Podcasts about pulsdauer

  • 6PODCASTS
  • 6EPISODES
  • 44mAVG DURATION
  • ?INFREQUENT EPISODES
  • May 26, 2021LATEST

POPULARITY

20172018201920202021202220232024


Latest podcast episodes about pulsdauer

IIoT Use Case Podcast | Industrie
#040 I Wie ein Schweizer Taschenmesser: Ein digitaler Datensammler als Multitool für den Shopfloor I iT Engineering Software Innovations & Manz AG

IIoT Use Case Podcast | Industrie

Play Episode Listen Later May 26, 2021 37:25


INBETRIEBNAHME - MASCHINENBAU - SHOPFLOOR  (www.iotusecase.com)„Der Wertschöpfungsanteil von Software im heutigen Maschinenbau ist nicht zu unterschätzen.“ – das verdeutlicht der Use Case der 39. Folge des IIoT Use Case Podcasts einmal mehr. Wolfram Schäfer, Gründer und Geschäftsführer der iT Engineering SoftwareInnovations GmbH, hat mit Stefan Lausterer (Head of R&D System Engineering, Manz AG) einen konkreten Anwender seines digitalen Schweizer Taschenmessers für den Shopfloor mitgebracht und stellt die konkrete Wertschöpfung aus der Praxis vor. „Collect“, „Explore“ und „Improve“ – nach diesem dreistufigen Prinzip arbeiten die IoT-Bausteine, die IIoT Building Blocks, von iT Engineering Software Innovations (iTE SI). In dieser Podcastfolge wird die Anwendung ihres Data Collectors anhand des Praxisbeispiels von Manz aufgezeigt. Schritt 1: Datensammlung – auch bei heterogener Anlagenlandschaft. Schritt 2: Visualisierung und erste Ableitungen. Schritt 3: Lernen aus den Daten und Mehrwerterzeugung durch Optimierungen.  Die Nutzer der Lösung von iTE SI sind branchenunabhängig über den Maschinenbau verteilt. Die Softwarefirma ist seit über 20 Jahren an der Schnittstelle zwischen Maschinen und IT unterwegs und begleitet die digitale Transformation des Maschinenbaus und der produzierenden Industrie auf dem Weg zur Industrie 4.0 mit ihren Lösungen und Produkten im Fertigungsumfeld. So auch den Weg des schwäbischen Maschinenbauers Manz bei der Inbetriebnahme von Sondermaschinen. Manz ist im Bereich Lithium-Ionen-Batterietechnologie, Solar- und Photovoltaik-Zellen, Nass-Chemie, Laserbearbeitung, Inspektionssysteme sowie der Herstellung diverser elektronischer Bauteile unterwegs. iTE SI wurde mit dem Ziel ins Boot geholt, die Dauer der Sondermaschinenentwicklung bis hin zum finalen Einsatz auf dem Shopfloor zu verkürzen und dort angekommen, Mehrwerte aus Daten zu generieren. Die Digitalisierungslösung sammelt minimalinvasiv Rohdaten ein, ohne auf die Steuerungen selbst einzuwirken. Der Datensammler arbeitet mit verschiedenen Schnittstellen und kann somit auf unterschiedlichsten Devices und Maschinensteuerungen, wie z. B. SPS- oder NC-Steuerungen, zum Einsatz kommen. Auf einem Edge Device werden die Daten zunächst vorverarbeitet und gelangen danach bereinigt und „harmonisiert“ in die Cloud – auf diese Weise wird ein rundum sauberes Datenbild erzeugt. Im Ergebnis sind die Daten auf einem Dashboard einer App visualisiert einsehbar. Der besprochenen Use Case handelt von hochfrequenten Daten sowie Bildverarbeitungsdaten aus Achspositionen von Laserrobotern - Antriebsdaten in Steuerungsechtzeit oder Laserdaten wie der Pulsdauer. Sie ermöglichen unter anderem eine gezielte Fehleranalyse, vorausschauende Fehlervermeidung und Taktzeitoptimierungen. Was die Daten noch wertvoller macht: Sie werden mit bereits vorhandenem Prozesswissen von Kunde und Hersteller angereichert. „Am Ende geht es darum, dass man das Wissen aller zusammenbringt“, wird in dieser Podcastfolge zusammengefasst.     

Druckwelle – ingenieur.de-Podcast zur Additiven Fertigung
Folge 18 - Neuer Weg hin zum gedruckten Organ

Druckwelle – ingenieur.de-Podcast zur Additiven Fertigung

Play Episode Listen Later May 5, 2021 51:14


Das Ziel ist sportlich: Innerhalb von nur einer Sekunde sollen rund 1 Mio. Zellen auf Vitalität geprüft und dann zielgenau auf einem Substrat abgelegt werden. So entstünde pro Sekunde etwa 1 mm3 biologisch aktives Material. Vorgenommen haben sich das vier WissenschaftlerInnen aus Bayern. Der Physiker im Team ist Heinz P. Huber, Leiter des Laserzentrums der Hochschule München. Er erläutert das Funktionsprinzip: „Wir schießen mit einem Ultrakurzpulslaser von unten auf eine Glasfläche. Auf dieser befinden sich die Zellen, eingebettet in ein Hydrogel.“ Der stark fokussierte Laser erzeuge mit seiner Pulsenergie von 5 µJ und einer Pulsdauer von 500 fs eine winzige Plasmaexplosion unmittelbar unterhalb einer Zelle. Dadurch entstehe eine Druckwelle, die ihrerseits einen Jet ausbilde. „An dessen Spitze fliegt die Zelle“, so Huber, „aber nur kurz.“ Sie lande zielgenau auf einem Trägergerüst oder in einem Nährmedium. Wie es weitergeht, erklärt der Professor in dieser Podcast-Folge. GEMA-freie Musik von https://audiohub.de

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 18/19

In der vorliegenden Arbeit wurden die Grundlagen für die Zwei-Photonen-Endomikroskopie untersucht. Die Herausforderung liegt in der Miniaturisierung der Technik der Zwei-Photonen-Mikroskopie, um auch endoskopisch in vivo hochauflösende Bilder von Gewebestrukturen und Zellen zu erhalten. Im Gegensatz zur Gewebeentnahme bei einer Biopsie ist dieses optische Verfahren minimal-invasiv. Damit ist eine Vorab Untersuchung des Gewebes möglich, die die Diagnostik unteranderem von bösartigen Gewebestrukturen präzisieren könnte. Die konfokale Endoskopie bietet bereits mit einem vergleichbaren Verfahren die Möglichkeit einer optischen Biopsie an der Oberfläche, z.B. an verschiedenen Schleimhäuten. Aufgrund der Gewebestreuung ist die Eindringtiefe des Lichts dabei aber auf wenige Mikrometer begrenzt. Diese Einschränkung könnte durch die bereits in der Zwei-Photonen-Mikroskopie gezeigte größere optische Eindringtiefe durch die Zwei-Photonen-Endomikroskopie verbessert werden. In dieser Arbeit wurde ein Femtosekundenlaser durch Glasfasern geleitet und am distalen Ende mit Hilfe einer Mikrooptik fokussiert. Dazu wurde ein Aufbau basierend auf Faserbündeln gewählt. Die einzelnen Faserkerne des Glasfaserbündels wurden mit einem Galvanometer-Scanner abgerastert und die dazugehörige detektierte Fluoreszenz punktweise zu einem Bild zusammengesetzt. Zur Kompensation der zeitlichen Verbreiterung der Pulse wurde ein Gitterkompressor aufgebaut. Mit diesem Aufbau wurden Zwei-Photonen-Fluoreszenz Aufnahmen von fluoreszenzstarken Proben durch ein Faserbündel ermöglicht. Diese Arbeit zeigt die Machbarkeit der Zwei-Photonen-Endoskopie und zeigt Möglichkeiten zur Optimierung, um zukünftig auch einen klinischen Einsatz zu ermöglichen. Mit der verwendeten Mikrooptik wurde eine zelluläre Auflösung von (3,5 ± 0,3) μm lateral und (5,3 ± 0,1) μm axial erreicht. Durch die Verwendung eines Referenzsystem aus Mikroskopobjektiven im Austausch der Mikrooptik konnte gezeigt werden, dass vor allem die laterale Auflösung noch verbessert werden konnte. Entscheidend ist hierfür eine hohe distale numerische Apertur. Der zukünftige Einsatz von verbesserten Mikrooptiken kann somit die Auflösung noch erhöhen. Aktuelle Forschungsergebnisse legen nahe, dass diese zukünftig auch kommerziell erhältlich sein könnten. Zusätzlich wurde eine variable Fokussiereinheit auf Basis eines Drahts aus einer Formgedächtnislegierung (Nitinol) realisiert. Damit konnte der Abstand zwischen Mikrooptik und Gewebeoberfläche verstellt werden. Durch Applikation eines maximalen Stromes bis zu 385mA kontrahiert der Nitinoldraht um ca. 1,8%. Ab dem minimalen Aktivierungsstrom von 330 mA konnte ein linearer Zusammenhang zwischen der Stromstärke und der Verschiebung beobachtet werden. Eine Änderung der Stromstärke in Schritten von 16–12 mA. ermöglicht eine Verschiebung von 20–10 μm. Eine Herausforderung ist die Erzeugung und Detektion der Fluoreszenzsignale aus dem Gewebe zur Erzeugung von aussagekräftigen Zwei-Photonen-Bildern. Die Leistungsverluste der Laserenergie im Anregungsweg und die Verluste des Fluoreszenzsignals im Detektionsweg müssen hierfür möglichst gering gehalten werden. Die größten Verluste im Anregungsweg gibt es durch den Gitterkompressor, durch die Fasereinkopplung und durch die Mikrooptik. Trotzdem ist die hier erreichte Gesamttransmission von 18% (λ0 = 800 nm) ohne Gitterkompressor vergleichbar mit der erster Zwei-Photonen-Mikroskope. Durch Optimierung einzelner Komponenten, vor allem des Gitterkompressors und der Mikrooptik, ist zukünftig eine bessere Transmission möglich. Die Erzeugung von Zwei-Photonen-Fluoreszenzsignalen wird auch durch die Pulsverbreiterung innerhalb des Faserbündels verringert. Sowohl lineare als auch nichtlineare Effekte verbreitern spektral und zeitlich die Pulse. Die Untersuchung dieser Effekte konnte zeigen, dass mit Hilfe eines Gitterkompressors die zeitliche Pulsdauer am Faserausgang bis auf ca. 10 fs wiederhergestellt werden konnte und damit die Zwei-Photonen-Fluoreszenzanregung verbessert werden konnte. Trotzdem konnten bereits bei den hier verwendeten Leistungen (5–65 mW) auch nichtlineare Effekte beobachtet werden. Dazu kommt, dass bei höheren Laserintensitäten keine Transmission mehr möglich ist und die Eigenfluoreszenz der einzelnen Fasern des Faserbündels die Fluoreszenzsignale aus dem Gewebe überlagert. Zur Beseitigung der hier gezeigten Limitierungen durch die Mikrooptik und durch das Faserbündel sind weitere Optimierungen nötig um den Einsatz eines Zwei-Photonen-Endoskops in vivo zu ermöglichen. Durch den nichtlinearen Zusammenhang zwischen der Photonenintensität und der Fluoreszenzanregung sind diese Limitierungen gravierender als bei einer normalen Fluoreszenzanregung. Eine Reduzierung der Spitzenintensitäten der Laserpulse bei einem gleichzeitigen Erhöhen der Laserrepetitionsrate könnte zukünftig die nichtlinearen Effekte reduzieren und die effektive Laserleistung am Faserausgang erhöhen.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Photonics at the Frontiers: Generation of Few-cycle Light Pulses via NOPCPA and Real-time Probing of Charge Transfer in Hybrid Photovoltaics

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05

Play Episode Listen Later Nov 11, 2011


Die schnellsten bekannten lichtinduzierten Prozesse in der Natur treten auf einer Zeitskala von wenigen Femtosekunden (fs) oder sogar auf einigen hundert Attosekunden (as) auf. Um diese ultraschnellen Licht-Materie-Wechelwirkungen aufzulösen und zu erforschen, sind Lichtpulse von wenigen optischen Zyklen vom extrem Ultravioletten (XUV) bis hin zum Infraroten (IR) erforderlich. Deren Erzeugung stellt schon seit Jahren eine Herausforderung dar und stößt auf breites Interesse für Anwendungen in Physik, Chemie und Medizin. Im ersten Teil dieser Dissertation wird die vielversprechende Methodik der nichtkollinearen optisch parametrischen Verstärkung gestreckter Lichtpulse (NOPCPA) für die Generierung von „few-cycle“ Lichtpulsen im Sichtbaren (Vis) und nahen IR (NIR) mit Pulsdauern von 5- 8 fs Halbwertsbreite erheblich weiterentwickelt. Grundlegende parametrische Einflüsse, wie die Existenz einer parametrisch induzierten Phase und die Generierung von optisch parametrischer Fluoreszenz (OPF), werden sowohl durch theoretische Analysen und numerische Simulationen, als auch durch konkrete Experimente erforscht. Experimentell werden im Rahmen dieser Arbeit „few-cycle“ Lichtpulse mit einer Pulsdauer von 7.9 fs, 130 mJ Energie, bei 805 nm Zentralwellenlänge und einem sehr hohen, „seed“-Puls limitierten Vorpuls-Kontrast von 11 und 8 Größenordnungen bei 30 ps und ca. 3 ps erzielt. Diese stellen derzeit die leistungsstärksten „few-cycle“ Lichtpulse weltweit dar und es werden durch diese Arbeit und Kooperationen neue Experimente in der Hochfeld-Physik realisiert. Zum Einen, ist es mit dem hier beschriebenen Breitbandpulsverstärker gelungen, "quasimonoenergetische" Elektronen mit Energien mit bis zu 50 MeV zu beschleunigen. Dazu wird der Lichtpuls zu relativistischen Intensitäten von mehreren 1019 W/cm2 in einen Helium- Gasjet fokussiert. Die Elektronen zeigen einen stark reduzierten niederenergetischen Elektronenhintergrund, verglichen mit Beschleunigung durch längere Lichtpulse. Zum Anderen, wurde XUV-Licht bis zur 20. Harmonischen des generierten Lichtpulses aus dem Breitbandpulsverstärker durch dessen „sub-cycle“ Wechselwirkung mit Festkörperoberflächen erzeugt. Die Erzeugung von solchen kohärenten hohen Harmonischen verspricht den Bau von kompakteren XUV-Strahlungsquellen, die as-Pulsdauern mit hohen Photonenflüssen XUVAnrege/ XUV-Abfrage Experimente kombinieren würden. Im Rahmen dieser Arbeit werden darüber hinaus neue, erweiterte Konzepte für noch breitbandigeres NOPCPA über eine Oktave entwickelt und charakterisiert, die die Verwendung von zwei Pumppulsen in einer NOPCPA Stufe und die Verwendung von zwei verschiedenen Pumpwellenlängen in zwei aufeinanderfolgenden NOPCPA Stufen beinhalten. Im zweiten Teil dieser Dissertation werden breitbandige Weißlicht-Spektren und mittels NOPCPA spektral abstimmbare, ultrakurze Lichtpulse verwendet um ein weltweit einzigartiges transientes Absorptionsspektrometer mit Vielkanaldetektion zu realisieren. Dieser neue Anrege-Abfrage Aufbau kombiniert eine sehr breitbandige UV-Vis-NIR Abfrage mit einer hohen Zeitauflösung von 40 fs und hoher Sensitivität für die transiente Änderung der optischen Dichte von weniger als 10-4. Damit ist es in dieser Dissertation zum ersten Mal gelungen den photoinduzierten Ladungstransfer im konjugierten Polymer Polythiophen und in hybriden Polythiophen/Silizium Solarzellen in Echtzeit aufzulösen. Dabei wird eine seit mehreren Dekaden geführte kontroverse Debatte über die Natur der primären Photoanregung in organischen Halbleitern aufgelöst: Exzitonen dissoziieren mit 140 fs Zeitkonstante zu Polaronen (Ladungsträger). Entscheidende Parameter (z.B. strukturelle Ordnung, Ladungsträgermobilität) für die Effizienz der Generierung und Extraktion von freien Ladungsträgern können bestimmt werden, was fundamentales Verständnis für die Optimierung von organischer und hybrider Photovoltaik für zukünftige nachhaltige Energiequellen beisteuert. Weitere Ultrakurzzeit-Experimente an neuartigen organischen Solarzellen sind hier begonnen und aufgezeigt.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06
Entwicklung robuster Quantengatter auf infrarot-aktiven Qubits in MnBr(CO)5

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 02/06

Play Episode Listen Later Dec 20, 2007


Die vorliegende Arbeit behandelt die experimentell umsetzbare Implementierung von Molekularem Quantencomputing, wie es in der Arbeitsgruppe um R. de Vivie-Riedle entwickelt wurde. Dieses Konzept beruht auf Laser-vermittelter Kontrolle intramolekularer Schwingungsdynamik. So fungieren ausgewählte Normalmoden eines polyatomaren Moleküls als Quanteninformationseinheiten (Qubits), wobei die Information in den Schwingungseigenzuständen kodiert wird. Diese lässt sich durch kurze geformte infrarote Lichtpulse, die als logische Gatter operieren, kontrolliert manipulieren. Für die Prozessoreinheit wird Mangan-pentacarbonyl-bromid (MnBr(CO)5) gewählt und ein Zwei-Qubit-System mit den beiden stärksten IR-aktiven CO-Streckschwingungen (2000 cm^{-1} bzw. 2050 cm^{-1}) definiert. In den quantenmechanischen Untersuchungen wird das System durch seine Schwingungseigenfunktionen repräsentiert. Das zugrunde liegende Modell ergibt sich durch sorgfältige Anpassung an neueste spektroskopische Daten des MnBr(CO)5. Ein dafür im Rahmen dieser Arbeit entwickeltes komplexes Optimierungsverfahren ermöglicht die effiziente Konstruktion des Modells. Einen Schwerpunkt bildet die Berechnung und Untersuchung eines universellen Satzes globaler Quantengatter bestehend aus den Operationen NOT, CNOT, Π und Hadamard. Diese werden mit einem "multi-target-Optimal-Control"-Algorithmus optimiert, der die simultane Optimierung der relevanten Übergänge des jeweiligen Gatters unter Berücksichtigung aller berechneten Eigenfunktionen erlaubt. Schalteffizienz und Struktur des resultierenden Laserfelds hängen dabei maßgeblich von der gewählten Pulsdauer ab. Durch die individuelle Wahl einer günstigen Dauer (5 ps - 11 ps), die sich nach den spektroskopischen Anforderungen der logischen Operationen richtet, ergeben sich erstmals für alle Gatter hocheffiziente und einfach strukturierte Pulse. Besondere Beachtung findet in dieser Arbeit die Gewährleistung experimenteller Umsetzbarkeit des Molekularen Quantencomputings. Untersuchungen zur Erzeugung der optimierten Pulse sind dabei von primärer Bedeutung. Pulszerlegung und die Berechnung von Maskenfunktionen zeigen, dass sich sowohl indirektes als auch direktes Pulsformen für die Generierung der Laserfelder eignen. Gegen dabei entstehende Abweichungen von der optimalen Pulsstruktur sind die Gatter robust. Um die Laser-Molekül-Wechselwirkung im Experiment zusätzlich zu steigern, können die Prozessoreinheiten fixiert und ausgerichtet werden. Dies lässt sich durch Immobilisierung in der Kristallstruktur eines Zeoliths erreichen, wie erste Rechnungen ergeben. Darüber hinaus wird die Relevanz potentieller Störungen des Qubitsystems wie Dissipation und interner Schwingungsumverteilung überprüft. Die Ergebnisse zeigen, dass das Qubitsystem einen nahezu dekohärenzfreien Raum für die Informationsverarbeitung bietet. Durch die sorgfältige Wahl einer geeigneten molekularen Spezies und die auf das Qubitsystem individuell abgestimmten Pulsdauern ist es gelungen, Molekulares Quantencomputing experimentell zugänglich mit hocheffizienten robusten Quantengattern zu implementieren.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Die sprunghafte Entwicklung in der Femtosekundenlasertechnologie Anfang der 90er Jahre ermöglicht es, laserphysikalische Experimente in den verschiedensten Bereichen der Naturwissenschaften bei Pulsdauern von einigen Femtosekunden und elektrischen Feldstärken in der Größenordnung inneratomarer Felder durchzuführen. Im Rahmen dieser Arbeit wurden die drei wichtigsten Prozesse im Bereich der Wechselwirkung von Atomen mit starken Laserfeldern untersucht: Im Fall der Above-threshold Ionisation (ATI) absorbiert ein Elektron aus dem Lichtfeld mehr Photonen, als zu seiner Ionisation notwendig sind. Die Überschussenergie kann mit einem Flugzeitspektrometer in Form der kinetischen Energie des Photoelektrons gemessen werden. Im ATI-Spektrum wird die Zahl der gemessenen Photoelektronen als Funktion ihrer Energie aufgetragen: Es ergibt sich eine Serie von Maxima im Abstand der Photonenenergie. Diese fallen mit steigender Photoelektronenenergie stark ab und entsprechen der Anzahl der jenseits der Ionisationsschwelle absorbierten Photonen. Die Form der Spektren gibt detaillierte Hinweise auf Einzelheiten des Ionisationsvorgangs. Zum Beispiel misst man für lineare Polarisation des eingestrahlten Lichts eine plateauartige Struktur, die durch einen Rückstreuprozess des Elektrons am Ionenrumpf hervorgerufen wird: Die Einhüllende des ATI-Spektrums folgt zunächst dem störungstheoretisch erwarteten starken Abfall für niedrige Elektronenenergien. Sie geht dann in das ATIPlateau über, bis sie am sogenannten Cutoff endgültig stark abfällt. Neben dem Ionisationsprozess beobachtet man bei der Wechselwirkung von Atomen mit intensiven Laserfeldern auch die Erzeugung hoher Harmonischer (high harmonic generation, HHG). Dabei emittieren die Atome Strahlung mit Photonenenergien, die einem Vielfachen der Energie der eingestrahlten Photonen entsprechen. Aufgrund der Inversionssymmetrie werden im Gas nur die Harmonischen ungerader Ordnung erzeugt. HHG kann durch Elektronen erklärt werden, die - statt wie bei ATI am Ionenrumpf zu streuen, rekombinieren und auf diese Weise die aus dem Laserfeld aufgenommene Energie in Form von hochenergetischer Strahlung abgeben. Auch im Spektrum der Harmonischen fand man ein Plateau, das sich bis in den Bereich weicher Röntgenstrahlung erstrecken kann. HHG erlaubt es damit, vergleichsweise effizient kohärente kurzwellige Strahlung zu erzeugen, die vielversprechende Anwendungen ermöglicht, zum Beispiel in der Biologie (Mikroskopie). Als dritte Möglichkeit kann das Elektron seine während des Ionisationsprozesses gewonnene Energie dazu benutzen, ein zweites Elektron aus dem Atom zu lösen. Dies wird nicht-sequentielle Doppelionisation (NSDI) genannt und beinhaltet hochinteressante korrelierte Ionisationsdynamik. Für die Experimente dieser Arbeit wurde ein hochrepetitives (100kHz) Lasersystem aufgebaut, das bei einer Pulsenergie von 6µJ und einer Pulsdauer von 50fs Spitzenintensitäten von 2 · 1014W/cm2 erzeugt. Für Messungen in diesem Intensitätsbereich wurde ein kombiniertes Elektronen- und Ionen-Flugzeitspektrometer sowie ein Vakuum-UVSpektrometer konstruiert. Ersteres wurde im Rahmen dieser Arbeit aufgebaut und erlaubt die gleichzeitige Messung von Elektronen und Ionen. Das XUV-Spektrometer wurde im Rahmen dieser Arbeit umgebaut und erstmals zur Messung hoher Harmonischer eingesetzt. Bei einer Repetitionsrate von 100kHz sind sehr detaillierte Analysen des Ionisationsprozesses möglich. So wurde eine vergleichende Studie zum Einfluß der Elliptizität des einfallenden Lichtfeldes auf die drei oben genannten Effekte durchgeführt. Elliptisch polarisiertes Licht beschleunigt das Elektron in zwei Raumrichtungen. Mit zunehmender Elliptizität verringert sich die Wahrscheinlichkeit, dass das Elektron während des Ionisationsprozesses zum Ionenrumpf zurückkehrt und damit auch die Effizienz von ATI, HHG und NSDI. Ihre Abhängigkeit von der Elliptizität wurde unter nahezu identischen experimentellen Bedingungen gemessen. Die Messung bestätigt die gemeinsame Wurzel der drei Prozesse. Der Einfluß der Polarisation auf die Bahn des Elektrons kann in einem einfachen klassischen Modell beschrieben werden, das die gemessene Abhängigkeit näherungsweise reproduziert. Ein Durchbruch in der theoretischen Beschreibung von Prozessen in starken Feldern gelang Lewenstein et. al. mit vom Feynman’schen Pfadintegral abgeleiteten Gleichungen. Der klassische Limes dieser Theorie ist das oben erwähnte klassische Modell. Beide erlauben eine intuitive Deutung der physikalischen Vorgänge mit Hilfe von räumlichen Trajektorien bzw. Quantentrajektorien, die das Elektron aufgrund der Wechselwirkung mit dem Feld nehmen kann. Im ATI-Experiment ist es uns dabei gelungen, unter bestimmten Bedingungen ein ATI-Spektrum in die Beiträge von einzelnen Paaren von Quantentrajektorien zu zerlegen. Führen mehrere Quantentrajektorien zum gleichen Endzustand des Elektrons, so können sie miteinander interferieren. Die Interferenz von Quantentrajektorien beeinflusst die Form der ATI-Spektren auf verschiedenste Art. Dies zeigt zum einen die Messung der Interferenz niederenergetischer Elektronen und rückgestreuter hochenergetischer Elektronen. Eine Voraussetzung für ihre Interferenz mit messbarem Kontrast ist eine vergleichbare Amplitude in den entsprechenden Termen der Wellenfunktion. Im Plateau-Bereich der Photoelektronenspektren ist dies für kleine elliptische Polarisation des Lichts erfüllt, da dann, wie schon erwähnt, der Rückstreuvorgang abgeschwächt wird. Die Interferenz der beiden Beiträge zeigt sich in der Winkelverteilung der Photoelektronen dadurch, dass sich das ATI-Plateau aufgrund der Interferenz aufspaltet. Ein zweites Beispiel für den Einfluss von Interferenzeffekten betrifft die Form der Einhüllenden eines ATI-Spektrums. Diese wird durch resonanzartig auftretende Effekte bei bestimmten Intensitäten dominiert. Die Dynamik in der Ausbildung des ATI-Plateaus wurde durch die detaillierte Messung der Intensitätsabhängigkeit der ATI-Spektren untersucht. Dazu wurde in kleinen Schritten die Intensität erhöht und die dazugehörigen Spektren aufgenommen. Die resonanzartigen Effekte treten gerade bei solchen Intensitäten auf, bei denen die Theorie eine große Anzahl von Quantentrajektorien braucht, um das Spektrum zu approximieren. Daraus kann man auf konstruktive Interferenz der beteiligten Trajektorien schließen. Ein völlig neuer Bereich der Wechselwirkung ultrakurzer Pulse mit Atomen eröffnet sich bei Pulslängen um oder kürzer als 5fs. Solche Pulse bestehen aus weniger als zwei optischen Zyklen (FWHM). Dadurch wird die Phase zwischen der Einhüllenden des Pulses und seiner Trägerwelle von Bedeutung (absolute Phase). Da alle Effekte, die durch intensive Laserfelder hervorgerufen werden, vom Verlauf des elektrischen Feldes des Laserpulses abhängen, hängen sie auch von der absoluten Phase ab. Dies ist von entscheidender Bedeutung für verschiedene moderne Forschungsbereiche wie die Erzeugung von Attosekundenpulsen, die kohärente Steuerung atomarer und molekularer Prozesse, die Laserplasmaphysik aber auch die Entwicklung optischer Frequenzstandards. An der Politecnico di Milano haben wir mit einem 5fs-Lasersystem erstmals Effekte der absoluten Phase nachweisen können. Dies wurde durch eine Korrelationsanalyse der in entgegengesetzte Raumrichtungen emittierten Photoelektronen erreicht.