POPULARITY
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 17/19
Thu, 22 May 2014 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/17109/ https://edoc.ub.uni-muenchen.de/17109/1/Kretner_Benedikt.pdf Kretner, Benedikt David Patrick ddc:610, ddc:6
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 05/06
Ziel der vorliegenden Arbeit war es, einen neuen Wirkstoff für die Therapie des Morbus Alzheimer zu entwickeln. Morbus Alzheimer ist die häufigste Demenzerkrankung in Deutschland (1). Charakteristisch für diese neurodegenerative Erkrankung ist die zu-nehmende Verschlechterung der kognitiven Leistungsfähigkeit, die mit einem Untergang von Nervenzellen und Synapsen einhergeht. Für die neuropathologische Diagnose des Morbus Alzheimer ist der Nachweis von extrazellulären Aβ-Plaques und intrazellulären versilberbaren Strukturen, den sogenannten neurofibrillären Bündeln (tangles) entscheidend (5). Die Enzyme, die zu der Bildung dieser Aggregate, die im Wesentlichen aus fehlgefalteten körpereigenen Proteinen, dem β-Amyloid bzw. dem Tau-Protein bestehen, beitragen, sind die primären Zielmoleküle in der Wirkstoffentwicklung auf diesem Gebiet in den letzten 20 Jahren gewesen. So wurde eine große Zahl von Wirkstoffen bzw. thera-peutischen Ansätzen identifiziert, die effektiv in vitro und in vivo die Bildung dieser Aggregate inhibieren (1). Die erhofften Effekte auf die alters- und amyloid-abhängigen Defizite bei der Lern- und Gedächtnisleistung konnten durch klinische Studien jedoch nicht belegt werden (73). Eine mögliche Erklärung für den Misserfolg dieser sehr auf-wändigen Studien ist, dass Veränderungen durch Ablagerungen von fibrillärem Aβ bzw. Tau zu irreversiblen Schädigungen führen und somit eine ausschließlich auf Aβ- bzw. Tau fokussierte Therapie nach Ausbruch der Krankheit möglicherweise nicht ausrei-chend ist. Mit den in der Arbeitsgruppe etablierten zellbasierten Assays ist es möglich, Wirkstoffe zu identifizieren, die die Störung der Speicherung von Kalzium im endoplasmatischen Retikulum (ER), einen pathophysiologisch relevanten Mechanismus der Pathogenese des Morbus Alzheimer, modulieren (120). Dieser Ansatz verfolgt somit nicht die seit Jahren praktizierte Strategie, die Aβ- bzw. Tau-Aggregation direkt zu hemmen, sondern der für die Akkumulation dieser Proteine ursächlichen Schädigung von Nervenzellen und deren synaptischen Kontakten entgegenzuwirken. Ziel war es, innovative Wirkstoffe zu entwickeln, die Störungen der zytosolischen Kalziumkonzentration bzw. der Kal-ziumfreisetzung aus dem ER in einer frühen Phase der neuronalen Schädigung normali-sieren. Optimierte Vertreter der neu entdeckten Strukturklasse der Tetrahydrocarbazolamine stabilisieren in der Tat die Kalziumfreisetzung aus dem ER, verbessern den Energiehaushalt der Zelle und verringern die Bildung toxischer Aβ-Peptide. Der genaue Wirkmechanismus der Tetrahydrocarbazolamine konnte in dieser Arbeit jedoch nicht entschlüsselt werden und wird Gegenstand zukünftiger Forschungs-projekte sein müssen. Als mögliches Target bieten sich zum Beispiel IP3-Rezeptoren an. Eine mögliche Interaktion mit diesen könnte dazu führen, dass weniger Kalzium aus dem endoplasmatischen Retikulum in das Zytosol austritt. Die identifizierten Verbindungen haben zusätzlich einen positiven Effekt auf die Aktivität der Mitochondrien, was wiederum zu einer Steigerung der Energiebereitstellung der Zelle führt und einen Effekt auf die Produktion von Aβ-Peptiden hat (56). Auch Kalzium beeinflusst über eine indirekte Hemmung der β-Sekretase die Menge an gebildetem Aβ (157). In Folge dessen wirken Tetrahydrocarbazolamine sehr wahrscheinlich über verschiedene Mechanismen auf die Bildung der toxischen Aβ-Peptide. Eine synergistische Verstärkung ist daher durchaus denkbar. Tetrahydrocarbazolamine besitzen somit eine Wirkung auf drei verschiedene Mechanismen, die bereits zu Beginn der Pathogenese von Morbus Alz-heimer eine wichtige Rolle spielen. Zurzeit befinden sich nach den uns zugänglichen Informationen keine anderen Substanzen in der präklinischen oder klinischen Entwick-lung, die ein ähnlich breites Wirkprofil aufweisen. In den anschließend durchgeführten Therapieversuchen in transgenen Mausmodellen des Morbus Alzheimer konnte allerdings kein Effekt auf die Anzahl und Größe von Plaques festgestellt werden. Dies ist vermutlich vor allem der kurzen Behandlungsdauer zuzuschreiben. Eine längere Behandlung mit gea_133 war auf Grund einer Lebertoxizität, die wahrscheinlich ursächlich für das Sterben der Tiere in der 3. Behandlungswoche war, nicht möglich. Ein zentraler Punkt der zukünftigen Erforschung dieser Substanzklasse wird die Entwicklung und Testung von Derivaten sein, die keine Lebertoxizität aufweisen.
Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 05/06
Morbus Alzheimer ist die häufigste Form einer Demenzerkrankung und stellt aufgrund der steigenden Lebenserwartung eine sehr große ökonomische und emotionale Belastung für Patienten, deren Familien und die gesamte Gesellschaft dar. Eine Verringerung dieser Belastung erfordert dringend krankheitsmodifizierende Therapien, die bisher nicht zur Verfügung stehen. Als wahrscheinlichste Erklärung für die molekularen Ursachen der Krankheit wurde in der Amyloid-Kaskaden-Hypothese postuliert, dass die Akkumulation und Aggregation des Abeta-Peptids das zentrale Ereignis darstellt. Infolgedessen kommt es zu synaptischen Beeinträchtigungen durch Abeta-Oligomere, Entzündungsreaktionen durch unlösliche Abeta-Aggregate in Form von amyloiden Plaques, progressiven Schädigungen von Synapsen und Neuronen, oxidativem Stress, der Hyperphosphorylierung des Mikrotubuli-assoziierten Proteins Tau und einem Neuronenverlust. Das Abeta-Peptid wird durch sequentielle Spaltung des Amyloid-Vorläuferproteins (APP) durch die beta- und gamma-Sekretase konstitutiv im Gehirn produziert. In der vorliegenden Arbeit wurden die Auswirkungen der Überexpression eines humanen APP mit der schwedischen Mutation auf Synapsen und die Akkumulationskinetik des Abeta-Peptids zu amyloiden Plaques in einem Alzheimer-Mausmodell (Tg2576) untersucht. Die detaillierte Charakterisierung des Mausmodells wurde in einer Therapiestudie umgesetzt, in der eine passive Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere getestet wurde. Im ersten Teil der Arbeit wurde der Einfluss der Überexpression des APP auf dendritische Spines untersucht, die das postsynaptische Kompartiment glutamaterger Synapsen entlang von Dendriten bilden. Als Reporter-Tiere wurden Mäuse verwendet, die das gelbfluoreszierende Protein YFP in einem Teil der pyramidalen Neuronen des Cortex exprimieren. Mithilfe der in vivo Zwei-Photonen-Mikroskopie wurden die denritischen Spines an den apikalen Dendriten der Schicht II/III und V Neurone im somatosensorischen Cortex analysiert. Die Überexpression des APP führte zu einem differentiellen Effekt, wobei in Schicht II/III Neuronen keine Änderung und in Schicht V Neuronen eine Erhöhung der Dichte dendritischer Spines gemessen wurde. Eine detaillierte Charakterisierung zeigte eine Mehrzahl an stabilen Spines als ursächlich für die erhöhte Spinedichte, während keine zeitliche Änderung der Spinedichte über sechs Wochen detektiert wurde. Auch die Morphologie der dendritischen Spines war unverändert. Diese Ergebnisse deuten auf eine mögliche physiologische Rolle von APP und/oder dessen proteolytische Fragmente an Synapsen. Ein wichtiges neuropathologisches Merkmal von Morbus Alzheimer sind amyloide Plaques, die durch Aggregation des Abeta-Peptids zu Amyloidfibrillen mit einer gekreuzten beta-Faltblattstruktur entstehen. Demzufolge wurde im zweiten Teil der vorliegenden Arbeit mithilfe der in vivo Zwei-Photonen-Mikroskopie, unter der wiederholten Anwendung des spezifischen fluoreszenten Markers Methoxy-X04, die Entstehungs- und Aggregationskinetik amyloider Plaques untersucht. Eine quantitative Auswertung von Plaquegrößen, -wachstumsraten und -dichten in zwei Altersgruppen der frühen und späten amyloiden Pathologie führte zur bisher detailliertesten in vivo Charakterisierung in einem Alzheimer-Mausmodell. Für eine präzise Messung der Plaquedichten wurde ein sehr großes Gehirnvolumen von 3 Kubikmillimeter pro Gruppe untersucht. In einem Langzeitversuch über 15,5 Monate mit einer zeitlichen Auflösung von einer Woche wurde erstmals eine komplette Kinetik des Plaquewachstums in einem Mausmodell beschrieben, die den gleichen Verlauf einer Sigmoid-Funktion aufwies, wie er bereits in vitro und in Alzheimer-Patienten gezeigt wurde. Die Plaquedichte stieg asymptotisch mit dem Alter an und folgte einer exponentiellen, einphasigen Assoziationsfunktion. Neu entstandene Plaques wiesen mit Abstand die kleinste Plaquegröße auf, die mit zunehmendem Alter anstieg. Die lineare Plaquewachstumsrate, gemessen als Zuwachs des Plaqueradius pro Woche, sank mit ansteigendem Alter der Mäuse, was sich in einer negativen Korrelation der Plaquewachstumsrate mit der Plaquedichte widerspiegelte. Sehr große Plaques wurden früh in der Entstehungsphase gebildet und die Größe am Ende der Untersuchung korrelierte mit ihrer Wachstumsrate. In der frühen Phase der Plaqueentwicklung nahmen die Plaques mit einer maximalen Wachstumsrate zu, die nicht durch die Abeta-Konzentration limitiert war. Die Wachstumsraten individueller Plaques waren sehr breit verteilt, was auf einen Einfluss lokaler Faktoren schließen ließ. Dieser Befund wurde gestützt durch den Langzeitversuch, da kein Zusammenhang zwischen den Wachstumsraten benachbarter Plaques detektiert wurde. Die Ergebnisse dieser Studie zeigen ein physiologisches Wachstumsmodell, in dem Plaques sehr langsam über große Zeiträume wachsen bis zum Erreichen eines Äquilibriums. Durch die nachgewiesenen Parallelen zu den Befunden von in vitro Studien und in vivo Ergebnissen von Alzheimer-Patienten stellen die beschriebenen Zusammenhänge eine wertvolle Grundlage für die Translation von Ergebnissen zwischen präklinischer und klinischer Forschung zur Entwicklung von Abeta-senkenden Therapien dar. Im dritten Teil der Arbeit wurden die Effekte einer passiven Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere untersucht. Nach einer zweimonatigen Antikörper-Behandlung wurden keine Unterschiede in der Plaqueentstehungs- und Plaquewachstumskinetik gemessen. Eine in der Literatur beschriebene Akkumulation von Abeta-Oligomeren konnte durch eine in vivo Visualisierung mit einem hochspezifischen Antikörper gegen diese Molekülspezies nicht bestätigt werden. Lösliche Abeta-Peptide oder Abeta-Aggregate akkumulierten erwartungsgemäß um den amyloiden Kern von Plaques. Am Ende der Immunisierungsstudie wurde die synaptische Pathologie mittels immunhistochemischer Färbung der Prä- und Postsynapsen mit den Markern Synapsin und PSD-95 untersucht. Innerhalb amyloider Plaques wurden sehr niedrige Synapsendichten gemessen, die mit zunehmender Entfernung zum Plaque asymptotisch zu einem Plateau anstiegen. Diese Analyse zeigte erstmals, dass der Einflussbereich der toxischen Wirkung amyloider Plaques für Präsynapsen wesentlich größer ist als für Postsynapsen, was auf eine höhere Sensibilität von Präsynapsen schließen lässt. Abseits von Plaques im Cortex waren die Synapsendichten niedriger im Vergleich zu Wildtyptieren, wie durch den Vergleich der Plateaus gemessen wurde. Beide therapeutischen Antikörper zeigten eine partielle Normalisierung der Synapsendichte. Daraus folgt, dass die Abeta-Oligomere ursächlich für die Synapsenpathologie waren, da eine spezifische Neutralisierung dieser Abeta-Aggregate für einen Therapieeffekt ausreichte. Diese Ergebnisse bestätigen in vivo die toxische Wirkung von Abeta-Oligomeren auf Synapsen und beweisen eine mögliche Neutralisierung dieser löslichen Abeta-Aggregate durch eine passive Immunisierung.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 13/19
Alzheimer´s disease is characterized by brain deposition of extracellular amyloid β-peptide containing plaques. The cellular site of γ-secretase activity, which releases amyloid β-peptide and the corresponding APP intracellular domain (AICD) remains controversial. Proposed cleavage sites range from the endoplasmic reticulum, the Golgi apparatus, the cell surface to endosomal compartments. We now used C99-GFP, a fluorescent reporter substrate for γ-secretase activity and monitored AICD production in living cells. C99-GFP is efficiently cleaved by γ-secretase and AICD-GFP is released into the cytosol. Inhibiting γ-secretase results in accumulation of C99-GFP in early endosomes. By blocking selective transport steps along the secretory pathway we demonstrate that γ-secretase does not cleave its substrates in the endoplasmic reticulum, the Golgi/trans-Golgi network or in secretory vesicles. In contrast, inhibition of endocytosis did not inhibit cleavage of C99-GFP. Similar results were obtained for another γ-secretase substrate, NotchΔE. Our results suggest that intracellular domains are generated by γ-secretase at the plasma membrane and/or early endosomes.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 12/19
Proteolytic processing of the amyloid precursor protein (APP) by α-secretase prevents the formation of the amyloid β-peptide (Aβ), which is the main constituent of amyloid plaques in brains of Alzheimer's disease (AD) patients. In AD α-Secretase activity is decreased, and overexpression of the α-secretase ADAM10 (a disintegrin and metalloprotease 10) in an AD animal model prevents amyloid pathology. ADAM10 features a 444-nucleotide-long, very GC-rich 5′-untranslated region (5′UTR) with two upstream open reading frames. Because similar properties of 5′UTRs are found in transcripts of many genes, which are regulated by translational control mechanisms, we asked whether ADAM10 expression is translationally controlled by its 5′UTR. Here we demonstrate that the 5′UTR of ADAM10 represses the rate of ADAM10 translation. In the absence of the 5′UTR, we observed a significant increase of ADAM10 protein levels in HEK293 cells, whereas mRNA levels were unchanged. Moreover, the 5′UTR of ADAM10 inhibits translation of a luciferase reporter in an in vitro-transcription/-translation assay. Successive deletion of the first half of the ADAM10 5′UTR revealed a striking increase in ADAM10 protein expression in HEK293 cells, suggesting that this part of the 5′UTR contains inhibitory elements for translation. In contrast, the deletion of the 3'-part of the 5'UTR led to significantly reduced protein levels. Thus, we provide evidence that the 5′UTR of ADAM10 may have an important role for post-transcriptional regulation of ADAM10 expression. Therefore these findings might be of significant importance for future research in Alzheimer's disease and the development of novel therapeutic strategies of this devastating disorder.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19
Die γ-Sekretase ist eine in essentieller Weise an der Produktion des Amyloid-β-Peptids beteiligte Aspartylprotease, welches durch proteolytische Spaltung des Amyloid-Vorläufer-Proteins (Amyloid Precursor Protein, APP) entsteht. Amyloid-β stellt die Hauptkomponente der amyloiden Plaques im Gehirn von Alzheimer-Patienten dar und spielt bei der Entstehung der Alzheimer-Demenz eine entscheidende Rolle. Die γ-Sekretase ist ein Proteinkomplex, für dessen Funktionalität die vier Komponenten Presenilin (PS), Nicastrin (Nct), Aph1 und Pen2 hinreichend und notwendig sind. Im endoplasmatischen Retikulum (ER) werden die einzelnen Untereinheiten vollständig assembliert, nach dem Austritt aus dem ER kommt es zur katalytischen Aktivierung des γ-Sekretase-Komplexes. Die Substratprozessierung durch den nun aktiven Komplex findet in endolysosomalen Kompartimenten und an der Plasmamembran statt. Nicht vollständig assemblierte Teilkomplexe und einzelne Komponenten werden im ER zurückgehalten und erreichen nicht die nachgeschalteten Kompartimente. Diese Beobachtungen legen nahe, dass eine mögliche Regulation der Aktivität des Enzyms eng mit der Regulation von Assemblierung und Transport des Komplexes verknüpft ist. Um mechanistisch zu erklären, weshalb ausschließlich der vollständig assemblierte Komplex in der Lage ist, das ER zu verlassen, wurde von der Arbeitsgruppe ein Modell vorgeschlagen, demzufolge die einzelnen nicht assemblierten Untereinheiten mittels Retentionssignalen im ER zurückgehalten werden, bis diese im Rahmen der Assemblierung durch die Bindung an andere Untereinheiten maskiert werden. In der vorliegenden Arbeit wird unter Verwendung von Reporterkonstrukten bzw. chimären Fusionsproteinen mittels konfokaler Mikroskopie und Proteinbiochemie gezeigt, dass nicht assembliertes Pen2 im ER zurückgehalten wird und dass diese Retention durch ein neuartiges Retentionssignal in der ersten Transmembrandomäne (TM1) vermittelt wird. Insbesondere ist ein konservierter Asparaginrest innerhalb dieser Sequenz für die Retention erforderlich. Auch wird mittels knock down- und rescue-Experimenten gezeigt, dass die Pen2-TM1 essentiell für die korrekte Assemblierung und enzymatische Aktivität der γ-Sekretase ist. Diese Arbeit bestätigt damit das vorgeschlagene Modell für die Transportregulation des γ-Sekretase-Komplexes bezüglich seiner Untereinheit Pen2 und gibt starke Anhaltspunkte dafür, dass dieser Mechanismus für eine korrekte Funktionalität des Komplexes erforderlich ist.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Ektodomänenspaltung und Intramembranproteolyse des Amyloiden Vorläufer Proteins (APP) durch Alpha-, Beta- und gamma-Sekretase sind in die Pathogenese der Alzheimer Erkrankung (AD) involviert. Eine vermehrte proteolytische Prozessierung und Sekretion eines anderen Membranproteins, des Typ II Interleukin-1 Rezeptors (IL-1R2) wurde mit der Pathogenese der Alzheimer Erkrankung in Verbindung gebracht. IL-1R2 ist ein Abfangrezeptor, welcher vermutlich in der Lage ist, die schädlichen Effekte von Interleukin-1 im Gehirn zu begrenzen. Bis jetzt ist die proteolytische Prozessierung von IL-1R2 nur wenig verstanden. In dieser Arbeit wird gezeigt, dass IL-1R2 ähnlich wie auch APP prozessiert wird. In humanen embryonalen Nierenzellen (HEK293) exprimiertes IL-1R2 unterläuft zuerst eine Spaltung der Ektodomäne durch eine Metalloprotease, was zur Freisetzung der Ektodomäne und einem in der Membran verbleibenden C-terminalen Fragment führt. Dieses Fragment wird durch Intramembranproteolyse des Gamma-Sekretase-Komplexes in eine intrazelluläre Domäne (ICD) gespalten. Die Intramembranproteolyse von IL-1R2 konnte durch einen hochspezifischen Gammasekretase-Inhibitor gehemmt werden und fehlte in Gamma-Sekretase-defizienten embryonalen Mausfibroblasten. Überraschenderweise erhöhen die Beta-Sekretase BACE1 und ihr Homolog BACE2 die Sekretion von IL-1R2, welche zu ähnlich großen C-terminalen Fragmenten wie auch bei der Alpha-Spaltung von IL-1R2 führen. Dies könnte bedeuten, dass beide Proteasen als alternative Alpha-Sekretasen agieren könnten. Darüber hinaus werden zahlreiche andere Membranproteine, die in dieser Arbeit untersucht wurden, nicht durch BACE1 und BACE2 geschnitten, was zeigt, dass beide Proteasen nicht am generellen Membranproteinumsatz beteiligt sind. Diese Arbeit zeigt, dass Il-1R2 und APP eine ähnliche proteolytische Prozessierung durchlaufen. Dies könnte somit eine Erklärung für die erhöhte Sekretion von IL-1R2 im Rahmen der Alzheimer Erkrankung sein.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Obwohl seit der erstmaligen Beschreibung der Alzheimer-Erkrankung vor über 100 Jahren eine Vielzahl der ursächlichen histopathologischen Veränderungen und der beteiligten molekularen Mechanismen erforscht werden konnte, ist noch unklar, welche Faktoren die Spaltung des ß-Amyloid Vorläuferproteins (APP) beeinflussen und zu der pathologischen ß-Amyloid (Aß) Bildung und Aggregation führen. In zahlreichen Studien ergaben sich Hinweise, dass Cholesterin einen wichtigen Modulator der Alzheimer-Erkrankung darstellt. Zusammen mit Sphingolipiden bildet Cholesterin laterale Membrandomänen, sogenannte Lipid Rafts, die bei der Bildung der ß-Amyloid Plaques entscheidend beteiligt sein könnten. In der vorliegenden Arbeit wurde die Struktur dieser Domänen spezifisch verändert. Durch Transfektion mit dem Scavenger Rezeptor Klasse B Typ I (SR-BI) der die selektive Cholesterin- und Phospholipidaufnahme in die Zelle erhöht, wurden neue Lipid Rafts generiert und bestehende Domänen vergrößert. SR-BI induzierte eine Abnahme des von der α-Sekretase gespaltenen APP, sowie eine Zunahme des von der ß-Sekretase gespaltenen APP. Gleichzeitig kam es zu einem Anstieg der Menge des Aß-Peptids. Somit wurde gezeigt, dass ein Anstieg der Cholesterin-reichen Membrandomänen zu einer Abnahme der α-Sekretase Spaltung, einer Erhöhung der ß-Sekretase Spaltung und einer Zunahme der pathologischen ß-Amyloid Bildung führt. Während APP in Wildtyp-Zellen nahezu ausschließlich in DSM lokalisiert war, kam es durch die SR-BI Expression zu einer Translokation in DRM, die weitgehend Lipid Rafts repräsentieren. In den DRM konnte BACE damit mit APP interagieren. Um das subzelluläre Kompartiment zu identifizieren, an dem die APP-Spaltung stattfinden könnte, wurde mit Hilfe der Konfokalen Laserscanmikroskopie die intrazelluläre Verteilung von APP und BACE vor und nach SR-BI Expression untersucht. Nach SR-BI Transfektion war die Kolokalisation von APP und BACE in der Umgebung der Zellmembran deutlich verstärkt. Zusammen mit früheren Arbeiten lassen diese Ergebnisse vermuten, dass die verstärkte APP-Prozessierung durch Induktion Cholesterin-reicher Domänen vorwiegend submembranös (Early Endosomes) und auf der Ebene der Plasmamembran stattfindet. Ob eine medikamentöse oder diätetische Cholesterin-Reduzierung, die den Lipid Raft Anteil der Zelle senkt und somit die Interaktion von APP mit BACE verhindert, als Therapiemöglichkeit für die Alzheimer-Erkrankung in Frage kommt, bedarf noch weiterer intensiver Forschung.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 10/19
Die Alzheimer-Krankheit (AD), die häufigste Form der Demenz, manifestiert sich klinisch meist ab dem 65. Lebensjahr mit langsam progredienten Gedächtnis-, Orientierungs- und Aufmerksamkeitsstörungen. Neuropathologische Korrelate sind die Amyloid-Plaques, die hauptsächlich aus extrazellulären Aggregaten des β-Amyloid-Proteins (Aβ) zusammengesetzt sind, und intrazelluläre neurofibrilläre Bündel, die aus Aggregaten des mikrotubulus-assoziierten Proteins Tau bestehen. Der „Auslöser“ der Alzheimer-Krankheit ist das β-Amyloid-Protein (Amyloid-Kaskaden-Hypothese), welches durch proteolytische Prozessierung von βAPP (β-Amyloid-Vorläufer-Protein) entsteht. Dies geschieht, indem zuerst BACE-1 (β-site APP cleaving enzyme 1) und anschließend der γ-Sekretase-Komplex βAPP schneiden. Menschen mit Down-Syndrom (DS), welches die häufigste autosomale Chromosomenaberration darstellt, entwickeln bereits ab einem Alter von 40 Jahren die typischen neuropathologischen Kennzeichen der Alzheimer-Krankheit und zeigen mit einem Durchschnittsalter von 56 Jahren die klinischen Symptome der Demenz. Die Gründe für das frühe Auftreten der Amyloid-Plaques sind noch nicht vollständig geklärt. Das Gen für βAPP befindet sich auf dem Chromosom 21, welches im DS dreifach vorhanden ist, und wird daher mit der frühen Plaque-Pathologie im Down-Syndrom in Zusammenhang gebracht. BACE-1 konnte durch Überexpressions- und Knock-out-Experimente eindeutig als alleinige β-Sekretase identifiziert werden. In Gehirnen von Alzheimer-Demenz-Patienten konnten im Vergleich zu Kontrollgehirnen erhöhte BACE-1-Proteinmengen und BACE-1-Aktivitäten nachgewiesen werden. Es war deshalb interessant zu untersuchen, ob auch im Gehirn von Down-Syndrom-Patienten die BACE-1-Proteinexpression erhöht ist. Durch eine Hochregulation von BACE-1 im Down-Syndrom könnte vermehrt βAPP prozessiert und somit Aβ gebildet werden. Daher war es das Ziel der vorliegenden Arbeit die Expression von BACE-1 in Gehirnen (Temporal- und Frontallappen) von DS-Patienten im Vergleich zu Kontrollgehirnen zu analysieren. In der Western-Blot-Analyse der Gewebeproben konnte gezeigt werden, dass die BACE-1-Proteinmengen im Down-Syndrom im Vergleich zu den Kontrollen (K) 1,4-fach erhöht waren. Die Proteinexpressionen von βAPP zeigten sich im DS im Vergleich zu den Kontrollen 1,4-fach erhöht. Diese Ergebnisse erzielten keine Signifikanz, zeigten aber deutliche Trends im Expressionsverhalten. Dies könnte auf die Anzahl der untersuchten Gehirne (Temporal- und Frontallappen je 3 DS, 4 AD und 5 K), Qualitätsmängel der Gehirnproben oder einer ungleichen Verteilung der Proteinexpression im Gewebe zurückzuführen sein. Es ist daher notwendig mehr Gehirne zu untersuchen. Zudem wäre es interessant in Gehirnschnitten das Verteilungsmuster der BACE-1-Expression im DS genauer zu studieren. Die Ergebnisse deuten jedoch auf eine Hochregulation von BACE-1 im DS-Gehirn und somit auf eine Beteiligung der Protease an der Plaquepathologie des Down-Syndroms hin. BACE-1 scheint also sowohl in der Pathogenese der Alzheimer-Demenz als auch in der des Down-Syndroms eine zentrale Rolle einzunehmen. Daher ist es sehr interessant die Regulation von BACE-1 weiter zu analysieren. Da in p25-überexprimierenden Mäusen erhöhte BACE-1-Proteinexpressionen gezeigt werden konnten, vermutete man eine Beteiligung von p25 an der Regulation der β-Sekretase. p25, das im Gehirn der AD-Patienten vermehrt gebildet wird und aus der Proteolyse von p35 entsteht, bindet und aktiviert die Kinase cdk5. cdk5 phosphoryliert unter anderem das Tau-Protein und wird daher mit der Bildung der neurofibrillären Bündel in Zusammenhang gebracht. Durch die Hochregulation von BACE-1 könnte p25 in der Pathogenese der Alzheimer-Erkrankung eine neue Bedeutung zugeschrieben werden. Zur Analyse der p25 induzierten Veränderungen in den Neuronen wurden humane Neuroblastomazellen mit einem induzierbaren p25-Expressionsvektor, Sp25-Zellen, verwendet. In diesen p25-überexprimierenden Zellen konnten sowohl in der Western-Blot-Analyse als auch in der BACE-1-Aktivitätsmessung erhöhte BACE-1-Proteinexpressionen bzw. BACE-1-Aktivitäten gezeigt werden. Die Northern-Blot-Analyse der Sp25-Zellen ergab erhöhte BACE-1-mRNA-Spiegel, die sich jedoch in einer für endogene BACE-1-mRNA untypische Größe detektieren ließen. p35, das membrangebundene Vorläufer-Protein von p25, war indes nicht in der Lage die BACE-1-Proteinexpression in humanen Neuroblastomazellen zu erhöhen. Die Ergebnisse der Sp25-Zellen konnten in p25-überexprimierenden murinen Neuroblastomazellen, Np25-Zellen, nicht reproduziert werden. Daher ist es notwendig, den p25-induzierten BACE-1-Regulationsmechanismus auf seine Reproduzierbarkeit, z.B. in weiteren In-vivo-Modellen, zu überprüfen.
Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 05/19
Die gamma-Sekretase ist ein Proteasekomplex, der aus vier Komponenten, Presenilin (PS), Nicastrin (NCT), APH-1 und PEN-2, besteht und der die intramembranöse Prozessierung verschiedener Typ I Transmembranproteine, einschliesslich des Alzheimer-assoziierten beta-Amyloid Vorläuferproteins, katalysiert. In der vorliegenden Arbeit wurden stabile PEN-2 RNAi-Knockdown Zellen (PEN-2KD) dazu verwendet, um Hinweise auf die Funktion von PEN-2 bei der Assemblierung und Reifung des gamma-Sekretasekomplexes, die Rolle von PEN-2 im aktiven Komplex und für die gamma-Sekretaseaktivität zu erhalten. Zusätzlich wurden, vor dem Hintergrund des PEN-2KD, RNAi-resistente PEN-2 Varianten analysiert, die in einer Struktur- /Funktionsanalyse auf ihre Fähigkeit hin untersucht wurden, den Defekt des PEN- 2KD aufzuheben, um damit funktionell wichtige Domänen im PEN-2 Protein zu identifizieren. Der Knockdown von PEN-2 war mit gestörter Reifung von NCT und blockierter PS Endoproteolyse assoziiert. PS akkumulierte als Vollängenprotein (PSholo), das durch Komplexbildung mit NCT und APH-1 stabilisiert wurde. In Abwesenheit von PEN-2 können PS, NCT und APH-1 zu einem trimeren Komplex assemblieren, PEN- 2 ist danach allerdings notwendig, um die Reifung des gamma-Sekretasekomplexes durch Initialisierung der PS Endoproteolyse einzuleiten. Interessanterweise bewirkte der Knockdown von PEN-2 auch in Endoproteolyse defizienten SwAPP/PS1 deltaExon9 Zellen einen Defekt in der Reifung von NCT. Dies schlägt eine generelle Rolle von PEN-2 bei der Reifung und für die Aktivität der gamma-Sekretase vor, die unabhängig von der PS Endoproteolyse ist. Die Defekte des PEN-2KD konnten effektiv durch RNAi-resistentes wt-PEN-2 revertiert werden. In der folgenden Struktur-/Funktionsanalyse erwies sich am N-Terminus mit einem Epitop-tag verlängertes PEN-2 als voll funktionell, wohingegen sowohl die Verlängerung des C-Terminus mit einem tag, als auch eine Trunkierung des C-Terminus (PEN-2 deltaC) defekte PEN-2 Varianten hervorrief. Diese konnten zwar die Akkumulation von PSholo, die mit dem Knockdown von PEN-2 assoziiert war ausgleichen, konnten aber weder normale Spiegel an PS-NTF und -CTF herstellen, noch für eine Reifung von NCT sorgen. PEN-2 deltaC war sehr instabil und wurde schnell vom Proteasom abgebaut, was mit der Unfähigkeit einen stabilen gamma-Sekretasekomplex zu bilden konsistent war. Zusätzlich verursachte die Expression von PEN-2 deltaC eine selektive Instabilität des PS-NTF/-CTF Heterodimers, das ebenfalls vom Proteasom abgebaut wurde, wohingegen NCT und APH-1 stabil blieben. Der C-Terminus von PEN-2 ist nicht für die Einleitung der PS Endoproteolyse notwendig. Danach wird er allerdings benötigt um die entstandenen PS Fragmente und PEN-2 selbst im Komplexzu stabilisieren. Um den PEN-2 C-Terminus genauer zu untersuchen, wurden unterschiedliche Deletionen und Mutationen mehrerer konservierter Aminosäuren, im PEN-2KD auf funktionelle Aktivität hin analysiert. Progressive Verkürzung des C-Terminus bewirkte einen zunehmenden Funktionsverlust. Dieser wurde auch bei einer internen Deletion oder der groben Verdopplung der Länge durch einen Epitop-tag beobachtet. Interessanterweise störte nur die kombinierte, nicht aber die einzelne Mutation der konservierten Aminosäuren D90, F94, P97 und G99 die Funktion von PEN-2. Alle funktionslosen Mutanten erlaubten zwar die PS Endoproteolyse, die PS Fragmente und PEN-2 selbst waren aber instabil und wurden durch das Proteasom abgebaut. Länge und gesamter Sequenzkontext des PEN-2 C-Terminus sind also, in der engen räumlichen Anordnung der Komplexpartner, für die Stabilisierung des PS-NTF/- CTF Heterodimers und von PEN-2 selbst im gamma-Sekretasekomplex notwendig. Die Interaktion der C-terminalen PEN-2 Mutanten mit den PS Fragmenten und den anderen beiden Komplexpartnern konnte allerdings unter Bedingungen, wo der proteasomale Abbau blockiert war, wiederhergestellt werden. Somit wurde ein Komplex aus allen vier essentiellen gamma-Sekretasekomponenten stabilisiert und isoliert, der zwar vollständig assembliert, aber noch nicht komplett gereift war. Dieser prämature Komplex zeigte noch keine gamma-Sekretaseaktivität, für welche sowohl die vollständige Assemblierung der Komponenten, als auch deren komplette Reifung essentiell sind. Zusammenfassend schlagen die vorliegenden Daten folgende Funktionen für PEN- 2 im gamma-Sekretasekomplex vor: PEN-2 wird für die Reifung des gamma-Sekretasekomplexes und die Einleitung der PS Endoproteolyse benötigt. Darüber hinaus stabilisiert PEN-2 die, durch die Endoproteolyse entstandenen PS Fragmente im Komplex. Für letztere Funktion ist ein in Länge und Gesamtsequenzkontext intakter C-Terminus wichtig, der allerdings für die Einleitung der PS Endoproteolyse nicht benötigt wird. Unabhängig von der Rolle bei der PS Endoproteolyse ist PEN-2 aber generell für die Reifung und Aktivität des gamma-Sekretasekomplexes wichtig.
Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Die Inhibition der b-Sekretase stellt derzeit einen vielversprechenden Ansatz zur Therapie der Alzheimer Krankheit dar. Der Hauptanteil der b-Sekretase Aktivität ist auf BACE-1, eine neuartige membrangebundene Typ I Aspartylprotease, zurückzuführen. Um gezielt spezifische und wirksame Inhibitoren entwickeln zu können, ist es notwendig, die Eigenschaften und katalytischen Spezifitäten der Protease genauer zu verstehen. Da neben BACE-1 eine weitere hochgradig homologe Aspartylprotease, BACE-2, bekannt ist, ist es für die Suche nach Inhibitoren ferner von Bedeutung, charakteristische Unterschiede zwischen den beiden Enzymen zu kennen, um mögliche Kreuzreaktionen der Inhibitoren minimieren zu können. Ziel dieser Arbeit war es deshalb, die beiden Enzyme bezüglich ihrer posttranslationalen Modifikationen und insbesondere ihrer katalytischen Spezifitäten vergleichend zu analysieren. Als Modell für die durchgeführten Experimente dienten HEK293 Zellen, mit exogener Expression der beiden Proteasen, sowie dem Substrat bAPP. Beide Proteine werden in ähnlicher Weise durch die kovalente Bindung komplexer Kohlehydrateinheiten modifiziert. Matures BACE-1 besitzt im Vergleich zu BACE-2 eine eine längere Halbwertszeit. In vitro werden beide Enzyme durch CK1 an homologen Serinen in der zytoplasmatischen Domäne phosphoryliert. Während für BACE-2 bisher nicht schlüssig gezeigt werden konnte, dass auch in vivo eine Phosphorylierung erfolgt, wurde für BACE-1 S498 auch als Phosphorylierungsstelle in vivo bestätigt. Mittels Biotinylierung konnte demonstriert werden, dass beide BACE-Proteasen effizient an die Zelloberfläche transportiert werden. Im Gegensatz zu BACE-1, welches rasch in endosomale Kompartimente reinternalisiert wird und phosphorylierungsabhängig zurück zum TGN transportiert wird, wird BACE-2 entweder durch Spaltung der Ektodomäne in den extrazellulären Raum sezerniert, oder aber unmittelbar nach der Reinternalsierung ins Zellinnere in lysosomalen Kompartimenten abgebaut. Dieser Unterschied begründet vermutlich die unterschiedlichen Halbwertszeiten der beiden Proteine und erhöht gleichzeitig die Gesamtverweildauer von BACE-1 in endosomalen Kompartimenten, die aufgrund ihres pH-Wertes günstige Bedingungen für die proteolytische Aktivität des Enzyms schaffen. Hinsichtlich der katalytischen Spezifität bezüglich des membrangebundenen bAPP unterscheiden sich BACE-1 und BACE-2 grundlegend. Während BACE-1 die erwarteten b-Sekretase Spaltungen an Asp1 und Glu11 der Ab-Domäne katalysiert, spaltet BACE-2 vorzugsweise zwischen Phe19 und Phe20 der Ab-Domäne, wodurch Spaltprodukte entstehen, die denen der a-Sekretase Spaltung ähneln. Durch Koexpression der beiden Enzyme konnte gezeigt werden, dass BACE-2 die BACE-1 abhängige Prozessierung des Substrates direkt oder indirekt beeinflussen kann. Die Behandlung der entsprechenden Zelllinien mit BFA oder Monensin belegt, dass BACE-1 bereits in den frühen Kompartimenten des sekretorischen Prozessierungsweges proteolytisch aktiv sein kann, während BACE-2 auch nach exogener Expression keine Aktivität in diesen Kompartimenten zeigt. Mit Hilfe massenspektrometrischer Analysen wurde bewiesen, dass BACE-1 und BACE-2 entgegen bisheriger Annahmen nicht ausschließlich die proteolytische Spaltung membrangebundener bAPP Substrate katalysieren, sondern zudem Ab-Peptide, nach ihrer Freisetzung durch g-Sekretase, C-terminal verkürzen können. In vitro Versuche zeigen, dass BACE-1 selbst in der Lage ist, Ab 1-40 an Position 34 zu spalten und dieser Schnitt nicht wie bislang angenommen durch g-Sekretase katalysiert wird. Dieser Vorgang führt in vivo zu einer Reduktion der amyloidogenen Ab 1-40/42 Peptide. Da sich der Nachweis des Ab 1-34 Peptides mittels konservativer Proteinanalytik schwierig gestaltet, erklärt sich, warum in Zelllinien mit exogener BACE-1 Expression keine merkliche Steigerung der Ab-Sezernierung bzw. teilweise sogar eine Reduktion detektierbar war. Letztendlich bietet die Beobachtung, dass auch Peptide als Substrate für die BACE fungieren können, interessante Ansatzpunkte für die Suche nach neuen physiologischen Substraten und Inhibitoren. Die Analyse des subzellulären Transportes und die Charakterisierung, sowohl pro- als auch antiamyloidogener Enzymaktivitäten der beiden Proteasen BACE-1 und BACE-2 liefert neue Grundlagen für die Entwicklung therapeutischer Inhibitoren und für die Suche neuer Substrate.