POPULARITY
In der aktuellen Folge spricht Heiko Hilse mit Michael Hinssen, Global Head of HR der Munich Re, darüber, wie HR die Zukunft des Unternehmens aktiv mitgestaltet. In einer Zeit großer Transformationen sind ganz neue Ansätze rund um den „Faktor Mensch“ gefragt, mit einer deutlichen Abstrahlung auf Rolle und Wirksamkeit von HR selbst.
Nach der Einstrahlung betrachten wir heute die Abstrahlung. Eine weitere Messung, die notwendig und wichtig ist. Inhalt der Folge: * Warum strahlen wir ein? * Messmethoden * Ergebnisse erhalten * System robust machen Der Beitrag IF108 – Einstrahlung erschien zuerst auf Ingenieurbüro David C. Kirchner.
✘ Werbung: https://www.Whisky.de/shop/ Kunden werben Tesla-Kunden ► http://ts.la/theresia5687 Link zum Hersteller ► https://blickdicht-manufaktur.de/ Seit November 2013 fahre ich Tesla. Meine ersten beiden Model S hatten jeweils ein #Stahldach mit einem eingesetzten #Stoffhimmel. Heute gibt es bei Tesla ausschließlich nur noch ein #Glasdach. Das sieht ‚ultrageil‘ aus, ist es aber nicht wirklich. Zumindest aus meiner Sicht nicht. Sie haben zwei gravierende #Nachteile, von denen Sie erfahren sollten. Es geht um die verschiedenen Arten des Wärmeverlusts beim Auto. Was dabei physikalisch passiert und was man dagegen machen kann. Disclaimer zu Anfang. Ich habe diese Blickdicht-Matten geschenkt bekommen. Ich erhalte aber keine Provisionen durch Verkäufe. Winterfahrt -6°C ► https://youtu.be/iaThPXr7Vn0 Nachtfrost -21°C ► https://youtu.be/xPEbHZo53Wk Wärmepumpe ► https://youtu.be/eVE8RqmKEUc
Abstrahlung ist meist ein großes Thema bei den Abnahmen einer neuen Baugruppe oder eines neuen Gerätes. Wir werfen heute einen Blick oder besser ein Ohr auf ein paar Phänomene und auch in ein paar Normen. Inhalt der Folge: * Abstrahlung EMV * Normen-Welt * Messungen * Phänomene Der Beitrag IF107 – Abstrahlung erschien zuerst auf Ingenieurbüro David C. Kirchner.
Nächtliche Beleuchtung ist für viele Insekten ein Problem. Forscher am Institut für Gewässerökologie und Binnenfischerei arbeiten zusammen mit Lichttechnikern an der TU Berlin an einem neuen Leuchtendesign, das die Abstrahlung des Lichtes auf der Flughöhe der Insekten vermindert. Maren Schibilsky hat sich das angeschaut.
NeuigkeitenWer das STM32MP157C-DK2 Evaluationsboard gewinnen möchte, kann uns eine Email schreiben an: feedback@kurzschlussjunkies.de Wir melden uns dann bei dem Gewinner. Aus Fehlern lernenBasti hat EMV Probleme mit LAN. Die RGMII Signale sind in der Abstrahlung weit über dem Grenzwert. Er hat aber schon einige Ideen, wie er die Störaussendung beheben kann. Um die Precompliance Messungen zu vereinfachen haben Chris und Basti einen geschirmten Raum mit Hasendraht zugeflickt. Jetzt können da besser nach Störern im Bereich 30 - 1000 MHz gesucht werden. Projekt KnöpfchenspielDas Knöpfchenspiel hat über das letzte Wochenende 400 Spiele gesehen. Dabei sind nur zwei Schalter und eine LED ausgefallen. Das Projekt ist also erfolgreich beendet worden. Jetzt steht es erst einmal im Keller. Projekt SchmartwatchDie Flex-Leiterplatten sind angekommen. Das Löten gestaltet sich aber etwas schwieriger als bei normalen FR4 Boards. Zur Stabilisierung hat Basti die Flex-Leiterplatte auf eine FR4 Leiterplatte geklebt. So ist sie besser handhabbar und kann im Reflow-Ofen gelötet werden. Es gibt eine komplett verlötete Leiterplatte, allerdings ist die Schaltung nicht funktional. Zwischen + und - befindet sich in beide Richtungen eine 0,4V Diodenstrecke. Jetzt versucht Basti es mit einer neuen Siebdruckschablone. Projekt Pick and PlaceChris hat ein Interfaceboard entworfen, dass den 286er ersetzt. Darauf befindet sich ein STM32F4 und der soll mit der Software grbl die Steuerung der Maschine übernehmen. Chris möchte das Board noch mit der originalen Steuerung bestücken. Basti sieht das sehr skeptisch und ist der Meinung, dass die Daten, die die Maschine abspeichert nur im Binärformat auf den Disketten sind. Chris wettet dagegen. Es geht um eine Kiste Bier. Chip der Woche: DRV8323(R)Chris stellt den BLDC Motortreiber vor, der sowohl über Widerstände, als auch SPI konfiguriert werden kann. Der Chip an sich bietet jede Menge Funktionalität unter Anderem: Drei Halbbrücken100% PWM Duty CycleBuckregler mit 60V Input oder LinearreglerIntegrierte Strommessung Für alle Interessierten gibt es die Info hier bei TI: DRV832x
Vom 10. - 13. Mai 2018 fand im ZKM und in der Hochschule für Gestaltung (HfG) die GPN18 statt. Dort traf sich Sebastian mit Dennis Gnad, um mit ihm über Seitenangriffe auf Field Programmable Gate Arrays (FPGA) zu sprechen. FPGAs sind veränderliche Computerchips, die hervorragend bei der Entwicklung von logischen Schaltkreisen oder spezieller Glue Logic helfen, und kommen inzwischen auch als Rechenbeschleuniger zum Einsatz. Man kann FPGAs als Vorstufe zu Application-Specific Integrated Circuits (ASIC) sehen, auf denen Strukturen noch viel feiner, für höhere Taktraten und sparsamer abgebildet werden können, das Design aber um Größenordnungen teurer ist. Und während einem ASIC die Funktion ab Werk einbelichtet ist, können FPGAs nahezu beliebig oft zur Laufzeit umprogrammiert werden. Wie im Podcast zu digitalen Währungen erwähnt, spielen Graphical Process Units (GPUs), FPGAs und ASICs eine große Rolle bei Kryptowährungen. Hier ist ein einzelner FPGA-Chip beim so genannten Mining meisst nicht schneller als eine GPU, verbrauchen jedoch im Vergleich deutlich weniger Strom. Spezialisierte ASICs hingegen übersteigen in Effizienz und Geschwindigkeit alle anderen Lösungen. FPGAs finden sich aktuell in vielen Consumer-Produkten, wie dem Apple iPhone 7, im Samsung Galaxy S5, Smart-TVs und selbst auch der Pebble Smartwatch. Ihren besonderen Vorteil spielen FPGAs bei der Verarbeitung von großen Datenmengen wie Videodaten aus, da sie in der Parallelisierung nur durch den verfügbaren Platz beschränkt sind. Die Beschreibung von FPGAs und ASICs, oder deren Programmierung, erfolgt eher strukturell in Hardwarebeschreibungssprachen wie Verilog oder VHDL. Diese Beschreibungen unterscheiden sich sehr von imperativen Programmiersprachen, wie sie oft für CPUs oder GPUs verwendet werden. Es werden in logischen oder kombinatorischen Blöcken Daten verarbeitet, die dann in Taktschritten von und in Datenregister übertragen werden. Die erreichbare Taktfrequenz hängt von der Komplexität der kombinatorischen Blöcke ab. Ein Beispiel für logische Blöcke können Soft-Cores sein, wo zukünftige oder nicht mehr erhältliche CPU-Designs in FPGAs zur Evaluation oder Rekonstruktion abgebildet werden. Eine Variante ist die Entwicklung in OpenCL, wo verschiedene Architekturen wie GPUs, CPUs und FPGA unterstützt werden. Für die effiziente Umsetzung ist dafür weiterhin großes Hardwarewissen erforderlich, und man kann nicht erwarten, dass Code für FPGAs ebenso auf GPU, oder umgekehrt CPU-Code in FPGAs darstellbar ist. Das Interesse von Dennis Gnad liegt bei den FPGAs darin, deren Daten, Logik oder Inhalte durch Seitenkanalangriffe in von den Entwicklern unvorhergesehener Art und Weise auszulesen. Ein Beispiel ist das Erkennen von Fernsehsendungen aus dem Stromverbrauch des Fernsehgeräts wie es auch schon im Podcast zu Smart Metern beschrieben wurde. Ebenso wurden schon Kryptoschlüssel aus Geräuschen einer CPU bestimmt. Mit Soundkarten kann man Funkuhren verstellen und auch Grafikkarten können als UKW-Sender verwendet werden. Die elektromagnetische Abstrahlung ist ein sehr klassischer Seitenkanal und ist als Van-Eck-Phreaking seit 1985 bekannt. Gerade wurden die Timing- und Speculative-Execution-Covered-Channel-Angriffe Spectre und Meltdown für einen großteil aktueller CPUs bekannt, die aktiv Seitenkanäle für verdeckten Informationszugriff nutzen. Normalerweise benötigen Power-Side-Angriffe, die den Stromverbrauch auswerten, physischen Zugang zum Gerät oder der Stromversorgung. Überraschenderweise ist es auf FPGAs hingegen möglich den Stromverbrauch anderer Schaltungsbestandteile rein durch Software zu bestimmen. Dazu werden FPGAs an der Grenze der Timing-Parameter betrieben, und statistisch die erfolgreiche Ausführung gemessen. Mit verschieden langen Pfaden können auch gleichzeitig die Zeitschranken verschieden stark belastet werden und damit gleichzeitig für mehrere Spannungsstufen ausgewertet werden. Damit kann der relative Spannungsverlauf kontinuierlich gemessen werden. Im Zuge seiner Forschung zu Voltage Fluctuations in FPGAs konnte Dennis Gnad die Qualität der Messungen nachweisen. Für die eigentliche Auswertung der Messungen werden hier die Verfahren der Differential Power Analysis verwendet, die nicht absolute Messungen, sondern mit relativen Messungen den Verlauf oder Unterschiede in den Verläufen statistisch analysieren. Speziell wurden mit dem Pearson Korrelations-Koeffizient verschiedene Schlüssel-Hypothesen mit modellierten Stromverläufen aufgestellt, um den Suchraum für einen kryptographischen AES-Schlüssel jeweils stückweise einzuschränken. Dafür musste die spezielle AES-Implementation auf dem FPGA bekannt sein, um entsprechende Leakage-Modelle für die Korrelationsauswertung aufstellen zu können. Insgesamt wurde so ein rein software-getriebener Angriff auf FPGAs demonstriert, der ohne sehr aufwändiges Code-Review-Verfahren, dessen Umsetzung bei VHDL ohnehin große Fragen aufwirft, kaum zu entdecken ist. Dennis betreibt die Forschung als Doktorand am Chair of Dependable Nano Computing (CDNC) am Karlsruher Institut für Technologie (KIT), deren Forschung besonders auf die Verlässlichkeit und auch der Sicherheit von Computersystemen abzielt. Die Forschungsarbeiten zu Seitenkanälen über den Stromverbrauch haben ebenso Anwendungen für die Zuverlässigkeit von den Systemen, da ebenso mit der Messung auch eine entsprechende Beeinflussung bis zur Erzeugung von Fehlerzuständen möglich wird, wie es von Dennis durch Fehlerzustände in der Stromversorgung zum Neustart von FPGAs demonstriert werden konnte. Mit Stuxnet wurde bekannt, dass auch Industrieanlagen mit Software zerstört werden konnten, es gab aber auch Computermonitore, die kreativ in neue Nutzungszustände gebracht wurden. Literatur und weiterführende Informationen D. Gnad: Seitenkanal-Angriffe innerhalb FPGA-Chips, Vortrag auf der GPN18, Karlsruhe, 2018. F. Schellenberg, D. Gnad, A. Moradi, M. Tahoori: An Inside Job: Remote Power Analysis Attacks on FPGAs, Cryptology ePrint Archive: Report 2018/012, Proceedings of Design, Automation & Test in Europe (DATE), 2018. D. Gnad, F. Oboril, M. Tahoori: Voltage Drop-based Fault Attacks on FPGAs using Valid Bitstreams, International Conference on Field-Programmable Logic and Applications (FPL), Belgium, 2017. A. Moradi, F.-X. Standaert: Moments-Correlating DPA, Cryptology ePrint Archive: Report 2014/409, Theory of Implementations workshop, 2016. P. Kocher, J. Jaffe, B. Jun, et al: Introduction to differential power analysis, J Cryptogr Eng 1: 5, 2011. E. Brier, C. Clavier, F. Olivier: Correlation power analysis with a leakage model, International workshop on cryptographic hardware and embedded systems. Springer, Berlin, Heidelberg, 2004. Cryptology ePrint Archive Search Portal Side Channel Cryptanalysis Lounge - Ruhr-Universität Bochum D. Gnad, F. Oboril, S. Kiamehr, M. Tahoori: An Experimental Evaluation and Analysis of Transient Voltage Fluctuations in FPGAs, in IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2018. F. Schellenberg, D. Gnad, A. Moradi, M. Tahoori: Remote Inter-Chip Power Analysis Side-Channel Attacks at Board-Level], In Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), USA, 2018. (to appear Nov. '18) J. Krautter, D. Gnad, M. Tahoori: FPGAhammer: Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES], in IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), Vol.1, No.3, 2018. (to appear Sept. '18)Podcasts A.-L. Baecker, C. Schrimpe: Crypto for the Masses – Grundlagen, Request for Comments, Der RFC Podcast, Folge 15, 2018. M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. S. Ritterbusch, G. Thäter: Digitale Währungen, Gespräch im Modellansatz Podcast, Folge 32, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. B. Heinz, T. Pritlove: FPGA, CRE: Technik, Kultur, Gesellschaft, Folge 117, Metaebene Personal Media, 2009.GPN18 Special D. Gnad, S. Ritterbusch: FPGA Seitenkanäle, Gespräch im Modellansatz Podcast, Folge 177, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/fpga-seitenkanaele B. Sieker, S. Ritterbusch: Flugunfälle, Gespräch im Modellansatz Podcast, Folge 175, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/flugunfaelle A. Rick, S. Ritterbusch: Erdbebensicheres Bauen, Gespräch im Modellansatz Podcast, Folge 168, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. http://modellansatz.de/erdbebensicheres-bauenGPN17 Special Sibyllinische Neuigkeiten: GPN17, Folge 4 im Podcast des CCC Essen, 2017. A. Rick, S. Ritterbusch: Bézier Stabwerke, Gespräch im Modellansatz Podcast, Folge 141, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/bezier-stabwerke F. Magin, S. Ritterbusch: Automated Binary Analysis, Gespräch im Modellansatz Podcast, Folge 137, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/binary-analyis M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. http://modellansatz.de/smart-meterGPN16 Special A. Krause, S. Ritterbusch: Adiabatische Quantencomputer, Gespräch im Modellansatz Podcast Folge 105, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/adiabatische-quantencomputer S. Ajuvo, S. Ritterbusch: Finanzen damalsTM, Gespräch im Modellansatz Podcast, Folge 97, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/finanzen-damalstm M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/probabilistische-robotik J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/incredible-proof-machine
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Ein bedeutender Teilbereich der Nanomechanik beschäftigt sich mit der Erforschung kleiner, schwingender Systeme, welche aufgrund ihrer geringen Massen auf minimale Umgebungseinflüsse reagieren. Dies macht derartige nanoskalige Resonatoren zu äußerst empfindlichen Sensoren. Die fortschreitende Miniaturisierung nanomechanischer Systeme erfordert nun einerseits die Weiterentwicklung von Antriebs- und Detektionsmechanismen, andererseits spielt die Verbesserung der mechanischen Güte eine zentrale Rolle für die Erhöhung der Empfindlichkeit möglicher sensorischer Anwendungen. Hierfür ist die Untersuchung der Mechanismen, welche die mechanische Dämpfung der Resonatoren verursachen, erforderlich. Um das Dämpfungsverhalten eines beidseitig eingespannten nanomechanischen Siliziumnitridresonators zu untersuchen und zu kontrollieren wird in dieser Arbeit ein Rasterkraftmikroskop (AFM) eingesetzt. Dessen Spitze wird mit dem Resonator in Kontakt gebracht und beeinflusst als lokale Störung kontrolliert das nanomechanische System. Das AFM bildet hierbei einen mechanischen Punktkontakt mit der Aufhängung des Resonators aus, wodurch Schwingungsenergie vom Resonator in die AFM-Spitze abgeleitet wird. Aufgrund der hervorragenden räumlichen Auflösung des Rasterkraftmikroskops ist es somit möglich den ortsaufgelösten Energiefluss zwischen den beiden Systemen zu untersuchen. Hierfür wird die mechanische Resonanz der Siliziumnitridsaite im Radiofrequenzbereich mittels eines heterodynen Überlagerungsverfahrens elektrisch ausgelesen. Die Bewegung des zwischen zwei Goldelektroden platzierten Resonators ruft eine Kapazitätsänderung des durch die Elektroden gebildeten Kondensators hervor. Durch Kopplung an einen Mikrowellenschwingkreis kann diese Kapazitätsänderung ausgelesen werden. Zudem können Gleich- und Wechselspannungen an die Elektroden angelegt werden, wodurch einerseits die Resonanzfrequenz des Resonators verstimmt und andererseits die mechanische Bewegung angetrieben werden kann. Das derart angetriebene nanomechanische System kann nun unter Einfluss der lokalen Störung durch das AFM in positions- und kraftabhängigen Messungen untersucht werden. Es zeigt sich, dass der Energietransfer durch den mechanischen Punktkontakt einen äußerst starken Einfluss auf die mechanische Güte des Siliziumnitridbalkens hat, seine Resonanzfrequenz jedoch nur geringfügig beeinflusst wird. Dies kann durch eine Änderung der mechanischen Impedanzanpassung des Resonators an seine Umgebung erklärt werden. Die Impedanzänderung durch den mechanischen Punktkontakt ermöglicht den Übergang eines stark fehlangepassten nanomechanischen Systems hoher Güte zu einem angepassten System niedriger Güte auf einem einzigen Resonator. Hierbei bleibt die intrinsische Dämpfung des Resonators unverändert und die zusätzlich induzierte Dämpfung kann der Abstrahlung von Vibrationsenergie in die Umgebung zugeschrieben werden. Resonatoren hoher Güte ergeben sich somit als Systeme mit möglichst großer Fehlanpassung der mechanischen Impedanz. Desweiteren kann mit dieser Methode das in den Aufhängepunkt des Resonators hineinreichende Verzerrungsfeld abgebildet werden. Dies ermöglicht die Untersuchung gekoppelter Moden des Resonators sowie deren Modenform.
Elektrosmog ist in aller Munde, meist aber nur im Zusammenhang mit möglichen Gesundheitsproblemen. Hacker interessiert ein anderer Aspekt: die elektromagnetischen Abstrahlungen von Geräten lassen oft Rückschlüsse auf die verarbeiteten Daten zu. Mit anderen Worten: was auf dem Computer privat bleiben sollte, wird nicht selten per Funk an die Welt verteilt. Bekannt geworden ist dieses Phänomen durch den Namen eines amerikanischen Standards zur Abschirmung von Computern: TEMPEST. Wir wollen darüber reden, wie die Abstrahlung zustande kommt, wie man sie empfängt und wie man sich schützen kann.