Podcasts about kohlenstoffatome

  • 5PODCASTS
  • 6EPISODES
  • 16mAVG DURATION
  • ?INFREQUENT EPISODES
  • Apr 24, 2022LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about kohlenstoffatome

Latest podcast episodes about kohlenstoffatome

Buddhismus im Alltag - Der tägliche Podcast - Kurzvorträge und meditative Betrachtungen - Chan - Zen

Was Sie schon immer über Fette und Fettsäuren wissen wollten, hier für Sie zusammengestellt: Fette werden von vielen Menschen als leckerer Geschmacksträger sehr gerne gegessen, wenn dann die Kilos auf der Waage mehr werden, erst dann fängt manchmal ein Umdenken an. Unser Essen ist voller Fette, versteckt, aber auch leicht sichtbar werden die Speisen damit angereichert. Das Wichtigste vorneweg, es gibt "gute" und "schlechte" Fette, der tägliche Bedarf an Fetten wird mit ca. 35 % der Kalorienzufuhr angegeben, sie werden für die Energieversorgung, die Hormonproduktion, sowie die Aufnahme von fettlöslichen Vitaminen gebraucht (Aufnahme der fettlöslichen Vitamine A, D, E und K), wichtige Funktionen im Körper funktionieren nur mit ausreichend Fett. Fette liefern einen großen Teil der Energie und machen leistungsfähig, sie bringen das Aroma von Speisen erst zur Geltung. Aber wie gesagt, es gibt hochwertige und minderwertige Fette, "gute" und "schlechte". Sinn und Zweck dieses Artikels ist es, Sie dafür zu sensibilisieren. Man unterscheidet grundsätzlich zwischen gesättigten und ungesättigten Fetten. Gerade gesättigte Fette sind enthalten in tierischen Produkten wie Butter, Fleisch, Wurst oder Käse, aber auch feste Pflanzenfette (wie Kokosfett und Palmöl) enthalten gesättigte Fettsäuren, sie senken das gute HDL und erhöhen das schlechte LDL, ausserdem erhöhen die gesättigten Fette das Risiko für Herz-Kreislauf-Krankheiten. Einfach ungesättigte Fette, wie etwa die Omega-9-Fettsäure, sind enthalten in Olivenöl, Rapsöl, Nüssen oder Avocados, mehrfach ungesättigte Fette (wie Omega-3 und Omega-6) sind enthalten in Leinsamen, Hanföl, Chiasamen oder Rapsöl, sie gelten als essenziell und müssen über die Ernährung aufgenommen werden. Ausserdem gibt es lang-, mittel- und kurzkettige Fettsäuren, abhängig von der Anzahl der Kohlenstoffatome. Kurzkettige Fettsäuren (etwa Butter) sind leicht verdaulich, langkettige Fette werden als Fettdepots eingelagert (Hüftgold). Fettpolster haben aber auch andere Funktionen, wie etwa thermische Isolierung oder als Druckpolster (sonst würden wir ja auf den Knochen sitzen). Der Mensch sollte nach der WHO wenigstens 30 Gramm Fett aufnehmen (Männer 50 Gramm), allerdings ist ein Zuviel an Fett (das fängt beim Doppelten der empfohlenen Tagesmenge an) ein Auslöser für Krankheiten, wie etwa Adipositas, Diabetes Typ 2, Dyslipoproteinämie, Hypertonie, Metabolisches Syndrom, koronare Herzkrankheiten, Schlaganfall, sowie Krebskrankheiten aller Art. Wichtig ist, dass das Verhältnis von Omega-6- und Omega-3-Fettsäuren passt, ich empfehle ein 1:1, was ich durch Einnahme von Omega-3 Kapseln erreiche. Gute Quellen für Fette sind: Nüsse und Samen, Sojaprodukte (Tofu oder Tempeh) eine Auswahl hochwertiger Öle, Sesamöl, Leinsamen, Oliven (und Öl), sowie Kokosöl. Ich für meinen Teil bin der Meinung, dass tierische Fette etwa die Hälfte der Einnahme ausmachen sollten, gerade Butterzu Unrecht verteufelt wird (wenn die Menge nicht zu gross ist). Der Weg ist das Ziel! Die beste Gabe ist Gesundheit - Buddha - Ehrenname des indischen Philosophiestifters Siddhartha Gautama - 560 bis 480 vor dem Jahr Null Copyright: https://shaolin-rainer.de Bitte laden Sie sich auch meine App "Buddha-Blog" aus den Stores von Apple und Android.

Die Physikalische Soiree
Die letzten 300 Millionen Jahre der Erdatmosphäre

Die Physikalische Soiree

Play Episode Listen Later Jun 2, 2014 25:48


20 Minuten am Stück - ohne Unterbrechung - erzählt der Geologe und Palöoklimathologe Ralf Tappert von der Universität Innsbruck über die Erdatmosphäre, genau genommen die Änderungen in den letzten 300 Millionen Jahre - und wie man das bestimmen kann. Es geht über Eis - einige Zeit zurück, in dem die Lufteinschlüsse analysiert werden, aber so richtig zur Sache geht es, wenn man so genannte Proxies nimmt. Bernstein. Nein, nicht die Luft- oder Materialeinschlüsse, die man oft in Bernstein findet, sondern die Isotopenzusammensetzung der Kohlenstoffatome in Bernstein. Das gibt Aufschluss über die Verhältnisse von Sauerstoff und Kohlenstoffdioxid. Und da gibt es einige Überraschungen.

Chemie in 2 Minuten
#15 - Fettsäuren

Chemie in 2 Minuten

Play Episode Listen Later Jan 9, 2011


Diese Folge von Chemie in 2 Minuten wird präsentiert von iCatcherTV, dem Magazin rund Mac, iPhone und Internet - http://icatchertv.com ---------------- Hallo und herzlich willkommen zu einer neuen Folge von Chemie in 2 Minuten mit Ricardo Grieshaber. In dieser Folge geht es um Fettsäuren. Fettsäuren sind das, was wir im Alltag als Fett bezeichnen. Fettsäuren sind Lipide und gehören zur Gruppe der Carbonsäuren. In Carbonsäuren ist ein Sauerstoffatom über eine Doppelbindung mit einem Kohlenstoffatom verbunden. Außerdem befindet sich an dem Kohenstoffatom noch eine OH-Gruppe. In wässriger Lösung kann von der OH-Gruppe ein Proton abgespalten werden, daher reagieren in Wasser gelöste Carbonsäuren sauer. Fettsäuren sind besonders lange Carbonsäuren. Außerdem sind sie meistens unverzweigt, ihr chemischer Aufbau ähnelt also einer sehr langen Kette. Für unseren Körper sind sie überlebensnotwendig. Fettsäuren, in denen manche Kohlenstoffatome über Doppelbindungen miteinander verknüpft sind nennt man ungesättigte Fettsäuren. Manche Fettsäuren kann unser Körper nicht selbst herstellen. Diese müssen wir deshalb über die Nahrung zu uns nehmen, man nennt sie auch essentielle Fettsäuen. Alle Fettsäuren sind besonders energiereich, da sie hauptsächlich aus Kohlenstoff und Waserstoff-Atomen bestehen. Deshalb verwendet sie unser Körper auch zur Energiegewinnung. Etwa dreißig Prozent unseres täglichen Energiebedarfs decken wir mit Fettsäuren. Aber nicht nur zur Energiegewinung sind Fettsäuren wichtig: Laut mehreren Studien senken ungesättigte Fettsäuren das Risiko für Herzkrankheiten. Fettsäuren wirken sich außerdem positiv auf den Stoffwechsel und das Immunsystem aus. Das war’s schon wieder für dieses Mal. Schickt mir eure Fragen oder Themenvorschläge an chemie@in2minuten.com. Weitere in2Minuten-Podcasts findet ihr auf www.in2minuten.com

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06
Vergleichende Untersuchungen zum geruchlichen Diskriminationsvermögen von Totenkopfaffen (Saimiri sciureus) und Menschen für strukturell verwandte Duftstoffe

Fakultät für Biologie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later Sep 28, 2004


Untersucht wurde das geruchliche Unterscheidungsvermögen von Totenkopfaffen und Menschen zum einem für jeweils eine homologe Reihe von aliphatischen Aldehyden und Ketonen, zum anderen für ausgewählte Vertreter enantiomerer Duftstoffe. Dabei ergab sich für den Bereich der aliphatischen Aldehyde und Ketone folgendes Bild: Menschen und Totenkopfaffen verfügen über ein sehr gutes geruchliches Unterscheidungsvermögen bezüglich der hier verwendeten homologen Reihen von aliphatischen Aldehyden und Ketonen. Bei beiden Spezies zeigte sich eine signifikante negative Korrelation zwischen der Diskriminationsleistung und der strukturellen Ähnlichkeit (bezogen auf die Kohlenstoffkettenlänge) der Stimuli. Die Position der funktionellen Gruppe im Stimulusmolekül hatte ebenfalls deutliche Auswirkungen auf die geruchliche Qualität und somit auf die Diskriminierbarkeit des jeweiligen Duftstoffes. Bezüglich der Enantiomer-Diskrimination zeigte sich bei den drei Enantiomerpaaren (+)- versus (–)-a-Pinen, (+)- versus (–)-Carvon und (+)- versus (–)-Limonen eine gute Übereinstimmung des geruchlichen Diskriminationsvermögens von Menschen und Totenkopfaffen. Diese Aufgaben wurden vom Humankollektiv und, von einer Ausnahme abgesehen, von den Totenkopfaffen signifikant über Zufallsniveau richtig gelöst. Am leichtesten fiel beiden Spezies dabei die geruchliche Diskrimination der Antipoden des a-Pinens. Die Diskriminationsaufgabe (+)- versus (–)-Fenchon konnte nur von den drei Totenkopfaffen signifikant richtig gelöst werden. Die geruchliche Unterscheidung der restlichen sechs getesteten Enantiomerpaare war beiden Spezies nicht möglich. Die gute Übereinstimmung der geruchlichen Leistungsfähigkeit von Humankollektiv und Totenkopfaffen legen den Schluß nahe, daß die olfaktorische Wahrnehmung von menschlichen und nicht-menschlichen Primaten auf den selben molekularen Mechanismen beruht. So hat die Anzahl der in einem Duftmolekül enthaltenen Kohlenstoffatome wie auch der sterische Aufbau dieses Moleküls bei beiden Spezies einen entscheidenden Einfluß auf die wahrgenommene Duftqualität.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

In dieser Arbeit werden die ersten Kohlenhydratverbindungen von Rhenium(V) und Rhenium(VI) beschrieben, die durch ein- und zweidimensionale NMR-Spektroskopie in Lösung und durch Einkristall-Röntgenstrukturanalyse untersucht wurden. Es werden zwei Synthesewege für die Darstellung von Rhenium(VI)-Kohlenhydrat-Ver-bindungen vorgestellt (Schema 2.1). Durch Reduktion von ReVII2O7 mit PPh3 konnte der Komplex [{ReVIO(AnErytH−2)}2(µ-O)2(µ-MeOH)] (4) dargestellt werden. Die beiden Komplexe [{(µ-O){ReVIO(MeO)(Me-α-D-Lyxf 2,3H−2)}}2{(µ-O){ReVIO(Me-α-D-Lyxf 2,3H−2)}2}] (5) und [(µ-O){ReVIOCl(AnErytH−2) · MeOH}2] (6) entstanden bei der Oxidation von [ReVOCl4]− mit Sauerstoff. Dabei zeigt sich die starke Oxophilie des stark Lewis-sauren ReVI. Die Metallatome sind über Oxobrücken verknüpft und kommen sich so nahe, dass wie bei 4 Metall-Metall-Wechselwirkungen entstehen können. Der Komplex ist aus zwei [ReVIO2(AnErytH−2)]-Einheiten aufgebaut. Dieser Aufbau ähnelt 6, bei der zwei [ReVIOCl(AnErytH−2)]+-Einheiten über einen O2−-Liganden verbunden sind. Das gleiche Verknüpfungsmuster besitzt die tetranukleare Verbindung 5. Hier sind vier [ReVIO(Me-α-D-Lyxf2,3H−2)]2+-Fragmente mit O2−-Liganden verbunden, wobei an den terminalen Ein-heiten Methanolat koordiniert. Diese Verbindungsklasse ist in erster Linie von wissenschaftlichem Interesse. Ihre hohe Oxidationsempfindlichkeit und hydrolytische Instabilität erlauben keine Verwendung in der Nuklearmedizin. Die Komplexe konnten alle ohne einen Hilfsliganden stabilisiert wer-den. Dies gelang auch bei dem ReV-oxalat-Komplex [(ReVOCl3)2(Ox)]2− (1) und der ReV-kojinat-Verbindung [ReVOCl3(KojiH−1)]− (2). Dabei koordinieren Oxalat und Kojisäure trans zum apicalen Sauerstoff und substituieren ein Chloratom des Eduktes [ReVOCl4]−. Eine formale Re-Re-Doppelbindung besitzt der binukleare Komplex [{ReV(MeO)2Cl2}2 (µ-O)(µ-MeO)]− (3), wobei sich die Metallatome bis auf 2.46 Å nahe kommen. Eingehender wurden die ReV-Komplexe untersucht, bei denen ein Hilfsligand das Kohlen-hydrat-[ReVO]3+-Fragment stabilisiert. Die drei Strukturmuster sind in Abbildung 4.1 aufgeführt. Zusammenfassung 69 OReOONNNNNNBReOOONNN+_IReOOOClNN Abbildung 4.1: Die drei Strukturmuster der heteroleptischen ReV-Komplexe 8–20 (außer 18) mit den Hilfsliganden phen, tpb und dien. Mit phen als Hilfsligand konnten die Komplexe [ReVOCl(phen)(cis-1,2-CptdH−2)] (8), [ReVOCl(phen)(AnErytH−2)] (9), [ReVOCl(phen)(trans-1,2-ChxdH−2)] (10) und [ReVOCl(phen)(Xylt2,3H−2)] (11) röntgenkristallographisch untersucht werden. Die orangen Verbindungen sind gut zugänglich; [ReVOCl4]− wurde in Methanol unter Zugabe von phen und dem Kohlenhydrat umgesetzt. Die entstandenen Komplexe waren bei zu langer Sauerstoffexposition instabil, was auf die Substitutionsstelle des Chlorids zurück-zuführen ist. Durch eine formale Substitution von Chlorid und phen mit dem dreizähnigen tpb-Liganden verbesserte sich die Stabilität der tpb-Komplexe [ReVO(tpb)(AnErytH−2)] (13), [ReVO(tpb)(Me-β-D-Galp3,4H−2)] (14), [ReVO(tpb)(D-Thre2,3H−2)] (15) und [ReVO(tpb)(Eryt1,2H−2)] (16) im Vergleich zu den phen-Komplexen. Ein weiterer Grund für die Oxidationsstabilität der neutralen Verbindungen ist der Chelateffekt. Nachteilig ist ihre schlechte Wasserlöslichkeit. Zur Synthese dieser blauen Substanzen wurde eine me-thanolische Suspension aus [ReVO(tpb)Cl2], dem Kohlenhydrat und der Base Triethylamin zwei Stunden lang unter Rückfluß bei 80 °C gerührt. Auffällig bei 14 ist der niedrige Tor-sionswinkel der chelatisierenden Diol-Einheit mit 32.5 °. Daraus ergibt sich eine Abwei-chung von 23.7 ° im Vergleich zum C3–O3–O4–C4-Torsionswinkel des freien Galactopy-ranosids. Dies ist bisher die größte beobachtete Erniedrigung eines Torsionswinkels einer komplexierenden Diol-Einheit in Pyranosiden. Die Synthese der Rhenium(V)-dien-Kohlenhydrat-Verbindungen ähnelt der Darstellung der phen-Komplexe. Eine methanolische Suspension aus [ReVO2I(PPh3)2], dem Kohlenhydrat-Liganden und dien musste eine Stunde bei Raumtemperatur gerührt werden. Es entstanden rosa Kristalle mit der Summenformel [ReVO(dien)(AnErytH−2)]I (17), [ReVO(dien)(Me-α-D-Manp2,3H−2)]I (19) und [ReVO(dien)(Me-β-D-Galp3,4H−2)]I (20). Weiterhin wurde ein Adenosin-Komplex mit der postulierten Zusammensetzung [ReVO(dien)(AdoH−2)]I (21) synthetisiert. Die Verbindungen zeichnen sich durch ihre 70 Zusammenfassung Wasserlöslichkeit, ihre Oxidations- und Hydrolysestabilität (bei Raumtemperatur bis zu einer Woche) und durch ihre schnelle Präparation aus. Es gelang, die Mannopyranosid-Verbindung 19 und den Adenosin-Komplex 21 mit Hilfe der HPLC zu charakterisieren. Damit wurde die analytische Basis für die Synthese von radioaktiven Rhenium(V)-Kohlen-hydrat-Verbindungen gelegt. Auf der Grundlage der Darstellungsvorschriften der dien-Verbindungen wurden, ausgehend von 188ReVIIO4−, die radioaktiven Ionen [188ReVO(dien)(Me-α-D-Manp2,3H−2)]+ von (22) und [188ReVO(dien)(AdoH−2)]+ von (23) synthetisiert. Ihre Existenz konnte mit der HPLC-Chromatographie nachgewiesen werden. Nuklearmedizinische Anwendungen dieser radioaktiven Verbindungen werden zurzeit untersucht. Bei den Reaktionen von polyfunktionellen Kohlenhydraten mit Rhenium(V)-Verbindungen sind viele isomere Formen von Oxorhenium(V)-Komplexen möglich. Bei den in dieser Arbeit vorgestellten Verbindungen werden die anti/syn-Isomere beschrieben, in denen der Ligand um 180° um die äquatoriale Ebene gedreht ist. Während die phen-Komplexe empfindlich gegenüber Sauerstoff reagierten, zeichneten sich die Rhenium-Komplexe mit tpb und dien durch ihre kinetische Inertheit aus. Unter dem Aspekt der Synthese stabiler Rhenium(V)-Kohlenhydrat-Verbindungen hat sich das „3 + 2“- dem „2 + 2“-Konzept als überlegen erwiesen. Aufgrund ihrer Stabilität in Lösung können aussagekräftige NMR-Spektren der Oxo-rhenium(V)-Komplexen erhalten werden. Die Resonanzen der Kohlenstoffatome, die an die koordinierenden Sauerstoffe gebunden sind, verschieben sich durch die Komplexierung um bis zu 31.4 ins Tieffeld. Die dem Rhenium(V) nahen Wasserstoffe (H–C–O–Re) erfahren eine Tieffeldverschiebung von bis zu 1.9. Die Zuordnung der Resonanzen zu ein-zelnen Atomen erfolgte mit Hilfe der 2D-NMR-Spektroskopie. Der Erkenntnisgewinn aus der Verzahnung von struktureller Aufklärung und den Reso-nanzverschiebungen in den 1H- und 13C-Spektren führt dazu, dass schon auf Basis von NMR-Verschiebungen zuverlässige Aussagen über die Koordination des Kohlenhydrates an Rhenium(V) getroffen werden können.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Metallierung, oxidative C-C-Kupplung und C-N-Aktivierung mit Zinkorganyl-Verbindungen

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later May 7, 2001


Ein Ziel dieser Arbeit war es, die Zugänglichkeit von geminalen Bis(alkylzink)imiden zu untersuchen. Verbindungen des Typs (RZn)2NR´ wurden bereits in der Literatur[33][34] als Polymerisationskatalysator erwähnt, jedoch nicht strukturell erfasst. In Kapitel 2.1 ist die Zinkierung primärer Amine mit Dimethyl- und Diethylzink beschrieben. Sowohl in Lösung als auch im Feststoff erhält man nach Gleichung 37 dimere Alkylzinkamide des Typs [RZnN(H)R´]2. Während [MeZnN(H)SiiPr3]2 1 und [EtZnN(H)SiiPr3]2 2 solvensfrei mit seltenen, dreifach koordinierten Zinkatomen isoliert werden konnten, ist an das zentrale [MeZnN(H)Ad]2-Fragment bei Verbindung 4 ein Molekül Adamantylamin sowie ein Molekül THF mit einer außergewöhnlich langen Zn-O-Bindung (240 pm) angelagert. Daraus ergibt sich eine unterschiedliche koordinative Umgebung der beiden Zinkatome bei 4. 2 R´NH2 + R´ 2 ZnR2 - 2 CH4 R´= iPr3Si R = Me (1), Et (2) Zn NH NH Zn R R R´ R´= Adamantyl R = Me (4); *AdNH2; *THF Gleichung 37. Zinkierung primärer Amine zu dimeren Alkylzink-amiden des Typs [RZnN(H)R´]2. Vor allem Komplex 4 zeigt, dass Dimethylzink weder in der Lage ist, den Adamantylamidsubstituenten noch den koordinierten Adamantylaminliganden, selbst unter drastischen Bedingungen wie hoher Temperatur, zu metallieren. Die bis heute noch nicht strukturell charakterisierten Bis(alkylzink)imide lassen sich nach unseren Untersuchungen nicht durch Zinkierung primärer Amine erhalten und stehen somit nicht im Einklang mit dem in der Literatur beschriebenen Polymerisationskatalysator N,N-Bis(ethylzink)-tert-butylimid[33] oder mit den Bis(alkylzink)-trialkylsilylimiden.[34] Mit Zink-bis[κ2-N,N´-chlorzink-N-trimethylsilylamino-diphenylphosphoranyl]methandiid 5 konnte das erste Bis(halogenzink)methandiid strukturell charakterisiert werden. Im Gegensatz zu dem bisher als einzigen über Röntgenstruktur untersuchten, tetrameren Bis(alkylzink)- methandiid [(2-Pyridyl)(SiMe3)CZn]4 [50] kann man 5 auch als Zink-silylamid auffassen, da eine Umlagerung die Koordination zweier Zinkatome an das Methandiidkohlenstoffatom verhindert. In Kapitel 2.2 sind Synthese, Struktur und Reaktivität der 2-Aminomethylpyridinzinkdihalogenide beschrieben. Da Zinkhalogenide oft als Katalysatoren in der organischen Synthese eingesetzt werden, sind deren koordinative Umgebung und Eigenschaften von besonderem Interesse. Durch Addition von Zink(II)chlorid an Aminomethylpyridin erhält man nach Gleichung 38 Aminomethylpyridinzinkchlorid 6, während die schwereren Zinkhalogenide in Form von Bis(aminomethylpyridin)zinkbromid 7 bzw. –iodid 8 anfallen und als getrennte Ionenpaare [(AMP)2ZnX]+ X- (X = Br (7), I (8)) beschrieben werden können. Durch Abspaltung eines Liganden erhält man im Fall des Bromids 2-Aminomethylpyridinzinkbromid 9. Die Verbindungen 6 bis 9 reagieren mit Aceton unter Wasserabspaltung und hohen Ausbeuten leicht zu den entsprechenden Propylidenkomplexen 10 bis 12. Um den linearen Zusammenhang zwischen Zn-N-Bindungslängen und R-Zn-R´- Bindungswinkeln in Verbindungen des Typs (L)2ZnRR´ zu untersuchen, wurden die Molekülstrukturen von 9, 10 und 12 bestimmt. Die Verbindungen weisen die kleinsten bis heute bestimmten Winkel (115°) auf und fügen sich mit ihren sehr kurzen Zn-N-Bindungslängen von 205 pm in die genannte Beziehung ein. Die dargestellten TMEDAKomplexe von ClZnCH2SiMe3 14 und ClZntBu 15 reihen sich ebenso ein. Die Reaktion von 10 mit Lithium-methanid ergibt Methylzink-2-azabenzylidenaminopropan-2- id 13 und zeigt, dass der Aminomethylpyridinligand leicht durch eine Base in α-Stellung zum Ring deprotoniert werden kann. In Kapitel 2.3 wird eine neuartige, oxidative Kohlenstoff-Kohlenstoff-Kupplung bei der Umsetzung von (Trialkylsilyl)(2-pyridylmethyl)aminen mit Dialkylzinkverbindungen beschrieben (Gleichung 39). Es gelang den Reaktionsmechanismus dieser ungewöhnlichen metallorganischen Reaktion aufzuklären und die Zwischenstufen strukturell zu charakterisieren. Im Gegensatz zur Reaktion von 1,4-Di(tert-butyl)-1,4-diazabutadien (DAB) mit Dialkylzink,[89][90][91][92] bei der ebenfalls eine C-C-Kupplung zu beobachten ist, lässt sich ein radikalischer Reaktionsweg von uns ausschließen. Bei der Umsetzung von (Trialkylsilyl)(2-pyridylmethyl)aminen 16 mit Dialkylzink erhält man bei R.T. zunächst dimeres Alkylzink-2-pyridylmethyl(tert-butyldimethylsilyl)amid 17, das beim Erhitzen mit einem Überschuss R´2Zn zu dem C-C-Kupplungsprodukt 18 weiterreagiert. Im Verlauf dieser Reaktion beobachtet man die äquimolare Abscheidung von elementarem Zink und die Abspaltung von Methangas. Die C-C-gekuppelte Spezies weist einen sehr kurzen, nicht bindenden Zn⋅⋅⋅Zn-Abstand (272 pm) sowie eine neue, relativ lange C-C-Bindung (157 bzw. 160 pm, abhängig vom sterischen Anspruch der Reste) auf. Durch die Knüpfung der neuen Bindung ergeben sich zwei chirale Zentren im Molekül, wobei ausschließlich ein Gemisch der (S,S)- und (R,R)-Enantiomeren erhalten wird und nie die meso-Form. Beide Zinkatome sind tetraedrisch umgeben. Zur Aufklärung des Mechanismus wurden die entsprechenden Benzylderivate (E = CH, Gleichung 39) dargestellt. Dies gelang bis auf Typ O und P, die C-C-gekuppelte Spezies. Die Notwendigkeit des Pyridylstickstoffs bei der C-C-Kupplung kann mit Zwischenverbindung O aus Gleichung 39 erklärt werden, denn nur über das Zink-bisamid kann es zur oxidativen Kupplung der Kohlenstoffatome kommen. Untersucht man den Zusammenhang der Größe der Reste in Bezug auf die Kupplungsreaktion, so kann man keinen Einfluss bei Variation der Alkylgruppen (R) am Siliciumatom erkennen. Eine Vergrößerung der am Zink gebundenen Gruppen (R´) zeigt dagegen eine Abnahme der Reaktionsgeschwindigkeit bis hin zum Ausbleiben der C-C-Kupplung bei R´ = C(SiMe3)3. Bis(methylzink)-1,2-dipyridyl-1,2-bis(tert-butyldimethylsilylamido)ethan 18 ist ein in jeder Hinsicht ungewöhnlicher, binuclearer Komplex. Bei Reaktionen mit Verbindungen des Typs R´EH2, beschrieben in Kapitel 2.4, zeigen sich in Abhängigkeit der Acidität der Protonen unterschiedliche Reaktionsarten. Mit Triisopropylsilylphosphan und –arsan wird das Gruppe-15 Atom durch ein Methylzinkfragment unter Abgabe von Methan zinkiert (Gleichung 40). Da überraschenderweise zusätzlich die vierzähnige Aminobase vom Phosphan protoniert wird, erhält man den dreikernigen Komplex 25, bei dem zwei Zn-Atome vierfach und eines zweifach koordiniert ist. Dieser Komplex stellt das erste Beispiel für ein zweifach koordiniertes Zinkatom in einem Phosphandiid dar. Der P-Zn-P-Winkel weicht mit 154° stark von der, bei Koordinationszahl 2 zu erwartenden Linearität, wie bei den Bisamiden und Bismethaniden[99][101][133][134] ab. Wie auch bei Ausgangsverbindung 18 erhält man ein Gemisch der (S,S)- und (R,R)-Enantiomeren, jedoch nicht die meso-Form. Durch die eingeschränkte freie Drehbarkeit der großen Reste und einer unterschiedlichen magnetischen Umgebung zeigt sich für die Chemischen Verschiebungen der beiden Methylgruppen am Silicium ein bemerkenswert großer Unterschied von 20 ppm im 13C{1H}-NMR-Spektrum. Setzt man 18 mit Methanol, Isopropanol oder Acetamid um, kann man die Protolyse zu dem metallfreien Liganden 27 beobachten. Allerdings werden die N-Si-Bindungen durch MeOH und iPrOH ebenfalls angegriffen, so dass die Protolyse mit Acetamid vorzuziehen ist. Das entstandene Enantiomerengemisch aus (S,S)- und (R,R)-Form kann durch Belichten teilweise in die meso-Form 29 überführt werden. Da es sich bei den Verbindungen um AA´XX´-Systeme handelt, erhält man für die Protonen des Brückenkopfs ein Signal höherer Ordnung im 1HNMR- Spektrum. Die Bindung zwischen den chiralen Zentren ist bei den beiden Diastereomeren sowie dem H2O-Addukt der (S,S)-Form mit ca. 156 pm relativ lang. Lässt man die meso-Form 29 mit Dimethylzink reagieren, so gelangt man wieder zu der (S,S)- und (R,R)- Form von 18. Eine Darstellung der meso-Form des binuklearen Komplexes ist nicht möglich. Mit dem in der Reihe am wenigsten sauren Anilin (PhNH2) führt eine ungewöhnliche C-NAktivierung zu einem Austausch der [NSiMe2 tBu]2-- gegen eine [NPh]2--Gruppe. Mittels Isotopenmarkierung konnte gezeigt werden, dass nicht die Si-N-, sondern die C-N-Bindung aktiviert und der Anilinstickstoff quantitativ über eine nukleophile Substitutionsreaktion in die neu entstehende Verbindung Bis(methylzink)-1,2-dipyridyl-1,2-bis(phenylamido)ethan 30 eingebaut wird. Der Komplex 30 weist mit 8,2 Hz eine bemerkenswert große 3J(15N15N)- Kopplung auf. Durch einen Deuterierungsversuch kann ein Eliminierungs-Additions- Mechanismus ausgeschlossen werden. Die Protolyse von 30 mit Acetamid führt zu isotopenmarkiertem, metallfreiem 1,2-Dipyridyl-1,2-di(phenylamino)ethan 31. In Kapitel 2.5 wird die Reaktion von 2-Aminomethylpyridin mit Dimethylzink beschrieben. Während bei R.T. nur die Metallierung zu 2-(Amidomethyl)pyridyl-zinkmethanid 32 beobachtet wird, kommt es bei höherer Temperatur oder langen Reaktionszeiten unter Abscheidung von Zinkmetall zur oxidativen C-C-Kupplung und anschließender C-NAktivierung nach Gleichung 41. Bei dem entstandenem Diazacyclohexanderivat 34 wurden zwei C-C- und zwei C-N-Bindungen neu geknüpft. Durch Protolyse des Reaktionsgemisches gelang mit (Z)-1-Amino-1,2-di(2-pyridyl)ethen 33 die Isolierung eines durch Eliminierungsreaktion entstandenen primären Enamins. Bei allen drei Derivaten konnte die Struktur durch Röntgenstrukturanalyse aufgeklärt werden. Während 32 als Trimeres kristallisiert, in Lösung jedoch sowohl dimer als auch trimer vorliegt, handelt es sich bei 33 um ein primäres Enamin und somit um eine strukturell kaum charakterisierte Verbindungsklasse. Die neue C=C-Bindung ist extrem kurz (130 pm), der Abstand zwischen dem C- und dem N-Atom des Amins mit 138 pm etwas länger als eine gewöhnliche C=N-Doppelbindung. Die Planarität des Moleküls wird durch die ausgebildeten Wasserstoffbrücken der Enaminform erzwungen. Ein Gleichgewicht mit dem Imin wird nicht beobachtet. Das sesselförmige Diazayclohexanderivat 34 kristallisiert als vierkerniger Komplex mit vier- und fünffach koordinierten Zinkatomen. Die gefundene, koordinative Zn- N(py)-Bindung zählt mit 246 pm zu den längsten ihrer Art. Die neu geknüpften C-NBindungen entsprechen mit 147 pm den Erwartungen, während die gekuppelte C-C-Bindung mit 157 pm wiederum etwas länger als eine normale C-C-Einfachbindung ist.