Podcast appearances and mentions of Kate Shaw

  • 123PODCASTS
  • 654EPISODES
  • 24mAVG DURATION
  • 5WEEKLY NEW EPISODES
  • Sep 15, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about Kate Shaw

Latest podcast episodes about Kate Shaw

Strange Animals Podcast
Episode 450: Geckos and the Snow Leopard

Strange Animals Podcast

Play Episode Listen Later Sep 15, 2025 11:06


Thanks for Preston and Pranav for suggesting this week's topics! Further reading: DNA has revealed the origin of this giant ‘mystery' gecko Snow Leopards Dispersed Out of Tibetan Plateau Multiple Times, Researchers Say Conquest of Asia and Europe by snow leopards during the last Ice Ages uncovered The crested gecko AKA the eyelash gecko: The fluffy snow leopard: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we have a couple of suggestions from Preston and one from Pranav! This is the first episode I've recorded in my new apartment, so let's make it a good one. First, Preston wanted to learn more about the crested gecko, mainly because he has a pet crested gecko named George Washington. That is one of the best gecko names ever! The crested gecko is also called the eyelash gecko. We've talked about it a few times, but not recently at all. It's native to a collection of remote Pacific islands called New Caledonia, where it spends most of its time in trees, eating insects and other small animals, but also fruit, nectar, and lots of other food. It's an omnivore and nocturnal, and can grow more than 10 inches long, or 25 cm. It gets its names from the tiny spines above its eyes that look like eyelashes, and more spines in two rows down its back, like a tiny dragon. It can be brown, reddish, orange, yellow, or gray, with various colored spots, which has made it a popular pet. These days all pet crested geckos were bred in captivity, since it's now protected in the wild. The crested gecko has tiny claws on its toes, which is unusual since most geckos don't have claws. It can drop its tail like other geckos if a predator is after it, but the tail doesn't grow back. Since its tail is prehensile and helps it climb around in trees, you'd think the gecko would have trouble climbing after it loses its tail, but it doesn't. Maybe that's because in addition to claws, like other geckos it has basically microscopic hairlike structures on its toes that allow it to climb smooth surfaces like windows and walls and the trunks of smooth trees. It can also jump long distances to get to a new branch. The crested gecko was discovered by science in 1866, but wasn't seen after that in so long that people thought it was extinct. Then in 1994, a German herpetologist out looking for specimens after a tropical storm found a single crested gecko. It turns out that the geckos had been fine all along, but because they're nocturnal and mostly live in trees, scientists just hadn't spotted any. While we're talking about geckos, Pranav requested that we revisit Delcourt's giant gecko with some updated information. We did mention the new findings back in episode 389, but it's really interesting so let's go over it again. Way back in episode 20 we talked about Delcourt's giant gecko, which is only known from a single museum specimen donated in the 19th century. In 1979 a herpetologist named Alain Delcourt, working in the Marseilles Natural History Museum in France, noticed a big taxidermied lizard in storage and wondered what it was. It wasn't labeled and he didn't recognize it, surprising since it was the biggest gecko he'd ever seen—two feet long, or about 60 cm. He sent photos to several reptile experts and they didn't know what it was either. Finally the specimen was examined and in 1986 it was described as a new species. No one knew anything about the stuffed specimen, including where it was caught. At first researchers thought it might be from New Caledonia since a lot of the museum's other specimens were collected from the Pacific Islands. None of the specimens donated between 1833 and 1869 had any documentation, so it seemed probable the giant gecko was donated during that time and probably collected not long before. More recently there was speculation that it was actually from New Zealand, since it matched Maori lore about a big lizard called the kawekaweau. In June of 2023,

Strange Animals Podcast
Episode 449: The Gloucester Sea Serpent

Strange Animals Podcast

Play Episode Listen Later Sep 8, 2025 17:22


This is a chapter of the Beyond Bigfoot and Nessie book, which you can buy or request at the library! Further reading: Debunking a Great New England Sea Serpent A narwhal. I use this picture all the time: The diseased black snake that was taken for a baby sea serpent: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to have a sea monster episode! This is actually a chapter of the book that I published a few years ago now, Beyond Bigfoot and Nessie, and it's called the Gloucester Sea Serpent. We had a Patreon episode recently that was about a different sea serpent, and while I was researching that, it was driving me completely nuts, because I kept trying to find the episode where I talked about the Gloucester sea serpent, and I finally remembered that that wasn't an episode at all. It was just a chapter in the book. Maybe it's time to record it. While the Gloucester sea serpent was first mentioned in a traveler's journal in 1638, it really came to prominence almost two centuries later. On August 6, 1817, two women said they'd seen a sea monster in the Cape Ann harbor. A fisherman said he'd seen it too, but neither the fisherman nor the women were believed. A 60-foot, or 18-meter, sea serpent in the harbor? Ridiculous! Only a few days later, though, the monster started showing up in Gloucester Bay and attracted major attention—not because it was elusive, but because it was so commonly seen. Sailors, fishers, and even people on shore saw what was described as a huge serpent in the waters of Gloucester Bay, Massachusetts, in the northeastern United States. On one occasion more than two hundred people watched it for nearly four hours. The creature's length was described as anywhere up to 150 feet long, or 46 meters, and many people said it had a horse-sized head. Some people described its head as being about the same shape as a horse's too, although with a shorter snout. The body was snake-like and about the thickness of a barrel. Many people thought the sea monster had humps along the back, usually referred to as bunches or occasionally joints. Others said it undulated through the water in an up-and-down motion, which looked like humps. Others said it had no bunches or humps at all. Most people agreed that its back was dark brown. One of the earlier witnesses, a man named Amos Story, watched the sea serpent from shore for an hour and a half. He was adamant that it had no bunches, that he only saw at most about 12 feet of its length at one time, or 3.6 meters, and that its head resembled that of a sea turtle. It was also fast, with Story claiming it covered a mile in only three minutes or so. That's about 20 miles per hour, or 32 kilometers per hour—an incredible speed for an animal in the water. As it happens, the leatherback sea turtle has been recorded as swimming that fast, and it can grow over 7 feet long, or 2.2 meters, and possibly much longer. It lives throughout the world's oceans and is just as happy in cold waters as it is in tropical waters. In other words, it's possible Story actually saw a huge leatherback turtle, which would explain why it had a turtle-like head that it held above the surface of the water at least part of the time. This is something leatherback turtles do. Then again, the leatherback has distinctive ridges and serrations on its back that Story didn't mention. So many people reported seeing the sea serpent that the Linnaean Society of New England decided it needed to investigate. The society had only formed a few years before, in 1814, to promote natural history. By 1822 it had disbanded, but in those eight years it accomplished quite a bit, including opening a small museum in Boston. Its most controversial endeavor was the sea serpent investigation. Members of the Linnaean Society interviewed witnesses, making careful notes that were signed by the interviewees to indicate the details were accur...

The Ezra Klein Show
The Supreme Court Is Backing Trump's Power Grab

The Ezra Klein Show

Play Episode Listen Later Sep 2, 2025 56:32


Trump was losing in the courts. He's not anymore.In the early months of the administration, the courts were proving a powerful check on President Trump, blocking many of his boldest actions. But those were the lower courts. In the past few months, the Supreme Court has weighed in, and it has handed Trump win after win after win.So what do these decisions enable the president to do? And why is the Supreme Court giving Trump what he wants?To pull all this apart, I'm joined by Kate Shaw. She is a former Supreme Court law clerk, a professor at the University of Pennsylvania Carey Law School and a host of the “Strict Scrutiny” podcast.Note: This episode was recorded on Aug. 21, before Trump announced his intention to fire Lisa Cook from the Federal Reserve Board of Governors and before Immigration and Customs Enforcement re-arrested Kilmar Armando Abrego Garcia and began processing him for deportation to Uganda.Mentioned:“Don't Believe Him” by Ezra Klein“This Is the Presidency John Roberts Has Built” by Peter M. ShaneBook Recommendations:Lawless by Leah LitmanVera, or Faith by Gary ShteyngartWe the People by Jill LeporeThoughts? Guest suggestions? Email us at ezrakleinshow@nytimes.com.You can find the transcript and more episodes of “The Ezra Klein Show” at nytimes.com/ezra-klein-podcast. Book recommendations from all our guests are listed at https://www.nytimes.com/article/ezra-klein-show-book-recs.htmlThis episode of “The Ezra Klein Show” was produced by Elias Isquith. Fact-checking by Michelle Harris. Our senior engineer is Jeff Geld. Mixing by Isaac Jones and Aman Sahota. Our executive producer is Claire Gordon. The show's production team also includes Marie Cascione, Annie Galvin, Rollin Hu, Elias Isquith, Kristin Lin, Jack McCordick, Marina King and Jan Kobal. Original music by Aman Sahota and Pat McCusker. Audience strategy by Kristina Samulewski and Shannon Busta. The director of New York Times Opinion Audio is Annie-Rose Strasser. Special thanks to Josh Chafetz. Unlock full access to New York Times podcasts and explore everything from politics to pop culture. Subscribe today at nytimes.com/podcasts or on Apple Podcasts and Spotify.

Strange Animals Podcast
Episode 448: Tennessee water mysteries

Strange Animals Podcast

Play Episode Listen Later Sep 1, 2025 19:16


While I'm at Dragon Con, here's an old Patreon episode about Tennessee water mysteries, including some spooky sightings of what were probably bears, and some mystery fish! Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. As this episode goes live, I should be at Dragon Con, so I decided to go ahead and schedule an old Patreon episode to run instead of trying to get a new episode ready in time. It's about some water mysteries in my home state of Tennessee, although I actually just moved away from Tennessee to Georgia. Tennessee is in the southeastern United States, a long thin state divided into three geographical sections. East Tennessee borders the southern Appalachian Mountains, Middle Tennessee is on the Cumberland Plateau, and West Tennessee borders the Mississippi River. The only natural lake in the state is Reelfoot in northwestern Tennessee, a shallow, swampy body of water formed in the early 19th century. Before 1811, instead of a lake a small river flowed through the area, a tributary of the Mississippi. In earlier accounts, Reelfoot River is called Red Foot River. Most of the residents of the area at the time were Choctaw, although white settlers lived in the small town of New Madrid near the bank of the Mississippi. From December 1811 through February 1812, a series of earthquakes in the New Madrid Seismic Zone changed the land radically. There were three main quakes and innumerable smaller ones, ranging from an estimated 6.7 for the smallest quake to a possible 8.8 for the largest. In the initial quake and aftershocks on 16 December 1811, chimneys collapsed, trees fell, and fissures opened and closed, projecting water or sand high in the air. Boats on the Mississippi capsized as huge waves crashed from bank to bank. A woman named Eliza Bryan, who lived in New Madrid, wrote an account of the quakes: On the 16th of December, 1811, about 2 o'clock a.m., a violent shock of earthquake, accompanied by a very awful noise, resembling loud but distant thunder, but hoarse and vibrating, followed by complete saturation of the atmosphere with sulphurous vapor, causing total darkness. The screams of the inhabitants, the cries of the fowls and beasts of every species, the falling trees, and the roaring of the Mississippi, the current of which was retrograde for a few minutes, owing, as it is supposed, to an eruption in its bed, formed a scene truly horrible. From this time on until the 4th of February the earth was in continual agitation, visibly waving as a gentle sea. On that day there was another shock…and on the 7th, at about 4 o'clock a.m., a concussion took place so much more violent than those preceding it that it is denominated the ‘hard shock.' The Mississippi first seemed to recede from its banks, and its waters gathered up like a mountain… Then, rising 15 or 20 feet perpendicularly and expanding, as it were, at the same time, the banks overflowed with a retrograde current rapid as a torrent. A riverboat captain reported in another account that his boat was caught in a ferocious current on the Mississippi, crashing across waves he estimated as six feet high, or 1.8 m. He also reported whirlpools that he estimated were 30 feet deep, or 9 m. He saw all the trees on either bank fall at once. The December quake was so large it was felt across North America, from Canada to the Gulf Coast. Then, only five weeks later, it happened again, followed by the third major earthquake on 7 February. Only 15 miles, or 24 km, from the epicenter, the land dropped 20 feet, or 6 m, and created a basin that immediately filled with water. Reelfoot Lake was formed, Tennessee's only natural lake. Reelfoot is a state park these days, popular with boaters, fishers, hunters, and birdwatchers. The only cryptid sighting I could find took place in the Glass community near Obion, within ten miles, or 16 km, of the lake. A man who grew up in Glass reported in 2009 that a bipeda...

Strange Animals Podcast
Episode 447: So Many Legs!

Strange Animals Podcast

Play Episode Listen Later Aug 25, 2025 10:26


Thanks to Mila for suggesting one of our topics today! Further reading: The mystery of the ‘missing' giant millipede Never-before-seen head of prehistoric, car-size 'millipede' solves evolutionary mystery A centipede compared to a millipede: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. Let's finish invertebrate August this year with two arthropods. One is a suggestion from Mila and the other is a scientific mystery that was solved by a recent discovery, at least partially. Mila suggested we learn about centipedes, and the last time we talked about those animals was in episode 100. That's because centipedes are supposed to have 100 legs. But do centipedes actually have 100 legs? They don't. Different species of centipede have different numbers of legs, from only 30 to something like 300. Like other arthropods, the centipede has to molt its exoskeleton to grow larger. When it does, some species grow more segments and legs. Others hatch with all the segments and legs they'll ever have. A centipede's body is flattened and made up of segments, a different number of segments depending on the centipede's species, but at least 15. Each segment has a pair of legs except for the last two, which have no legs. The first segment's legs project forward and end in sharp claws with venom glands. These legs are called forcipules, and they actually look like pincers. No other animal has forcipules, only centipedes. The centipede uses its forcipules to capture and hold prey, and to defend itself from potential predators. A centipede pinch can be painful but not dangerous unless you're also allergic to bees, in which case you might have an allergic reaction to a big centipede's venom. Small centipedes can't pinch hard enough to break a human's skin. A centipede's last pair of legs points backwards and sometimes look like tail stingers, but they're just modified legs that act as sensory antennae. Each pair of a centipede's legs is a little longer than the pair in front of it, which helps keep the legs from bumping into each other when the centipede walks. The centipede lives throughout the world, even in the Arctic and in deserts, but it needs a moist environment so it won't dry out. It likes rotten wood, leaf litter, soil, especially soil under stones, and basements. Some centipedes have no eyes at all, many have eyes that can only sense light and dark, and some have relatively sophisticated compound eyes. Most centipedes are nocturnal. The largest centipedes alive today belong to the genus Scolopendra. This genus includes the Amazonian giant centipede, which can grow over a foot long, or 30 cm. It's reddish or black with yellow bands on the legs, and lives in parts of South America and the Caribbean. It eats insects, spiders--including tarantulas, frogs and other amphibians, small snakes and lizards, birds, and small mammals like mice. It's even been known to catch bats in midair by hanging down from cave ceilings and grabbing the bat as it flies by. Some people think that the Amazonian giant centipede is the longest in the world, but this isn't actually the case. Its close relation, the Galapagos centipede, can grow 17 inches long, or 43 cm, and is black with red legs. But if you think that's big, wait until you hear about the other animal we're discussing today. It's called Arthropleura and it lived in what is now Europe and North America between about 344 and 292 million years ago. Before we talk about it, though, we need to learn a little about the millipede. Millipedes are related to centipedes and share a lot of physical characteristics, like a segmented body and a lot of legs. The word millipede means one thousand feet, but millipedes can have anywhere from 36 to 1,306 legs. That is a lot of legs. It's probably too many legs. The millipede with 1,306 legs is Eumillipes persephone, found in western Australia and only described in 2021.

Beyond Zero - Community
DESTRUCTION of the 44 Public Housing Towers

Beyond Zero - Community

Play Episode Listen Later Aug 23, 2025


Rosie and Bella interview Steve Mintern from OFFICE, critical urban geographer Dr Kate Shaw and designer and activist Cat Macleod about the environmental and social impacts of demolishing the 44 public housing towers in Melbourne. Steve Mintern is a landscape architect and is one of the managing directors of OFFICE, a charitable not-for-profit design and research practice in Melbourne. OFFICE is made up of a group of architects who assist community groups in advocating for better outcomes within their built environment. We talk about the research OFFICE has done into certain public housing communities, such as the Ascot Vale Estate, and their more sustainable solution of Retain, Repair and Reinvest.Critical urban geographer Dr Kate Shaw has a background in urban planning, focusing on the cultures of cities and the political-economic and social processes that shape them. Cat Macleod is a long-time climate and social justice activist and a designer passionate about saving the public housing towers. We speak to both of them together on the current pickets and research surrounding the situation which does not support the demolition of the public housing towers. Resources mentioned includeRAHU: https://rahu.org.au/?srsltid=AfmBOoqLeQJPL0-b596hLCtlDy0Jw7skKV25ZHDnijFEUWbcUnT_-zt_Save Public Housing Collective:https://www.savepublichousing.com/

Strange Animals Podcast
Episode 446: Termites

Strange Animals Podcast

Play Episode Listen Later Aug 18, 2025 9:13


Thanks to Yonatan and Eilee for this week's suggestion! Further reading: Replanted rainforests may benefit from termite transplants A vast 4,000-year-old spatial pattern of termite mounds A family of termites has been traversing the world's oceans for millions of years Worker termites [photo from this site]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we have a topic I've been wanting to cover for a while, suggested by both Yonatan and Eilee. It's the termite episode! We talk a lot about animals that eat termites, and in many cases termite-eating animals also eat ants. I've always assumed that termites and ants are closely related, but they're not. Termites are actually closely related to cockroaches, which are both in the order Blattodea, but it's been 150 million years since they shared a common ancestor. They share another trait too, in that no one wants either insect infesting their house. Like most cockroach species, though, most termite species don't want anything to do with humans. They live in the wild, not in your house, and they're incredibly common throughout most of the world. That's why so many animals eat termites almost exclusively. There are just so many termites to eat! There are around 3,000 species of termite and about a third of them live in Africa, with another 400 or so in South America, 400 or so in Asia, and 400 or so in Australia. The rest live in other parts of the world, but they need warm weather to survive so they're not very common in cold areas like northern Europe. A termite colony consists of a queen, soldiers, and workers, which sounds very similar to ants, but there are some major differences. Worker termites take care of the nest and babies, find and process food so the other termites can eat it, and store the processed food. They also take care of the queen. Unlike ants and bees, worker termites aren't only female and aren't always sterile. Soldiers are bigger and stronger than workers, with much bigger heads and jaws so they can fight off potential predators. In some species, the soldiers have such big jaws that they can't actually eat without help. Worker termites feed them. Finally, the queen is the largest individual in the colony, usually considerably larger than workers, but unlike queen bees and ants, she has a mate who stays with her throughout her life, called a king. Some termite queens can live to be as much as 50 years old, and she and the king spend almost their entire lives underground in a nesting chamber. The larger the colony, the more likely it is that the colony has more than one queen. The main queen is usually the one that started the colony along with her king, and when it was new they did all the work—taking care of the eggs and babies, foraging for food, and building the nest itself. As the first workers grew up, they took on more of those tasks, including expanding the nest. Workers are small and their bodies have little to no pigment, so that they appear white. Some people call them white ants, but of course they're not ants. Workers have to stay in a humid environment like the nest or their bodies dry out. Workers and soldiers don't have eyes, although they can probably sense light and dark, and instead they navigate using their antennae, which can sense humidity and vibrations, and chemoreceptors that sense pheromones released by other termites. Termites have another caste that's not as common, usually referred to as reproductives. These are future kings and queens, and they're larger and stronger than workers. They also have eyes and wings. When outside conditions are right, usually when the weather is warm and humid, the reproductive termites leave the nest and fly away. Males and females pair off and search for a new nesting site to start their own colony. Termites mainly eat dead plant material, including plant material that most other animals can't digest.

Strange Animals Podcast
Episode 445: Salinella

Strange Animals Podcast

Play Episode Listen Later Aug 11, 2025 7:01


It's a tiny mystery animal! Further reading: Salinella – what the crap was it? Some of Frenzel's drawings of Salinella: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. Johannes Frenzel was a German zoologist in the 19th century. He worked in Argentina for several years, studying microscopic and near-microscopic animals, and seemed to be a perfectly good scientist who did good work but didn't make a real splash. But these days he's remembered for a mystery animal that is still causing controversy in the scientific community. Frenzel described a strange worm-like animal he named Salinella salve in 1892, and Salinella hasn't been seen since. According to Frenzel's description of it, Salinella is very different from every other animal known. It's so different, in fact, that some scientists think Frenzel just made the whole thing up. In 1890 or 1891, a colleague gave Frenzel a soil sample reportedly from the salt pans in Argentina. We don't know exactly where it came from, just that it's somewhere in the Río Cuarto region. Frenzel put the sample in an aquarium and added water, although apparently some iodine got mixed in too, either on purpose or maybe by accident. Then he forgot all about the sample for a few weeks. It wasn't covered and Frenzel reported that some dead flies had fallen into the aquarium. When Frenzel finally got around to examining the sample, he discovered something he had never seen before. No one else had either, before or since. He said it was a worm-like animal about 2 millimeters long, and there wasn't just one of them. There were quite a few in the sample, some in the soil and some attached to the glass. When he studied the tiny worms, he discovered they had a very basic, very unusual body plan. It was basically just a tube open at both ends, with a single layer of cells around the interior sac. Each cell was covered with cilia on both the exterior side of the animal and the interior side. Cilia are hair-like structures, and salinella used them to move around, a method of propulsion called ciliary gliding. It didn't have any organs or even tissues—basically nothing you'd expect even in a very simple animal. It reproduced by splitting down the middle, called transverse fission. Assuming Frenzel was describing a real animal, and was describing it accurately, this body plan is unlike any other animal known. It's most similar to what scientists think the body plan was of the precursors to sea sponges. It's also similar in some ways to a group of parasitic animals called Mesozoa, which are wormlike, very simple, only a few millimeters long at most, and which have an outer layer of ciliated cells. Mesozoans aren't well understood and most scientists these days think the group is made up of animals that aren't closely related to each other. Salinella has sometimes been considered a mesozoan, but it's still not that close of a match. Frenzel took detailed notes and made careful drawings of Salinella, and compared it to known animals like protozoans. His description of the animal is solid, and he described many other animals in his career that are well-known to scientists today. The main reason some scientists now think Frenzel made Salinella up is because it's so weird and no one has been able to find it since. Frenzel died in 1897 without ever having the chance to look for more specimens. In 1963 an American biologist placed Salinella in its own phylum, which he named Monoblastozoa. In the early 2010s, a team of German scientists visited various saline lakes in Argentina and Chile in hopes of finding Salinella specimens, but without luck. The area where the original soil sample came from has mostly been converted to farmland, so if Salinella was restricted to that one spot, it might well be extinct now. So what happened to the type specimens that Frenzel collected? We don't know. They vanished sometime between 1891 when Frenzel moved b...

Strange Animals Podcast
Episode 444: Diskagma and Horodyskia

Strange Animals Podcast

Play Episode Listen Later Aug 4, 2025 10:00


It's Invertebrate August! These creatures are the most invertebrate-y of all! Further reading: Dubious Diskagma Horodyskia is among the oldest multicellular macroorganisms, finds study A painting of diskagma, taken from the top link above: Little brown jug flowers (not related to diskagma in any way!): Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This episode started out as the March 2025 Patreon episode, but there was more I wanted to add to it that I didn't have time to cover in that one. Here's the expanded version to kick off Invertebrate August, which also happens to be episode 444 and releasing on August 4th! It's about two mystery fossils. The first is named Diskagma, which means disc-shaped fragment, and it was only described in 2013. That's partly because it's so small, barely two millimeters long at most, and partly because of where it's found. That would be fossilized in extremely old rocks. When I saw the illustration accompanying the blog post where I learned about Diskagma, I thought it was a cluster of cup-like flowers, sort of like the flowers of the plant called little brown jug. I was ready to send the link to Meredith Hemphill of the Herbarium of the Bizarre podcast, which by the way you should be listening to. But then I saw how old Diskagma is. It's been dated to 2.2 billion years old. That's older than any plant, probably by as much as a billion years. Even more astounding, it lived on land. As a reminder, the Cambrian explosion took place about half a billion years ago, when tiny marine animals diversified rapidly to fill new ecological niches. That happened in the water, though, mainly in shallow, warm oceans. If you go back to around 850 million years ago, that may have been roughly the time that land plants evolved from green algae that lived in fresh water. Plant-like algae, or possibly algae-like plants, might be as old as 1 billion years old. But before then, scientists don't find evidence of anything except microbes living on land, and they were probably restricted to lakes and other bodies of fresh water. That's because there wasn't much soil, just broken-up rock that contained very few nutrients and couldn't retain much water. Diskagma was shaped like a tiny elongated cup, or an urn or vase, with what looks like a stem on one end and what looks like an opening at the other end. The opening contained structures that look like little filaments, but the filaments didn't fill the whole cup. Most of the cup was diskagma's body, so to speak, although we don't know what it contained. We also don't know what the filaments were for. We do know that the stem actually did connect diskagma to other cups, so that they lived in little groups. We don't know if it was a single animal with multiple cuplike structures or if it was a colony, or really anything. That's the problem. We don't know anything about diskagma except that it existed, and that it lived on land 2.2 billion years ago. Tiny as it was, though, it wasn't microscopic, and it definitely appears more complex than would be expected that long ago, especially from something living on dry land. One suggestion is that the main part of its body contained a symbiotic bacteria that could convert chemicals to nutrients. As in many modern animals, especially extremophiles, the bacteria would have had a safe place to live and the diskagma would have had nutrients that allowed it to live without needing to eat. Diskagma lived at an interesting time in the earth's history, called the great oxygenation event, also called the great oxidation event. We talked about it in episode 341 in conjunction with cyanobacteria, because cyanobacteria basically started the great oxygenation event. Cyanobacteria are still around, by the way, and are doing just fine. They're usually called blue-green algae even though they're not actually algae. Cyanobacteria photosynthesize,

Strange Animals Podcast
Episode 443: Ant Lions and the Horrible Seal Problem

Strange Animals Podcast

Play Episode Listen Later Jul 28, 2025 8:21


Thanks to Jayson and warblrwatchr for suggesting this week's invertebrates! Further reading: Parasite of the Day: Orthohalarachne attenuata Trap-jaw ants jump with their jaws to escape the antlion's den Get out of my noooooose: An ant lion pit: An ant lion larva: A lovely adult antlion, Nannoleon, which lives in parts of Africa [photo by Alandmanson - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=58068259]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. It's almost August, and of course we're doing invertebrate August again this year. Let's get ready by talking about a few extra invertebrates this week, with suggestions from Jayson and warblrwatchr. Before we get started, I have some quick housekeeping. First, a big shout-out to Nora who emailed me recently. I just wanted to say hi and I hope you're having a good day. Next, I'm moving in just a few weeks to Atlanta, Georgia! I know I was talking forever about moving to Bloomington, Indiana, but I changed my mind. The next few episodes are already scheduled so I can concentrate on moving. I'm about 75% packed at this point and have given away or sold a lot of stuff, including a lot of books. But I have a collection that a listener might be interested in. I offered it to the patrons last month but no one grabbed it, so I'll offer it here. I have every issue of the little magazine Flying Snake ever published, 30 in all. They're a fun hodgepodge of articles, reprinted newspaper clippings, old photos, and other stuff more or less associated with cryptozoology and weirdness in general. I've decided they take up too much space on my shelves to take with me to Atlanta. If you're interested in giving them a home, let me know and I'll box them up and send them to you for free. The first person who says they'll take them will get them, but the catch is that you have to take them all. I won't just send you a few. I'll also throw in all four volumes of the Journal of Cryptozoology. This offer stands until mid-August when I move, because if I have to move them to my new apartment, I'm just going to keep them. Okay, now let's learn about some invertebrates! First, Jayson wanted to learn about a tiny invertebrate called Orthohalarachne attenuata. It doesn't have a common name because most people will never ever encounter it, or think about it, and I kind of wish I didn't have to think about it because it's gross. Thanks a lot, Jayson. It's a mite that lives in the nasal passages of seals, sea lions, and walruses. It's incredibly common and usually doesn't bother the seal very much, although sometimes it can cause the seal to have difficulty breathing if the infestation is heavy. The adult mite spends its whole life anchored in the seal's nasal passages with sharp little claws, although it can move around if it wants to. Its larvae are more active. The mite is mainly spread by seals sneezing on each other, which spreads the larvae onto another seal, and the larvae crawl into the new seal's nose and mouth. Unless you're a seal or other pinniped, this might sound gross but probably doesn't bother you too much. But consider that in 1984, a man went to the doctor when one of his eyes started hurting. The doctor found a mite attached to his eyeball, and yes, it was Orthohalarachne attenuata. The man had visited Sea World two days before he started feeling pain in his eye, and happened to be close to some walruses that were sneezing. Luckily for pinnipeds kept in captivity in zoos that give their animals proper care, mite infestations can be treated successfully by veterinarians. Let's move on quickly to an invertebrate that isn't a parasite that can get in your eyes, the ant lion! It was suggested by warblrwatchr and I've been wanting to cover it for a while. When I was a kid, there was a strip of soft powdery dirt under the eaves of the school gym that always had ant lions in it,

#GINNing Podcast
The Precision Decision

#GINNing Podcast

Play Episode Listen Later Jul 25, 2025 20:48


Kate Shaw is trusting the process — the bioprocess. The Auburn senior took that sweet Pathway to the Plains to pursue the ever versatile bioprocess engineering degree. And, as you'll find out, that one decision has led to a lot precision. 

Strange Animals Podcast
Episode 442: Trees and Megafauna

Strange Animals Podcast

Play Episode Listen Later Jul 21, 2025 9:19


Further reading: The Trees That Miss the Mammoths The disappearance of mastodons still threatens the native forests of South America Study reveals ancient link between mammoth dung and pumpkin pie A mammoth, probably about to eat something: The Osage orange fruit looks like a little green brain: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. Way back at the end of 2017, I found an article called “The Trees That Miss the Mammoths,” and made a Patreon episode about it. In episode 320, about elephants, which released in March of 2023, I cited a similar article connecting mammoths and other plants. Now there's even more evidence that extinct megafauna and living plants are connected, so let's have a full episode all about it. Let's start with the Kentucky coffeetree, which currently only survives in cultivation and in wetlands in parts of North America. It grows up to 70 feet high, or 21 meters, and produces leathery seed pods so tough that most animals literally can't chew through them to get to the seeds. Its seed coating is so thick that water can't penetrate it unless it's been abraded considerably. Researchers are pretty sure the seed pods were eaten by mastodons and mammoths. Once the seeds traveled through a mammoth's digestive system, they were nicely abraded and ready to sprout in a pile of dung. There are five species of coffeetree, and the Kentucky coffeetree is the only one found in North America. The others are native to Asia, but a close relation grows in parts of Africa. It has similar tough seeds, which are eaten and spread by elephants. The African forest elephant is incredibly important as a seed disperser. At least 14 species of tree need the elephant to eat their fruit in order for the seeds to sprout at all. If the forest elephant goes extinct, the trees will too. When the North American mammoths went extinct, something similar happened. Mammoths and other megafauna co-evolved with many plants and trees to disperse their seeds, and in return the animals got to eat some yummy fruit. But when the mammoths went extinct, many plant seeds couldn't germinate since there were no mammoths to eat the fruit and poop out the seeds. Some of these plants survive but have declined severely, like the Osage orange. The Osage orange grows about 50 or 60 feet tall, or 15 to 18 meters, and produces big yellowish-green fruits that look like round greenish brains. Although it's related to the mulberry, you wouldn't be able to guess that from the fruit. The fruit drops from the tree and usually just sits there and rots. Some animals will eat it, especially cattle, but it's not highly sought after by anything. Not anymore. In 1804, when the tree was first described by Europeans, it only grew in a few small areas in and near Texas. The tree mostly survives today because the plant can clone itself by sending up fresh sprouts from old roots. But 10,000 years ago, the tree grew throughout North America, as far north as Ontario, Canada, and there were seven different species instead of just the one we have today. 10,000 years ago is about the time that much of the megafauna of North and South America went extinct, including mammoths, mastodons, giant ground sloths, elephant-like animals called gomphotheres, camels, and many, many others. The osage orange tree's thorns are too widely spaced to deter deer, but would have made a mammoth think twice before grabbing at the branches with its trunk. The thorns also grow much higher than deer can browse. Trees that bear thorns generally don't grow them in the upper branches. There's no point in wasting energy growing thorns where nothing is going to eat the leaves anyway. If there are thorns beyond reach of existing browsers, the tree must have evolved when something with a taller reach liked to eat its leaves. The term “evolutionary anachronism” is used to describe aspects of a plant,

Why Is This Happening? with Chris Hayes
The Supreme Court's Power Grab Under Trump

Why Is This Happening? with Chris Hayes

Play Episode Listen Later Jul 15, 2025 59:35


Well, it was another consequential Supreme Court term. So, we had to have Chris's wife Kate Shaw, along with the other co-hosts of the Strict Scrutiny podcast, Melissa Murray and Leah Litman back to break down some of the biggest SCOTUS decisions including Medina v. Planned Parenthood, U.S. v. Skrmetti, and Trump v. CASA. There's a lot to discuss about the Court's evolving ideology under Trump 2.0. This conversation was recorded on July 1, 2025. 

Here & Now
SCOTUS greenlights plan to gut Department of Education

Here & Now

Play Episode Listen Later Jul 15, 2025 18:42


The Supreme Court ruled on Monday that mass layoffs at the Department of Education can move forward for now. Law professor Kate Shaw joins us to discuss what this means for President Trump's plan to dismantle the department. Then, Florida lawmaker Anna Eskamani talks about her recent visit to 'Alligator Alcatraz,' a controversial detention center in the Everglades holding hundreds of migrants. And, Texas is weighing a controversial plan to draw new congressional maps ahead of next year's midterm elections. Carnegie Mellon University's Jonathan Cervas explains the possible implications.Learn more about sponsor message choices: podcastchoices.com/adchoicesNPR Privacy Policy

Strange Animals Podcast
Episode 441: Mean Birds

Strange Animals Podcast

Play Episode Listen Later Jul 14, 2025 11:25


Thanks to Maryjane and Siya for their suggestions this week! Further reading: Look, don't touch: birds with dart frog poison in their feathers found in New Guinea The hooded pitohui: The rufous-naped bellbird: The regent whistler: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to learn about some birds that by human standards seem pretty mean, although of course the birds are just being birds. Thanks to Maryjane and Siya for their suggestions this week! We'll start with Maryjane's suggestion, the Northern shrike. It lives in North America, spending winter in parts of Canada and the northern United States. In summer it migrates to northern Canada. It's a lovely gray and black bird with a dark eye streak, white markings on its tail and wings that flash when it flies, and a hooked bill. It's a strong bird about the size of an American robin, and both the male and female sing. They will sometimes imitate other bird songs, and during breeding season a pair will sing duets. The Northern shrike looks very similar to the loggerhead shrike that lives farther south, in the southern parts of Canada and throughout most of the United States and Mexico. Most important to us today, the Northern shrike is sometimes called the butcher bird, because in the olden days, butchers would hang meat up to cure--but we'll get to that part. It prefers to live in the edges of a forest near open spaces, and in the summer it lives along the border of the boreal forest and tundra. While it's just a little songbird, in its heart it's a falcon or hawk. It eats a lot of insects and other invertebrates, especially in summer, but it mainly kills and eats other songbirds and small mammals like mice and lemmings, even ones that are bigger and heavier than it is. The shrike has ordinary feet for a perching bird, not talons, but its feet are strong and can hold onto struggling prey. Its beak is deadly to small animals. The bill has a sharp hook at the end and is notched so that it has two little projections that act like fangs. It will hover and drop onto its prey, or grab a bird in mid-flight and bear it to the ground to kill it. Sometimes it will hop along the ground until it startles a bird or insect into flying away. It will even flash the white patches on its wings to frighten hidden prey into moving. If the shrike kills a wasp or bee, it will remove the stinger before eating it. It will pick off the wings of large insects and will sometime beat a dead insect against a rock or branch to soften it up and break off parts of the hard exoskeleton before eating it. Shrikes are territorial and will chase away birds that are much bigger than them, like ducks and even geese. During nesting season, the female takes care of the eggs and the male provides food for her. To prove that he can provide lots of food for the female while she's incubating the eggs, he will cache food throughout his territory in advance. This is something shrikes do anyway, but it's especially important during nesting season. If a shrike catches an animal it doesn't want to eat right away, it will store it for later. It will cram it into a crack in a rock, impale it on a thorn or other sharp item like the points of a barbed wire fence, or wedge it into the fork of a tree branch. Then it can come back and eat it in a day or two when it's hungry, or take the food to its mate. When the eggs hatch, both parents help feed the babies. When the babies are old enough to leave the nest, the parents go their separate ways, but they will often each take some of the fledglings with them so they can continue to feed them and help them learn to hunt. Since a nest can have as many as nine babies, it's not always possible for one parent to take all the babies. The siblings stick together even once they're mostly grown and independent, often through their first winter.

Strange Animals Podcast
Episode 440: Trilobites!

Strange Animals Podcast

Play Episode Listen Later Jul 7, 2025 10:27


Thanks to Micah for suggesting this week's topic, the trilobite! Further reading: The Largest Trilobites Stunning 3D images show anatomy of 500 million-year-old Cambrian trilobites entombed in volcanic ash Strange Symmetries #06: Trilobite Tridents Trilobite Ventral Structures A typical trilobite: Isotelus rex, the largest trilobite ever found [photo from the first link above]: Walliserops showing off its trident [picture by TheFossilTrade - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=133758014]: Another Walliserops individual with four prongs on its trident [photo by Daderot, CC0, via Wikimedia Commons]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to learn about an ancient animal that was incredibly successful for millions of years, until it wasn't. It's a topic suggested by Micah: the trilobite. Trilobites first appear in the fossil record in the Cambrian, about 520 million years ago. They evolved separately from other arthropods so early and left no living descendants, that they're not actually very closely related to any animals alive today. They were arthropods, though, so they're distantly related to all other arthropods, including insects, spiders, and crustaceans. The word trilobite means “three lobes,” which describes its basic appearance. It had a head shield, often with elaborate spikes depending on the species, and a little tail shield. In between, its body was segmented like a pillbug's or an armadillo's, so that it could flex without cracking its exoskeleton. Its body was also divided into three lobes running from head to tail. Its head and tail were usually rounded so that the entire animal was roughly shaped like an oval, with the head part of the oval larger than the tail part. It had legs underneath that it used to crawl around on the sea floor, burrow into sand and mud, and swim. Some species could even roll up into a ball to protect its legs and softer underside, just like a pillbug. Because trilobites existed for at least 270 million years, there were a lot of species. Scientists have identified about 22,000 different species so far, and there were undoubtedly thousands more that we don't know about yet. Most are about the size of a big stag beetle although some were tinier. The largest trilobite found so far lived in what is now North America, and it grew over two feet long, or more than 70 centimeters, and was 15 inches wide, or 40 cm. It's named Isotelus rex. I. rex had 26 pairs of legs, possibly more, and prominent eyes on the head shield. Scientists think it lived in warm, shallow ocean water like most other trilobites did, where it burrowed in the bottom and ate small animals like worms. There were probably other species of trilobite that were even bigger, we just haven't found specimens yet that are more than fragments. Because trilobites molted their exoskeletons the way modern crustaceans and other animals still do, we have a whole lot of fossilized exoskeletons. Fossilized legs, antennae, and other body parts are much rarer, and preserved soft body parts are the rarest of all. We know that some trilobite species had gills on the legs, some had hairlike structures on the legs, and many had compound eyes. A specimen with preserved eggs inside was also found recently. Some incredibly detailed trilobite fossils have been found in Morocco, including details like the mouth and digestive tract. The detail comes from volcanic ash that fell into shallow coastal water around half a billion years ago. The water cooled the ash enough that when it fell onto the trilobites living in the water, it didn't burn them. It did suffocate them, though, since so much ash fell that the ocean was more ash than water. The ash was soft and as fine as powder, and it covered the trilobites and protected their bodies from potential damage, while also preserving the body details as they fos...

Strange Animals Podcast
Episode 439: The Missing Echidna

Strange Animals Podcast

Play Episode Listen Later Jun 30, 2025 9:43


Thanks to Cara for suggesting we talk about the long-beaked echidna this week! Further reading: Found at last: bizarre, egg-laying mammal finally rediscovered after 60 years A short-beaked echidna: The rediscovered Attenborough's long-beaked echidna: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to learn about an animal suggested by Cara, the echidna, also called the spiny anteater. It's a type of mammal, but it's very different from almost all the mammals alive today. We talked about the echidna briefly in episode 45, but this week we're going to learn more about it, especially one that was thought to be extinct but was recently rediscovered. Cara specifically suggested we learn about the long-beaked echidna, which lives only in New Guinea. The short-beaked echidna lives in New Guinea and Australia. The names short and long beaked make it sound like the echidna is a bird, but the beak is actually just a snout. It just looks beak-like from a distance and is covered with tough skin, sort of like the platypus's snout is sometimes called a duck-bill. In June and July of 2023, an expedition made up of scientists and local experts from various parts of Indonesia, as well as from the University of Oxford in England, discovered and rediscovered a lot of small animals in the Cyclops Mountains. They even discovered an entire cave system that no one but some local people had known about, and they discovered it when one of the expedition members stepped on a mossy spot in the forest and fell straight through down into the cave. But one animal they were really hoping to see hadn't made an appearance and they worried it was actually extinct. That one was Attenborough's long-beaked echidna, a type of mammal known as a monotreme. There are three big groups of mammals. The biggest is the placental mammal group, which includes humans, dogs, cats, mice, bats, horses, whales, giraffes, and so on. A female placental mammal grows her babies inside her body in the uterus, each baby wrapped in a fluid-filled sac called a placenta. Placental mammals are pretty well developed when they're born. The second type is the marsupial mammal group, which includes possums, kangaroos, koalas, wombats, sugar gliders, and so on. A female marsupial has two uteruses, and while her babies initially grow inside her, they're born very early. A baby marsupial, called a joey, is just a little pink squidge about the size of a bean that's not anywhere near done growing, but it's not completely helpless. It has relatively well developed front legs so it can crawl up its mother's fur and find a teat. Some species of marsupial have a pouch around its teats, like possums and kangaroos, but other species don't. Once the baby finds a teat, it clamps on and stays there for weeks or months while it continues to grow. The third and rarest type of mammal these days is the monotreme group, and monotremes lay eggs. But their eggs aren't like bird eggs, they're more like reptile eggs, with a soft, leathery shell. The female monotreme keeps her eggs inside her body until it's almost time for them to hatch. The babies are small squidge beans like marsupial newborns, and I'm delighted to report that they're called puggles. There are only two monotremes left alive in the world today, the platypus and the echidna. The echidna has a pouch and after a mother echidna lays her single egg, she tucks it in the pouch. Monotremes show a number of physical traits that are considered primitive. Some of the traits, like the bones that make up their shoulders and the placement of their legs, are shared with reptiles but not found in most modern mammals. Other traits are shared with birds. The word monotreme means “one opening,” and that opening, called a cloaca, is used for reproductive and excretory systems instead of those systems using separate openings.

The Brian Lehrer Show
Supreme Court on Planned Parenthood Funding and 'Third Country' Deportations

The Brian Lehrer Show

Play Episode Listen Later Jun 26, 2025 31:15


Kate Shaw, professor at the University of Pennsylvania Carey Law School, co-host of the Supreme Court podcast Strict Scrutiny and a contributing opinion writer with the New York Times, talks about recent Supreme Court decisions including Medina v. Planned Parenthood, which permits South Carolina to deny Medicaid funding to Planned Parenthood, and another decision from the shadow docket that allows the Trump administration to deport migrants to countries where they have no connections.

Strange Animals Podcast
Episode 438: The Dragon Man Skull

Strange Animals Podcast

Play Episode Listen Later Jun 23, 2025 7:15


This week we're going to learn about a new finding about the skull referred to as the Dragon Man! Further reading: We've had a Denisovan skull since the 1930s—only nobody knew The proteome of the late Middle Pleistocene Harbin individual Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. It never fails that only a few days after our annual updates episode, a study is published that's an important update to an older episode. This time it's an update so important that it deserves its own episode, so let's learn more about one of our own extinct close relations, the Denisovan people. We didn't know about the Denisovans until 2010, when DNA was sequenced from a finger bone found in Denisova Cave in Siberia in 2008. Scientists were surprised when the DNA didn't match up with Neanderthal DNA, which is what they expected, since they knew Neanderthals had lived in the cave at various times over thousands of years. Instead, the DNA was for a completely different hominin, a close relation of both humans and Neanderthals. Since then, researchers have found some Denisovan teeth, two partial mandibles, a rib fragment, and some other bone fragments, but nothing that could act as a type specimen. The type specimen is the preserved specimen of a new species, which is kept for scientists to study. It needs to be as complete as possible, so a handful of fragments just won't work. Even without a type specimen, having Denisovan DNA answered some questions about our own history as a species. Ever since scientists have been able to sequence genetic material from ancient bones, they've noticed something weird going on with our DNA. Some populations of people show small traces of DNA not found in other human populations, so scientists suspected they were from long-ago cross-breeding with other hominin species. When the Neanderthal genome was sequenced, it matched some of the unknown DNA traces, but not all of them. Mystery DNA sequences in a closely related population are called ghost lineages. The Denisovan DNA matched the ghost lineage scientists had identified in some populations of people, especially ones in parts of east Asia, Australia, and New Guinea. This is your reminder that despite tiny genetic differences like these, all humans alive today are 100% human. We are all Homo sapiens. Naturally, we as humans are interested in our family tree. We even have an entire field of study dedicated to studying ancient humans and hominins, paleoanthropology. Lots of scientists have studied the Denisovan remains we've found, along with the genetic material, but they really need a skull to learn so much more about our long-extinct distant relations. Luckily, we've had a Denisovan skull since the 1930s. But wait, you may be saying, you just said we didn't have anything but bone fragments and teeth! Why didn't you mention the skull? It's because the skull was hidden by its finder, a Chinese construction worker. The man was helping build a bridge and was ashamed that he was working for a Japanese company. That region of China was under Japanese occupation at the time, and the man didn't want anyone to know that he was working for people who were treating his fellow citizens badly. He thought the skull was an important find similar to the Peking Man discovery in 1929, so he hid the skull at the bottom of an abandoned well to keep it safe. He didn't dare share any information about it until he was on his death-bed, when he whispered his secret to his son. It wasn't until 2018 that the man's family took another look at the skull and realized it definitely wasn't an ordinary human skull. It was obviously extremely old and had a pronounced brow and really big teeth. In 2021 the skull was classified as a new species of hominin, Homo longi, where the second word comes from the Mandarin word for dragon. That's because the area where it was found is called Dragon River.

Late Night with Seth Meyers Podcast
Chris Hayes, Mike Birbiglia | Trump Says "Nobody Knows" if He'll Bomb Iran; Tucker Humiliates Cruz: A Closer Look

Late Night with Seth Meyers Podcast

Play Episode Listen Later Jun 20, 2025 42:15


Seth takes a closer look at Ted Cruz and Tucker Carlson grilling each other in a very heated discussion about the merits of U.S. military intervention in Iran. Then, Chris Hayes talks about elected officials and law-abiding people getting detained by ICE, breaks down the heated debate between Ted Cruz and Tucker Carlson and discusses his wife, Kate Shaw's viral moment about nationwide injunctions.Following that, Mike Birbiglia talks about Seth telling him he would be a bad day drinking guest, shares his dad's reaction to his stand-up special, "The Good Life," and chats about receiving an email offering him a movie role. Plus, Mike continues the conversation backstage at Studio 8G exclusively for this podcast.See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.

The Brian Lehrer Show
Legal News Roundup: SCOTUS on Gender Affirming Care for Minors and More

The Brian Lehrer Show

Play Episode Listen Later Jun 18, 2025 37:29


Kate Shaw, professor at the University of Pennsylvania Carey Law School, co-host of the Supreme Court podcast Strict Scrutiny and a contributing opinion writer with the New York Times, discusses the latest news coming out of the Supreme Court, including the court's ruling in a Tennessee case regarding gender affirming care for minors and more.   

Strange Animals Podcast
Episode 437: Updates 8 and the Nutria

Strange Animals Podcast

Play Episode Listen Later Jun 16, 2025 15:49


Thanks to Nicholas, Måns, Warblrwatchr, Llewelly, and Emerson this week, in our yearly updates episode! Further reading: An Early Cretaceous Tribosphenic Mammal and Metatherian Evolution Guam's invasive tree snakes loop themselves into lassos to reach their feathered prey Rhythmically trained sea lion returns for an encore -- and performs as well as humans Scientists Solve Mystery of Brown Giant Pandas Elephant turns a hose into a sophisticated showering tool New name for one of the world's rarest rhinoceroses Antarctica's only native insect's unique survival mechanism Komodo dragons have iron-coated teeth to rip apart their prey The nutria has really orange teeth: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week is our annual updates episode, and we'll also learn about an animal suggested by Emerson. But first, we have some corrections! Nicholas shared a paper with me that indicates that marsupials actually evolved in what is now Asia, with marsupial ancestors discovered in China. They spread into North America later. So I've been getting that wrong over many episodes, over several years. Måns shared a correction from an older episode where I mentioned that humans can't get pregnant while breastfeeding a baby. I've heard this all my life but it turns out it's not true. It is true that a woman's fertility cycle is suppressed after giving birth, but it's not related to breastfeeding. Some women can become pregnant again only a few months after giving birth, while others can't get pregnant again for a few years. It depends on the individual. That's important, since the myth is so widespread that many women get pregnant by accident thinking they can't since they're still feeding a baby. Warblrwatchr commented on the ultraviolet episode and mentioned that cats can see ultraviolet, which is useful to them because mouse urine glows in UV light. Finally, Llewelly pointed out that in episode 416, I didn't mention that fire ant venom isn't delivered when the ant bites someone. The ant bites with its mandibles to hold on, then uses the stinger on its back end to sting repeatedly. Now, let's dive into some updates about animals we've talked about in past episodes. As usual, I don't try to give an update on every single animal, because we'd be here all week if I did. I just chose interesting studies that caught my eye. In episode 402, we talked about snakes that travel in unusual ways, like sidewinders. Even though I had a note to myself to talk about the brown tree snake in that episode, I completely forgot. The brown tree snake is native to parts of coastal Australia and many islands around Indonesia and Papua New Guinea. It's not native to Guam, which is an island in the western Pacific, way far away from the brown tree snake's home. But in the late 1940s, some brown tree snakes made their way to Guam in cargo ships and have become invasive since then. The brown tree snake can grow up to six and a half feet long, or 2 meters, and is nocturnal, aggressive, and venomous. It's not typically a danger to adults, but its venom can be dangerous to children and pets. The government employs trained dogs to find the snakes so they can be removed, and this has worked so well that brown tree snake population is declining rapidly on the island. But that hasn't stopped the snake from driving many native animals to extinction in the last 75 years, especially birds. One of the things scientists did in Guam to try and protect the native birds was to place smooth poles around the island so birds could nest on top but snakes couldn't climb up to eat the eggs and chicks. But before long, the snakes had figured out a way to climb the poles, a method never before documented in any snake. To climb a pole, the snake wraps its body around it, with the head overlapping the tail. Then it sort of scoots itself up the pole with tiny motions of its spine...

Strange Animals Podcast
Episode 436: Red-Eyed Tree Frog

Strange Animals Podcast

Play Episode Listen Later Jun 9, 2025 5:40


Thanks to Trech for suggesting this week's topic, the red-eyed tree frog! Further reading: Tadpoles hatch in seconds to escape predator The colorful red-eyed tree frog [photo by Geoff Gallice]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to have a short little episode about a little frog, suggested by Trech. The frog in question is the red-eyed tree frog, which is native to Central America, including parts of Mexico, and northwestern South America. It lives in forests, always around water. You might be thinking, “of course, frogs live in water,” but remember that this is a tree frog. It lives in trees. But it still needs water for its babies, just not quite in the way most frogs do. Before we learn about that, let's learn about the frog itself. A big female can grow about 3 inches long, or 7.5 cm, while males are smaller. It's a cute frog, of course, because frogs are always cute, but it's also brightly colored. It's bright green with red eyes, blue and yellow stripes on its sides, and orange feet. Ordinarily, a frog with such bright colors would warn potential predators that it's toxic, but the red-eyed tree frog isn't toxic at all. Its bright colors have a different purpose. When it's sitting on a leaf, the bright colors are hidden and only the frog's smooth green back is showing, which makes it look like just another leaf. Only its eyes are bright, but it closes its eyes when it's resting. But if a predator approaches, the frog opens its eyes suddenly and jumps up, revealing all those bright colors. The predator is startled, and maybe even hesitates because it thinks the frog might be toxic, and by the time the predator decides it should try eating the frog after all, the frog is long gone. Oh, and if you're wondering, the red-eyed tree frog can see through its eyelids. They're actually not eyelids like we have, but a membrane that it can move over its eyes. The frog is nocturnal and eats insects like mosquitoes, crickets, and moths. It has a good sense of smell, which helps it find insects in the dark. The tree frog also has suction cups on its toes that help it stay put on smooth leaves. During the day it sticks itself to the underside of a leaf to sleep where it's more hidden. The female also lays her eggs on the underside of a leaf. This protects them from heavy rain, since the frogs breed during the rainy season, and it also helps hide them from predators. The female chooses a leaf that's growing above water, and if the leaf isn't very big she'll lay eggs on both sides of it and fold the leaf to help hide all the eggs. The eggs stick to the leaf with a type of jelly that also helps keep them from drying out. The eggs hatch in about a week, but they can hatch a few days early if a predator approaches. The embryonic tadpoles in their eggs can sense vibrations, and if a predator like a snake shakes the leaf as it approaches the eggs, the tadpoles can hatch within seconds. They drop straight down into the water below the leaf. Hatching early when in danger is called phenotypic plasticity, and it's really rare. It's especially unusual because the embryonic tadpoles can actually tell the difference between a typical predator of frog eggs and vibrations caused by other animals or the wind. They can hatch so quickly because the stress reaction causes the pre-tadpoles to secrete an enzyme from their little noses, which weakens the egg wall and allows them to push and wiggle their way out. Tadpoles stay in the water for several weeks, or sometimes several months depending on conditions, during which time they eat algae and other tiny food in the water. As they grow bigger, the tadpoles can eat bigger food, including other tadpoles. They switch to tiny insects after they metamorphose into froglets. At some point during its development, a red-eyed tree frog needs to eat enough food containing carotenoids in order to develop...

Ray Appleton
Sen. Kennedy's Brutal Takedown Of Kate Shaw

Ray Appleton

Play Episode Listen Later Jun 4, 2025 6:56


Sen. John Kennedy came loaded for bear when questioning Kate Shaw in the Senate Judiciary Committee on Tuesday. Shaw was invited by the Democrats. The subject in discussion was judicial overreach. Among the topics under that rubric was nationwide injunctions. June 4th 2025 --- Please Like, Comment and Follow 'The Ray Appleton Show' on all platforms: --- 'The Ray Appleton Show’ is available on the KMJNOW app, Apple Podcasts, Spotify, YouTube or wherever else you listen to podcasts. --- 'The Ray Appleton Show’ Weekdays 11 AM -2 PM Pacific on News/Talk 580 AM & 105.9 KMJ | Website | Facebook | Podcast | - Everything KMJ KMJNOW App | Podcasts | Facebook | X | Instagram See omnystudio.com/listener for privacy information.

Strange Animals Podcast
Episode 435: The Narwhal and the Unicorn

Strange Animals Podcast

Play Episode Listen Later Jun 2, 2025 9:03


Thanks to Owen and Aksel, and Dylan and Emily for their suggestions this week! Further reading: Where did the unicorn myth come from? The narwhal is my favorite whale: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to look at an animal suggested by Owen and Aksel, and a related suggestion by Dylan and Emily. Owen and Aksel suggested we talk about the narwhal, which we haven't really discussed since episode 5 even though it's one of my favorite animals. Dylan and Emily suggested we learn about animals that might have inspired legends of the unicorn. These two topics are definitely linked! The narwhal is a toothed whale, but it doesn't have very many teeth—in fact, most narwhals don't have any teeth at all. It swallows its food whole and doesn't need to chew, mostly small fish but also squid and other small animals. Male narwhals do have one tooth, a tusk that can be almost 10 feet long, or over 3 meters. The tusk is a spiral shape, developed from what would have been the left canine tooth, but instead of growing downward like a regular tooth, it grows forward, directly through the front of the lip. A lot of times people get confused and think the tusk is a horn that grows from the narwhal's forehead, and that's mainly because the narwhal is closely related to the unicorn legend. That sounds weird at first, since the narwhal is a whale that can grow up to 18 feet long, or 5.5 meters, and lives in cold waters of the Arctic Circle. The unicorn is supposed to be a horse-like animal with a spiral horn growing from its forehead, although it's also sometimes depicted as more goatlike in appearance, with cloven hooves and a little beard. It also usually has a long tail with a tuft at the end like a donkey or zebra. In the olden days in Europe, the unicorn's single spiral horn was supposed to have curative properties. If you ground up a little bit of the horn, known as alicorn, people thought it acted as a medicine to cure you of poisoning or other ailments. The alicorn was actually the tusk of the narwhal, but traders claimed it was a unicorn horn because they could charge more for it. The legend of the unicorn having a long spiral horn doesn't come from ancient stories, it comes from the appearance of the narwhal's tusk. The narwhal is as mysterious as the unicorn in its own way. In fact, the narwhal seems a lot less plausibly real than a unicorn and a lot of people actually don't realize it's a real animal. The biggest question about the narwhal is what its tusk is used for. Most males have one, and occasionally a male will grow two tusks. Most females don't have one, although about 15% of females will grow a tusk, usually smaller than the male's. Females live longer than males on average, so obviously the tusk isn't helping males survive. Most scientists assume that it's just a way for males to attract mates. But the narwhal's tusk seems to be useful for more than just decoration. It contains high concentrations of nerve endings, and scientists think it might help the whale sense a lot of information about the water around it. Narwhals have been observed smacking fish with their tusks to stun them, so that the whale can slurp them up more easily. And even though it's technically a tooth, the narwhal's tusk can bend up to a foot, or about 30 cm, in any direction without breaking. The narwhal is pale gray in color with darker gray or brown dapples, but like gray horses, many narwhals get paler as they age. Old individuals can appear pure white. This can make them easy to confuse with another small whale that's closely related, the beluga, which shares other characteristics with the narwhal. The beluga is white, has a small rounded head and doesn't have a dorsal fin, and has a neck so that it can bend it head around. Most whales have lost the ability to move their heads. The beluga also lives in the same areas as the narwhal and both ...

Strange Animals Podcast
Episode 434: The Real Life Dragon

Strange Animals Podcast

Play Episode Listen Later May 26, 2025 6:08


Thanks to Jaxon for suggesting this week's topic, Coelurosauravus! Further reading: Coelurosauravus New Research Reveals Secrets of First-Ever Gliding Reptile The modern Draco lizard glides on "wings" made from extended rib bones: Coelurosauravus glided on wings that were completely different from any other wings known [art from the first link above]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to learn about an extinct animal suggested by Jaxon. It's called Coelurosauravus and it lived around 255 million years ago in what is now Madagascar. Coelurosauravus was a member of the Weigeltisauridae family, reptiles whose fossils have been found not just in Madagascar but in parts of Europe, and maybe even North America (although we're not sure yet). They were gliding reptiles that probably lived in trees and ate insects and other small animals, sort of like modern gliding lizards. But while most gliding lizards are very small, Coelurosauravus grew over a foot long, or around 40 cm, and that's nowhere near the weirdest thing about it. To explain why Coelurosauravus was so very peculiar, we have to learn a little about other gliding reptiles. Back in episode 255 we learned about kuehneosaurids, and that's a good place to start. Kuehneosaurids lived around 225 million years ago in what is now England. This wasn't all that long after Coelurosauravus lived and not that far away from where some of its relations lived, but the two weren't related. Kuehneosaurus looked like a big lizard although this was before modern lizards evolved, but it was a reptile and it was even larger than Coelurosauravus. Kuehneosaurus grew about two feet long, or 70 cm, including a long tail, and probably lived in trees and ate insects. Kuehneosaurus glided on sail-like structures on its sides that were made from extended ribs with skin stretched over them. Its wings weren't all that big, although they were big enough that they could act as a parachute if the animal fell or jumped from a branch. Another gliding reptile, Kuehneosuchus, had wings that were much longer. In a study published in 2008, a team of scientists built models of kuehneosuchus and tested them in a wind tunnel used for aerospace engineering. It turned out to be quite stable in the air and could probably glide very well. We don't know a whole lot about the kuehneosaurids because we haven't found very many fossils. We're not even sure if the two species are closely related or not. We're not even sure they're not the same species. Individuals of both were uncovered in caves near Bristol in the 1950s, and some researchers speculate they were males and females of the same species. Despite the difference in wings, otherwise they're extremely similar in a lot of ways. Generally, researchers compare the kuehneosaurids to modern draco lizards, which we talked about in episode 237, even though they're not related. Draco lizards are much smaller, only about 8 inches long including the tail, or 20 cm, and live throughout much of southeastern Asia. Many gliding animals, like the flying squirrel, have gliding membranes called patagia that stretch from the front legs to the back legs, but the draco lizard is different. It has greatly elongated ribs that it can extend like wings, and the skin between the ribs acts as a patagium. This skin is usually yellow or brown so that the lizard looks like a falling leaf when it's gliding. Draco lizards can fold their wings down and extend them, which isn't something the kuehneosaurids appear to have been able to do. But now let's return to Coelurosauravus. It too had wing-like structures on its sides that consisted of skin stretched over bony struts. But in this case, the bones weren't elongated ribs. Coelurosauravus had about 30 pairs of long, flexible bones that extended from the sides of its belly, and it could open and close its wings like draco lizar...

Strange Animals Podcast
Episode 433: Flamingos and Two Weird Friends

Strange Animals Podcast

Play Episode Listen Later May 19, 2025 10:08


Thanks to Ryder, Alexandria, and Simon for their suggestions this week! Let's learn about three remarkable wading birds. Two of them are pink! Bird sounds taken from the excellent website xeno-canto. The goliath heron is as tall as people [picture by Steve Garvie from Dunfermline, Fife, Scotland - Goliath Heron (Ardea goliath), CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=12223810]: The roseate spoonbill has a bill shaped like a spoon, you may notice [picture by Photo Dante - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42301356]: Flamingos really do look like those lawn ornaments [picture by Valdiney Pimenta - Flamingos, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=6233369]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to learn about three large birds with long legs that spend a lot of time wading through shallow water, suggested by Ryder, Alexandria, and Simon. Wading birds tend to share traits even if they're not closely related, because of convergent evolution. In order to wade in water deep enough to find food, a wading bird needs long legs. Then it also needs a long neck so it can reach its food more easily. A long beak helps to grab small animals too. Having big feet with long toes also helps it keep its footing in soft mud. Let's start with Ryder's suggestion, the goliath heron. It's the biggest heron alive today, standing up to 5 feet tall, or 1.5 meters. That's as tall as a person! It only weighs about 11 lbs at most, though, or 5 kg, but its wingspan is over 7 ½ feet across, or 2.3 meters. It's a big, elegant bird with a mostly gray and brown body, but a chestnut brown head and neck with black and white streaks on its throat and chest. The goliath heron lives throughout much of sub-Saharan Africa, meaning south of the Sahara Desert, anywhere it can find water. It's happy on the edge of a lake or river, in a swamp or other wetlands, around the edges of a water hole, or even along the coast of the ocean. It usually stands very still in the water, looking down. When a fish swims close enough, the heron stabs it with its bill, pulls it out of the water, and either holds it for a while until the bird is ready to swallow the fish, or sometimes it will even set the fish down on land or floating vegetation for a while. It's not usually in a big hurry to swallow its meal. Sometimes that means other birds steal the fish, especially eagles and pelicans, but the goliath heron is so big and its beak is so sharp that most of the time, other birds and animals leave it alone. The goliath heron will also eat frogs, lizards, and other small animals when it can, but it prefers nice big fish. It can catch much bigger fish than other wading birds, and eating big fish is naturally more energy efficient than eating small ones. If a goliath heron only catches two big fish a day, it's had enough to eat without having to expend a lot of energy hunting. This is what a goliath heron sounds like: [goliath heron call] Alexandria's suggestion, the roseate spoonbill, is also a big wading bird, but it's very different from the goliath heron. For one thing, it's pink and white and has a long bill that's flattened and spoon-shaped at the end. It's only about half the size of a goliath heron, with a wingspan over 4 feet across, or 1.3 meters, and a height of about 2 ½ feet, or 80 cm. That's still a big bird! It mostly lives in South America east of the Andes mountain range, but it's also found in coastal areas in Central America up through the most southern parts of North America. Unlike the goliath heron, which is solitary, the roseate spoonbill is social and spends time in small flocks as it hunts for food. It likes shallow coastal water, swamps, and other wetlands where it can find it preferred food. That isn't fish, although it will eat little fish like minnows when it catches...

Strange Animals Podcast
Episode 432: The Fossa and Other Animals of Madagascar

Strange Animals Podcast

Play Episode Listen Later May 12, 2025 10:37


This week we learn about the fossa and a few other animals of Madagascar, a suggestion by Pranav! Further reading: The stories people tell, and how they can contribute to our understanding of megafaunal decline and extinction in Madagascar The fossa! The votsotsa is a rodent, not a rabbit! [photo by Andrey Giljov - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=113271739]: The golden mantella frog is sometimes golden, but sometimes red: The nano-chameleon may be the smallest reptile in the world: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we have a very old Pranav suggestion, animals of Madagascar! The island country of Madagascar is off the southeastern coast of Africa. About 88 million years ago, it broke off from every other landmass in the world, specifically the supercontinent Gondwana. The continent we now call Africa separated from Gondwana even earlier, around 165 million years ago. Madagascar is the fourth largest island in the world and even though it's relatively close to Africa these days, many of its animals and plants are much different from those in Africa and other parts of the world because they've been evolving separately for 88 million years. But at various times in the past, some animals from Africa were able to reach Madagascar. We're still not completely sure how this happened. Madagascar is 250 miles away from Africa, or 400 kilometers, and these days the prevailing ocean currents push floating debris away from the island. In the past, though, the currents might have been different and some animals could have arrived on floating debris washed out to sea during storms. During times when the ocean levels were overall lower, islands that are underwater now might have been above the surface and allowed animals to travel from island to island until they reached Madagascar. We're not sure when the first humans visited Madagascar, but it was at least 2,500 years ago and possibly as much as 9,500 years ago or even earlier. It's likely that hunting parties would travel to Madagascar and stay there for a while, then return home with lots of food, but eventually people decided it would be a nice place to live. By 1,500 years ago people were definitely living on the island. Let's start with the fossa, an animal we've only talked about on the podcast once before, and then only in passing. It resembles a type of cat about the size of a cougar, although its legs are short in comparison to a similarly-sized cat. Its tail is almost as long as its body, and if you include its tail, it can grow around five feet long, or 1.5 meters. It's reddish-brown with a paler belly. Its head is small with a short muzzle, rounded ears, and big eyes. But the fossa isn't a felid. It resembles a really big mustelid in many ways, especially a mongoose, and some studies suggest it's most closely related to the mongoose. Really, though, it's not closely related to anything living today. It spends a lot of time in trees, where it uses its long tail to help it balance. It even has semi-retractable claws. It eats lemurs and other mammals, birds, insects, crabs, lizards, and even fruit. There used to be an even bigger fossa called the giant fossa, although we don't know much about it. We only know about it from some subfossil remains found in caves. We're not sure how big it was compared to the fossa living today, but it was definitely bigger and stronger and might have grown 7 feet long including its tail, or a little over 2 meters. There used to be much bigger lemurs living on Madagascar that have also gone extinct, so the giant fossa probably evolved to prey on them. Most scientists estimate that the giant fossa went extinct at least 700 years ago, but some think it might have survived in remote areas of Madagascar until much more recently. There are even modern sightings of unusually large fossas,

Strange Animals Podcast
Episode 431: The New Dire Wolf

Strange Animals Podcast

Play Episode Listen Later May 5, 2025 10:25


Thanks to Jayson for suggesting this week's topic, the new "dire wolf"! Also, possibly the same but maybe a different Jayson is the youngest member of the Cedar Springs Homeschool Science Olympiad Team, who are on their way to the Science Olympiad Nationals! They're almost to their funding goal if you can help out. Further reading: Dire wolves and woolly mammoths: Why scientists are worried about de-extinction The story of dire wolves goes beyond de-extinction These fluffy white wolves explain everything wrong with bringing back extinct animals Dire Wolves Split from Living Canids 5.7 Million Years Ago: Study This prehistoric monster is the largest dog that ever lived and was able to crush bone with its deadly teeth – but was wiped out by cats "Dire wolf" puppies: An artist's interpretation of the dire wolf (red coats) and grey wolves (grey coats) [taken from fourth link above]: The "mammoth fur" mice: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we have a suggestion from Jayson, who wants to learn about the so-called “new” dire wolf. Before we get started, a big shout-out to another Jayson, or maybe the same one I'm honestly not sure, who is the youngest member of the Cedar Springs Homeschool Science Olympiad Team. They've advanced to the nationals! There's a link in the show notes if you want to donate a little to help them with their travel expenses. This is a local team to me so I'm especially proud of them, and not to brag, but I've actually met Jayson and his sister and they're both smart, awesome kids. Now, let's find out about this new dire wolf that was announced last month. In early April 2025, a biotech company called Colossal Biosciences made the extraordinary claim that they had produced three dire wolf puppies. Since dire wolves went extinct around 13,000 years ago, this is a really big deal. Before we get into the details of Colossal's claim, let's refresh our memory about the dire wolf. We talked about it in episode 207, so I've taken a lot of my information from that episode. According to a 2021 study published in Nature, 5.7 million years ago, the shared ancestor of dire wolves and many other canids lived in Eurasia. Sea levels were low enough that the Bering land bridge, also called Beringia, connected the very eastern part of Asia to the very western part of North America. One population of this canid migrated into North America while the rest of the population stayed in Asia. The two populations evolved separately until the North American population developed into what we now call dire wolves. Meanwhile, the Eurasian population developed into many of the modern species we know today, and some of those eventually migrated into North America too. By the time the gray wolf and coyote populated North America, a little over one million years ago, the dire wolf was so distantly related to it that even when their territories overlapped, the species avoided each other and didn't interbreed. We've talked about canids in many previous episodes, including how readily they interbreed with each other, so for the dire wolf to remain genetically isolated, it was obviously not closely related at all to other canids at that point. The dire wolf looked a lot like a grey wolf, but researchers now think that was due more to convergent evolution than to its relationship with wolves. Both lived in the same habitats: plains, grasslands, and forests. The dire wolf was slightly taller on average than the modern grey wolf, which can grow a little over three feet tall at the shoulder, or 97 cm, but it was much heavier and more solidly built. It wouldn't have been able to run nearly as fast, but it could attack and kill larger animals. The dire wolf went extinct around 13,000 years ago, but Colossal now claims that they're no longer extinct. There are now exactly three dire wolves in the world, two males and a female,

Talking Feds
Winning Under the House Rules

Talking Feds

Play Episode Listen Later May 1, 2025 27:33


In a very unusual one-on-one--make that one-on-two--Harry sits down with Penn law professor Kate Shaw and Pennsylvania congresswoman Mary Gay Scanlon to discuss the recent hearing in Congress at which Professor Shaw testified and Congresswoman Scanlon posed questions for the minority. The hearing was a tendentious and contrived set piece directed by Republican Congressman Jim Jordan with the clear goal of supporting the Trump administration's claim that federal judges such as Jeb Boasberg are improperly enjoining administration action. From their respective vantage points Professor Shaw and Congresswoman Scanlon explain the rules of the road about how to counter false claims about the constitution and the role of judges in it. Then with general discussion of ways in which the minority can be effective in the sharply constrained roles that the system forwards them.See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.

Strange Animals Podcast
Episode 430: The Fake and the Real Coelacanth

Strange Animals Podcast

Play Episode Listen Later Apr 28, 2025 11:02


This week we examine two recent articles about coelacanth discoveries. Which one is real and which one is fake?! Further reading: Fake California Coelacanth First record of a living coelacanth from North Maluku, Indonesia A real coelacanth photo: A fake coelacanth photo (or at least the article is a fake) [photo taken from the first article linked above]: A real coelacanth photo [photo from the second article linked above]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. I had another episode planned for this week, but then I read an article by geologist Sharon Hill and decided the topic she researched was so important we need to cover it here. No, it's not the dire wolf—that's next week. It's the coelacanth. We talked about the coelocanth way back in episode two, with updates in a few later episodes. Because episode two is so old that it's dropped off the podcast feed, and to listen to it you have to actually go to the podcast's website, I'm going to quote from it extensively here. In December of 1938, a museum curator in South Africa named Marjorie Courtenay Lattimer got a message from a friend of hers, a fisherman named Hendrick Goosen, who had just arrived with a new catch. Lattimer was on the lookout for specimens for her tiny museum, and Goosen was happy to let her have anything interesting. Lattimer went down to the dock. Then she noticed THE FISH. It was five feet long, or 1.5 meters, blueish with shimmery silvery markings, with strange lobed fins and scales like armored plates. She described it as the most beautiful fish she had ever seen. She didn't know what it was, but she wanted it. She took the fish back to the museum in a taxi and went through her reference books to identify it. Imagine it. She's flipped through a couple of books but nothing looks even remotely like her fish. Then she turns a page and there's a picture of the fish--but it's extinct. It's been extinct for some 66 million years. But it's also a very recently alive fish resting on ice in the back of her museum. Lattimer sketched the fish and sent the drawing and a description to a professor at Rhodes University, J.L.B. Smith. But Smith was on Christmas break and didn't get her message until January 3rd. In the meantime, Lattimer's museum director told her the fish was a grouper and not worth the ice it was lying on. December is the middle of summer in South Africa, so to keep the fish from rotting away, she had it mounted. Then Smith sent her a near-hysterical cable that read, “MOST IMPORTANT PRESERVE SKELETON AND GILLS.” Oops. Smith got a little obsessed about finding another coelacanth. He offered huge rewards for a specimen. But it wasn't until December of 1952 that a pair of local fishermen on the island of Anjuan, about halfway between Tanzania and Madagascar, turned up with a fish they called the gombessa. It was a second coelacanth. Everyone was happy. The fishermen got a huge reward—a hundred British pounds—and Smith had an intact coelacanth. He actually cried when he saw it. Most people have heard of the coelacanth because its discovery is such a great story. But why is the fish such a big deal? The coelacanth isn't just a fish that was supposed to be extinct and was discovered alive and well, although that's pretty awesome. It's a strange fish, more closely related to mammals and reptiles than it is to ordinary ray-finned fish. The only living fish even slightly like it is the lungfish, which we talked about in episode 55. While the coelacanth is unique in a lot of ways, it's those lobed fins that are really exciting. It's not a stretch to say its paired fins look like nubby legs with frills instead of digits. Until DNA sequencing in 2013, many researchers thought the coelacanth was a sort of missing link between water-dwelling animals and those that first developed the ability to walk on land. As it happens, the lungfish turns out to be closer to that stage t...

Strange Animals Podcast
Episode 429: Foxes!

Strange Animals Podcast

Play Episode Listen Later Apr 21, 2025 7:15


Thanks to Katie, Torin, and Eilee for suggesting this week's topic, foxes! Further reading: Meet the Endangered Sierra Nevada Red Fox Long snouts protect foxes when diving headfirst in snow Black bears may play important role in protecting gray fox The red fox: A black and gold Sierra Nevada red fox [photo taken from the first link above]: The extremely fluffy Arctic fox: The gray fox [photo by VJAnderson - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=115382784]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we have an episode about foxes, a suggestion by Katie, and we'll talk about fox species suggested by Torin and Eilee. Foxes are omnivorous canids related to dogs and wolves, and just to be confusing, male foxes are sometimes called dogs. Female foxes are vixens and baby foxes are cubs or kits. But even though foxes are related to dogs and wolves, they're not so closely related that they can interbreed with those other canids. Plus, of course, not every animal that's called a fox is actually considered a fox scientifically. The largest species of fox is the red fox, which also happens to be the one most people are familiar with. It's common throughout much of North America, Eurasia, and the Middle East, and even parts of northern Africa. It's also been introduced in Australia, where it's an invasive species. It's a rusty-red in color with black legs and white markings, including a white tip to the tail. It has large pointed ears and a long narrow muzzle. There are lots of subspecies of red fox throughout its natural range, including one suggested by Eilee, the Sierra Nevada red fox. It lives in the Sierra Nevada and Oregon Cascades mountain ranges in the western United States, in parts of California, Nevada, and Oregon. It's smaller than the red fox and some individuals are red, some are black and gold, and some are a mix of red and gray-brown. Its paws are covered with long hair that protects the paw pads from snow, and its coat is thick. The Sierra Nevada red fox was first identified as a subspecies in 1937, but it took more than half a century until any scientists started studying it. It used to be common throughout the mountain ranges where it lives, but after more than a century of trapping for fur and shooting it for bounty, it's one of the rarest foxes in the world. Fewer than 100 adults are known to survive in the wild, maybe even fewer than 50. For a long time, scientists thought the Sierra Nevada red fox had been extirpated from California, and that it might even be completely extinct. Then a camera trap got pictures of one in 2010. It's fully protected now, so hopefully its numbers will grow. Torin suggested we learn about the Arctic fox, which lives in far northern areas like Greenland, Siberia, Alaska, and parts of northern Canada. The Arctic fox's muzzle is relatively short and its ears are rounded, and it also has a rounder body and shorter legs than other foxes. This helps keep it warm, since it has less surface area to lose body heat. During the summer, the Arctic fox is brown and gray, while in winter it's white to blend in with the snowy background. There are some individuals who are gray or brown-gray year-round, although it's rare. The Arctic fox's fur is thick and layered to keep it warm even in bitterly cold weather, and like the Sierra Nevada red fox, it has a lot of fur on its feet. The Arctic fox is omnivorous like other foxes, although in the winter it mostly eats meat. In summer it eats bird eggs, berries, and even seaweed along with fish and small animals like lemmings and mice. It also eats carrion from dead animals and what's left from a polar bear's meal. It has such a good sense of smell that it can smell a carcass from 25 miles away, or 40 km. Its hearing is good too, which allows it to find mice and other animals that are traveling under the snow. Like other foxes,

Trump's Trials
What Kilmar Abrego Garcia's case says about the Trump administration and the courts

Trump's Trials

Play Episode Listen Later Apr 16, 2025 6:30


What does Kilmar Abrego Garcia's case tell us about the relationship between the Trump administration and the courts? NPR's A Martinez asks Kate Shaw, law professor at the University of Pennsylvania.Support NPR and hear every episode of Trump's Terms sponsor-free with NPR+. Sign up at plus.npr.org.Learn more about sponsor message choices: podcastchoices.com/adchoicesNPR Privacy Policy

Strange Animals Podcast
Episode 428: The Most Venomous Snake!

Strange Animals Podcast

Play Episode Listen Later Apr 14, 2025 5:52


Thanks to Nora and BlueTheChicken for suggesting the inland taipan this week! The inland taipan in its summer colors [picture by AllenMcC. - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4442037]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we have a suggestion by Nora and BluetheChicken, who both wanted to learn about the inland taipan. Is it really the most venomous snake in the world? Let's find out, from a safe distance. The inland taipan is native to some parts of Australia, specifically in dry areas around the border of Queensland and South Australia. In the summer it's lighter in color, tan or yellowy-brown, and in winter it's dark brown or black with a lighter belly. Its head is usually darker in color than the rest of its body, and even in summer it usually has darker scales that make a zig-zaggy pattern on its back and sides. It can grow more than eight feet long, or 2.5 meters. It eats small animals, especially Dasyurids, which are members of the family Dasyuridae. Dasyurids are marsupials and include larger animals like the Tasmanian devil and the quoll, but those particular species don't live where the inland taipan does. The inland taipan mainly eats species that are often referred to as marsupial mice and marsupial rats, although they're not related to rodents at all. It also eats introduced placental mammals like actual rats and house mice. The inland taipan was described in 1879 from two specimens captured in northwestern Victoria. Then it wasn't seen again by scientists until 1972, when someone in Queensland sent a snake head to the herpetologist Jeanette Covacevich. Most people would consider that a threat, but she was delighted to get a mystery snake head in the mail. She grabbed a colleague and they hurried to Queensland to look for the snake. They found 13 of them, and to their utter delight, they turned out to be the long-lost inland taipan! Part of the reason it wasn't rediscovered sooner is that everyone thought it lived in Victoria, when it's actually still not been seen in that state since 1879. The inland taipan is often called the fierce snake because if it feels threatened, it will strike repeatedly and very fast. Its venom is incredibly toxic and takes effect incredibly quickly. It's a neurotoxin that can cause convulsions, paralysis, kidney failure, cerebral hemorrhage, heart failure, and lots more horrible symptoms. People have died from the venom, but unless you keep an inland taipan in captivity and handle it a lot, you don't have to worry about one biting you. It's very shy in the wild and will hide in rock crevices or cracks in dry soil rather than attack, plus it lives in remote areas of Australia that most people never visit. Even in captivity it's usually calm and not aggressive, which leads to reptile keepers and scientists not always taking the correct precautions for handling it. Luckily, with quick treatment and antivenin, most people recover from an inland taipan bite. So is it the most venomous snake in the world? The inland taipan's venom hasn't been fully studied yet, and scientists haven't fully studied the venom of many other snakes either, but as far as we know right now, yes. The inland taipan is the most venomous snake known, even compared to sea snakes. You may be wondering if anything would dare eat the inland taipan since it's so venomous. A big perentie monitor lizard, which we talked about in episode 384, will eat lots of different snakes, including the inland taipan. A snake called the mulga, also referred to as the king brown snake, will eat the inland taipan. The mulga usually only eats small snakes, but it's immune to the venom of most Australian snakes and can grow up to 11 feet long, or 3.3 meters. The mulga lives throughout most of Australia and is venomous itself. Even though its venom isn't all that toxic, it will bite repeatedly and even chew to inject even more venom.

The Brian Lehrer Show
SCOTUS Weighs in on Pres. Trump's Deportations

The Brian Lehrer Show

Play Episode Listen Later Apr 9, 2025 37:45


Kate Shaw, professor at the University of Pennsylvania Carey Law School, co-host of the Supreme Court podcast "Strict Scrutiny," and a contributing opinion Writer with The New York Times, offers legal analysis of how the Supreme Court is acting as a check on the president so far (or not), including the Court's recent decisions allowing the Trump administration to continue deporting Venezuelan migrants using a centuries-old law, and other related cases.

Strange Animals Podcast
Episode 427: The Other Cephalopods

Strange Animals Podcast

Play Episode Listen Later Apr 7, 2025 10:19


Further reading: Reconstructing fossil cephalopods: Endoceras Retro vs Modern #17: Ammonites Hammering Away at Hamites An endocerid [picture by Entelognathus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=111981757]: An ammonite fossil: A hamite ammonoid that looks a lot like a paperclip [picture by Hectonichus - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=34882102]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. When you think about cephalopods, if that's a word you know, you probably think of octopuses and squid, maybe cuttlefish. But those aren't the only cephalopods, and in particular in the past, there used to be even more cephalopods that are even weirder than the ones we have today. Cephalopods are in the family Mollusca along with snails and clams, and many other animals. The first ancestral cephalopods date back to the Cambrian, and naturally we don't know a whole lot about them since that was around 500 million years ago. We have fossilized shells that were only a few centimeters long at most, although none of the specimens we've found are complete. By about 475 million years ago, these early cephalopod ancestors had mostly died out but had given rise to some amazing animals called Endocerids. Endocerids had shells that were mostly cone-shaped, like one of those pointy-ended ice cream cones but mostly larger and not as tasty. Most were pretty small, usually only a few feet long, or less than a meter, but some were really big. The largest Endoceras giganteum fossil we have is just under 10 feet long, or 3 meters, and it isn't complete. Some scientists estimate that it might have been almost 19 feet long, or about 5.75 meters, when it was alive. But that's just the long, conical shell. What did the animal that lived in the shell look like? We don't know, but scientists speculate that it had a squid-like body. The head and arms were outside of the shell's opening, while the main part of the body was protected by the front part of the shell. We know it had arms because we have arm impressions in sections of fossilized sea floor that show ten arms that are all about the same length. We don't know if the arms had suckers the way many modern cephalopods do, and some scientists suggest it had ridges on the undersides of the arms that helped it grab prey, the way modern nautiluses do. It also had a hood-shaped structure on top of its head called an operculum, which is also seen in nautiluses. This probably allowed Endoceras giganteum to pull its head and arms into its shell and use the operculum to block the shell's entrance. We don't know what colors the shells were, but some specimens seem to show a mottled or spotted pattern. The interior of Endoceras giganteum's shell was made up of chambers, some of which were filled with calcium deposits that helped balance the body weight, so the animal didn't have trouble dragging it around. 3D models of the shells show that they could easily stick straight up in the water, but we also have trace fossils that show drag marks of the shell through sediment. Scientists think Endoceras was mainly an ambush predator, sitting quietly until a small animal got too close. Then it would grab it with its arms. It could also crawl around to find a better spot to hunt, and younger individuals that had smaller shells were probably a lot more active. We talked about ammonites way back in episode 86. Ammonites were really common in the fossil record for hundreds of millions of years, only going extinct at the same time as the dinosaurs. Some ammonites lived at the bottom of the ocean in shallow water, but many swam or floated throughout the ocean. Many ammonite fossils look like snail shells, but the shell contains sections inside called chambers. The largest chamber, at the end of the shell, was for the ammonite's body,

Strange Animals Podcast
Episode 426 Lots of Little Birds

Strange Animals Podcast

Play Episode Listen Later Mar 31, 2025 13:24


Thanks to Murilo, Alexandra, and Joel for their suggestions this week! The bird sounds in this episode come from xeno-canto, a great resource for lots of animal sounds! A cactus wren [picture by Mike & Chris - Cactus WrenUploaded by snowmanradio, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=15876953]: The sultan tit [photo by By Dibyendu Ash - CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72070998]: A female scarlet tanager [photo by Félix Uribe, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=81340425]. The male is red with black wings: The Northern cardinal: The yellow grosbeak [photo by Arjan Haverkamp - originally posted to Flickr as 2008-08-23-15h00m37.IMG_4747l, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=9596644]: The purple martin isn't actually purple [photo by JJ Cadiz, Cajay - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=4255626]: The dusky thrush [photo by Jerry Gunner from Lincoln, UK Uploaded by snowmanradio, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=20762838]: The European rose chafer, not a bird [photo by I, Chrumps, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2521547]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to learn about a lot of little birds that deserve more attention, because they're cute and interesting. Thanks to Murilo, Alexandra, and Joel for their little bird suggestions! All the birds we'll talk about today are called passerines, because they belong to the order Passeriformes. They're also sometimes referred to as perching birds or songbirds, even though not all passerines sing. Passerines are common throughout the world, with more than 6,500 species identified. I've seen about 150 of those species, so clearly I need to work harder as a birdwatcher. Passerines are referred to as perching birds because of their feet. A passerine bird has three toes that point forward and another toe pointing backwards, which allows it to wrap its toes securely around a twig or branch to sit. Its legs are also adapted so that the toes automatically curl up tight when the leg is bent. That's why a sleeping bird doesn't fall off its branch. Let's start with one of Murilo's suggestions, the wren. Wrens are birds in the family Troglodytidae, and are usually very small with a short tail, a pointy bill that turns slightly downward at the tip, and brown plumage. It mainly eats insects and larvae that it finds in nooks and crannies of trees, and many species will investigate dark places like hollow logs, the openings to caves, or your apartment if you leave the back door open on a warm day. Many sing beautiful songs and have very loud voices for such little bitty birds. Most wrens are native to the Americas, including the canyon wren that's native to western North America in desert areas. It's cinnamon-brown with a white throat and an especially long bill, which it uses to find insects in rock crevices. It lives in canyons and has a more flattened skull than other wrens, which means it can get its head into crevices without hurting itself. No one has ever seen a canyon wren drink water, and scientists think it probably gets all the water it needs from the insects it eats. Where do the insects get the water they need? That's an episode for another day. This is what a canyon wren sounds like: [bird sound] Not every bird that's called a wren is actually in the family Troglodytidae. Some just resemble wrens, like an unusual bird that Murilo brought to my attention. It's called Lyall's wren but it's actually in the family Acanthisittidae, and it was once widespread throughout New Zealand. By the time it was scientifically identified and described in 1894, it was restricted to a single island in Cook Strait. Lyall's wren was flightless,

Strict Scrutiny
Deportations and the Death of Due Process

Strict Scrutiny

Play Episode Listen Later Mar 24, 2025 85:03


After a deep dive on the Trump administration's horrifying misuse of the Alien Enemies Act to deport people from the US without due process, Kate and Leah preview upcoming SCOTUS cases about the Voting Rights Act and the Environmental Protection Agency. Along the way, they also touch on the Trump administration's targeting of certain law firms and its continued attacks on DEI. Hosts' favorite things this week: Leah: Fight! Fight! Fight!, Rebecca Traister; AOC's Bluesky feed during the CR debates/debacle; The Hidden Motive Behind Trump's Attacks on Trans People, M. Gessen; This Election Will Be a Crucial Test of Musk's Power, Kate Shaw; Trump Has Gone From Unconstitutional to Anti-Constitutional, Jamelle BouieKate: The Feminist Law Professor Who Wants to Stop Arresting People for Domestic Violence, Sarah Lustbader; The Dangerous Document Behind Trump's Campus Purges, Daphna Renan & Jesse  Hoffnung-Garskof; The Cost of the Government's Attack on Columbia, Christopher L. Eisgruber Get tickets for STRICT SCRUTINY LIVE – The Bad Decisions Tour 2025! 5/31 – Washington DC6/12 – NYC10/4 – ChicagoLearn more: http://crooked.com/eventsPre-order your copy of Leah's forthcoming book, Lawless: How the Supreme Court Runs on Conservative Grievance, Fringe Theories, and Bad Vibes (out May 13th)Follow us on Instagram, Threads, and Bluesky

Strange Animals Podcast
Episode 425 Rabbits!

Strange Animals Podcast

Play Episode Listen Later Mar 24, 2025 8:29


Thanks to Alyx and Richard from NC for their suggestions this week! Let's learn about rabbits! Further reading: Why your pet rabbit is more docile than its wild relative FOUND: Small enigmatic rabbit with black tail lost to science for more than 120 years rediscovered hopping around mountain range in Mexico The Omiltemi cottontail rabbit, as caught on a camera trap [photo taken from second article linked above]: Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. This week we're going to talk about bunnies, and also learn about how a wild animal differs from its domesticated counterpart. Thanks to Alyx for suggesting this excellent topic. Thanks also to Richard from NC who alerted me to a rediscovered rabbit we'll discuss too. Thanks for all the well wishes in the last few weeks about my surgery. It went just fine and all I have now is a cool-looking new scar, although I was seriously hoarse for about a week. It's pretty weather here in East Tennessee and officially it's spring in the northern hemisphere, so let's talk about some springtime bunnies! Collectively rabbits and hares are called leporids after their family, Leporidae. Leporids are famous for hopping instead of walking, and they're able to do so because their hind legs are longer than their front legs and have specialized ankle joints. Ancestors of leporids developed this ankle as much as 53 million years ago, but their legs were much shorter so they probably ran instead of hopped. Hares have longer legs than rabbits and can run faster as a result, but both rabbits and hares are known for their ability to bound at high speeds. When a rabbit or hare runs, it pushes off from the ground with the tips of its long hind toes, and its toes are connected with webbed skin so they can't spread apart. If the toes did spread apart, they would be more likely to get injured. Rabbits and hares also don't have paw pads like dogs and cats do. The bottom of its foot is covered with dense, coarse fur that protects the toes from injury. Its long claws help it get a good purchase on the ground so its feet won't slip. Leporids eat plants, including grass, weeds, twigs, and bark. Animals that eat grass and other tough plants have specialized digestive systems so they can extract as many nutrients from the plants as possible. Many animals swallow the plants, digest them for a while, then bring up cuds of plants and water to chew more thoroughly. Rabbits and hares don't chew their cud in that way, but they do have a system that allows them to twice-digest the plants they eat. After a leporid eats some plants, the plant pieces go into the stomach, naturally, and then travel into the first part of the large intestine, called the cecum. The cecum separates the softer parts of the plants from the harder, less digestible parts. The hard parts are compressed into hard pellets that the rabbit poops out. But the soft parts of the plants, which are most nutritious, develop into softer pellets. These are called cecotropes, and as soon as the rabbit poops out the cecotropes, it immediately eats them again. This allows the digestive system to get a second round to extract more nutrients from the plants. Hares aren't domesticated, but rabbits have probably been domesticated many times in different places over the last several thousand years, first for food and fur, and then as pets. The domesticated rabbit we have today is descended from the European rabbit, also called the cony. If other species of rabbit were ever domesticated, we don't have record of it. The rabbit has also been introduced into the wild in places it has no business to be, like Australia, where it's an invasive species. You know where else the European rabbit has been introduced? The British Isles. It's native to mainland Europe, not England, Scotland, Ireland, Wales, and smaller islands nearby. Historians think the rabbit was introduced to England soon after the year 1066,

Stay Tuned with Preet
Justice Under Trump: SCOTUS & Mahmoud Khalil (with Kate Shaw)

Stay Tuned with Preet

Play Episode Listen Later Mar 20, 2025 81:31


Kate Shaw is a constitutional law professor at University of Pennsylvania Penn Carey Law School. Shaw joins Preet to discuss legal challenges to President Trump's executive orders and the constitutionality of Elon Musk's role in DOGE. They also discuss whether Justice Amy Coney Barrett is shifting away from the conservative majority and upcoming Supreme Court cases on birthright citizenship and transgender care.  Plus, in a special excerpt from the CAFE Insider podcast, Preet and Joyce Vance speak with First Amendment expert Erwin Chemerinksy about the constitutionality of Trump's attempt to deport Mahmoud Khalil based on his involvement in pro-Palestine protests at Columbia University. Visit cafe.com/insider to subscribe and hear the full conversation. For show notes and a transcript of the episode head to our website.  Have a question for Preet? Ask @PreetBhararaon Twitter or Bluesky with the hashtag #AskPreet. Email us at staytuned@cafe.com, or call 833-997-7338 to leave a voicemail. Stay Tuned with Preet is brought to you by CAFE and the Vox Media Podcast Network. Learn more about your ad choices. Visit podcastchoices.com/adchoices

Strange Animals Podcast
Episode 424 Old-Timey Giant Snakes

Strange Animals Podcast

Play Episode Listen Later Mar 17, 2025 10:16


Show transcript: Welcome to Strange Animals Podcast. I'm your host, Kate Shaw. Recently I read about a giant snake supposedly seen in Tennessee in 1908. The story seemed a little suspicious so I dug into it, and it got a lot more complicated than I expected. On July 25, 1908, the St. Louis (Missouri) Globe-Democrat ran an article about a giant snake in Loudon, Tennessee. Loudon is a town half an hour's drive away from Knoxville in East Tennessee, although it took longer to get there from Knoxville in 1908. According to the article, the snake was “at least twenty-five feet in length, eight inches in diameter and twenty-four inches in circumference.” The longest snake ever reliably measured is a reticulated python named Medusa, who was measured as 25 feet 2 inches long in 2011, or 7.67 meters. Medusa holds the world record for the longest snake in captivity. Reticulated pythons are constrictors, which are non-venomous snakes who kill their prey by squeezing them until blood flow is shut off to the organs, causing cardiac arrest and death. As a result, they're incredibly strong snakes. The reticulated python is native to southern Asia and not likely to be found running loose in East Tennessee even today, and certainly not in 1908. The famous Boa constrictor and other snakes in the genus Boa are all native to Central and South America, while the closely related anaconda is from tropical South America. These snakes are also constrictors. The anaconda is rumored to grow over 30 feet long, or 9 meters, although the longest specimen ever reliably measured was 17 feet long, or 5.2 meters. Since snake skin is stretchy, though, preserved skins of huge size are often provided as proof of snakes much longer than the known maximum. While the anaconda isn't as long as the reticulated python, it's much bulkier, so a 25-foot anaconda would be much heavier and larger around than a 25-foot reticulated python. The 1908 article claims that the snake “has been seen off and on for the last twenty-eight years, but not until this summer has it caused any serious alarm.” I don't know about you, but even as someone who likes animals and thinks snakes are neat, if I saw a 25-foot snake I would be a little bit alarmed even if it wasn't doing anything. The article then describes how the snake had knocked down a fence while climbing over it and that it had taken a lamb. One man even managed to shoot the snake, although only with “small shot,” and the article claims that the snake, “in a frenzy from the pain, tore up saplings in getting away.” The article finishes by reporting that women and children were barricaded in their homes while men organized a posse to hunt down the giant snake, which was rumored to live in a cave overlooking the river. The same article ran in various newspapers around the country for months, but there was no follow-up to let readers know if the snake had been found. But the story didn't appear in any Tennessee newspapers. The only 1908 article about a giant snake in Tennessee that appears in a Tennessee newspaper is from August 21. The Chattanooga, Tennessee Daily Times reported that a blacksnake “fully six feet long and two inches in diameter” had been spotted eating young pigeons above the Birmingham railway station. A police officer shot and killed it, but its body couldn't be recovered from the steep hillside above the tunnel. “Blacksnake” is a term used for two snakes that are common throughout the southern United States: the eastern black kingsnake and the North American racer. Both are black in color and can grow more than 6 feet long, or 1.8 meters. Both are non-venomous and eat small animals like mice, frogs, and lizards, while the kingsnake also sometimes eats other snakes. The longest snake found in Tennessee, which also lives throughout much of eastern North America, is the gray ratsnake, which is frequently 6 feet long and sometimes longer.

Trumpcast
Amicus | The Constitutional Truth At The Heart Of The DOGE Cases

Trumpcast

Play Episode Listen Later Mar 8, 2025 65:01


Elon Musk's moves at DOGE have been legally dubious from the start. And the more we learn, the more questions we have about this not-an-agency helmed by Musk –– who is apparently both in charge, and also not in charge. That's why we wanted to talk with Kate Shaw, University of Pennsylvania law professor and co-host of the Strict Scrutiny podcast, about the very real constitutional issues raised by DOGE and Musk and his minions. Shaw spoke with Dahlia Lithwick about what is and isn't legal about DOGE, and the impossible bind that creates for government lawyers tasked with defending his devastation of the government.  Want more Amicus? Join Slate Plus to unlock weekly bonus episodes with exclusive legal analysis. Plus, you'll access ad-free listening across all your favorite Slate podcasts. You can subscribe directly from the Amicus show page on Apple Podcasts and Spotify. Or, visit slate.com/amicusplus to get access wherever you listen. Learn more about your ad choices. Visit megaphone.fm/adchoices

Amicus With Dahlia Lithwick | Law, justice, and the courts
The Constitutional Truth At The Heart Of The DOGE Cases

Amicus With Dahlia Lithwick | Law, justice, and the courts

Play Episode Listen Later Mar 8, 2025 65:01


Elon Musk's moves at DOGE have been legally dubious from the start. And the more we learn, the more questions we have about this not-an-agency helmed by Musk –– who is apparently both in charge, and also not in charge. That's why we wanted to talk with Kate Shaw, University of Pennsylvania law professor and co-host of the Strict Scrutiny podcast, about the very real constitutional issues raised by DOGE and Musk and his minions. Shaw spoke with Dahlia Lithwick about what is and isn't legal about DOGE, and the impossible bind that creates for government lawyers tasked with defending his devastation of the government.  Want more Amicus? Join Slate Plus to unlock weekly bonus episodes with exclusive legal analysis. Plus, you'll access ad-free listening across all your favorite Slate podcasts. You can subscribe directly from the Amicus show page on Apple Podcasts and Spotify. Or, visit slate.com/amicusplus to get access wherever you listen. Learn more about your ad choices. Visit megaphone.fm/adchoices

Slate Daily Feed
Amicus | The Constitutional Truth At The Heart Of The DOGE Cases

Slate Daily Feed

Play Episode Listen Later Mar 8, 2025 65:01


Elon Musk's moves at DOGE have been legally dubious from the start. And the more we learn, the more questions we have about this not-an-agency helmed by Musk –– who is apparently both in charge, and also not in charge. That's why we wanted to talk with Kate Shaw, University of Pennsylvania law professor and co-host of the Strict Scrutiny podcast, about the very real constitutional issues raised by DOGE and Musk and his minions. Shaw spoke with Dahlia Lithwick about what is and isn't legal about DOGE, and the impossible bind that creates for government lawyers tasked with defending his devastation of the government.  Want more Amicus? Join Slate Plus to unlock weekly bonus episodes with exclusive legal analysis. Plus, you'll access ad-free listening across all your favorite Slate podcasts. You can subscribe directly from the Amicus show page on Apple Podcasts and Spotify. Or, visit slate.com/amicusplus to get access wherever you listen. Learn more about your ad choices. Visit megaphone.fm/adchoices

Velshi
Challenging Trump in Congress and the Courts

Velshi

Play Episode Listen Later Mar 8, 2025 83:19


We the People
The Supreme Court and the Trump Administration

We the People

Play Episode Listen Later Feb 27, 2025 47:17


Jamelle Bouie and David French of The New York Times, Sarah Isgur of The Dispatch, and Melissa Murray of NYU School of Law join Jeffrey Rosen to discuss the relationship between the Roberts Court and the Trump administration. They discuss how the Supreme Court might resolve open legal questions—including impoundment and the unitary executive theory—and debate the Court's role in maintaining the separation of powers.   This conversation was originally recorded on February 22, 2025, as part of the NCC's President's Council Retreat in Miami, Florida.  Resources Melissa Murray (with Leah Litman and Kate Shaw), “Yes, We're in a Constitutional Crisis” Strict Scrutiny podcast (Feb. 17, 2025)  Jamelle Bouie, Michelle Cottle, David French, and Carlos Lozada, “Opinion: Don't be Fooled, ‘Trump is a Weak President'” The New York Times (Feb. 14, 2025)  David French, “The Trump Crisis Deepens,” The New York Times (Feb. 6, 2025)  Sarah Isgur and David French, “Lawless or Unwise?” Advisory Opinions podcast (Feb. 14, 2025) Stay Connected and Learn More Questions or comments about the show? Email us at podcast@constitutioncenter.org Continue the conversation by following us on social media @ConstitutionCtr. Sign up to receive Constitution Weekly, our email roundup of constitutional news and debate. Subscribe, rate, and review wherever you listen. Join us for an upcoming live program or watch recordings on YouTube. Support our important work. Donate

The Brian Lehrer Show
The White House & the Constitution

The Brian Lehrer Show

Play Episode Listen Later Feb 13, 2025 41:41


Kate Shaw, professor at the University of Pennsylvania Carey Law School, co-host of the Supreme Court podcast Strict Scrutiny, and a contributing opinion Writer with the New York Times, talks about the constitutional issues at stake with some of the actions taken by the White House.

The Gist
BEST OF THE GIST: ERA Edition

The Gist

Play Episode Listen Later Jan 25, 2025 46:53


Each weekend on Best Of The Gist, we listen back to an archival Gist segment from the past, then we replay something from the past week. This weekend, we listen back to Mike's 2022 interview with Kate Shaw, ABC Legal Analyst and co-host of the Strict Scrutiny podcast. It's an extended interview about the Equal Rights Amendment, which, many of its backers claim, actually passed and should be the law of the land. Then we listen back to Mike's Tuesday Spiel about the pardoned January 6th attackers.    SUBSCRIBE  We offer premium subscriptions, including an AD-FREE version of the show and options for bonus content.    The Gist is produced by Joel Patterson and Corey Wara    Email us at thegist@mikepesca.com  Subscribe to The Gist's YouTube Page  Follow Mike's Substack > Pesca Profundities  To advertise on the show, click here  Learn more about your ad choices. Visit podcastchoices.com/adchoices

The Ezra Klein Show
‘A Sword and a Shield': How the Supreme Court Supercharged Trump's Power

The Ezra Klein Show

Play Episode Listen Later Dec 17, 2024 45:27


Donald Trump will enter office at a time when presidential power has significantly expanded, because of a string of Supreme Court decisions in recent years. These decisions can be understood to have two functions: They give presidents a “sword” to act more decisively and unilaterally, and a “shield” that protects them from prosecution against actions taken in their official capacity. What will these capacities mean for Trump's second term — especially as he has promised to radically transform the federal government?Gillian Metzger is a professor at Columbia Law School who has studied the presidency, the administrative state and the Supreme Court's relationship to both. In this conversation, guest-hosted by Kate Shaw, a New York Times Opinion contributing writer and law professor, Metzger discusses two key Supreme Court cases — the Trump immunity case, which gave presidents broad protections from prosecution, and the Loper Bright Enterprises case, which overturned the Chevron doctrine, expanding judicial power. Shaw and Metzger also cover how much leeway Trump actually has to take some of the bolder executive actions he's floated, including ending birthright citizenship; what still remains uncertain about the federal government's regulatory powers in the post-Chevron regime; and more.“The Demise of Deference — And the Rise of Delegation to Interpret?” by Thomas W. Merrill“The DOGE Plan to Reform Government” by Elon Musk and Vivek RamaswamyBook recommendationsCreating the Administrative Constitution by Jerry L. MashawThe Forging of Bureaucratic Autonomy by Daniel Carpenter“Curation, Narration, Erasure” by Karen M. TaniThoughts? Guest suggestions? Email us at ezrakleinshow@nytimes.com.You can find transcripts (posted midday) and more episodes of “The Ezra Klein Show” at nytimes.com/ezra-klein-podcast. Book recommendations from all our guests are listed at https://www.nytimes.com/article/ezra-klein-show-book-recs.This episode of “The Ezra Klein Show” was produced by Elias Isquith. Fact-checking by Michelle Harris, with Mary Marge Locker. Mixing by Isaac Jones, with Efim Shapiro and Aman Sahota. Our supervising editor is Claire Gordon. The show's production team also includes Rollin Hu, Kristin Lin and Jack McCordick. Original music by Pat McCusker. Audience strategy by Kristina Samulewski and Shannon Busta. The executive producer of New York Times Opinion Audio is Annie-Rose Strasser. Unlock full access to New York Times podcasts and explore everything from politics to pop culture. Subscribe today at nytimes.com/podcasts or on Apple Podcasts and Spotify.

Stay Tuned with Preet
Abortion Access Gains in Red America (with Kate Shaw)

Stay Tuned with Preet

Play Episode Listen Later Nov 11, 2024 31:51


In this year's election, abortion protection measures were on the ballot in ten different states. While they succeeded in seven, they failed in three. So where does that leave the future of abortion access? This week, Preet speaks with University of Pennsylvania constitutional law professor and co-host of Strict Scrutiny Kate Shaw. They break down the most notable ballot measures and what abortion rights may look like under a second Trump presidency. Stay Tuned in Brief is presented by CAFE and the Vox Media Podcast Network. Please write to us with your thoughts and questions at letters@cafe.com, or leave a voicemail at 669-247-7338. For analysis of recent legal news, join the CAFE Insider community. Head to cafe.com/insider to join for just $1 for the first month. Learn more about your ad choices. Visit podcastchoices.com/adchoices