Podcasts about peptidsequenz

  • 4PODCASTS
  • 5EPISODES
  • AVG DURATION
  • ?INFREQUENT EPISODES
  • May 17, 2010LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about peptidsequenz

Latest podcast episodes about peptidsequenz

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19
Untersuchungen zur Identifizierung und funktionellen Charakterisierung von Peptiden als selektive Liganden der extrazellulären Matrix in soliden Tumoren

Medizinische Fakultät - Digitale Hochschulschriften der LMU - Teil 11/19

Play Episode Listen Later May 17, 2010


Während der Tumorangiogenese werden neue, tumorspezifische Blutgefäße gebildet. Bei diesem Prozess wird unter anderem der Hauptbestandteil der Basalmembran das Kollagen IV durch die Matrix-Metalloproteasen (MMP) 2 und 9 enzymatisch gespalten. Dabei werden bisher verborgene Bereiche der Kollagen IV α-Stränge freigelegt, welche Endothelzellen als Migrationssignale dienen. Diese als kryptische Bindungsstellen bezeichneten Bereiche sind kennzeichnend für angiogene Blutgefäße. Ziel der Untersuchungen war, ein Oligopeptid zu finden, welches spezifisch an diese Bindungsstellen bindet, das möglicherweise als Konjugat für therapeutisch wirksame Radionuklide und Zytostatika in Frage kommt. Zu diesem Zweck wurde ein kombiniertes in vivo/in vitro Phage-Display mit einer M13 Phagenbibliothek durchgeführt und ein Phage isoliert, der an durch MMP 2 modifiziertes humanes Kollagen IV bindet und die Oligopeptidsequenz TLTYTWS präsentiert. Im Rahmen einer Phagen-Biodistribution mit LLC Tumor-tragenden Mäusen konnte eine spezifische Anreicherung des Phagen im Tumorgewebe nachgewiesen werden. Der Phage weist also die Fähigkeit auf, sich im Tumorgewebe anzureichern. Diese Eigenschaft wird auch als „Tumor-homing“ bezeichnet. Die von dem Phagen präsentierte Peptidsequenz wurde zur chemische Synthese des TLTYTWS-Oligopeptids verwendet. Dieses Oligopeptid ist in der Lage, in vitro die Bindung des Phagen an durch MMP 2 modifiziertes humanes Kollagen IV dosisabhängig zu inhibieren. Weiterhin kann durch Koinjektion des TLTYTWS-Phagen und des TLTYTWS-Oligopeptids bei LLC Tumor-tragenden Mäusen die Akkumulation des Phagen im Tumorgewebe inhibiert werden, was die Spezifität des „Tumor-homings“ belegt. Zudem reduziert das TLTYTWS-Oligopeptid dosis-abhängig die Endothelzell-Differenzierung in vitro im Tube-Formation Assay und die Angiogenese in vivo im Matrigel-Plug Assay. Auf Grund dieser Charakteristika eignet sich das Oligopeptid möglicherweise zum Einsatz in der Diagnostik oder Therapie in der Onkologie.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Molekulare Grundlagen von Proteinfehlfaltungskrankheiten

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Oct 2, 2009


Bei vielen neurodegenerativen Erkrankungen ist die Fehlfaltung und Aggregation von Proteinen und Peptiden ein wichtiger pathogener Faktor, dessen Ursachen und Mechanismen bis heute größtenteils unbekannt sind. Teilweise entfaltete Zustände der beteiligten Proteine und Peptide, die oftmals Startpunkte der Fehlfaltung bilden, sind mit den gängigen experimentellen Techniken strukturell kaum aufzuklären. Im Gegensatz dazu lassen sich mit Hilfe von Molekulardynamik-(MD)-Simulationen die beteiligten Strukturen im Prinzip mit atomarer Auflösung charakterisieren. Ziel dieser Arbeit war es daher, Methoden zur MD-Simulation von Modellpeptiden zu entwickeln und anzuwenden, um Einsichten in die ersten Schritte der angesprochenen Fehlfaltungsprozesse zu gewinnen. Da die Faltungseigenschaften von Peptiden insbesondere von der Temperatur abhängen, habe ich im ersten Teil meiner Arbeit eine Strategie zur minimalinvasiven Temperaturkontrolle für MD-Simulationen entwickelt. Im Gegensatz zu gängigen Vorgehensweisen werden hierbei die Konformationsübergänge eines Peptids nicht verlangsamt, und das durch die Simulation abgetastete statistische Ensemble bleibt ungestört. Um den Konformationsraum mit der Fehlfaltung assoziierter Peptide effizient abzutasten, muss darüberhinaus auf sogenannte replica-exchange-Techniken zurückgegriffen werden, die durch einen regelmäßigen Konfigurationsaustausch zwischen parallelen Simulationen bei unterschiedlichen Temperaturen eine schnellere Konformationsdynamik des Peptids bewirken. Ein weiterer methodischer Teil meiner Arbeit beschäftigt sich daher mit Regeln zur optimalen Wahl der Temperaturleiter und des Austauschschemas für den Einsatz dieser Techniken. Insbesondere habe ich gezeigt, dass bisher bei der Ableitung entsprechender Regeln von falschen Voraussetzungen ausgegangen wurde, weshalb nur suboptimale Ergebnisse erzielt werden konnten. Aus der mathematischen Analyse des Problems und anhand eines Monte-Carlo-Modells habe ich eine tatsächlich optimale Strategie entwickelt. Schließlich habe ich diese Strategien angewandt um einen Aspekt der Fehlfaltung des Prion-Proteins (PrP) näher zu untersuchen. Ziel einer Reihe von replica-exchange-Simulationen war es, die Stabilität der ersten alpha-Helix (H1) von PrP gegen ihre Entfaltung zu untersuchen. Hierzu wurde ein Modell-Peptid mit einer H1 entsprechenden Sequenz in unterschiedlichen Lösungsmitteln simuliert. Dabei zeigte sich, dass die entsprechende Peptidsequenz in Wasser mehrheitlich keine alpha-helikale Faltung annimmt und vergleichsweise schnell entfaltet, während mit abnehmender Polarität des Lösungsmittels die Stabilität deutlich zunimmt. Damit bestätigt sich eine Hypothese von Hirschberger et al. [Biophys. J. 90, 3908-3918 (2006)] daß H1 für die Fehlfaltung von PrP keine Barriere darstellt, falls dieser Prozess, wie vermutet, als ersten Schritt den Wechsel von H1 von einer schwach in eine stark polare Umgebung beinhaltet.

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 03/07
Entwicklung von sensitiven Nachweismethoden für canines HMGB1 und TNFα zur Untersuchung der Rolle dieser Faktoren bei der Sepsis

Tierärztliche Fakultät - Digitale Hochschulschriften der LMU - Teil 03/07

Play Episode Listen Later Feb 9, 2007


Trotz des Einsatzes verschiedenster sehr potenter Antibiotika und Antiphlogistika in Verbindung mit einer ausgereiften Intensivmedizinischen Betreuung ist die Sepsis sowohl in der Human- als auch in der Tiermedizin heute immer noch eine der häufigsten Todesursachen. Die Immunpathogenese der Erkrankung ist gekennzeichnet durch eine systemische Entzündungsreaktion, hervorgerufen durch eine frühe Sekretion des Zytokins Tumor Nekrose Faktor alpha (TNFα). Im Vergleich zu TNFα gilt dagegen das erst kürzlich entdeckte Zytokin High Mobility Group Box 1 (HMGB1) als später proinflammatorischer Faktor. Um nun die Rolle dieser beiden Zytokine in der caninen Sepsis näher zu untersuchen, wurden neue sensitive Nachweismethoden etabliert und zusätzlich zwei bereits kommerziell erhältliche Substanzen aus der Humanmedizin zur Neutralisation von caninem TNFα in vitro getestet. Anhand bereits publizierter Sequenzen und mit Hilfe der Ensembl Datenbank konnten per PCR die Sequenzen für canines TNFα, TNFR1 (P60), HMGB1 und dessen Rezeptor RAGE kloniert und die Proteine rekombinant exprimiert werden. Die Bioaktivität und die Konzentration des rcanTNFα wurden in einem Zytotoxizitäts Assay mit der Zelllinie WEHI164 getestet. Die Bioaktivität des P60-Fc Fusionsproteins wurde durch seine neutralisierende Wirkung auf das zytotoxische rcanTNFα im gleichen Assay nachgewiesen. Mit Hilfe des P60-Fc Fusionsproteins und einem kommerziellen biotinylierten Ziege-anti-Hund TNFα Antikörper konnte ein entsprechender sensitiver ELISA aufgebaut werden. Gleichzeitig wurden ebenfalls im WEHI-Bioassay die zwei humanen anti-TNFα Therapeutika Infliximab und Ethanercept auf ihre Eigenschaft zur Bindung und Neutralisation von caninem TNFα hin getestet Nur Ethanercept konnte dabei das Zytokin binden und neutralisieren. Anschließend wurden Plasmaproben von 79 klinisch an Sepsis erkrankten Hunden analysiert und im TNFα ELISA quantifiziert. Keine der untersuchten Proben wies dabei jedoch einen erhöhten Spiegel an TNFα im Plasma auf. Aus diesem Grund wurden nun auch mit Hilfe zweier polyklonaler Seren gegen rcanHMGB1 und gegen eine spezifische Peptidsequenz des Zytokins ein Western Blot Verfahren und ein Capture ELISA für die Messung von HMGB1 aufgebaut. HMGB1 konnte dabei allerdings sowohl bei gesunden als auch bei sepsiskranken Hunden in vergleichbaren Mengen nachgewiesen werden.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Ein Protein für neue Aufgaben: die cytosolische PH-Domäne des Cytohesin-1 als Paratop und als Substrat für Translokationen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Dec 20, 2001


6.1. Die PH-Domäne als Paratop Die Pleckstrin-homologe (PH-) Domäne des humanen Cytohesin-1 besteht aus einem Proteingerüst sowie vier längeren Loops. Von diesen weisen drei in eine Richtung und bilden eine komplexe, flexible Oberflächenstruktur aus. Sollte man diese Oberflächenstruktur durch Mutation der Loops als Bindungstasche (Paratop) für Epitope von Schlüsselmolekülen etablieren können, wäre ein breiter Einsatz der PH-Domäne als Wirkstoff oder spezifisches Nachweisreagenz interessant, zumal sie sich in E. coli mit hohen Ausbeuten cytoplasmatisch löslich exprimieren läßt. In dieser Arbeit konnte gezeigt werden, daß sich die drei Loops verändern lassen, ohne daß die PH-Domäne ihre Struktur verliert; von daher eignet sich die PH-Domäne als Proteingerüst. Sie wurde insgesamt in 29 Aminosäurepositionen mit einem neuartigen Verfahren gewichtet randomisiert, indem an jeder Position die Wildtyp-Aminosäure bevorzugt wird. In Anbetracht der Zahl randomisierter Positionen sollte damit gegenüber einer ungewichteten Randomisierung kein Verlust an Komplexität für die Bibliothek zu befürchten sein, durch den möglichen Erhalt lokaler und nicht lokaler Wechselwirkungen aber die Zahl stabiler (damit exprimierbarer und selektierbarer) Mutanten deutlich erhöht werden. Die Randomisierung erfolgte dabei mit drei Oligodesoxynukleotiden, die in den randomisierten Positionen jeweils eine definierte Basenverteilung aufweisen. Zur Klonierung einer Bibliothek wurden sie im dazu entwickelten Verfahren der „asymmetrischen PCR-Reaktion“ eingesetzt und daraufhin zu einem in drei Segmenten randomisierten DNA-Fragment assembliert. Mit dieser Strategie konnten 6 · 107 Mutanten erzeugt werden. (Aus deutlich kleineren Bibliotheken anderer Proteine ließen sich bereits bindende Mutanten isolieren.) Die randomisierten Mutanten der PH-Domäne wurden im phage-display-Verfahren zur Selektion gegen drei Zielsubstanzen eingesetzt. Danach konnten ausschließlich Deletionsmutanten und Mutanten mit stop-Codons nachgewiesen werden, die keine Expression von PH-Domänen erlauben. Zurückgeführt wird dieses Ergebnis auf die schlechten Transporteigenschaften der PH-Domäne bei der Translokation in das Periplasma von E. coli, weshalb nicht auf bindende Paratope aus der Bibliothek selektiert werden konnte. Nach Verbesserung der Translokationseigenschaften von PH-Domänen sollte sich das phage-display-Verfahren zur Selektion bindender Mutanten fortsetzen lassen. 6.2. Die PH-Domäne als Substrat für Translokationen Die im phage-display-Verfahren eingesetzten M13-Bakteriophagen assemblieren in der inneren Membran von E. coli. Dies setzt die Translokation der mit dem g3-Protein fusionierten PH-Domäne in das Periplasma voraus. Die geringe periplasmatische Expression bei mehrheitlich aberranten Prozessierungen im Bereich des Signalpeptids und die geringe Darstellung auf der Phagenoberfläche veranlaßten zur Translokationsoptimierung der PH-Domäne. Während der allgemeine sekretorische Transportmechanismus von E. coli durch die beteiligten Membranproteine strukturell und funktionell gut verstanden ist, sind die Eigenschaften und Voraussetzungen für die Translokation von Substratproteinen (mit Signalpeptid als Präprotein bezeichnet) bislang weniger gut charakterisiert. Der „translokationskompetente“ Zustand beschreibt die Präproteine nur phänomenologisch. Für die schlechte Translokation wurden mehrere biochemische und biophysikalische Eigenschaften der PH-Domäne in Betracht gezogen und verschiedene Mutanten hergestellt, die demzufolge eine verbesserte Translokationseigenschaft aufweisen sollten. Dabei erwies sich weder die Verringerung der thermodynamischen Stabilität noch das engineering ausgewählter, spezifischer Sequenzelemente als translokationsbegünstigend. Wird dagegen durch Einführung neuer N- und C-Termini sowie der Verbrükkung der ursprünglichen Termini mit einem Linker die Topologie verändert, können bei zwei dieser sogenannten Circularpermutanten bis zu 30-fach höhere Expressionsausbeuten im Periplasma erzielt werden. Die Circularpermutation wurde damit erstmalig erfolgreich im rationalen Proteindesign angewendet. Die vorliegenden Ergebnisse legen nahe, daß die Mutanten der PH-Domäne vor der Translokation in einem nativ-ähnlichen Zustand gefaltet vorliegen und zur Translokation entfaltet werden müssen. Das in dieser Arbeit vorgeschlagene „Kräftemodell“ erklärt die verbesserte Translokation der Circularpermutanten CP X.6. gegenüber dem Wildtyp. Danach ist die maximale Kraft zur Entfaltung des Proteins die translokationslimitierende Größe, was sich mit Hilfe von Einzelmolekül-Kraft-Spektroskopie weiter untersuchen ließe. Wie sich die Mutationen an der PH-Domäne bei weiteren Transportprozessen auswirken, wurde beim mitochondrialen Import analysiert. Die untersuchten Mutanten zeigten unabhängig von ihrer thermodynamischen Stabilität und ihrer periplasmatischen Expression eine Unterbrechung des Imports. Ursache dafür ist eine Peptidsequenz von 27 Aminosäuren, die sich mit Hilfe der Circularpermutanten eindeutig identifizieren läßt. Sie führt bei der Circularpermutante CP 2.6. zu einer stabilen Expression im Intermembranraum und beim Wildtyp sowie bei der Circularpermutante CP 2.7. zu einem Verharren in der inneren Membran. Bei Mitochondrien konnte zuvor noch nie eine importunterbrechende Peptidsequenz nachgewiesen werden. Sie sollte sich zur stabilen Expression von Proteinen im Intermembranraum einsetzen lassen. In der (modellierten) Raumstruktur der PH-Domäne interagieren 19 der 27 Aminosäuren in einem Faltblatt/turn/Faltblatt-Motiv. Sie könnten als stabile Subdomäne den Import unterbrechen. Diese Interpretation ergänzt ein Modell zur Translokation von Präproteinen, wonach das Präprotein vom Intermembranraum schrittweise durch die innere Membran (bzw. den TIM-Komplex) in die Matrix diffundiert und dort arretiert wird. Dadurch wird die Rückdiffusion verhindert. Die Unterbrechung des weiteren Imports währt solange, bis aufgrund des thermodyamischen Gleichgewichts die Peptidsequenz vor der Membran entfaltet vorliegt und dann in die Matrix diffundieren kann. Ergänzende Experimente zum mitochondrialen Import sind in Vorbereitung. In dieser Arbeit konnte die PH-Domäne mit ihren Mutanten somit als Substrat für die Untersuchung von Transportprozessen etabliert werden. Die zukünftige Anwendung dieser Mutanten auf weitere Transportsysteme liegt dabei auf der Hand. Die Bibliothek randomisierter PH-Domäne wird in Kooperation mit anderen Arbeitskreisen zur Selektion spezifisch bindender und inhibierender Mutanten eingesetzt.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Entwicklung einer High-Throughput-Sequenzierungsmethode für die Proteomanalytik

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later May 7, 2001


Ziel dieser Arbeit sollte die Entwicklung einer automatisierten, hochparallelen und nachweis-starken Sequenzierungsmethode für Proteine im Rahmen der Proteomanalytik sein. Zur Kon-zeption der Methodik sollte dabei mit der sogenannten Leitersequenzierung eine Kopplung aus enzymatischem Aminosäureabbau und MALDI-Massenspektrometrie zum Einsatz kom-men. Die experimentellen Grundparameter für die Leitersequenzierung im Bezug auf die nasschemischen Sequenzierungsschritte und die massenspektrometrischen Messung wurden dabei im ersten Teil der Arbeit zunächst manuell ausgearbeitet. Im zweiten Abschnitt wurden dann die Möglichkeiten einer Automatisierung der so erarbeiteten Methode zur Leitersequen-zierung auf verschiedenen Ebenen evaluiert. Da der enzymatische Abbau eines Gesamtproteins durch dessen intrinsische Eigenschaften wie Sekundärstruktur, Tertiärstruktur (Zugänglichkeit der Proteintermini für die Exopepti-dase) oder Lösungsverhalten erschwert ist, wurden die Sequenzierungsprotokolle der Leiter-sequenzierung für proteolytisch erzeugte, RP-HPLC-gereinigte Spaltfragmente von Proteinen optimiert. Zudem besitzt die MALDI-MS, wie auch andere gängige massenspektrometrische Verfahren, im Massenbereich über ca. 5-10 kDa eine zu geringe Auflösung und Genauigkeit, um eine eindeutige Zuordnung der Massendifferenzen in den Leiterpeptidspektren zu den durch Exopeptidase abgespaltenen Aminosäure zu erlauben. Bei Versuchen mit verschiede-nen Endopeptidasen stellte sich – entgegen theoretischen Erwartungen – heraus, dass vor allem auch Proteinspaltungen mit Endoproteinase GluC (im Phosphatpuffer) und Chymotrypsin, neben Spaltungen mit Endoproteinase LysC, gute Voraussetzungen für die nachfolgende enzymatische Sequenzierung liefern. Mit den Proteinfragmenten aus Spaltungen der Endoproteinasen GluC (im Phosphatpuffer) und Chymotrypsin wurden bei den enzymatischen Sequenzierungen die höchsten Sequenzabdeckungen erzielt. In der technischen Ausführung wurden alle Experimente im Hinblick auf eine Sequenzierung direkt auf dem Target (on-target) optimiert. Geringfügige Anpassungen der erarbeiteten Methoden erlaubten jedoch auch eine Sequenzierung von Peptiden, die zuvor auf PVDF-Membran (Immobilon PSQ) aufgetragen wurden. Ein relativ kontrollierter und reproduzierba-rer Abbau war in einem Temperaturbereich von ca. 25-35°C möglich. Die enzymatischen Sequenzierungen erfolgten ausschließlich mit kommerziell erhältlichen Exopeptidasepräpara-tionen. Eine zusätzliche Aufreinigung der eingesetzten Enzyme erwies sich als nicht notwen-dig. Um eine einfache Interpretation der massenspektrometrischen Resultate zu gewährleisten, wurden nur Monopeptidylpeptidasen eingesetzt. Für C-terminale Sequenzierungen wurden mit CPY, CPP, CPW, CPA und CPB Carboxypeptidasen unterschiedlicher Spezifität einzeln und in verschiedenen Kombinationen untersucht. Von der N-terminal Seite aus wurden Sequenzierungen mit APM, LAP, API und AAP durchgeführt. Eine Betrachtung der Sequen-zierungen zeigt dabei, dass zumeist nur aus kombinierten Resultaten der Anwendung verschiedener Carboxy- beziehungsweise Aminopeptidasen eine ausreichende Sequenzinfor-mation erhalten werden kann. C-terminal ist der Anteil sequenzliefernder Fragmente bei der Verwendung von CPY, sowie bei den sequenziellen Peptidasenkombinationen sb(CP-I) und den Peptidasenmischungen pb(CP) mit maximal 42% am höchsten. Hier treten auch vermehrt längere Teilsequenzen mit bis zu 12 AS auf. N-terminal hebt sich APM als Einzelpeptidase mit überdurchschnittlich guten Sequenzresultaten gegenüber den anderen Aminopeptidasen ab. Bis zu 34% der getes-teten Peptide liefern allein schon mit diesem Enzym eine Sequenzinformation. Zudem wurden längere Teilsequenzen mit bis zu 9 AS im Vergleich zu anderen Aminopeptidasen häufiger erhalten. Sequenzierungen mit Aminopeptidasenmischungen bei N-terminaler Sequenzierung brachten im Gegensatz zu Carboxypeptidasenmischungen bei C-terminaler Sequenzierung kaum deutliche Vorteile. Auch sehr lange Sequenzabschnitte mit bis zu 16 AS N-terminal und bis zu 25 AS C-terminal wurden in Einzelfällen erhalten. C- und N-terminal am häufigsten wurden jedoch aus den Leiterspektren Teilsequenzen mit bis zu 6 AS erhalten (85% aller sequenzliefernden Proteinfragmente). Der größte Teil der Sequenzabdeckung stammt mit 70% aus Teilsequenzen mit 3-9 AS. Unter dem Hauptaspekt einer möglichen Steigerung der Sequenzinformation bei den Leiter-sequenzierung wurden unterschiedliche Peptidderivatisierungen untersucht. Die gezielte N-terminale Modifizierungen brachte in vielen Fällen durch die resultierende Massenverschie-bung des derivatisierten Peptids einen Gewinn an C-terminaler Sequenzinformation. Gegen-über entsprechend nicht-modifizierten Peptiden konnten durch die Massenverschiebung auch Leiterpeptide beobachtet werden, die sonst mit Signalen der MALDI-Matrix interferieren. Bei Modifikationsreagenzien, die eine fixierte positive Ladung oder ein ausgedehntes, delokali-siertes Elektronensystem ins Peptid einbrachten, wie z.B. Sulforhodamin B oder FMOC-NHS wurde dabei zusätzlich auch eine sehr gute Response im Massenspektrum beobachtet. Die Empfindlichkeiten lagen selbst bei der Sequenzierung der Rohprodukte solcher Derivate im unteren fmol-Bereich. Das charakteristische Isotopenmuster Brom-haltiger Peptidderivate erlaubte weiterhin ein stark vereinfachtes Auslesen der Leitersequenz aus dem Massenspekt-rum. Während die Leitersequenzierung allgemein keine Unterscheidung der isobaren Aminosäuren Leucin und Isoleucin erlaubt, gelang die Unterscheidung der ebenfalls isobaren Aminosäuren Lysin und Glutamin nach einer schnellen und selektiven Acetylierung des Lysins mit anschließender C-terminaler Sequenzierung.Im Hinblick auf die Analyse post-translationaler Modifikationen wurden insbesondere Phosphorylierungen eingehender untersucht. Dabei war sowohl bei der N-terminalen, als auch bei der C-terminalen Leitersequenzierung ein enzymatischer Abbau der phosphorylierten Aminosäuren zu beobachten und damit die entsprechende Phosphorylierungsstelle schnell und eindeutig zu identifizieren. Die N-terminale Sequenzierung mit APM lieferte die besten Resultate und ermöglichte sowohl den Abbau von Phosphotyrosin wie auch Phosphoserin, während der C-terminale Abbau sich auf Phosphotyrosin beschränkt zeigte. Aus der Summe der erhaltenen Resultate (Sequenzen) folgt, dass die Leitersequenzierung unter den gegebenen Voraussetzungen – insbesondere der limitierenden Verfügbarkeit zusätzlicher Exopeptidasen mit ergänzenden Spaltungsspezifitäten – im wesentlichen als Instrument zur schnellen Generierung kurzer Sequenztags geeignet ist. Auf diesem Gebiet stellt die erarbeitete Leitersequenzierung im Vergleich zur Edman-Sequenzierung eine wesentlich schnellere Alternative dar. Im Gegensatz zu rein massenspektrometrischen Sequenzierungen ist die Interpretation der Sequenzen im Massenspektrum stark vereinfacht und daher zumeist eindeutig. Die Empfindlichkeit der Methode ist stark von der untersuchten Peptidsequenz abhängig. Generelle Werte für die Empfindlichkeit lassen sich somit nicht angeben, die Resultate lassen jedoch für eine Peptidausgangsmenge im oberen fmol-Bereich (1000-500fmol) eine Leitersequenzierung ausnahmslos möglich erscheinen. Die Ergebnisse von Verdünnungsreihen zeigen zudem, dass auch nach Sequenzierung von Peptidmengen im mittleren bis unteren fmol-Bereich (50-10fmol) ein Auslesen der Peptidsequenz aus dem Massenspektrum zumeist möglich ist. Zum Erreichen solcher Empfindlichkeiten ist die weit-gehende Minimierung von Suppressionseffekten und damit die Verwendung von DHB als MALDI-Matrix eine notwendige Voraussetzung. Eine Evaluierungsstudie mit vier verschiedenen Proteinen führt zum Schluss, dass die Metho-dik auch für die de novo Sequenzierung unbekannter Proteine ein hohes Potential birgt. Die ermittelte Sequenzabdeckung der überlappenden Spaltfragmente lag bei maximal 80%. Im Bereich prolinhaltiger Sequenzabschnitte fehlen Überlappungen dabei am häufigsten, da auf Seiten der N-terminalen Sequenzierung geeignete Exopeptidasen zu Spaltung der Iminbindung nicht verfügbar waren. Zur Herstellung von Oligonucleotidsequenzen, die dann als Hybridisierungssonden in der Nucleinsäureanalytik eingesetzt werden, ist die Länge der erhaltenen Sequenzabschnitte jedoch in fast allen Fällen ausreichend. Die Methoden „MALDI-LS 1.42s“ für die Probenpräparation mit dem Pipettierroboter MultiPROBE II, sowie „multiprobe_5“ für die MALDI-MS Messung mittels AutoXecute auf dem Bruker Reflex III Massenspektrometer, erlauben eine Umsetzung der manuell ausgear-beiteten Methodik auf ein vollständig automatisiertes System. Eine Excel-Tabellenvorlage, die in konvertierter Form von beiden beteiligten Geräten gelesen werden kann, ermöglicht eine zentrale und einfache Dateneingabe für die Proben. Diese Art der Dateneingabe erlaubt im Zusammenspiel mit dem ausgearbeitetem Automatisierungspro-gramm eine vollkommen flexible, individuelle Behandlung der einzelnen Proben. Die erfor-derliche „Ortspräzision“ bei der Abgabe der Flüssigleiten auf dem MALDI-Target konnte durch eine entsprechenden ausgelegte Performance-Datei für den Pipettiervorgang erreicht werden. Querkontaminationen beim Pipettieren wurden durch organische Spülschritte in der Methode eliminiert. In der Summe lieferten die auf dem automatischen Pipettiersystem mit der Methode MALDI-LS 1.42s präparierten Proben im Massenspektrum vergleichbare Abbauspektren und somit auch die gleiche Sequenzinformation, wie entsprechend manuell präparierte Proben. Bei den automatischen MALDI-MS Messungen war eine Anpassung der Parameter insbeson-dere aufgrund der bevorzugten Verwendung der DHB-Matrix notwendig. Ein erhöhter Aceto-nitrilgehalt von 50% im Lösungsmittel der DHB sorgte für eine Verbesserung der Präparation im Bezug auf die automatische AutoXecute Messung. Mit speziellen Rasterkoordinaten, die bei der Laserabtastung der einzelnen Probenspots auf die besonderen Kristallisationseigen-schaften der DHB-Matrix zugeschnitten wurden, konnten gute Ergebnisse erzielt werden. Vorteile zeigten die DHB-Präparationen, im Vergleich zu CHCA-Präparationen, in der Toleranz gegenüber geringfügigen Mengen von Puffersalzen, wie sie bei der enzymatischen Sequenzierung üblich sind. Die Toleranzschwelle für den Abbruch der automatischen Messung musste jedoch bei den enzymatisch sequenzierten Proben und Verwendung von DHB-Matrix im Vergleich zu Messungen salzfreier Peptidproben in CHCA-Matrix erhöht werden, was im Durchschnitt zu etwas längeren Messzeiten führte. Die in dieser Arbeit weiterentwickelten Methoden zur enzymatischen on-target Sequenzie-rung von Peptiden erlauben somit, in Verbindung mit den beschriebenen Hard- und Software-komponenten zur automatischen Probenpräparation und MALDI-MS Messung, deren Einsatz für eine schnelle Sequenzierung in der Proteinanalytik. Zusätzliche Verbesserungen könnten jedoch, bei entsprechender Verfügbarkeit, noch durch Exopeptidasen mit ergänzender Spaltungsspezifität (z.B. X-Pro Aminopeptidase, EC 3.4.11.9) erzielt werden. Auf Seiten der Automatisierung ergäben sich durch die ausschließliche Ver-wendung eines 96er oder 384er Mikrotiterplattenformat auf allen Geräten (Pipettierrobot und MALDI-MS) deutliche Vereinfachungen in der Methode, bei gleichzeitig noch höherem Probendurchsatz.