Podcasts about zwei photonen mikroskopie

  • 2PODCASTS
  • 3EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • Jun 8, 2015LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about zwei photonen mikroskopie

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19

In der vorliegenden Arbeit wurden die Grundlagen für die Zwei-Photonen-Endomikroskopie untersucht. Die Herausforderung liegt in der Miniaturisierung der Technik der Zwei-Photonen-Mikroskopie, um auch endoskopisch in vivo hochauflösende Bilder von Gewebestrukturen und Zellen zu erhalten. Im Gegensatz zur Gewebeentnahme bei einer Biopsie ist dieses optische Verfahren minimal-invasiv. Damit ist eine Vorab Untersuchung des Gewebes möglich, die die Diagnostik unteranderem von bösartigen Gewebestrukturen präzisieren könnte. Die konfokale Endoskopie bietet bereits mit einem vergleichbaren Verfahren die Möglichkeit einer optischen Biopsie an der Oberfläche, z.B. an verschiedenen Schleimhäuten. Aufgrund der Gewebestreuung ist die Eindringtiefe des Lichts dabei aber auf wenige Mikrometer begrenzt. Diese Einschränkung könnte durch die bereits in der Zwei-Photonen-Mikroskopie gezeigte größere optische Eindringtiefe durch die Zwei-Photonen-Endomikroskopie verbessert werden. In dieser Arbeit wurde ein Femtosekundenlaser durch Glasfasern geleitet und am distalen Ende mit Hilfe einer Mikrooptik fokussiert. Dazu wurde ein Aufbau basierend auf Faserbündeln gewählt. Die einzelnen Faserkerne des Glasfaserbündels wurden mit einem Galvanometer-Scanner abgerastert und die dazugehörige detektierte Fluoreszenz punktweise zu einem Bild zusammengesetzt. Zur Kompensation der zeitlichen Verbreiterung der Pulse wurde ein Gitterkompressor aufgebaut. Mit diesem Aufbau wurden Zwei-Photonen-Fluoreszenz Aufnahmen von fluoreszenzstarken Proben durch ein Faserbündel ermöglicht. Diese Arbeit zeigt die Machbarkeit der Zwei-Photonen-Endoskopie und zeigt Möglichkeiten zur Optimierung, um zukünftig auch einen klinischen Einsatz zu ermöglichen. Mit der verwendeten Mikrooptik wurde eine zelluläre Auflösung von (3,5 ± 0,3) μm lateral und (5,3 ± 0,1) μm axial erreicht. Durch die Verwendung eines Referenzsystem aus Mikroskopobjektiven im Austausch der Mikrooptik konnte gezeigt werden, dass vor allem die laterale Auflösung noch verbessert werden konnte. Entscheidend ist hierfür eine hohe distale numerische Apertur. Der zukünftige Einsatz von verbesserten Mikrooptiken kann somit die Auflösung noch erhöhen. Aktuelle Forschungsergebnisse legen nahe, dass diese zukünftig auch kommerziell erhältlich sein könnten. Zusätzlich wurde eine variable Fokussiereinheit auf Basis eines Drahts aus einer Formgedächtnislegierung (Nitinol) realisiert. Damit konnte der Abstand zwischen Mikrooptik und Gewebeoberfläche verstellt werden. Durch Applikation eines maximalen Stromes bis zu 385mA kontrahiert der Nitinoldraht um ca. 1,8%. Ab dem minimalen Aktivierungsstrom von 330 mA konnte ein linearer Zusammenhang zwischen der Stromstärke und der Verschiebung beobachtet werden. Eine Änderung der Stromstärke in Schritten von 16–12 mA. ermöglicht eine Verschiebung von 20–10 μm. Eine Herausforderung ist die Erzeugung und Detektion der Fluoreszenzsignale aus dem Gewebe zur Erzeugung von aussagekräftigen Zwei-Photonen-Bildern. Die Leistungsverluste der Laserenergie im Anregungsweg und die Verluste des Fluoreszenzsignals im Detektionsweg müssen hierfür möglichst gering gehalten werden. Die größten Verluste im Anregungsweg gibt es durch den Gitterkompressor, durch die Fasereinkopplung und durch die Mikrooptik. Trotzdem ist die hier erreichte Gesamttransmission von 18% (λ0 = 800 nm) ohne Gitterkompressor vergleichbar mit der erster Zwei-Photonen-Mikroskope. Durch Optimierung einzelner Komponenten, vor allem des Gitterkompressors und der Mikrooptik, ist zukünftig eine bessere Transmission möglich. Die Erzeugung von Zwei-Photonen-Fluoreszenzsignalen wird auch durch die Pulsverbreiterung innerhalb des Faserbündels verringert. Sowohl lineare als auch nichtlineare Effekte verbreitern spektral und zeitlich die Pulse. Die Untersuchung dieser Effekte konnte zeigen, dass mit Hilfe eines Gitterkompressors die zeitliche Pulsdauer am Faserausgang bis auf ca. 10 fs wiederhergestellt werden konnte und damit die Zwei-Photonen-Fluoreszenzanregung verbessert werden konnte. Trotzdem konnten bereits bei den hier verwendeten Leistungen (5–65 mW) auch nichtlineare Effekte beobachtet werden. Dazu kommt, dass bei höheren Laserintensitäten keine Transmission mehr möglich ist und die Eigenfluoreszenz der einzelnen Fasern des Faserbündels die Fluoreszenzsignale aus dem Gewebe überlagert. Zur Beseitigung der hier gezeigten Limitierungen durch die Mikrooptik und durch das Faserbündel sind weitere Optimierungen nötig um den Einsatz eines Zwei-Photonen-Endoskops in vivo zu ermöglichen. Durch den nichtlinearen Zusammenhang zwischen der Photonenintensität und der Fluoreszenzanregung sind diese Limitierungen gravierender als bei einer normalen Fluoreszenzanregung. Eine Reduzierung der Spitzenintensitäten der Laserpulse bei einem gleichzeitigen Erhöhen der Laserrepetitionsrate könnte zukünftig die nichtlinearen Effekte reduzieren und die effektive Laserleistung am Faserausgang erhöhen.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Untersuchung der strukturellen Plastizität von adult-geborenen Neuronen und deren Synapsen im Riechkolben eines Mausmodells der Parkinsonschen Erkrankung in vivo

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later Jul 9, 2014


Das Protein α-Synuklein (α-SYN) spielt eine kritische Rolle in der Pathogenese des Morbus Parkinson. So wird angenommen, dass die Aggregation dieses Proteins für die Degeneration von dopaminergen Nervenzellen des Mittelhirns und den damit verbundenen motorischen Symptomen verantwortlich ist. Während dieser pathophysiologische Zusammenhang allgemein anerkannt ist, bleibt der Einfluss von α-SYN auf nicht-motorische Systeme des Gehirns und somit auf prämotorische Symptome, wie die häufig früh im Krankheitsverlauf auftretende Riechstörung, relativ unerforscht. Der Riechkolben bildet die erste zentrale Stelle für die Verarbeitung von Geruchseindrücken und stellt eine von wenigen Gehirnregionen mit einer außergewöhnlich hohen neuronalen Plastizität dar, da er kontinuierlich mit neuen adult-geborenen Nervenzellen versorgt wird. Selbst im erwachsenen Gehirn - wenn auch in geringerer Anzahl - wandern in diese Region neuronale Vorläuferzellen aus der subventrikulären Zone (SVZ) und dem rostralen migratorischen Strom (RMS) ein, die in lokale Interneurone ausdifferenzieren und in bestehende Netzwerke integrieren. Dabei bilden neue Nervenzellen funktionelle Synapsen mit bereits vorhandenen Neuronen aus und tragen zur Riechwahrnehmung bei. Aufgrund seiner Funktion an der Synapse könnte α-SYN insbesondere einen Einfluss auf die Reifung und Integration von adult-geborenen Neuronen mit möglichen pathophysiologischen Konsequenzen für den Geruchssinn haben. Um die Plastizität im Riechkolben von transgenen α-SYN Mäusen zu untersuchen, eignet sich besonders die Zwei-Photonen-Mikroskopie, da mit dieser Technik neuronale Strukturen bis hin zu einzelnen Synapsen im intakten neuronalen Netzwerk der lebenden Tiere über mehrere Tage bis Monate verfolgt werden können. Im ersten Teil der Arbeit wurde der Riechkolben des verwendeten Mausmodells histopathologisch und funktionell untersucht. Die transgenen A30P α-SYN Mäuse wiesen pathologische α-SYN Ablagerungen in Mitralzellen auf, und zeigten Störungen in der feinen Geruchsdiskriminierung. Anschließend wurde eine Subpopulation von adult-geborenen Neuronen, dopaminerge periglomeruläre Neurone, die bekannterweise sensibel auf α-SYN reagieren, genetisch markiert. Mittels intravitaler Zwei-Photonen-Mikroskopie wurde der neuronale Umsatz, der kontinuierliche Neugewinn und Verlust an dopaminergen Nervenzellen, in A30P α-SYN und Wildtypmäusen über einen Zeitraum von 2,5 Monaten beobachtet. Dabei wurde kein Unterschied in der Anzahl an Zellen gemessen, die ihren Zielort im Riechkolben erreichen, und möglicherweise in das Netzwerk integrieren. In den transgenen α-SYN Mäusen wiesen diese Neurone jedoch eine signifikant verkürzte Überlebensspanne auf, was insgesamt in einem Nettoverlust an Neuronen in der Glomerulärzellschicht resultierte. Interessanterweise waren von dem Zelluntergang vor allem adult-geborene Neurone, die erst kürzlich ins Netzwerk integrierten, betroffen. Diese Ergebnisse zeigen, dass die frühen Schritte der neuronalen Eingliederung und Differenzierung in einen dopaminergen Phänotyp in A30P α-SYN Mäusen nicht beeinträchtigt sind, sondern vielmehr ihr längerfristiges Fortbestehen und Überleben in dem olfaktorischen Netzwerk. Möglicherweise trägt diese instabile Integration und damit gestörte Homöostase von funktionellen neuen Neuronen zu der verminderten Fähigkeit der Geruchsdiskriminierung in A30P α-SYN Mäusen bei. Um die der Riechstörung zugrunde liegenden pathophysiologischen Veränderungen weiter aufzuklären, wurde im zweiten Teil der Arbeit der Einfluss von aggregations-anfälligem A30P α-SYN auf die strukturelle und funktionelle Entwicklung von Körnerzellen, die 95% der adult-geborenen Neurone darstellen, untersucht. Während die biologischen Eigenschaften und physiologischen Mechanismen von Körnerzellen mit ihrer Rolle bei der Verarbeitung von olfaktorischen Eindrücken weitestgehend aufgeklärt sind, ist nur wenig über die synaptische Funktion und strukturelle Plastizität dieser adult-geborenen Neurone unter pathologischen Bedingungen bekannt. Deshalb wurde im Folgenden die Funktionsweise von adult-geborenen Körnerzellen an dendrodendritischen Synapsen mit stabilen Mitralzellen, die pathologisch verändertes α-SYN akkumulieren, genauer charakterisiert. Diese synaptischen Verbindungen sind von wesentlicher Bedeutung für die Geruchsdiskriminierung. Dazu wurden die gesamten dendritischen Bäume einzelner Nervenzellen mittels zeitlich kodierter lentiviraler Transduktion markiert und chronisch mikroskopiert, wobei einzelne dendritische Spines über mehrere Wochen wiederholt aufgesucht und in hoher Auflösung aufgezeichnet wurden. Adult-geborene Körnerzellen in A30P α-SYN Mäusen waren durch eine reduzierte Komplexität des Dendritenbaumes und eine erniedrigte Spineplastizität, bedingt durch einen verminderten natürlichen Zugewinn an dendritischen Spines während der kritischen Phase der Nervenzellreifung, gekennzeichnet. Dieses Spinedefizit blieb in ausgereiften und integrierten Körnerzellen bestehen. Funktionell waren die unvollständig gereiften Körnerzelldendriten durch eine signifikant verminderte elektrische Kapazität und eine gesteigerte intrinsische Erregbarkeit und Reaktionsfreudigkeit auf depolarisierende Eingangssignale gekennzeichnet, während der Spineverlust mit einer verminderten Frequenz von erregenden postsynaptischen Miniaturströmen (mEPSCs) korrelierte. Die in dieser Arbeit beschriebenen, durch A30P α-SYN vermittelten, Veränderungen der adult-geborenen Neurone wirken sich folglich störend auf die Verarbeitung von olfaktorischen Inputs aus, und könnten deshalb von pathophysiologischer Relevanz für das Verständnis von Riechstörungen in frühen Stadien des Morbus Parkinson sein. Um diesen Veränderungen therapeutisch entgegenzuwirken, wurde den transgenen Mäusen über mehrere Monate eine Substanz mit anti-aggregativen Eigenschaften verabreicht. Diese zeigte keinen therapeutischen Effekt auf das Überleben und die Spinedichte von adult-geborenen Neuronen in A30P α-SYN Mäusen. Insgesamt liefert diese Arbeit neue, fundamentale Einblicke in die A30P α-SYN-abhängige Regulation der strukturellen Plastizität als ein pathophysiologisches Korrelat für Morbus Parkinson.

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Charakterisierung der in vivo Wachstumskinetik amyloider Plaques und der synaptischen Pathologie mit Evaluierung eines immuntherapeutischen Ansatzes in einem Alzheimer-Mausmodell

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06

Play Episode Listen Later Oct 22, 2013


Morbus Alzheimer ist die häufigste Form einer Demenzerkrankung und stellt aufgrund der steigenden Lebenserwartung eine sehr große ökonomische und emotionale Belastung für Patienten, deren Familien und die gesamte Gesellschaft dar. Eine Verringerung dieser Belastung erfordert dringend krankheitsmodifizierende Therapien, die bisher nicht zur Verfügung stehen. Als wahrscheinlichste Erklärung für die molekularen Ursachen der Krankheit wurde in der Amyloid-Kaskaden-Hypothese postuliert, dass die Akkumulation und Aggregation des Abeta-Peptids das zentrale Ereignis darstellt. Infolgedessen kommt es zu synaptischen Beeinträchtigungen durch Abeta-Oligomere, Entzündungsreaktionen durch unlösliche Abeta-Aggregate in Form von amyloiden Plaques, progressiven Schädigungen von Synapsen und Neuronen, oxidativem Stress, der Hyperphosphorylierung des Mikrotubuli-assoziierten Proteins Tau und einem Neuronenverlust. Das Abeta-Peptid wird durch sequentielle Spaltung des Amyloid-Vorläuferproteins (APP) durch die beta- und gamma-Sekretase konstitutiv im Gehirn produziert. In der vorliegenden Arbeit wurden die Auswirkungen der Überexpression eines humanen APP mit der schwedischen Mutation auf Synapsen und die Akkumulationskinetik des Abeta-Peptids zu amyloiden Plaques in einem Alzheimer-Mausmodell (Tg2576) untersucht. Die detaillierte Charakterisierung des Mausmodells wurde in einer Therapiestudie umgesetzt, in der eine passive Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere getestet wurde. Im ersten Teil der Arbeit wurde der Einfluss der Überexpression des APP auf dendritische Spines untersucht, die das postsynaptische Kompartiment glutamaterger Synapsen entlang von Dendriten bilden. Als Reporter-Tiere wurden Mäuse verwendet, die das gelbfluoreszierende Protein YFP in einem Teil der pyramidalen Neuronen des Cortex exprimieren. Mithilfe der in vivo Zwei-Photonen-Mikroskopie wurden die denritischen Spines an den apikalen Dendriten der Schicht II/III und V Neurone im somatosensorischen Cortex analysiert. Die Überexpression des APP führte zu einem differentiellen Effekt, wobei in Schicht II/III Neuronen keine Änderung und in Schicht V Neuronen eine Erhöhung der Dichte dendritischer Spines gemessen wurde. Eine detaillierte Charakterisierung zeigte eine Mehrzahl an stabilen Spines als ursächlich für die erhöhte Spinedichte, während keine zeitliche Änderung der Spinedichte über sechs Wochen detektiert wurde. Auch die Morphologie der dendritischen Spines war unverändert. Diese Ergebnisse deuten auf eine mögliche physiologische Rolle von APP und/oder dessen proteolytische Fragmente an Synapsen. Ein wichtiges neuropathologisches Merkmal von Morbus Alzheimer sind amyloide Plaques, die durch Aggregation des Abeta-Peptids zu Amyloidfibrillen mit einer gekreuzten beta-Faltblattstruktur entstehen. Demzufolge wurde im zweiten Teil der vorliegenden Arbeit mithilfe der in vivo Zwei-Photonen-Mikroskopie, unter der wiederholten Anwendung des spezifischen fluoreszenten Markers Methoxy-X04, die Entstehungs- und Aggregationskinetik amyloider Plaques untersucht. Eine quantitative Auswertung von Plaquegrößen, -wachstumsraten und -dichten in zwei Altersgruppen der frühen und späten amyloiden Pathologie führte zur bisher detailliertesten in vivo Charakterisierung in einem Alzheimer-Mausmodell. Für eine präzise Messung der Plaquedichten wurde ein sehr großes Gehirnvolumen von 3 Kubikmillimeter pro Gruppe untersucht. In einem Langzeitversuch über 15,5 Monate mit einer zeitlichen Auflösung von einer Woche wurde erstmals eine komplette Kinetik des Plaquewachstums in einem Mausmodell beschrieben, die den gleichen Verlauf einer Sigmoid-Funktion aufwies, wie er bereits in vitro und in Alzheimer-Patienten gezeigt wurde. Die Plaquedichte stieg asymptotisch mit dem Alter an und folgte einer exponentiellen, einphasigen Assoziationsfunktion. Neu entstandene Plaques wiesen mit Abstand die kleinste Plaquegröße auf, die mit zunehmendem Alter anstieg. Die lineare Plaquewachstumsrate, gemessen als Zuwachs des Plaqueradius pro Woche, sank mit ansteigendem Alter der Mäuse, was sich in einer negativen Korrelation der Plaquewachstumsrate mit der Plaquedichte widerspiegelte. Sehr große Plaques wurden früh in der Entstehungsphase gebildet und die Größe am Ende der Untersuchung korrelierte mit ihrer Wachstumsrate. In der frühen Phase der Plaqueentwicklung nahmen die Plaques mit einer maximalen Wachstumsrate zu, die nicht durch die Abeta-Konzentration limitiert war. Die Wachstumsraten individueller Plaques waren sehr breit verteilt, was auf einen Einfluss lokaler Faktoren schließen ließ. Dieser Befund wurde gestützt durch den Langzeitversuch, da kein Zusammenhang zwischen den Wachstumsraten benachbarter Plaques detektiert wurde. Die Ergebnisse dieser Studie zeigen ein physiologisches Wachstumsmodell, in dem Plaques sehr langsam über große Zeiträume wachsen bis zum Erreichen eines Äquilibriums. Durch die nachgewiesenen Parallelen zu den Befunden von in vitro Studien und in vivo Ergebnissen von Alzheimer-Patienten stellen die beschriebenen Zusammenhänge eine wertvolle Grundlage für die Translation von Ergebnissen zwischen präklinischer und klinischer Forschung zur Entwicklung von Abeta-senkenden Therapien dar. Im dritten Teil der Arbeit wurden die Effekte einer passiven Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere untersucht. Nach einer zweimonatigen Antikörper-Behandlung wurden keine Unterschiede in der Plaqueentstehungs- und Plaquewachstumskinetik gemessen. Eine in der Literatur beschriebene Akkumulation von Abeta-Oligomeren konnte durch eine in vivo Visualisierung mit einem hochspezifischen Antikörper gegen diese Molekülspezies nicht bestätigt werden. Lösliche Abeta-Peptide oder Abeta-Aggregate akkumulierten erwartungsgemäß um den amyloiden Kern von Plaques. Am Ende der Immunisierungsstudie wurde die synaptische Pathologie mittels immunhistochemischer Färbung der Prä- und Postsynapsen mit den Markern Synapsin und PSD-95 untersucht. Innerhalb amyloider Plaques wurden sehr niedrige Synapsendichten gemessen, die mit zunehmender Entfernung zum Plaque asymptotisch zu einem Plateau anstiegen. Diese Analyse zeigte erstmals, dass der Einflussbereich der toxischen Wirkung amyloider Plaques für Präsynapsen wesentlich größer ist als für Postsynapsen, was auf eine höhere Sensibilität von Präsynapsen schließen lässt. Abseits von Plaques im Cortex waren die Synapsendichten niedriger im Vergleich zu Wildtyptieren, wie durch den Vergleich der Plateaus gemessen wurde. Beide therapeutischen Antikörper zeigten eine partielle Normalisierung der Synapsendichte. Daraus folgt, dass die Abeta-Oligomere ursächlich für die Synapsenpathologie waren, da eine spezifische Neutralisierung dieser Abeta-Aggregate für einen Therapieeffekt ausreichte. Diese Ergebnisse bestätigen in vivo die toxische Wirkung von Abeta-Oligomeren auf Synapsen und beweisen eine mögliche Neutralisierung dieser löslichen Abeta-Aggregate durch eine passive Immunisierung.