgemeinert wurde, zunächst von Richard Dedekind, Lejeune Dirichlet und Erich Hecke und weiter von Emil Artin, Helmut Hasse, André Weil, Alexander Grothendieck, Pierre Deligne, Jean-Pierre Serre und Robert Langlands et al. -Funktionen spielen in der modernen Zahlentheorie eine zentrale Rolle, und bis heute ranken sich fundamentale Vermutungen um diesen Begriff. Selbst die Mysterien der Riemann'schen -Funktion sind auch heute bei weitem nicht vollständig ergründet. Die berühmteste Vermutung in diesem Kontext ist die Riemann'sche Vermutung. Riemann zeigte 1859 nicht nur, daß die Riemann'sche -Funktion eine holomorphe Fortsetzung auf besitzt, sondern stellte auch einen engen Zusammenhang zwischen der Verteilung der Primzahlen und den Nullstellen von her. Eulers Produktenwicklung von für zeigt, dass stets für . Aus der Funktionalgleichung von ergibt sich, dass für natürliche Zahlen . Die sind die sogenannten trivialen Nullstellen der -Funktion. Riemann vermutete, dass sämtliche nicht-trivialen Nullstellen auf der Geraden liegen. Euler bestimmte im wesentlichen die Werte für positives . Bis heute wissen wir sehr wenig über die Werte an positiven ungeraden Argumenten. Ein Satz von Apéry besagt, daß irrational ist. Wir haben allerdings keine einfache Formel für diesen Funktionswert. Konzeptionell unterscheiden sich die ungeraden von den geraden positiven Argumenten darin, daß der in auftretende Faktor der -Funktion für ungerades positives dort einen Pol besitzt, was ebenfalls das Verschwinden von zur Folge hat. Über die Werte an negativen ungeraden Argumenten wissen wir aus der Funktionalgleichung, daß . Insbesondere gilt . Dieser Wert kann in gewissen Kontexten als Grenzwert (der divergierenden!) Reihe interpretiert werden (formal ergeben diese Identitäten natürlich keinen Sinn). In gewissen Situationen ist der Funktionswert ein sinnvoller endlicher Ersatz für den nicht existierenden Grenzwert der Reihe . Derartige Phänomene treten in Zahlentheorie an vielen Stellen auf. Literatur und Zusatzinformationen Haruzo Hida, Elementary theory of -functions and Eisenstein series, Cambridge University Press, 1993. Jean-Pierre Serre, "Cours d'arithmétique", Presses Universitaires de France, 1970. Goro Shimura, "Introduction to the arithmetic theory of automorphic functions." Princeton University Press, 1971. Jürgen Neukirch, Algebraische Zahlentheorie, Springer Verlag, 1992. André Weil, Basic Number Theory, Springer Verlag, 1973. Podcast Modellansatz 036: Analysis und die Abschnittskontrolle Bernhard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1859 John T. Tate, "Fourier analysis in number fields, and Hecke's zeta-functions", Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, 1950, S. 305–347. Andrew Wiles, "Modular Elliptic Curves and Fermat’s Last Theorem." Annals of Mathematics 142, 1995, S. 443–551. Richard Taylor, Andrew Wiles, "Ring-theoretic properties of certain Hecke algebras." Annals of Mathematics 142, 1995, S. 553–572. Brian Conrad, Fred Diamond, Richard Taylor, "Modularity of certain potentially Barsotti-Tate Galois representations", Journal of the American Mathematical Society 12, 1999, S. 521–567. Christophe Breuil, Brian Conrad, Fred Diamond, Richard Taylor, "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society 14, 2001, S. 843–939. Frobeniushomomorphismus Galois-Darstellungen Weil-Vermutungen Standard-Vermutungen Automorphe Formen Das Langlands-Programm Wikipedia: Automorphe L-Funktionen Emil Artin, Über eine neue Art von -Reihen, Abh. Math. Seminar Hamburg, 1923. Armand Borel, "Automorphic L-functions", in A. Borel, W. Casselman, "Automorphic forms, representations and L-functions" (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Oregon, 1977), Teil 2, Proc. Sympos. Pure Math., XXXIII, American Mathematical Society, 1979, S. 27–61. Robert P. Langlands, "Problems in the theory of automorphic forms", in "Lectures in modern analysis and applications III," Lecture Notes in Math 170, 1970, S. 18–61. Robert P. Langlands, '"'Euler products", Yale University Press, 1971. Wikipedia: Spezielle Werte von L-Funktionen Pierre Deligne; "Valeurs de fonctions L et périodes d’intégrales." , in A. Borel, W. Casselman, "Automorphic forms, representations and L-functions" (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Oregon, 1977)'', Teil 2, Proc. Sympos. Pure Math., XXXIII, American Mathematical Society, 1979, S. 313–346.

Groks Science Radio Show and Podcast
Love and Math -- Groks Science Show 2013-10-23

Groks Science Radio Show and Podcast

Play Episode Listen Later Oct 23, 2013 28:30


The subject of mathematics often seems dry and removed from reality. On this episode, Prof. Edward Frenkel discussed the hidden reality of math and the Langlands program.

Moduli Spaces
A set up for the cathegorical Langlands Correspondence

Moduli Spaces

Play Episode Listen Later Mar 18, 2011 64:24


Pantev, T (Pennsylvania) Thursday 10 March 2011, 15:30-16:30

GRASP Lecture Series: Geometry, Representations, and some Physics

The Fundamental Lemma, abstract: I will give a gentle overview of the ideas surrounding the Fundamental Lemma and its solution by Ngo Bao-Chau (recently ranked number 7 in Time Magazine's Top 10 Scientific Discoveries of 2009). The Fundamental Lemma is a key ingredient in the Arthur-Selberg Trace Formula and the entire Langlands program, with deep implications for number theory. Its conjectural status (to quote Langlands) "rendered progress almost impossible for nearly twenty years". Ngo's solution is a stunning application of the analogy between Riemann surfaces and number fields: it revolves around Hitchin's integrable system, a construction in the geometry of bundles on surfaces motivated by physics.