Pour tout comprendre, jour après jour, sur le fonctionnement du cerveau. Textes de Christophe Rodo, neuroscientifique.

À l'approche de Noël, le podcast fait une courte pause pendant les fêtes, l'occasion pour moi de vous remercier chaleureusement pour votre fidélité et votre présence précieuse, de vous souhaiter de très belles fêtes pleines de chaleur et de moments simples, et de vous donner rendez-vous dès le 5 janvier pour de nouveaux épisodes. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Le protoxyde d'azote, plus connu sous le nom de « gaz hilarant », est souvent perçu comme une substance légère, presque anodine. Utilisé à l'origine en médecine pour ses propriétés analgésiques et anxiolytiques, il s'est diffusé ces dernières années dans les usages récréatifs. Mais ses effets sur le cerveau sont loin d'être bénins. Derrière les rires et la sensation d'euphorie se cache une action neurologique puissante, complexe… et potentiellement dangereuse.Dès l'inhalation, le protoxyde d'azote agit comme un antagoniste des récepteurs NMDA, des récepteurs essentiels à la communication entre neurones. En les bloquant, il provoque une déconnexion temporaire dans certaines zones cérébrales, d'où la sensation de flottement, d'irréalité, de dissociation. Cette altération du traitement sensoriel explique également les perceptions modifiées : sons étouffés, vision déformée, impressions d'éloignement du corps.Le gaz stimule également le système dopaminergique, ce qui renforce la sensation d'euphorie. La dopamine, neurotransmetteur de la récompense, crée un pic bref mais intense, donnant à l'utilisateur la sensation que tout devient soudain amusant, léger, dédramatisé. Ce mécanisme explique la recherche de répétition : plus on consomme, plus on souhaite reproduire ce “flash” plaisant.Mais derrière ces effets immédiats se cachent des risques importants. Le protoxyde d'azote perturbe l'absorption de la vitamine B12, un élément indispensable à la fabrication de la myéline, cette gaine protectrice qui permet aux neurones de transmettre les signaux électriques. Une carence prolongée peut entraîner des atteintes de la moelle épinière, des fourmillements, des pertes d'équilibre, voire des paralysies partielles. Et ces dommages peuvent parfois être irréversibles.Le gaz réduit également la quantité d'oxygène disponible pour le cerveau. Une inhalation répétée ou mal contrôlée peut conduire à une hypoxie, c'est-à-dire un manque d'oxygène dans les tissus cérébraux. À court terme, cela provoque des pertes de connaissance ; à long terme, cela peut léser les zones impliquées dans la mémoire, l'attention ou la coordination.Enfin, l'usage fréquent modifie la connectivité neuronale, à la manière d'autres substances dissociatives. Certains utilisateurs témoignent d'un sentiment de brouillard mental, d'une fatigue cognitive durable, voire de troubles anxieux ou dépressifs après consommation répétée.En résumé, si le protoxyde d'azote procure une euphorie rapide, il agit profondément sur le cerveau : il altère la communication neuronale, perturbe la myéline, prive temporairement l'organisme d'oxygène et peut laisser des séquelles durables. Un plaisir fugace, mais un risque réel. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pourquoi certaines chansons nous bouleversent-elles instantanément ? Pourquoi quelques notes suffisent-elles à nous replonger dans un moment précis de notre vie — parfois avec une intensité presque physique ? Une étude fascinante de l'Université de Jyväskylä, en Finlande, vient d'apporter une réponse scientifique à cette question. Et elle bouscule une idée reçue : nos morceaux préférés ne sont pas ceux que nous écoutons aujourd'hui, mais ceux que nous avons découverts… autour de 17 ans.Les chercheurs ont mis en évidence un phénomène appelé la “bosse de réminiscence” : une période de la vie, à la fin de l'adolescence, où les souvenirs se fixent avec une puissance bien supérieure à d'autres moments de l'existence. Et la musique, omniprésente à cet âge, en est l'un des marqueurs les plus forts.Pourquoi 17 ans ? Parce qu'à cet âge, le cerveau est en pleine effervescence. Le système limbique, siège des émotions, fonctionne à plein régime, alors que le cortex préfrontal, responsable du recul et du contrôle, n'est pas encore totalement mature. Autrement dit, nous ressentons tout… plus fort. La musique devient alors un amplificateur d'émotions : elle accompagne les premières amitiés intenses, les premiers amours, les premières transgressions, parfois les premières grandes douleurs. Ces émotions marquantes s'impriment dans le cerveau comme des sillons profonds.L'étude finlandaise montre que le cerveau adulte réagit plus fortement — mesurablement plus fortement — aux chansons associées à cette période qu'à n'importe quelle autre musique. Lorsque nous réécoutons ces morceaux, les zones liées à la mémoire autobiographique, à la récompense et à l'émotion s'illuminent simultanément. C'est pour cela qu'une chanson de nos 17 ans peut provoquer une vague de nostalgie, une larme, un sourire immédiat ou même une accélération du rythme cardiaque.Ce phénomène n'est pas uniquement émotionnel : il est neurologique. Nos réseaux neuronaux se stabilisent à la fin de l'adolescence. La musique entendue à ce moment agit comme une signature durable, capable d'activer des circuits restés presque inchangés pendant des décennies.En clair, nos souvenirs musicaux les plus puissants ne viennent pas de la playlist que nous écoutons aujourd'hui, mais de celle de nos 17 ans. Une période où la musique devient un véritable marqueur identitaire, un ancrage émotionnel, parfois même une boussole intime.Et c'est peut-être pour cela que, quel que soit notre âge, il suffit de quelques secondes d'un vieux morceau pour redevenir, l'espace d'un instant… la personne que nous étions alors. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

C'est une question vertigineuse, presque taboue dans nos sociétés où la surcharge de travail est souvent perçue comme une preuve de détermination. Pourtant, la science raconte une tout autre histoire. Une équipe de chercheurs coréens des universités Chung-Ang et Yonsei a mené l'une des études les plus éclairantes sur ce sujet. Publiée dans la revue Occupational and Environmental Medicine, elle révèle ce qui se passe réellement dans le cerveau de celles et ceux qui dépassent régulièrement 52 heures de travail par semaine. Les résultats sont aussi fascinants qu'inquiétants.Les chercheurs ont utilisé l'imagerie cérébrale pour observer des salariés soumis à des semaines longues et répétées. Et ce qu'ils ont découvert est sans appel : le surmenage ne fatigue pas seulement le corps, il remodèle physiquement le cerveau. Chez les travailleurs les plus exposés, plusieurs zones clés montrent un amincissement du cortex, notamment dans les régions associées à la mémoire, à la régulation émotionnelle et à la prise de décision. Concrètement, cela signifie que la « matière » même qui nous permet de réfléchir, d'apprendre, de gérer le stress ou d'inhiber les impulsions s'érode progressivement.L'étude met également en lumière une perturbation du réseau limbique, la zone qui orchestre nos émotions. Les personnes dépassant les 52 heures hebdomadaires présentent une activité accrue de l'amygdale, signe d'un état de vigilance permanent, presque d'alerte. Ce “mode survie” chronique pourrait expliquer l'augmentation du risque de dépression, d'anxiété et d'irritabilité constatée dans cette population.Autre effet surprenant : le rétrécissement du corps calleux, le faisceau de fibres qui relie les deux hémisphères. Lorsqu'il s'affine, la communication interne du cerveau devient moins fluide. Résultat : baisse de créativité, difficultés à résoudre les problèmes complexes et sensation de “brouillard mental”.Selon les chercheurs, ces altérations ne sont pas de simples épisodes passagers. Travailler plus de 52 heures par semaine, et ce sur de longues périodes, pourrait entraîner des modifications durables du cerveau. L'organisme s'adapte, certes, mais au prix d'une réduction de ses capacités cognitives et émotionnelles.Le message est clair : l'excès de travail n'est pas un signe de force, mais une agression neurologique silencieuse. Et si l'on peut récupérer une partie de ces fonctions, cela nécessite du repos réel, prolongé, et parfois un rééquilibrage profond du mode de vie.En somme, le surmenage n'est pas une simple fatigue. C'est une transformation du cerveau lui-même – invisiblement, mais puissamment. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Une vaste étude menée par l'équipe de l'Université de Cambridge a analysé les cerveaux de 3 802 individus âgés de 0 à 90 ans grâce à de l'IRM de diffusion, afin de cartographier comment les connexions neurales évoluent tout au long de la vie. Les chercheurs ont identifié quatre points de bascule – vers 9, 32, 66 et 83 ans – qui marquent des transitions entre cinq grandes phases d'organisation cérébrale. Chaque point correspond à un changement marqué dans la façon dont les régions du cerveau sont connectées et dans l'efficacité globale du réseau neuronal.9 ans correspond à la fin de l'enfance et au début de l'adolescence cérébrale. Depuis la naissance, le cerveau a produit un excès de connexions, puis a procédé à une élimination massive, appelée « poda synaptique ». En parallèle, la matière grise et la matière blanche continuent de croître, ce qui améliore l'épaisseur corticale et stabilise les plis du cortex. Cette période optimise les fonctions fondamentales : langage, mémoire, coordination, apprentissages de base. Le passage vers 9 ans reflète un basculement global : le cerveau quitte la phase d'enfance et entre dans une adolescence prolongée sur le plan neuronal.32 ans marque l'entrée dans la pleine maturité adulte. Entre 9 et 32 ans, les connexions se renforcent, la matière blanche se densifie et les échanges entre régions distantes deviennent plus rapides et plus efficaces. Le cerveau affine son organisation interne, ce qui correspond au pic des performances cognitives : raisonnement abstrait, mémoire de travail, rapidité intellectuelle, flexibilité mentale. Autour de 32 ans se produit le changement le plus marqué de toute la vie : le réseau neuronal se stabilise et atteint un plateau structurel, caractéristique du cerveau adulte pleinement mature.66 ans correspond au début du vieillissement cérébral. Après plusieurs décennies de relative stabilité, la connectivité globale commence à diminuer. La matière blanche, essentielle aux communications longue distance dans le cerveau, montre des signes de dégradation. La conséquence est un ralentissement progressif de la vitesse de traitement, une diminution de la flexibilité cognitive et parfois une réduction de la mémoire de travail. Néanmoins, certaines capacités – comme les savoirs accumulés ou l'intelligence cristallisée – restent relativement préservées.83 ans marque l'entrée dans la phase de vieillesse avancée. À cet âge, le cerveau connaît une nouvelle reconfiguration : les réseaux deviennent plus fragmentés et s'appuient davantage sur des connexions locales. La communication globale perd en efficacité, ce qui augmente la vulnérabilité aux fragilités cognitives et aux maladies neurodégénératives. Certaines zones plus robustes peuvent compenser partiellement, mais l'organisation générale du réseau est moins stable et moins intégrée.En résumé, cette étude montre que le cerveau ne vieillit pas de façon linéaire. Il traverse cinq grandes phases, avec des changements profonds à 9, 32, 66 et 83 ans. Ces âges clés correspondent à des réorganisations profondes : apprentissage fondamental, maturité cognitive, entrée dans le vieillissement et vieillesse avancée. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Le café est l'un des stimulants les plus consommés au monde. Pour beaucoup, c'est un rituel, un carburant, un coup de fouet mental. Mais une vaste étude menée par l'Université d'Australie-Méridionale (UniSA) apporte un éclairage surprenant : au-delà de six tasses par jour, le café pourrait avoir des effets inattendus… directement sur notre cerveau.L'étude, l'une des plus importantes jamais réalisées sur le sujet, a analysé les habitudes de consommation de plus de 300 000 personnes, tout en croisant les données de santé et des mesures d'imagerie cérébrale. Et le résultat est sans appel : une consommation excessive de café est associée à une réduction du volume cérébral total. Autrement dit, le cerveau tend littéralement à se « rapetisser ». Une diminution faible, certes, mais significative sur le plan statistique.Comment expliquer un tel phénomène ? Les chercheurs montrent que la caféine, consommée en grande quantité, peut perturber l'équilibre hydrique et les mécanismes d'oxygénation du cerveau. La caféine est un stimulant qui bloque l'adénosine, une molécule impliquée dans la détente cérébrale. En quantité modérée, ce blocage est bénéfique : il réveille, augmente la vigilance et améliore la concentration. Mais au-delà d'un certain seuil, ce même mécanisme devient agressif. Le cerveau reste trop longtemps en « mode alerte ». Résultat : un niveau de stress systémique plus élevé, qui peut affecter la microcirculation cérébrale et, à long terme, contribuer à une perte de volume neuronal.L'étude de l'UniSA a également mis en lumière un autre point crucial : les gros consommateurs de café ont un risque accru — jusqu'à 53 % — de développer des formes de démence plus tard dans la vie. L'association ne prouve pas que le café en est la cause directe, mais elle montre une corrélation suffisamment forte pour inciter à la prudence. Ce lien semble notamment lié aux perturbations chroniques du sommeil et au stress oxydatif provoqués par un excès de caféine.Faut-il alors renoncer au café ? Pas du tout. Les chercheurs insistent sur un message clé : la modération est votre meilleure alliée. Entre une et trois tasses par jour, le café est associé à une meilleure concentration, un risque cardiovasculaire plus faible, et même une longévité accrue. Mais dépasser six tasses, c'est pousser le cerveau au-delà de ses limites physiologiques.En résumé : ce n'est pas la boisson qui est dangereuse, c'est l'excès. Le cerveau est un organe subtil, qui aime les stimulants… tant qu'ils respectent ses frontières. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pendant longtemps, on a considéré la procrastination comme un simple défaut de caractère. Un manque de volonté. Une forme de paresse assumée. Mais une étude révolutionnaire menée par l'Université de Chicago bouscule totalement cette idée. Grâce à l'imagerie cérébrale, les chercheurs ont observé en temps réel ce qui se passe dans le cerveau au moment précis où nous décidons… de ne pas décider. Et vous allez voir : ce n'est pas la paresse qui pilote ce mécanisme, mais bien nos circuits émotionnels les plus archaïques.Le résultat clé de l'étude est frappant : lorsque nous anticipons une tâche perçue comme désagréable — un rapport à rédiger, un dossier compliqué, ou même une conversation que l'on redoute — c'est l'amygdale, le « radar à menaces » du cerveau, qui s'active brutalement. Cette petite structure en forme d'amande, profondément enfouie dans le système limbique, s'enflamme exactement comme si la tâche était un danger réel. Pour le cerveau, ce n'est pas un simple effort futur : c'est une menace émotionnelle.Cette activation déclenche alors une chaîne de réactions. L'amygdale envoie un signal d'alerte qui vient dominer le cortex préfrontal, cette région associée à la planification, au raisonnement et au contrôle de soi. L'effet est immédiat : notre capacité à agir rationnellement diminue. Résultat : nous évitons la tâche… non pas parce que nous sommes paresseux, mais parce que notre cerveau tente de réduire un inconfort émotionnel.La procrastination devient alors une stratégie de régulation : remettre à plus tard, c'est apaiser, au moins temporairement, l'activation de l'amygdale. Le soulagement que l'on ressent en détournant son attention, en regardant son téléphone ou en rangeant son bureau, est parfaitement réel : c'est la récompense immédiate fournie par cette fuite émotionnelle.Mais l'étude montre aussi l'autre face du mécanisme. Plus tard, lorsque la tâche revient nous hanter, c'est cette fois le cortex préfrontal qui s'active — souvent accompagné d'une hausse d'anxiété. Nous entrons alors dans le cycle bien connu : éviter, culpabiliser, recommencer.Au final, cette recherche de Chicago change profondément notre regard : la procrastination n'est pas un problème de paresse, mais un problème de gestion de la menace émotionnelle. Ce que nous repoussons, ce n'est pas la tâche elle-même, mais l'émotion qu'elle déclenche.Comprendre cela ouvre une voie nouvelle : traiter la procrastination, ce n'est pas « se motiver », c'est apprendre à apprivoiser notre amygdale. Autrement dit, faire la paix avec les émotions que nous fuyons. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pourquoi une minute sur un rameur paraît soudain plus longue qu'une minute sur un canapé ? Selon une étude récente publiée dans la revue Brain and Behavior, cette impression n'est pas qu'un ressenti : notre cerveau perçoit réellement le temps différemment pendant l'effort physique.Les chercheurs ont recruté un groupe de participants et les ont soumis à des exercices d'intensité variable, tout en leur demandant d'estimer la durée de séquences très courtes. Résultat : plus l'effort augmentait, plus les participants surestimaient le temps. En clair, le cerveau étire littéralement la perception du temps pendant l'exercice.Pourquoi cela arrive-t-il ? L'étude met en avant plusieurs mécanismes. D'abord, lorsque l'intensité physique augmente, le cœur s'accélère, la respiration se fait plus rapide et le système nerveux sympathique – celui de l'alerte – s'active. Cette montée physiologique envoie au cerveau un signal clair : « ce qui se passe nécessite ton attention ». Or, l'attention est un facteur majeur de la perception temporelle. Plus nous sommes attentifs à nos sensations corporelles – souffle, chaleur, douleur musculaire –, plus le temps nous paraît long. Le cerveau découpe alors les informations en segments plus nombreux, ce qui donne l'impression que le temps s'étire.Deuxième élément : la fatigue cognitive. L'effort physique soutenu active des régions du cerveau comme le cortex insulaire et le cortex cingulaire antérieur, impliqués dans la gestion de l'effort, de la douleur et du contrôle. Or, lorsque ces régions sont sursollicitées, elles laissent moins de ressources disponibles pour évaluer précisément le passage du temps. Résultat : le cerveau adopte un mode de comptage approximatif qui tend à rallonger les durées perçues.Troisième mécanisme : l'anticipation. Pendant une série de squats ou une séance de tapis de course, le cerveau se projette inconsciemment vers la fin de l'effort. Il survele la progression, attend la prochaine pause, guette la dernière répétition. Cette attente crée une tension cognitive qui peut altérer le flux temporel et donner l'impression que chaque seconde est plus longue que la précédente.Enfin, le contexte compte. À la salle de sport, nous faisons souvent une activité volontaire mais inconfortable. Or, des travaux antérieurs ont montré que l'ennui, la contrainte ou la douleur ralentissent la perception du temps, contrairement au plaisir ou à la distraction, qui l'accélèrent.En résumé, si le temps semble ralentir pendant l'effort, ce n'est pas une illusion psychologique mais une modification réelle du traitement du temps par le cerveau. Le système nerveux surveille davantage le corps, surestime les durées, anticipe la fin et mobilise des circuits cognitifs qui, sous tension, altèrent le jugement temporel. C'est cette combinaison qui transforme une minute de sport en une petite éternité. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Une nouvelle étude du JAMA s'est penchée sur une question de plus en plus pressante : que se passe-t-il dans le cerveau des enfants de 9 à 13 ans lorsque leur usage des réseaux sociaux augmente fortement entre l'enfance et le début de l'adolescence ? Pour y répondre, les chercheurs ont suivi 6 500 enfants américains pendant deux ans et ont mesuré l'évolution de leurs performances cognitives : lecture à voix haute, vocabulaire, mémoire. Le résultat est clair : l'augmentation du temps passé sur les réseaux sociaux est associée à une baisse mesurable de ces compétences.Premier enseignement : la lecture et le vocabulaire sont les premiers domaines touchés. Les enfants dont l'usage des réseaux sociaux a augmenté modérément ou fortement sur deux ans obtiennent des scores plus faibles aux tests de lecture orale et de vocabulaire, comparés à ceux qui en font un usage faible ou stable. La différence n'est pas spectaculaire, mais réelle : moins de fluidité, des difficultés à lire rapidement ou à mobiliser certains mots. Ce sont des écarts subtils qui peuvent, au fil du temps, se traduire par un apprentissage plus lent ou un léger décrochage en classe.Deuxième conséquence cognitive : la mémoire. L'étude montre une baisse des performances aux tests de mémoire chez les utilisateurs dont le temps d'écran social augmente régulièrement. Les chercheurs suggèrent plusieurs explications possibles : le multitâche permanent, la succession rapide de stimuli, ou encore la fragmentation de l'attention due aux notifications constantes. Ces mécanismes peuvent réduire la capacité à encoder et à retenir l'information.Troisième point : ce n'est pas seulement le niveau d'usage qui compte, mais la trajectoire. Les enfants qui restent « faibles utilisateurs » conservent de meilleurs scores cognitifs, tandis que ceux dont l'usage augmente d'année en année voient leurs performances décliner. En d'autres termes, un enfant qui commence à scroller chaque jour à 10 ans n'a pas le même profil cognitif deux ans plus tard qu'un enfant qui utilise les réseaux uniquement de manière ponctuelle.L'étude souligne toutefois des nuances importantes. Les effets observés sont modestes : tous les scores restent dans la moyenne normale. Rien n'indique que les réseaux sociaux « abîment » le cerveau, mais ils semblent exercer une influence cumulative sur certaines compétences scolaires. Les données ne permettent pas non plus d'affirmer un lien de causalité directe : d'autres facteurs entrent en jeu, comme la qualité du sommeil, l'environnement familial, le temps passé à lire ou les conditions scolaires.En résumé, l'étude du JAMA révèle que l'usage croissant des réseaux sociaux entre 9 et 13 ans est associé à des baisses subtiles mais constantes en lecture, vocabulaire et mémoire. De quoi rappeler qu'un usage encadré, équilibré et sans dérive progressive reste essentiel à cet âge clé du développement cognitif. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Imaginez ceci : votre cerveau et votre intestin discutent en coulisses, comme deux partenaires secrets. Lorsque vous imposez une période de jeûne intermittent à votre corps, cette conversation change. C'est exactement ce qu'a révélé une étude publiée en décembre 2023 dans Frontiers in Cellular and Infection Microbiology, menée sur 25 personnes obèses suivant un programme de restriction énergétique intermittente durant deux mois.Premier effet insoupçonné : le cerveau se réorganise. Les chercheurs ont utilisé l'IRM fonctionnelle pour observer l'activité de certaines régions. Résultat : les zones impliquées dans le contrôle des envies, la gestion des émotions et la perception de la nourriture voient leur activité diminuer. Le gyrus frontal orbital inférieur (lié au contrôle), le putamen (lié à l'apprentissage et à l'émotion) et le cortex cingulaire antérieur s'apaisent progressivement. Cela signifie que le jeûne intermittent ne modifie pas seulement le comportement alimentaire : il transforme la façon dont le cerveau réagit à la nourriture et au contrôle de soi.Deuxième effet étonnant : l'intestin change lui aussi. Le microbiote intestinal évolue vers un profil plus favorable. Les chercheurs ont observé une diminution d'Escherichia coli, souvent associée à un état inflammatoire, et une augmentation de bactéries bénéfiques comme Faecalibacterium prausnitzii, Parabacteroides distasonis et Bacteroides uniformis. Le jeûne intermittent semble donc remodeler la flore intestinale, améliorant potentiellement l'environnement métabolique de l'organisme.Troisième effet, et non des moindres : ces deux phénomènes sont liés. L'étude montre que les variations de certaines bactéries intestinales évoluent en parallèle des modifications d'activité de certaines régions du cerveau. C'est l'illustration directe de l'axe intestin-cerveau : un réseau de communication complexe où l'intestin influence le cerveau (via le nerf vague ou des métabolites), tandis que le cerveau, en retour, influence l'écosystème intestinal.Ce qui rend cette étude particulièrement originale, c'est son approche dynamique : les chercheurs n'ont pas observé seulement un « avant/après », mais la manière dont les changements apparaissent au fil du temps. Certaines bactéries bénéfiques augmentent fortement au milieu du protocole, puis reviennent presque à leur niveau initial à la fin, montrant que ces effets sont adaptatifs, peut-être transitoires.En résumé : le jeûne intermittent n'agit pas uniquement sur le poids. Il modifie l'activité cérébrale dans des circuits essentiels, transforme le microbiote intestinal et révèle un dialogue étroit entre l'intestin et le cerveau. Ces résultats, encore préliminaires, suggèrent que jeûner revient à réécrire, même temporairement, la manière dont votre cerveau et votre intestin se parlent. Une perspective fascinante pour comprendre le lien entre alimentation, cognition et santé. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

La réponse, de plus en plus évidente pour les neuroscientifiques, tient en grande partie à la dopamine libérée lorsque vous consultez votre téléphone.Chaque notification, chaque défilement de fil d'actualité, chaque ouverture d'application déclenche un petit pic de dopamine dans le système de récompense du cerveau. Ce circuit, centré sur le striatum et le cortex préfrontal, réagit fortement à la nouveauté, à l'anticipation et à la surprise – trois éléments que les smartphones offrent en continu. Le problème, c'est que ces micro-stimulants répétés finissent par modifier la sensibilité de ce circuit.À force d'être sollicité des dizaines, parfois des centaines de fois par jour, le cerveau s'adapte. Il augmente son seuil d'activation : il faut plus de stimulation pour obtenir le même degré de satisfaction. Résultat : les plaisirs simples – écouter de la musique calmement, savourer un café, marcher, lire – déclenchent moins de dopamine, donc moins de plaisir. Le contraste avec l'intensité rapide et imprévisible du téléphone rend les activités du quotidien « plates » en comparaison.Une étude publiée en 2022 par Upshaw et al., intitulée The hidden cost of a smartphone: The effects of smartphone notifications on cognitive control from a behavioral and electrophysiological perspective, apporte un éclairage important. Les chercheurs montrent que les notifications de smartphone captent instantanément les ressources attentionnelles et altèrent le contrôle cognitif, modifiant le fonctionnement du cerveau même lorsqu'on ignore volontairement la notification. Si l'étude ne mesure pas directement la dopamine, elle met en évidence un mécanisme compatible avec la saturation du système de récompense : une exposition continue aux signaux numériques perturbe les circuits impliqués dans l'attention, la motivation et, indirectement, la perception du plaisir.Ce phénomène s'apparente à une forme de « tolérance ». Comme pour toute stimulation répétée du circuit dopaminergique, le cerveau devient moins réceptif aux récompenses modestes et réclame des stimuli plus intenses ou plus fréquents pour atteindre le même niveau de satisfaction. Le téléphone, avec ses micro-récompenses permanentes, devient alors l'option la plus simple pour obtenir un petit shoot dopaminergique. Et à l'inverse, les petites joies du quotidien deviennent silencieuses.La bonne nouvelle, c'est que ce processus est réversible. En réduisant l'exposition aux notifications, en créant des plages sans écran, et en réintroduisant des activités lentes et régulières, le circuit de récompense peut se réajuster. Mais il faut du temps : un cerveau saturé de petites récompenses demande un sevrage progressif pour réapprendre à goûter l'essentiel. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pour beaucoup d'adultes, le petit déjeuner n'est pas seulement un repas : c'est un rituel culturel, presque un ancrage quotidien. On dit souvent qu'il faut « donner du carburant au cerveau » dès le réveil pour penser clairement, mémoriser, se concentrer. Pourtant, une méta-analyse d'envergure, publiée récemment dans la revue Psychological Bulletin, vient sérieusement nuancer cette conviction.Cette méta-analyse, qui agrège des dizaines d'études menées sur plusieurs décennies, montre que l'impact cognitif du petit-déjeuner n'est ni simple ni universel. Contrairement à l'idée selon laquelle sauter le premier repas de la journée provoquerait systématiquement une baisse d'attention ou de mémoire, les auteurs concluent que les effets varient fortement selon les individus, leur état de santé, et même leur habitude alimentaire.Chez les enfants, les adolescents ou les personnes souffrant d'hypoglycémie ou de troubles métaboliques, prendre un petit-déjeuner peut effectivement améliorer l'attention et la mémoire immédiate. C'est logique : leur cerveau, plus sensible aux variations de glucose, bénéficie directement d'un apport énergétique stable dès le matin.Mais chez l'adulte en bonne santé, l'histoire est très différente. L'étude révèle que la qualité du fonctionnement cérébral dépend beaucoup moins de la présence d'un petit-déjeuner que de la régularité alimentaire globale, du sommeil, du niveau de stress et du métabolisme individuel. Autrement dit : sauter un repas de temps en temps – voire régulièrement, comme dans le jeûne intermittent – n'induit pas de déficit cognitif mesurable chez la majorité des adultes.Pourquoi ? Parce que le cerveau est extraordinairement adaptable. En l'absence d'apport immédiat en glucose, il puise dans ses réserves internes, mobilise d'autres sources d'énergie et maintient très bien ses fonctions essentielles. Certaines études incluses dans la méta-analyse montrent même une légère amélioration de la vigilance après un jeûne léger, possiblement liée à des mécanismes d'alerte et de mobilisation hormonale.En revanche, la méta-analyse souligne un point souvent négligé : ce n'est pas tant « sauter le petit-déjeuner » qui pose problème que la façon dont on compense ensuite. Les personnes qui ne mangent pas le matin mais se tournent ensuite vers des aliments très sucrés ou des prises alimentaires irrégulières montrent, elles, davantage de fluctuations d'humeur et de concentration.En résumé, le petit-déjeuner n'est pas le bouton ON du cerveau qu'on imaginait. Il peut aider certains profils, être inutile pour d'autres, et n'a en tout cas rien d'un passage obligatoire pour maintenir ses capacités cognitives. Ce qui compte réellement, ce n'est pas l'heure du premier repas, mais la stabilité de l'alimentation dans son ensemble. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Une étude récente publiée dans la revue Alzheimer's & Dementia, the journal of the Alzheimer's Association, apporte un éclairage nouveau sur ce phénomène. Les chercheurs y montrent que les régions du cerveau spécialisées dans la reconnaissance des visages – notamment le gyrus fusiforme et certaines zones du lobe temporal – sont parmi les premières affectées par l'accumulation de protéines toxiques caractéristiques de la maladie, comme la bêta-amyloïde et la protéine tau. Ces zones semblent perdre rapidement leur capacité à traiter ce que les neuroscientifiques appellent la reconnaissance “holistique” : la perception d'un visage comme un tout cohérent, et non comme une simple collection d'éléments.Reconnaître un visage est, en réalité, l'un des actes cognitifs les plus complexes que nous réalisons au quotidien. Il ne s'agit pas seulement de “voir” la personne : il faut comparer la forme du visage à un souvenir stocké, activer la mémoire autobiographique, puis accéder à l'identité, au prénom, au lien affectif. C'est un processus qui implique simultanément perception, mémoire épisodique, mémoire sémantique et émotion. Lorsque les réseaux temporaux et hippocampiques commencent à se dégrader – ce qui survient très tôt dans la maladie – cette chaîne se brise.Les objets, eux, reposent sur un tout autre type de traitement. Un bol, une clé ou une chaise n'ont pas besoin d'être reconnus de manière holistique. Le cerveau s'appuie surtout sur leur forme, leur usage et leur contexte. Autrement dit, les objets activent davantage la mémoire sémantique, qui résiste généralement plus longtemps aux atteintes d'Alzheimer que la mémoire autobiographique et les circuits de traitement social.L'étude publiée dans Alzheimer's & Dementia montre également que la “mémoire associative visage-nom”, une fonction clé pour identifier les proches, est l'une des premières à décliner. Les auteurs notent que même lorsque les patients se repèrent encore dans leur environnement ou manipulent correctement les objets du quotidien, la reconnaissance des visages familiers peut déjà être altérée. Le cerveau perd d'abord la capacité d'associer un visage à une histoire, avant même de perdre la mémoire des choses.Enfin, un facteur émotionnel amplifie ce phénomène : oublier un objet passe inaperçu, mais oublier le visage d'un proche est immédiatement visible, bouleversant et insupportable. Ce contraste contribue à l'impression que la perte des visages arrive “en premier”, alors qu'elle reflète surtout la vulnérabilité des réseaux cognitifs qui soutiennent nos liens les plus intimes. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Oui, la musique peut réellement modifier nos souvenirs — pas seulement les raviver, mais aussi les transformer. C'est ce que montre une étude menée par des chercheurs de l'Institut de Technologie de Géorgie (Georgia Institute of Technology), publiée en 2023 dans la revue Nature Communications.Les neuroscientifiques y ont observé comment la musique influence la consolidation et la précision des souvenirs. L'expérience reposait sur un protocole simple : des volontaires devaient mémoriser des images pendant qu'ils écoutaient différentes séquences sonores — certaines musicales, d'autres neutres ou discordantes. Les chercheurs ont ensuite évalué, plusieurs heures plus tard, la fidélité des souvenirs associés à ces images.Résultat : la musique émotionnellement marquante modifiait la trace mnésique. Lorsqu'un morceau suscitait une émotion positive ou nostalgique, le souvenir devenait plus vivace, plus riche en détails. En revanche, une musique triste ou dissonante pouvait brouiller la mémoire d'origine, en y introduisant une coloration émotionnelle différente. Autrement dit, le souvenir se “réécrivait” partiellement, sous l'influence du ressenti musical.L'équipe dirigée par le Dr Caitlin Mullins a utilisé l'imagerie cérébrale (IRM fonctionnelle) pour comprendre le mécanisme. Elle a observé une coopération accrue entre l'amygdale, qui traite les émotions, et l'hippocampe, le centre de la mémoire épisodique. Cette synchronisation neuronale, induite par la musique, favorise à la fois la réactivation et la “mise à jour” du souvenir. Le cerveau, en quelque sorte, reconsolide la mémoire en y intégrant l'émotion du moment présent.Les chercheurs comparent ce phénomène à un processus d'édition : chaque fois que l'on se remémore un événement accompagné de musique, on le réimprime avec une nouvelle encre émotionnelle. Cela explique pourquoi une chanson peut nous replonger dans un souvenir heureux, mais aussi pourquoi, avec le temps, ce souvenir peut se teinter d'une nuance différente selon notre état émotionnel.En conclusion, selon l'étude du Georgia Institute of Technology, la musique ne se contente pas d'être une bande sonore de nos souvenirs : elle en est aussi un outil de réécriture. À chaque écoute, le cerveau réactive, colore et modifie subtilement le passé, prouvant qu'en matière de mémoire, rien n'est jamais complètement figé. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Le 18 avril 1955, Albert Einstein meurt à l'hôpital de Princeton, à 76 ans. Son cerveau est alors retiré lors de l'autopsie par le pathologiste Thomas Stoltz Harvey. L'organe, pesant environ 1 230 grammes, est fixé au formol, photographié sous plusieurs angles, puis découpé en près de 240 fragments. Chaque morceau est conservé ou envoyé à des chercheurs, accompagnés d'une carte précise indiquant leur origine anatomique. Ce prélèvement fut réalisé sans autorisation préalable, ce qui provoqua une controverse. Harvey obtint ensuite, rétroactivement, l'accord du fils d'Einstein, à condition que les analyses servent uniquement la science.Les premières observations ont révélé un cerveau plutôt normal par sa taille, mais singulier par sa structure. Les photographies étudiées en 2012 ont montré que les lobes frontaux d'Einstein présentaient un nombre inhabituel de circonvolutions et une asymétrie marquée entre les hémisphères. Le cortex préfrontal, siège de la planification et du raisonnement abstrait, apparaissait particulièrement développé. Les lobes pariétaux — impliqués dans les capacités visuospatiales et mathématiques — étaient également plus complexes que la moyenne, avec des plis supplémentaires qui augmentent la surface corticale disponible pour le traitement de l'information.Sur le plan microscopique, la biologiste Marian Diamond, de l'Université de Californie à Berkeley, publia en 1985 une étude comparant des coupes du cerveau d'Einstein à celles d'hommes du même âge. Elle observa un ratio plus élevé de cellules gliales par neurone dans la zone pariétale gauche, une région associée au raisonnement spatial et symbolique. Les cellules gliales assurant la nutrition et la protection des neurones, certains chercheurs y ont vu un indice d'activité métabolique soutenue — bien que l'échantillon soit trop limité pour en tirer des conclusions générales.D'autres travaux, en 2013, ont porté sur le corps calleux, le pont de fibres reliant les deux hémisphères. Il était plus épais qu'en moyenne dans plusieurs segments, suggérant une communication interhémisphérique particulièrement dense. Cela pourrait avoir favorisé une meilleure intégration entre intuition spatiale (droite) et logique analytique (gauche).En résumé, le cerveau d'Einstein se distinguait par certaines particularités anatomiques : plis corticaux atypiques, forte densité gliale locale, connexions interhémisphériques marquées. Mais les scientifiques restent prudents : il n'existe pas de “cerveau du génie” type. L'intelligence d'Einstein résidait sans doute autant dans sa curiosité, son imagination et sa persévérance que dans la forme de ses circonvolutions. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Dès la première bouchée d'un biscuit industriel ou d'un plat prêt-à-réchauffer, le cerveau entre en scène. Les aliments ultra-transformés (AUT) — riches en sucres rapides, graisses, sel et additifs — activent rapidement les circuits de la récompense, notamment au niveau du système mésolimbique. Selon une revue de l'Université du Michigan, ces aliments « frappent » le cerveau de manière rapide et intense, stimulant les zones impliquées dans le plaisir, la motivation et l'apprentissage. Résultat : une forte libération de dopamine, comparable à celle observée avec certaines substances addictives. On ressent du plaisir, ce qui incite à recommencer, jusqu'à ce que le cerveau en fasse une habitude automatique.Mais le plaisir n'est qu'une partie de l'histoire. Une étude publiée en 2025 dans Nature Mental Health a montré que les personnes consommant le plus d'aliments ultra-transformés présentaient des altérations des zones sous-corticales du cerveau, notamment le noyau accumbens et l'hypothalamus — deux régions essentielles au contrôle de la faim et de la satiété. Le cerveau perd alors une partie de sa capacité à réguler le comportement alimentaire : la partie rationnelle (celle qui dit “stop”) devient moins influente face à la récompense immédiate.D'autres recherches mettent en évidence des effets inflammatoires. Une revue parue en 2024 dans la revue Nutrients (MDPI) a montré que les AUT favorisent la neuroinflammation et le stress oxydatif. Ces processus entraînent une fragilisation des neurones et altèrent la communication entre différentes zones cérébrales. Autrement dit, les aliments ultra-transformés créent un environnement chimique hostile dans lequel le cerveau fonctionne en surrégime, mais avec moins d'efficacité.Sur le long terme, ces modifications ne sont pas anodines. Une étude publiée dans JAMA Neurology en 2022 a suivi plus de 10 000 adultes pendant dix ans. Résultat : les gros consommateurs d'aliments ultra-transformés présentaient un risque de démence supérieur de 25 % et un risque de déclin cognitif accéléré. La mémoire et les fonctions exécutives (concentration, planification, autocontrole) semblent particulièrement touchées.Bonne nouvelle, pourtant : le cerveau reste plastique. En réduisant la part d'aliments ultra-transformés et en réintroduisant des produits bruts — fruits, légumes, grains entiers, légumineuses —, on peut rééquilibrer les circuits de la récompense et diminuer l'inflammation cérébrale. Autrement dit, le cerveau peut se réparer. Mais il réclame qu'on le traite comme un chef-d'œuvre biologique, pas comme une poubelle à calories rapides. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Rester assis trop longtemps ne nuit pas seulement à la santé physique : cela pourrait aussi abîmer le cerveau. C'est la conclusion d'une étude récente menée conjointement par des chercheurs des universités de Vanderbilt, Pittsburgh et Séoul, publiée en 2025. Ces scientifiques se sont intéressés aux effets du comportement sédentaire sur le cerveau de plusieurs centaines de personnes âgées, et les résultats sont préoccupants.Les participants, âgés de 60 à 80 ans, ont porté des capteurs pendant plusieurs semaines pour mesurer leur activité quotidienne. En parallèle, leur cerveau a été observé par imagerie IRM afin d'évaluer le volume des différentes régions cérébrales. Les chercheurs ont ensuite croisé ces données avec le temps passé assis chaque jour. Leur constat : plus les participants restaient immobiles longtemps, plus certaines zones clés du cerveau montraient une réduction de volume, notamment dans les régions impliquées dans la mémoire, l'attention et la régulation des émotions.Autrement dit, la sédentarité prolongée s'accompagne d'une atrophie cérébrale, un phénomène similaire à celui observé lors du vieillissement accéléré. Les scientifiques ont noté que même chez des personnes qui faisaient un peu d'exercice quotidien, rester assis plusieurs heures d'affilée annulait en partie les bénéfices de cette activité physique. Ce n'est donc pas seulement le manque d'exercice qui pose problème, mais bien la durée continue passée sans bouger.Pourquoi ce lien ? Le mécanisme exact n'est pas encore entièrement élucidé, mais plusieurs hypothèses existent. Le fait de rester assis longtemps réduirait la circulation sanguine vers le cerveau, limitant l'apport d'oxygène et de nutriments essentiels aux neurones. Cela pourrait également perturber l'activité du système glymphatique — le réseau de drainage du cerveau — et favoriser l'accumulation de protéines toxiques comme la bêta-amyloïde, impliquée dans la maladie d'Alzheimer. À plus long terme, cette sous-stimulation neuronale pourrait altérer la plasticité cérébrale, c'est-à-dire la capacité du cerveau à se renouveler et à créer de nouvelles connexions.Heureusement, les chercheurs rappellent qu'il n'est jamais trop tard pour agir. Il suffit de rompre la position assise toutes les 30 à 45 minutes : se lever, marcher quelques minutes, s'étirer ou monter des escaliers suffit déjà à relancer la circulation et l'activité cérébrale.En somme, le message est clair : le cerveau n'aime pas l'immobilité. Bouger régulièrement, même légèrement, est l'un des moyens les plus simples et les plus puissants pour préserver ses capacités cognitives avec l'âge. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

La maladie de Parkinson débute rarement de manière symétrique. Chez la plupart des patients, les premiers tremblements, raideurs ou lenteurs de mouvement apparaissent d'un seul côté du corps. Et selon une étude menée par l'Université de Genève et les Hôpitaux universitaires genevois, publiée en 2025 dans Nature Parkinson's Disease, ce détail n'en est pas un : le côté où la maladie démarre permettrait de prédire la nature des troubles « cachés » qui accompagneront son évolution.Les chercheurs ont passé en revue près de 80 études menées sur plusieurs décennies, portant sur des milliers de patients. Leur constat est clair : les symptômes moteurs d'un côté du corps correspondent à une atteinte initiale de l'hémisphère cérébral opposé, et ce choix du côté n'est pas neutre. Quand la maladie touche d'abord le côté droit du corps, c'est donc l'hémisphère gauche qui est le plus atteint. Ces patients présentent souvent davantage de troubles cognitifs : difficultés de concentration, altération de la mémoire, ralentissement intellectuel, voire un risque accru de démence à long terme.À l'inverse, lorsque les premiers signes apparaissent du côté gauche du corps, donc avec une atteinte dominante de l'hémisphère droit, le profil est différent. Ces patients ont tendance à développer plus de troubles émotionnels et psychiatriques : anxiété, dépression, perte de motivation, difficultés à reconnaître les émotions des autres ou à traiter les informations visuelles et spatiales. En d'autres termes, le cerveau ne se dégrade pas de la même manière selon le côté qu'il affecte en premier.Cette découverte pourrait changer la manière dont les médecins suivent la maladie de Parkinson. Dès l'apparition des premiers symptômes moteurs, le côté touché donnerait une indication précieuse sur les troubles non moteurs à surveiller. Cela permettrait d'adapter les traitements, la rééducation et l'accompagnement psychologique bien plus tôt dans la progression de la maladie.Sur le plan neuroscientifique, cela s'explique par la spécialisation des hémisphères cérébraux. Le gauche est impliqué dans le langage, la planification et la mémoire ; le droit dans les émotions, la perception spatiale et les interactions sociales. Ainsi, selon la zone du cerveau qui dégénère d'abord, la maladie suit une trajectoire différente.En conclusion, le côté où démarre la maladie de Parkinson n'est pas un simple hasard. Il agit comme un véritable indicateur pronostique, capable d'annoncer les troubles cognitifs ou émotionnels à venir, et donc d'orienter vers une prise en charge plus personnalisée. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Les acouphènes — cette perception persistante d'un bruit sans source extérieure — sont souvent liés à des troubles du sommeil. Mais existe-t-il réellement un lien entre acouphènes et sommeil profond ? Une étude publiée en juin 2025 dans la revue scientifique Brain Communications apporte des éléments nouveaux.Les chercheurs ont étudié plusieurs dizaines de personnes souffrant d'acouphènes chroniques, en les divisant en deux groupes : ceux qui dormaient mal et ceux dont le sommeil restait de bonne qualité. Grâce à l'imagerie cérébrale (IRM), ils ont observé le fonctionnement du système glymphatique — un réseau de « nettoyage » du cerveau qui élimine les déchets métaboliques pendant le sommeil profond. Ce système joue un rôle essentiel : c'est durant le sommeil lent, la phase la plus réparatrice, que le liquide cérébrospinal circule activement pour débarrasser le cerveau des toxines.Les résultats montrent que les personnes souffrant à la fois d'acouphènes et de troubles du sommeil présentent un dysfonctionnement marqué de ce système glymphatique. Les chercheurs ont notamment observé des signes précis : des espaces périvasculaires élargis, un volume anormal du plexus choroïde et une baisse d'un indicateur appelé DTI-ALPS, qui reflète la circulation du liquide dans le cerveau. Ces anomalies étaient absentes ou beaucoup moins prononcées chez les sujets sans trouble du sommeil.Autrement dit, chez certains patients, le cerveau semble ne pas parvenir à « se nettoyer » correctement pendant la nuit. Or, ce processus de nettoyage dépend directement du sommeil profond. Si le cerveau reste en partie « en veille » dans les zones auditives — celles impliquées dans la perception du son —, il pourrait empêcher l'installation complète du sommeil lent. Cela expliquerait pourquoi de nombreux acouphéniques décrivent un sommeil fragmenté, non réparateur, ou une difficulté à atteindre un état de repos total.Les chercheurs restent prudents : l'étude ne permet pas encore d'affirmer si ce mauvais sommeil provoque les acouphènes ou si, à l'inverse, le bourdonnement permanent empêche le sommeil profond. La relation semble probablement bidirectionnelle. Mais une chose est claire : le lien entre les deux existe bel et bien, et il passe sans doute par la qualité du sommeil lent et le bon fonctionnement du système glymphatique.En somme, mieux dormir, et surtout retrouver un sommeil profond de qualité, pourrait être une piste thérapeutique sérieuse pour soulager certains acouphènes. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Imaginez un matin ordinaire. Vous partez au travail, votre enfant dort paisiblement à l'arrière. La route est la même, la radio aussi. Vous arrivez au bureau, garez la voiture… et soudain, l'horreur. Vous réalisez que vous avez oublié votre bébé dans le siège auto. Comment un tel drame peut-il arriver, même à des parents attentifs ? Les neurosciences apportent une réponse bouleversante : ce n'est pas un manque d'amour, mais un bug dans le fonctionnement normal du cerveau.Ce qu'on appelle le « syndrome du bébé oublié » — ou Forgotten Baby Syndrome — résulte d'un conflit entre deux systèmes de mémoire. Une étude publiée en 2020 dans Frontiers in Psychiatry (« Forgotten Baby Syndrome: dimensions of the phenomenon and new research perspectives ») a montré que ces situations se produisent alors que les fonctions cognitives des parents sont intactes. Le problème vient de l'interaction entre la mémoire de l'habitude et la mémoire prospective.La mémoire de l'habitude, gérée par les ganglions de la base, permet d'effectuer des actions automatiques : conduire, suivre le même trajet, fermer la porte à clé. La mémoire prospective, elle, dépend du cortex préfrontal et de l'hippocampe : elle nous rappelle ce que nous devons faire dans le futur — comme déposer le bébé à la crèche.Le drame survient quand la mémoire de l'habitude prend le dessus. Si le trajet est identique à celui des jours sans enfant, le cerveau bascule en mode “pilote automatique”. Les gestes se succèdent mécaniquement, sans contrôle conscient. La mémoire prospective, qui devait signaler « n'oublie pas la crèche », ne s'active pas. Aucun signal visuel ni sonore ne vient rappeler la présence de l'enfant — surtout s'il dort. Le cerveau agit alors comme si la tâche avait déjà été accomplie.Le stress, le manque de sommeil ou une rupture de routine amplifient ce risque : ils affaiblissent le cortex préfrontal et perturbent la capacité du cerveau à maintenir plusieurs intentions actives en même temps.Selon les auteurs de l'étude, « ces oublis tragiques résultent du fonctionnement normal de la mémoire humaine, dans des conditions où les systèmes automatiques prennent le dessus sur la pensée consciente ». En d'autres termes, le cerveau fait ce pour quoi il est conçu : économiser de l'énergie cognitive. Mais cette économie peut, dans de rares cas, être fatale.C'est pourquoi les experts recommandent des signaux physiques ou visuels — laisser un sac ou un objet personnel sur le siège arrière, par exemple — afin de créer un “rappel externe”. Un simple repère peut suffire à réveiller la mémoire consciente. Parce que, parfois, ce n'est pas le cœur qui oublie, mais le cerveau. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Prenez un parieur face à une machine à sous. Il appuie sur les boutos, les rouleaux tournent, les sons se déclenchent, et pendant une fraction de seconde, tout est suspendu. Cette tension, ce frisson, c'est le cœur du mécanisme cérébral du pari. Ce n'est pas tant le gain qui nous attire, mais l'incertitude. Et la science le montre clairement.Une étude publiée dans Frontiers in Behavioral Neuroscience a révélé que le système dopaminergique du cerveau — celui qui gère la récompense et la motivation — réagit plus fortement à l'imprévisibilité qu'au gain lui-même. Autrement dit, notre cerveau sécrète davantage de dopamine, le neurotransmetteur du plaisir, quand le résultat est incertain que lorsqu'il est garanti. C'est cette attente, cette possibilité d'un gain, qui nous électrise.Les neuroscientifiques ont observé, grâce à l'imagerie cérébrale, que des zones comme le noyau accumbens et le cortex préfrontal s'activent pendant un pari. Le premier gère la récompense, le second la planification et le contrôle. Mais chez les parieurs compulsifs, le cortex préfrontal fonctionne moins bien : il freine moins les impulsions, et la logique perd face à l'émotion. Le cerveau se met alors à répéter le comportement, comme s'il s'agissait d'une substance addictive.C'est ce que montre une autre étude, publiée dans Nature Reviews Neuroscience, qui compare le jeu pathologique à une addiction sans drogue. Les mêmes circuits de la dépendance — ceux activés par la cocaïne ou l'alcool — s'allument lors d'un pari. Le cerveau apprend à associer le risque à une récompense potentielle, et chaque mise devient une promesse chimique de plaisir.Un autre phénomène accentue encore l'addiction : celui des quasi-victoires. Vous perdez, mais de peu ; deux symboles identiques s'alignent, le troisième manque d'un rien. Le cerveau, lui, interprète cela comme une réussite partielle, et libère de la dopamine. Résultat : vous rejouez, convaincu que la chance est proche.En somme, les paris exploitent une faille dans notre architecture mentale. L'incertitude déclenche la dopamine, la dopamine entretient le désir, et le contrôle rationnel s'affaiblit. Ce n'est pas une question de volonté, mais une réaction neurochimique profondément ancrée.Ce que la science nous apprend, c'est que parier revient à dialoguer avec nos instincts les plus primitifs. Et dans ce dialogue, le hasard a souvent le dernier mot. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Vous connaissez ce moment. Vous êtes dans le bus, le regard perdu à travers la vitre, et soudain, vous réalisez que… vous ne pensez à rien. Pas de souvenir, pas de projet, pas même une chanson dans la tête. Juste… du vide. Ce phénomène, que nous avons tous expérimenté, a désormais un nom scientifique : le « mind blanking », littéralement « l'esprit en blanc ». Et loin d'être un simple trou noir de la pensée, il jouerait un rôle essentiel dans notre équilibre mental.Une étude publiée dans la prestigieuse revue Trends in Cognitive Sciences par Thomas Andrillon et ses collègues a exploré ce curieux état. Les chercheurs ont demandé à des volontaires de signaler régulièrement le contenu de leurs pensées. Parfois, ils répondaient : « rien ». Pas qu'ils n'aient pas voulu répondre : il n'y avait simplement rien à dire. Leur esprit semblait s'être mis sur pause, sans rêve éveillé ni réflexion consciente.Pour les neuroscientifiques, ce vide n'est pas un simple oubli, mais un état mental à part entière. Le cerveau reste éveillé, mais son activité change de rythme : les zones habituellement impliquées dans la réflexion et la perception se désynchronisent, un peu comme une machine qu'on met en veille. Andrillon parle d'un état de vigilance réduite, proche d'une micro-sieste cognitive.Mais à quoi sert ce moment suspendu ? L'étude avance plusieurs hypothèses. D'abord, il pourrait s'agir d'un mécanisme de récupération interne : en cessant momentanément de produire du contenu mental, le cerveau se reposerait, se « nettoierait » en quelque sorte. Ces pauses aideraient à préserver nos ressources attentionnelles, épuisées par le flux continu de pensées et de stimulations.Deuxième hypothèse : le mind blanking servirait de pont entre deux pensées, un instant de transition durant lequel notre cerveau efface la précédente avant d'en accueillir une nouvelle. Ce serait un espace neutre, un sas nécessaire entre deux trains d'idées.Enfin, ces moments de vide pourraient avoir une fonction de régulation : permettre au cerveau d'ajuster sa vigilance, de contrôler ses propres fluctuations internes, un peu comme un pilote automatique qui vérifie ses instruments avant de reprendre le contrôle manuel.En somme, ne rien penser n'est pas une défaillance : c'est une respiration de l'esprit. Une manière naturelle pour notre cerveau de se recentrer, de se régénérer. La prochaine fois que votre esprit se vide, ne cherchez pas à combler ce silence. Laissez-le faire. Ce n'est pas du vide… c'est un moment de pause, profondément humain, et peut-être vital. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Voici les 3 premiers podcasts du label Audio Sapiens:1/ SurvivreApple Podcasts:https://podcasts.apple.com/us/podcast/survivre-histoires-vraies/id1849332822Spotify:https://open.spotify.com/show/6m4YqFSEFm6ZWSkqTiOWQR2/ A la lueur de l'HistoireApple Podcasts:https://podcasts.apple.com/us/podcast/a-la-lueur-de-lhistoire/id1849342597Spotify:https://open.spotify.com/show/7HtLCQUQ0EFFS7Hent5mWd3/ Entrez dans la légendeApple Podcasts:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqSpotify:https://open.spotify.com/show/0NCBjxciPo4LCRiHipFpoqEt enfin, le site web du label ;)https://www.audio-sapiens.com Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Et si un simple jeu vidéo pouvait rajeunir votre cerveau ? C'est la promesse inattendue d'une équipe de chercheurs de l'Université McGill et de l'Institut neurologique de Montréal, qui vient de franchir une étape décisive dans la compréhension du vieillissement cérébral.Depuis toujours, on pensait que le cerveau déclinait lentement avec l'âge, inexorablement. La mémoire se fragilise, l'attention se disperse, la vitesse de réflexion diminue. Et derrière ce lent effritement, une molécule joue un rôle crucial : l'acétylcholine. C'est elle qui permet aux neurones de communiquer, de se concentrer, d'apprendre. Or, sa production baisse naturellement à partir de 40 ans. Aucun médicament n'avait jamais réussi à la relancer. Jusqu'à aujourd'hui.Dans leur étude, les chercheurs ont recruté près d'une centaine de volontaires âgés de plus de 65 ans. Pendant dix semaines, certains ont suivi un programme d'entraînement cérébral intensif sous forme de jeu vidéo, conçu pour stimuler la rapidité, la mémoire de travail et la concentration. Les autres jouaient à des jeux classiques, sans visée thérapeutique. Avant et après l'expérience, tous ont passé des examens d'imagerie cérébrale permettant de mesurer l'activité du système cholinergique, celui qui produit justement l'acétylcholine.Les résultats ont surpris tout le monde. Chez les participants qui s'étaient réellement entraînés, la production naturelle d'acétylcholine a augmenté d'environ 2,3 %. C'est peu, mais c'est énorme : cela correspond à peu près à la perte naturelle observée au fil de dix années de vieillissement. Autrement dit, leur cerveau s'est comporté comme celui d'une personne dix ans plus jeune. Une première absolue dans l'histoire de la recherche sur le vieillissement cérébral.Ce qui fascine les scientifiques, c'est que cette amélioration n'est pas due à un médicament, mais à une stimulation cognitive ciblée. Le cerveau, même vieillissant, reste plastique : il est capable de se réorganiser, de relancer des circuits endormis, pour peu qu'on le pousse à sortir de sa routine.Bien sûr, l'étude doit encore être confirmée sur un plus grand nombre de personnes, et sur des durées plus longues. Mais elle ouvre une perspective vertigineuse : celle de pouvoir « réactiver » le cerveau par l'entraînement, comme on renforce un muscle. En d'autres termes, le vieillissement cérébral ne serait peut-être pas une fatalité — juste une question d'exercice. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Il existe une fleur capable de rivaliser avec les somnifères : celle du bigaradier. Derrière ce nom un peu oublié se cache l'oranger amer, un petit arbre originaire d'Asie, sans doute de la région de l'Himalaya. Introduit en Méditerranée au Moyen Âge, il s'est acclimaté sous le soleil de Séville et de Grasse, où ses fleurs blanches, d'un parfum enivrant, sont devenues le cœur de la parfumerie et de la phytothérapie. On la connaît mieux sous le nom de fleur d'oranger.Mais au-delà de son odeur douce et familière, la fleur du bigaradier possède des vertus étonnantes sur le sommeil. Depuis longtemps, les infusions de fleur d'oranger apaisent les enfants agités et calment les nerfs avant la nuit. Ce que la science confirme peu à peu. En 2023, des chercheurs iraniens ont mené un essai clinique sur des femmes dont les bébés étaient hospitalisés : boire chaque soir un distillat de fleur d'oranger a significativement amélioré leur sommeil, comparé à un placebo. Les participantes s'endormaient plus vite, se réveillaient moins souvent, et déclaraient se sentir plus reposées.D'autres travaux, menés sur des modèles animaux, sont encore plus surprenants. Un extrait de fleur d'oranger, administré à des souris privées de sommeil, s'est révélé plus efficace pour réduire leur anxiété qu'un médicament bien connu : le lorazépam, un somnifère puissant. Les chercheurs attribuent cet effet à plusieurs molécules actives : le linalol, le nérolidol et divers sesquiterpènes, capables d'agir sur les récepteurs GABA du cerveau, les mêmes que ceux ciblés par les benzodiazépines. En somme, la nature imiterait la chimie, mais sans ses effets secondaires.Cependant, ces résultats doivent être interprétés avec prudence. Les études restent encore peu nombreuses, souvent limitées à de petits échantillons. Et si la fleur d'oranger favorise l'endormissement, elle ne remplace pas un traitement médical dans les cas d'insomnie sévère. Elle agit comme une aide douce, idéale pour calmer les tensions, réduire l'anxiété et rétablir un cycle de sommeil perturbé.Boire une tisane de fleur d'oranger avant le coucher, respirer son huile essentielle ou l'utiliser en diffusion pourrait donc être une manière simple de renouer avec un sommeil naturel. Le bigaradier, autrefois symbole d'innocence et de paix, redevient ainsi ce qu'il a toujours été : un messager de sérénité, plus apaisant qu'un somnifère, et infiniment plus poétique. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pendant des décennies, les chercheurs ont cherché à déterminer la durée de sommeil idéale. En 2023, une vaste étude parue dans la revue Nature Aging a apporté une réponse inattendue : sept heures par nuit semblent être la durée parfaite pour échapper au déclin cognitif passé 40 ans.Les scientifiques ont analysé les données de plus de 500 000 adultes âgés de 38 à 73 ans, issues de la base britannique UK Biobank. Leurs performances cognitives, leur humeur et même la structure de leur cerveau ont été comparées à leurs habitudes de sommeil. Les résultats sont clairs : trop peu ou trop de sommeil nuisent tous deux à la santé cérébrale. En dessous de six heures, les capacités de mémoire et d'attention s'affaiblissent ; au-delà de huit heures, le cerveau montre également des signes de fatigue. Se situer autour de sept heures constitue donc un équilibre subtil entre récupération et vigilance.Les chercheurs ont constaté que les personnes dormant environ sept heures par nuit présentaient de meilleurs résultats aux tests cognitifs, mais aussi des volumes cérébraux plus élevés, notamment dans l'hippocampe, siège de la mémoire, et dans le cortex frontal, essentiel à la prise de décision. Dormir trop peu provoque une accumulation de déchets métaboliques, comme les protéines bêta-amyloïdes, que le cerveau élimine normalement pendant le sommeil profond. Dormir trop, à l'inverse, pourrait être le signe d'un sommeil fragmenté ou d'une pathologie sous-jacente.Cette découverte bouleverse notre compréhension du repos nocturne : elle suggère qu'après 40 ans, la qualité du sommeil compte autant que sa quantité. Avec l'âge, le sommeil profond diminue naturellement, et le maintien d'un rythme régulier devient crucial. Les chercheurs insistent : il ne s'agit pas seulement de dormir longtemps, mais de bien dormir.Le message est simple : viser sept heures de sommeil de qualité chaque nuit, à heures fixes, pourrait préserver la mémoire et la clarté mentale jusqu'à un âge avancé. L'étude ne démontre pas une causalité absolue, mais elle trace un repère précieux pour vieillir sans déclin cognitif marqué. Le sommeil, longtemps considéré comme un luxe, s'affirme ici comme une véritable médecine préventive. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Et si le “bon” cholestérol n'était pas toujours si bon ? C'est la conclusion surprenante d'une étude australienne publiée dans The Lancet Regional Health – Western Pacific, qui remet en question une croyance médicale bien ancrée. Selon les chercheurs, des taux très élevés de HDL-cholestérol — le fameux “bon” cholestérol censé protéger le cœur — pourraient augmenter le risque de démence chez les personnes âgées.Les scientifiques se sont appuyés sur les données du vaste essai ASPREE, qui a suivi près de 19 000 participants âgés de plus de 70 ans pendant plus de six ans. Tous étaient en bonne santé cognitive au départ. En analysant leurs taux de HDL, les chercheurs ont constaté qu'au-delà de 80 mg/dL, le risque de développer une démence augmentait d'environ 27 %. Chez les plus de 75 ans, ce risque grimperait même jusqu'à 40 %.Ce résultat va à l'encontre de l'idée selon laquelle un HDL élevé serait toujours bénéfique. En réalité, les chercheurs observent une courbe en “U” : trop peu de HDL est néfaste, mais trop en avoir pourrait aussi poser problème. Pourquoi ? Parce que le HDL n'est pas un simple chiffre, mais un ensemble de particules dont la qualité compte autant que la quantité. Lorsqu'il devient “dysfonctionnel” — oxydé, inflammatoire ou altéré — il pourrait perdre ses effets protecteurs, voire contribuer à des processus de stress oxydatif et d'inflammation dans le cerveau.Autrement dit, un HDL très élevé ne signifie pas forcément un HDL efficace. Il pourrait être le signe d'un déséquilibre métabolique ou d'un dysfonctionnement du transport du cholestérol, deux facteurs déjà associés au déclin cognitif.Les auteurs restent prudents : leur étude est observationnelle et ne prouve pas que le HDL élevé cause directement la démence. Mais elle invite à repenser la vieille opposition entre “bon” et “mauvais” cholestérol, trop simpliste pour décrire la complexité du métabolisme lipidique.En pratique, cela signifie qu'un HDL modéré — entre 40 et 80 mg/dL — reste optimal pour la santé. Au-delà, il ne faut pas s'alarmer, mais éviter de viser des niveaux excessifs. Cette découverte rappelle une leçon essentielle : dans le corps humain, même ce qui est bon peut, à trop forte dose, devenir un déséquilibre. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Et si Alzheimer n'était plus une fatalité ? C'est la question bouleversante soulevée par une étude récente publiée dans la revue Nature, qui ouvre une brèche d'espoir pour des millions de familles confrontées à cette maladie neurodégénérative. Longtemps considérée comme irréversible, la destruction progressive des neurones observée dans Alzheimer pourrait, au moins en partie, être réparée.Les chercheurs, issus d'un consortium international, ont identifié un mécanisme inédit qui permettrait au cerveau de récupérer certaines fonctions altérées. Ils ont observé, chez des modèles animaux, qu'en réactivant un petit groupe de gènes liés à la plasticité neuronale — cette capacité du cerveau à créer de nouvelles connexions — il était possible de restaurer la communication entre neurones endommagés. En d'autres termes, certaines zones cérébrales atteintes par la maladie pourraient retrouver une activité fonctionnelle.Plus précisément, les scientifiques se sont concentrés sur la microglie, ces cellules “gardiennes” du cerveau chargées d'éliminer les déchets et de réparer les tissus. Dans la maladie d'Alzheimer, elles deviennent hyperactives et s'attaquent parfois aux synapses saines. En modulant leur activité par une combinaison de molécules expérimentales, les chercheurs ont réussi à calmer cette inflammation chronique et à relancer un processus de réparation naturelle. Résultat : les animaux traités ont montré une amélioration notable de leur mémoire et de leurs capacités d'apprentissage.Ces résultats, encore préliminaires, ne constituent pas un remède immédiat, mais ils changent profondément notre regard sur Alzheimer. L'idée même qu'un cerveau adulte — et malade — puisse retrouver une part de sa plasticité ouvre une voie thérapeutique totalement nouvelle. Là où la science cherchait jusqu'ici à freiner la dégénérescence, elle envisage désormais de la réparer.Cette approche révolutionnaire, qui combine biologie cellulaire, génétique et intelligence artificielle pour cartographier les circuits neuronaux endommagés, marque une rupture d'échelle dans la recherche. Les prochaines étapes consisteront à tester cette stratégie sur l'humain, en s'assurant de son innocuité et de sa durabilité.Mais déjà, un message se dessine : le cerveau, même vieillissant, n'a pas dit son dernier mot. Loin d'être un organe figé condamné à l'usure, il conserve une surprenante capacité de renaissance. Et si cette promesse se confirme, Alzheimer pourrait bien, un jour, ne plus être une fatalité mais une maladie dont on se relève. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pourquoi les adolescents n'écoutent-ils pas leurs parents ? La question fait soupirer des générations de parents, mais la science vient d'apporter une réponse fascinante. Selon une étude publiée dans The Journal of Neuroscience par une équipe de chercheurs de l'Université Stanford, ce comportement n'est pas une simple crise d'adolescence : il reflète une transformation profonde du cerveau, inscrite dans notre évolution biologique.Les chercheurs ont observé, grâce à l'imagerie cérébrale, les réactions de jeunes âgés de 13 à 18 ans lorsqu'ils entendaient des voix familières – celles de leurs mères – puis des voix inconnues. Chez les enfants plus jeunes, la voix maternelle déclenche une forte activité dans les circuits de la récompense et de l'attention. Mais à l'adolescence, tout change : ces mêmes zones deviennent moins sensibles aux voix parentales et s'activent davantage face à celles de personnes extérieures.Le professeur Vinod Menon, auteur principal de l'étude, explique que cette bascule n'est pas un signe de rébellion, mais une étape cruciale du développement social. Pour évoluer vers l'autonomie, le cerveau adolescent doit s'ouvrir à d'autres sources d'influence : amis, enseignants, pairs. En somme, le cerveau “reprogramme” ses priorités, cherchant dans les voix extérieures des signaux nouveaux pour construire son identité.L'étude montre aussi que les régions impliquées dans la détection de la valeur sociale d'un son – comme le cortex temporal et le striatum ventral – se réorganisent à cette période. Le cerveau devient littéralement plus attentif à ce qui vient de l'extérieur du cercle familial. Ce mécanisme, bien que déroutant pour les parents, est essentiel à la survie de l'espèce : il favorise la socialisation, l'apprentissage de nouvelles règles et la capacité à s'intégrer dans un groupe plus large.Ainsi, lorsque votre adolescent lève les yeux au ciel ou semble ignorer vos conseils, son cerveau ne vous rejette pas par provocation ; il suit simplement un programme biologique millénaire. Le silence apparent cache une transformation intérieure : l'enfant devient un être social autonome, guidé par un besoin neurologique d'explorer d'autres voix et d'autres mondes.En éclairant les mécanismes de cette métamorphose cérébrale, l'étude de Stanford apporte un apaisement bienvenu : les parents ne parlent pas dans le vide, ils s'adressent à un cerveau en pleine évolution. Et cette évolution, loin d'être une rupture, est le passage nécessaire vers l'indépendance. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

La région du cerveau la plus directement impliquée dans la manipulation de nos peurs s'appelle l'amygdale — une petite structure en forme d'amande située profondément dans le système limbique, au cœur du cerveau. C'est elle qui détecte le danger, déclenche la peur et coordonne la réponse physiologique : accélération du rythme cardiaque, montée d'adrénaline, crispation musculaire.Mais ce n'est pas la seule actrice. En réalité, nos peurs résultent d'un dialogue constant entre plusieurs zones cérébrales :L'amygdale, donc, joue le rôle d'alarme. Elle analyse les signaux sensoriels venant du thalamus et réagit en une fraction de seconde, souvent avant même que nous soyons conscients du danger. C'est elle qui nous fait sursauter avant que nous comprenions pourquoi.Le cortex préfrontal, situé à l'avant du cerveau, intervient ensuite pour réguler cette émotion. Il évalue si la menace est réelle ou non et peut inhiber la réaction de peur. C'est cette partie du cerveau qui permet de se raisonner après un sursaut : “Ce n'est qu'un film, je ne risque rien.”L'hippocampe, lui, joue un rôle de mémoire contextuelle : il nous aide à distinguer un danger passé d'un danger présent. Quand cette région fonctionne mal, comme dans certaines formes de stress post-traumatique, le cerveau peut réagir à de simples souvenirs comme s'ils étaient encore menaçants.Des recherches récentes, notamment en imagerie cérébrale, ont montré qu'en stimulant ou en inhibant électriquement l'amygdale, il était possible de moduler artificiellement la peur — voire de la faire disparaître temporairement. Des études menées à l'Université d'Iowa sur une patiente dépourvue d'amygdales, connue sous le nom de “SM”, ont montré qu'elle était incapable d'éprouver de la peur, même face à des situations extrêmes comme des serpents ou des films d'horreur.Ainsi, manipuler nos peurs revient à agir sur ce réseau complexe : l'amygdale (pour le réflexe), le cortex préfrontal (pour le contrôle), et l'hippocampe (pour la mémoire). Ensemble, ces régions façonnent notre rapport au danger, à l'anxiété et au courage — autant d'émotions que notre cerveau apprend, module, et parfois, déforme. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

On l'appelle le syndrome de Gourmand. Et il ne désigne pas un simple goût pour la bonne chère. Ce trouble neurologique rare, découvert dans les années 1990 par deux chercheurs suisses, Marianne Regard et Theodor Landis, transforme littéralement la personnalité alimentaire d'un individu après une lésion du cerveau. Des patients jusque-là indifférents à la gastronomie deviennent soudain obsédés par la nourriture raffinée, les textures, les saveurs subtiles. Ils se mettent à lire des critiques culinaires, à fréquenter les meilleurs restaurants, à parler cuisine avec passion. Leur appétit n'augmente pas forcément — mais leur relation à la nourriture change du tout au tout.Tout commence souvent après une atteinte du lobe frontal droit, notamment dans la région orbito-frontale. Cette zone du cerveau, située juste derrière les yeux, joue un rôle clé dans la régulation des émotions, des pulsions et des préférences sociales. Lorsqu'elle est endommagée — à la suite d'un accident vasculaire cérébral, d'un traumatisme crânien ou d'une tumeur —, les circuits du plaisir et du jugement peuvent être perturbés. Résultat : le goût, qui dépend largement de l'activité du cortex orbito-frontal, se réorganise de manière surprenante.Les premiers cas recensés par Regard et Landis décrivaient des patients qui, après une lésion cérébrale, développaient une fascination pour les produits fins, les bons vins, les associations subtiles. L'un d'eux, par exemple, se mit à collectionner des recettes et à disserter sur les mérites comparés du foie gras et du saumon fumé, alors qu'il n'avait jamais montré le moindre intérêt pour la cuisine auparavant.Ce syndrome illustre à quel point nos goûts sont des constructions cérébrales : ils ne relèvent pas seulement du palais, mais aussi de la manière dont notre cerveau attribue de la valeur, du plaisir et du sens aux expériences sensorielles. Le lobe frontal agit comme un chef d'orchestre de ces émotions gustatives. Quand il se dérègle, les priorités changent : certains deviennent hypergourmets, d'autres perdent tout intérêt pour la nourriture, ou au contraire développent des comportements alimentaires compulsifs.Le syndrome de Gourmand est rare, mais fascinant, car il révèle les liens intimes entre goût, personnalité et cerveau. Il montre que notre identité culinaire, comme nos préférences esthétiques ou morales, repose sur un fragile équilibre neuronal. En somme, il suffit parfois d'une minuscule lésion pour qu'un amateur de plats simples se transforme… en critique gastronomique passionné. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pendant des décennies, on a cru qu'en multipliant les compliments, on aidait les enfants à s'épanouir. « Tu es le meilleur ! », « Tu es génial ! » — autant de phrases censées nourrir la confiance. Mais selon une recherche conjointe de l'Université d'État de l'Ohio et de l'Université d'Amsterdam, publiée dans la revue PNAS, ces compliments exagérés sont en réalité un piège. Loin de renforcer l'estime de soi, ils peuvent créer des enfants égocentriques, voire manipulateurs, incapables plus tard de relations équilibrées.Tout commence souvent avec de bonnes intentions. Un parent veut encourager son enfant, surtout s'il le sent fragile ou timide. Alors il multiplie les louanges. Mais lorsqu'elles deviennent disproportionnées — quand on félicite non pas l'effort, mais la personne elle-même, en la présentant comme exceptionnelle —, le cerveau de l'enfant apprend une leçon bien différente : pour être aimé, il faut être extraordinaire. Ce n'est plus la curiosité ni la persévérance qui comptent, mais l'image que l'on renvoie.Les chercheurs ont observé que ces enfants finissent par éviter les situations où ils risquent d'échouer. L'échec, pour eux, n'est pas une étape normale de l'apprentissage, mais une menace pour l'identité flatteuse qu'on leur a imposée. Ils préfèrent donc ne pas essayer plutôt que de risquer d'être « démasqués ». Et pour continuer à mériter l'admiration, ils développent des stratégies sociales subtiles : séduire, manipuler, attirer l'attention, parfois rabaisser les autres pour se sentir supérieurs.Peu à peu, l'enfant devient dépendant du regard extérieur. Il mesure sa valeur à travers l'approbation d'autrui. Dans ce processus, une chose s'étiole : l'empathie. S'il se vit comme le centre du monde, les besoins des autres perdent de l'importance. Il ne cherche plus à comprendre, mais à convaincre ; plus à échanger, mais à briller. Ce type d'éducation, en apparence bienveillante, prépare sans le vouloir des adultes narcissiques, fragiles sous leur assurance, et incapables de tisser des liens sincères.Les chercheurs insistent : la clé n'est pas de bannir les compliments, mais de les orienter autrement. Il faut cesser de dire « Tu es incroyable » et apprendre à dire « Tu as bien travaillé ». Féliciter l'effort plutôt que le talent, reconnaître les progrès plutôt que la perfection. C'est ainsi que l'enfant apprend que la valeur ne se joue pas dans le regard des autres, mais dans l'action, la persévérance et la relation à autrui. En somme, c'est en apprenant à échouer qu'on apprend aussi à aimer. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pendant longtemps, les neurosciences ont considéré les astrocytes comme de simples cellules de soutien. Leur rôle semblait limité : nourrir les neurones, maintenir l'équilibre chimique du cerveau, éliminer les déchets. Pourtant, une étude collaborative franco-suisse, menée par les universités de Lausanne, Genève, Grenoble, l'Inserm et le Wyss Center for Bio and Neuroengineering, vient bouleverser cette vision. Publiée le 24 septembre dans la prestigieuse revue Cell, elle démontre que les astrocytes jouent un rôle actif et inédit dans le traitement de l'information cérébrale.L'étude s'est intéressée aux prolongements les plus fins des astrocytes, appelés « leaflets ». Ces minuscules extensions entourent directement les synapses, ces zones de contact où deux neurones communiquent. Les chercheurs ont découvert que ces leaflets ne se contentent pas d'être présents : ils disposent d'un réticulum endoplasmique interne, leur permettant de stocker et de libérer du calcium. Ce mécanisme est essentiel, car il permet aux astrocytes de générer de véritables signaux calciques en réponse à l'activité neuronale.Chaque fois qu'une synapse voisine s'active, le leaflet astrocytaire capte le signal et libère une petite bouffée de calcium. Si plusieurs synapses s'activent en même temps, ces micro-signaux s'additionnent et déclenchent une réponse calcique plus globale. En clair, les astrocytes ne réagissent pas de manière isolée, ils intègrent les informations de plusieurs neurones pour en donner une réponse coordonnée. Cette intégration leur confère un rôle inédit : ils deviennent capables de « calculer » à partir de l'activité synaptique.Mais ce n'est pas tout. Ces leaflets sont interconnectés par des jonctions, formant de véritables domaines fonctionnels. Une fois activés, ils peuvent à leur tour influencer les synapses environnantes en libérant des substances modulatrices. L'astrocyte ne se contente donc pas d'observer le passage des informations : il régule activement la communication entre neurones.Les implications sont majeures. Cela signifie que le cerveau ne repose pas uniquement sur l'activité des neurones pour traiter l'information. Les astrocytes, longtemps considérés comme de simples figurants, participent activement à l'orchestration des signaux. Cette découverte pourrait expliquer certains mécanismes complexes de la mémoire, de l'attention ou de la prise de décision. Elle ouvre aussi de nouvelles pistes pour comprendre les maladies neurologiques, où les astrocytes pourraient jouer un rôle bien plus central qu'on ne l'imaginait.En somme, cette étude franco-suisse réhabilite les astrocytes au rang d'acteurs essentiels de la pensée. Ces cellules longtemps négligées apparaissent désormais comme des pièces maîtresses de notre intelligence. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

La question n'est plus seulement de savoir combien de graisse nous accumulons, mais où elle se loge dans notre corps. Une étude récente menée par l'Université de Hong Kong et publiée dans la revue Nature Mental Health apporte des preuves convaincantes : la localisation de la graisse corporelle influe directement sur la santé du cerveau et les performances cognitives.Pour mener cette recherche, les scientifiques ont exploité les données de plus de 18 000 participants du UK Biobank. Grâce à des mesures précises d'imagerie (DXA), ils ont distingué plusieurs types de dépôts adipeux : graisse viscérale autour des organes, graisse du tronc, des bras et des jambes. Ces données ont été comparées à des IRM cérébrales et à des tests cognitifs portant sur la mémoire, le raisonnement, la vitesse de traitement et les fonctions exécutives.Les résultats sont frappants. La graisse viscérale, celle qui entoure le foie, les reins et l'intestin, apparaît comme la plus néfaste. Elle est associée à une réduction du volume de certaines régions clés du cerveau, notamment dans le réseau par défaut qui joue un rôle essentiel dans la mémoire et l'introspection. Plus encore, elle s'accompagne d'altérations de la matière blanche, cette “autoroute” qui relie différentes aires cérébrales. Ces perturbations suggèrent une dégradation de la connectivité neuronale.Les chercheurs ont utilisé un indicateur appelé “brain age gap” : l'écart entre l'âge chronologique d'une personne et l'âge biologique estimé de son cerveau. Ils ont montré que la graisse viscérale accélère ce vieillissement cérébral, et que cet effet explique en grande partie les baisses de performance dans les tests cognitifs. Autrement dit, la graisse autour du ventre semble “vieillir” certaines parties du cerveau plus vite que prévu.Toutes les graisses ne sont pas équivalentes. La graisse des bras, du tronc ou des jambes montre aussi des associations avec la structure cérébrale, mais moins marquées. C'est bien la graisse viscérale qui ressort comme un facteur de risque majeur. Les chercheurs avancent des explications : inflammation chronique, perturbation hormonale et stress oxydatif pourraient relier ces dépôts adipeux à la dégradation neuronale.Il faut rester prudent : l'étude est transversale, donc elle établit des corrélations plus que des causes. De plus, la population étudiée était en majorité européenne, ce qui limite la généralisation. Mais le message est clair : au-delà du poids affiché sur la balance, la répartition de la graisse est un indicateur crucial pour la santé du cerveau. Protéger son cerveau passe aussi par surveiller son tour de taille. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

La question « la malbouffe est-elle un danger pour la mémoire ? » a longtemps été posée, mais une étude récente apporte des preuves solides. Le 11 septembre 2025, des chercheurs de l'Université de Caroline du Nord à Chapel Hill ont publié dans la revue Neuron des résultats inquiétants : une alimentation riche en graisses saturées, typique de la « junk food », pourrait altérer la mémoire en quelques jours seulement.L'équipe de Juan Song et Taylor Landry a travaillé sur des souris pour comprendre comment un tel régime influence le cerveau. Leur attention s'est portée sur l'hippocampe, une région clé pour la mémoire. Ils ont découvert qu'un type particulier de neurones, appelés interneurones CCK (pour cholecystokinine), devenait anormalement actif après une exposition à la malbouffe. Cette hyperactivité dérègle le circuit neuronal responsable de l'encodage et du rappel des souvenirs.Le mécanisme en jeu est directement lié au métabolisme énergétique du cerveau. Normalement, les neurones utilisent le glucose comme carburant. Mais sous l'effet d'un régime trop gras, cette utilisation est perturbée. Les chercheurs ont identifié une protéine, la PKM2 (pyruvate kinase M2), comme pivot de cette altération. Quand la PKM2 ne fonctionne pas correctement, les interneurones CCK s'emballent, ce qui provoque un déclin de la mémoire.Le plus frappant est la rapidité des effets : les souris montraient déjà des déficits cognitifs après seulement quatre jours de régime gras. Et cela avant même d'avoir pris du poids ou de développer des signes de diabète. Autrement dit, les conséquences sur le cerveau précèdent les effets métaboliques visibles.Heureusement, l'étude montre aussi que ces dommages sont réversibles. En restaurant les niveaux de glucose cérébral, l'activité des interneurones redevient normale et la mémoire s'améliore. Les chercheurs ont même testé le jeûne intermittent : après une période de malbouffe, cette pratique suffisait à rétablir l'équilibre neuronal et les capacités mnésiques.Ces résultats sont un avertissement fort. La malbouffe ne menace pas seulement notre silhouette ou notre santé cardiovasculaire, mais aussi notre mémoire, et cela très rapidement. Certes, l'expérience a été menée sur des souris, et il faudra des études complémentaires chez l'humain pour confirmer ces effets. Mais le signal est clair : notre cerveau est sensible à ce que nous mangeons, parfois plus vite qu'on ne l'imagine.En conclusion, l'étude de l'Université de Caroline du Nord publiée dans Neuron démontre que la malbouffe est bel et bien un danger pour la mémoire. Et si la menace apparaît vite, la bonne nouvelle est que des changements alimentaires peuvent aussi rapidement inverser la tendance. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

La musique, nous le savons tous, peut nous émouvoir, nous transporter ou encore nous apaiser. Mais depuis quelques années, la science met en lumière une autre dimension fascinante : son pouvoir sur la mémoire. Et ce pouvoir semble particulièrement marqué lorsque la musique nous est familière. C'est ce qu'a montré une étude américaine publiée en 2023 dans la revue PLOS One.Dans cette recherche, des volontaires ont été invités à écouter différents extraits musicaux, certains connus et aimés, d'autres inconnus. Pendant l'écoute, les chercheurs enregistraient leur activité cérébrale à l'aide de l'IRM fonctionnelle. Les résultats sont éloquents : lorsque les participants écoutaient une chanson familière, des régions du cerveau liées à la mémoire — notamment l'hippocampe et le cortex préfrontal —Pourquoi un tel effet ? D'abord, parce que la musique familière agit comme un « raccourci émotionnel ». Une chanson connue active le système de récompense, libérant de la dopamine. Cette hormone du plaisir a pour effet secondaire d'améliorer la consolidation mnésique : autrement dit, ce que nous apprenons ou vivons en écoutant une musique familière est mieux stocké dans notre mémoire. De plus, la musique connue sollicite des réseaux cérébraux plus larges que la musique inconnue : elle convoque des souvenirs personnels, des images mentales, des émotions. Tout cela enrichit et renforce le processus de mémorisation.Les implications de ces résultats sont multiples. Dans l'éducation, certains enseignants utilisent déjà la musique pour accompagner l'apprentissage. Réviser en écoutant des morceaux familiers pourrait ainsi améliorer la rétention des informations. Mais c'est surtout dans le domaine médical que ces découvertes prennent tout leur sens. Chez les patients atteints de troubles cognitifs ou de la maladie d'Alzheimer, la musique familière peut réactiver des souvenirs que l'on croyait perdus. De nombreuses vidéos montrent des malades, muets ou apathiques, s'animer soudain au son d'une chanson de leur jeunesse.Cette étude de PLOS One confirme donc ce que l'intuition et l'expérience suggéraient déjà : la musique, et particulièrement celle qui nous est chère, n'est pas qu'un divertissement. Elle est une clé puissante pour stimuler et consolider la mémoire.En définitive, écouter un morceau familier, ce n'est pas seulement ressentir une vague de nostalgie. C'est activer un véritable réseau cérébral où émotions, souvenirs et apprentissages s'entremêlent. La musique devient alors bien plus qu'un art : un outil pour entretenir, renforcer et raviver notre mémoire. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Vous rentrez chez vous, votre chien accourt, il plonge son regard dans le vôtre. Rien qu'un échange de regards. Et pourtant, à ce moment précis, votre cerveau libère une hormone… l'ocytocine.L'ocytocine, on la surnomme « l'hormone de l'amour » ou « de l'attachement ». On la connaît pour son rôle dans le lien mère-enfant, dans les relations amoureuses, ou encore dans la confiance entre deux personnes. Mais en 2005, une équipe de chercheurs japonais menée par Takefumi Kikusui a montré que cette même molécule joue aussi un rôle clé dans nos rapports… avec les animaux.L'expérience est simple : on observe des propriétaires interagir avec leur chien. On mesure leur taux d'ocytocine avant et après. Résultat ? Quand un humain fixe son chien dans les yeux, son taux d'ocytocine grimpe. Et, incroyable : celui du chien aussi. C'est une boucle hormonale, un cercle vertueux qui unit les deux espèces, presque comme un langage silencieux.Mais pourquoi est-ce si particulier ? Parce que l'ocytocine ne se contente pas de donner du bien-être. Elle renforce la confiance, la coopération, le sentiment d'attachement. C'est elle qui transforme un simple animal en compagnon, en membre de la famille.Cette découverte a aussi une dimension évolutive. Au fil des millénaires, les chiens capables de créer ce « dialogue hormonal » avec l'homme ont été privilégiés : mieux nourris, mieux protégés. Et en retour, nous, humains, avons trouvé dans ces animaux des alliés fidèles. L'ocytocine aurait donc contribué à sceller un pacte vieux de dizaines de milliers d'années.Depuis, d'autres études l'ont confirmé : caresser un chien ou un cheval, jouer avec un chat, ça stimule cette même hormone. Cela explique aussi pourquoi les thérapies assistées par les animaux peuvent réduire l'anxiété, le stress ou la dépression.Alors, la prochaine fois que vous croisez le regard de votre chien, souvenez-vous : ce n'est pas seulement une émotion. C'est une réaction biologique. Une petite molécule, l'ocytocine, qui traverse les frontières entre espèces et nous rappelle à quel point le lien avec les animaux est profondément inscrit… jusque dans notre cerveau. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Imaginez un duo de jumeaux de plus de soixante ans. Même patrimoine génétique, parcours de vie souvent proches, habitudes semblables. Et pourtant, après douze semaines d'un simple ajout à leur alimentation, l'un d'eux se souvient mieux, apprend plus vite, tandis que l'autre ne constate aucun changement. Quelle est la différence ? Des prébiotiques, ces fibres alimentaires qui nourrissent les bonnes bactéries de notre intestin.Cette scène n'est pas une fiction mais le cœur d'une étude publiée début 2024 dans Nature Communications. Des chercheurs britanniques ont recruté 36 paires de jumeaux âgés en moyenne de 73 ans. Tous ont suivi un programme d'exercices et reçu des acides aminés bénéfiques pour la musculature. Mais un seul des deux jumeaux de chaque paire recevait, en plus, un supplément quotidien de prébiotiques. Trois mois plus tard, les résultats sont frappants : ceux qui avaient nourri leur microbiote intestinal obtenaient de meilleurs scores dans des tests de mémoire visuelle et d'apprentissage. Notamment, ils faisaient moins d'erreurs dans un exercice consistant à mémoriser des associations entre des images et des emplacements, un test considéré comme sensible aux premiers signes du déclin cognitif.Comment expliquer ce lien étonnant entre intestin et mémoire ? Tout passe par ce que les scientifiques appellent l'axe microbiote-intestin-cerveau. Les milliards de bactéries logées dans nos intestins produisent en permanence des molécules, comme des acides gras à chaîne courte ou même certains neurotransmetteurs, capables de circuler dans le sang et d'agir sur le cerveau. En modulant l'inflammation, en influençant la chimie cérébrale et même en dialoguant via le nerf vague, le microbiote peut contribuer à protéger ou à fragiliser nos capacités cognitives.Dans cette expérience, les prébiotiques ont favorisé la croissance de bifidobactéries, connues pour leurs effets bénéfiques. Et cette transformation interne s'est traduite par un petit coup de pouce mental. Certes, l'effet n'est pas spectaculaire, et il reste limité à une courte période et un petit échantillon. Mais il s'agit d'une preuve élégante, renforcée par le choix de jumeaux, que nourrir son intestin peut aussi nourrir sa mémoire.Ce résultat ouvre des perspectives intrigantes : et si, avec l'âge, un simple ajustement alimentaire suffisait à retarder le déclin cognitif ? Et si la clé pour protéger notre mémoire se trouvait dans notre assiette, dans ces fibres oubliées qui, silencieusement, font travailler pour nous des milliards de microbes alliés ? La recherche continue, mais une chose est sûre : notre intestin a bien plus à dire à notre cerveau que nous ne l'imaginions. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Pendant longtemps, les manuels de biologie affirmaient qu'un cerveau humain contenait environ 100 milliards de neurones. Ce chiffre est resté gravé dans les esprits comme une vérité incontestable. Pourtant, la science n'aime pas les approximations trop simples, et des chercheurs ont voulu recompter plus sérieusement. C'est ce qu'a fait en 2009 la neuroscientifique brésilienne Suzana Herculano-Houzel avec une méthode innovante appelée la “méthode du bouillon de cellules”.Plutôt que de compter les neurones un par un au microscope – tâche évidemment impossible – son équipe a dissous des tissus cérébraux de cerveaux post-mortem dans une solution spéciale. Ce “bouillon” homogène permettait ensuite de mesurer la densité de noyaux cellulaires et, par extrapolation, d'estimer avec une précision bien meilleure le nombre total de neurones. Résultat : le cerveau humain contient en moyenne 86 milliards de neurones, et non 100 milliards comme on le croyait auparavant.Mais ce chiffre cache une répartition inégale. Environ 69 milliards de ces neurones se trouvent dans le cervelet, la structure située à l'arrière du crâne, longtemps considérée comme surtout impliquée dans la coordination motrice. Le cortex cérébral, siège des fonctions cognitives les plus sophistiquées – langage, mémoire, raisonnement – en contient “seulement” 16 milliards. Cela signifie que la majorité des neurones humains n'est pas dans la zone associée à la pensée consciente, mais dans une région qui règle nos mouvements avec une précision extraordinaire.Cette découverte a plusieurs implications fascinantes. D'abord, elle permet de comparer notre cerveau à celui des autres espèces. Par exemple, certains grands singes possèdent un nombre global de neurones inférieur, mais une densité neuronale similaire dans le cortex. Ce qui semble nous distinguer, ce n'est pas seulement le nombre total de neurones, mais le fait que nous avons réussi à concentrer beaucoup de neurones corticaux dans une taille de cerveau relativement contenue, optimisant ainsi l'efficacité énergétique.Ensuite, ce chiffre relativise l'idée que “plus de neurones = plus d'intelligence”. Le rapport entre les neurones corticaux et la masse corporelle semble plus pertinent pour comprendre nos capacités cognitives uniques. Chez l'humain, ce rapport est exceptionnellement favorable : malgré un corps de taille moyenne, nous disposons d'un cortex riche en neurones spécialisés.En conclusion, le cerveau humain compte environ 86 milliards de neurones, organisés en réseaux d'une complexité vertigineuse. Ce chiffre, corrigé par la science récente, montre que nous ne possédons pas forcément “le plus grand” cerveau du règne animal, mais sans doute l'un des plus ingénieusement câblés, capable de générer langage, culture et conscience. Une preuve supplémentaire que la qualité des connexions importe parfois plus que la quantité brute. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Imaginez que votre cerveau soit une immense bibliothèque. Chaque jour, vous y rangez de nouveaux livres : un souvenir de conversation, une odeur de café, une formule de mathématiques, un visage croisé dans la rue. Alors forcément, une question se pose : peut-on un jour saturer ces étagères ? Le cerveau a-t-il une limite, comme un disque dur qui finirait par afficher “mémoire pleine” ?Elizabeth Kensinger, professeure de psychologie et de neurosciences au Boston College, a passé des années à étudier la mémoire humaine. Sa conclusion est claire : le cerveau ne fonctionne pas comme un ordinateur. Dans ses travaux, notamment avec Andrew Budson, elle explique que la mémoire n'est pas un espace fixe que l'on remplit jusqu'au trop-plein. C'est un système dynamique, où chaque souvenir est découpé en morceaux — une couleur, un son, une émotion — stockés dans différentes zones cérébrales et liés entre eux par l'hippocampe.Alors pourquoi avons-nous parfois l'impression d'être saturés, incapables d'apprendre une chose de plus ? Kensinger insiste : ce n'est pas une question de capacité, mais de conditions d'encodage. Quand nous sommes fatigués, distraits, ou stressés, notre cerveau n'enregistre pas correctement l'information. Le souvenir est flou dès le départ, et il sera plus difficile à retrouver. Autrement dit, ce n'est pas que la bibliothèque manque de place, mais plutôt que certains livres ont été posés à la hâte, mal étiquetés, et deviennent introuvables.Dans ses recherches, Kensinger montre aussi que l'oubli n'est pas un défaut mais une fonction essentielle. Le cerveau trie. Il élimine une partie des détails superflus pour se concentrer sur ce qui compte vraiment. Elle a notamment démontré que les souvenirs chargés d'émotion, surtout négatifs, conservent plus de précision visuelle que les souvenirs neutres. En d'autres termes, notre cerveau sélectionne : il garde intacts certains livres parce qu'ils marquent notre histoire, et laisse s'effacer les anecdotes banales.Alors non, il n'existe pas de “saturation” de la mémoire au sens strict. Nous ne remplissons jamais complètement nos étagères neuronales. Ce que nous ressentons comme une saturation est en réalité de la fatigue cognitive, un déficit d'attention, ou simplement ce mécanisme naturel d'oubli qui libère de l'espace mental.En somme, notre mémoire n'est pas un disque dur limité, mais un organisme vivant. Elle apprend, oublie, reconstruit. Elle n'a pas besoin d'être protégée de la saturation, mais entretenue par le sommeil, l'attention et le sens que nous donnons aux choses. Et c'est justement ce tri qui permet à notre bibliothèque intérieure de rester lisible, même après des décennies d'accumulation. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Imaginez écouter une symphonie, et soudain, chaque note fait jaillir une couleur précise. Un do aigu devient un jaune éclatant, un sol grave se teinte de bleu profond. Pour certaines personnes, cette expérience n'est pas une métaphore poétique mais une réalité neurologique : elles vivent ce que l'on appelle la synesthésie, et plus précisément la chromesthésie, c'est-à-dire la capacité à “voir” la musique en couleur.Ce phénomène intrigant a fasciné aussi bien les artistes que les scientifiques. Contrairement à une simple association d'idées, il s'agit d'une perception automatique et stable dans le temps. Un synesthète qui associe le piano à une lueur dorée percevra cette nuance encore et encore, chaque fois que l'instrument résonnera. Mais pourquoi ce câblage particulier du cerveau existe-t-il chez certaines personnes et pas chez d'autres ?Les neurosciences avancent deux grandes explications. La première est celle de l'hyper-connectivité. Normalement, pendant l'enfance, les connexions neuronales “en trop” entre les différentes aires sensorielles s'élaguent progressivement. Chez les synesthètes, certaines de ces passerelles persistent, notamment entre les zones auditives et la fameuse aire V4, spécialisée dans la perception des couleurs. Résultat : une note de musique active non seulement le cortex auditif, mais déclenche aussi une réponse visuelle colorée. La seconde hypothèse repose sur un mécanisme de rétroaction désinhibée : ici, des régions dites multimodales, qui intègrent plusieurs sens, enverraient un signal visuel à partir d'un stimulus sonore, donnant naissance à ces visions colorées.Une étude emblématique, menée par Ward, Huckstep et Tsakanikos en 2006, a mis ce phénomène à l'épreuve. Les chercheurs ont recruté des personnes synesthètes et les ont comparées à un groupe contrôle. Résultat : quand on leur présentait des sons purs, les synesthètes associaient toujours les mêmes teintes, avec une cohérence remarquable. Mieux encore, leurs couleurs n'étaient pas de simples inventions volontaires : lors de tests de type Stroop, où l'on compare la rapidité de reconnaissance entre couleurs congruentes ou non, leurs réponses montraient que ces perceptions étaient automatiques et pouvaient interférer avec leur attention. Autrement dit, leur cerveau “voit” vraiment la musique.Cette expérience révèle aussi quelque chose d'universel : même les non-synesthètes ont tendance à associer sons aigus et couleurs claires, sons graves et teintes sombres. La différence, c'est que chez la majorité, cette correspondance reste implicite, presque inconsciente, alors que chez les synesthètes elle devient une perception consciente et constante.Ainsi, voir la musique en couleur n'est pas une fantaisie d'artiste, mais le fruit d'un câblage particulier du cerveau. Un croisement sensoriel qui transforme chaque mélodie en une fresque lumineuse, rappelant que notre perception du monde n'est pas figée mais peut varier de façon spectaculaire d'un individu à l'autre. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Le jeûne, et en particulier le jeûne intermittent, ne se contente pas de modifier notre métabolisme : il agit aussi directement sur notre cerveau. Une étude récente, publiée en décembre 2023 dans la revue Frontiers in Cellular and Infection Microbiology, a montré que certaines zones cérébrales s'activent de manière spécifique pendant les périodes de privation alimentaire... Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.