POPULARITY
Verblüffendes neues Multiversum-Szenario könnte eine seltsame Eigenschaft des Higgs-Bosons erklären und den Untergang des Multiversums beim Urknall. Als Forscher am Large Hadron Collider 2012 das schwer fassbare Higgs-Teilchen entdeckten, war dies ein Meilenstein für die Teilchenphysik. Es löste ein sehr heikles Problem, das seit langem bestand, indem es das Standardmodell der Teilchenphysik bestätigte und dessen Gültigkeit ermöglichte. Doch wie es bei neuen Entdeckungen oft der Fall ist, wurden zwar einige Fragen eindeutig beantwortet, aber andere tauchten auf. Im Falle des Higgs-Bosons ist eine dieser Fragen seine Masse. Nach den Vorhersagen die wir haben, müsste das Teilchen etwa dreimal so schwer sein wie die Masse die es eigentlich besitzt. Quellen: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.021803 https://en.wikipedia.org/wiki/CP_violation https://en.wikipedia.org/wiki/Strong_CP_problem https://en.wikipedia.org/wiki/Strong_interaction Abonniere jetzt die Entropy, um keine der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 ♦ PATREON: https://www.patreon.com/entropy_wse ♦ TWITTER: https://twitter.com/Entropy_channel ♦ INSTAGRAM: https://www.instagram.com/roma_perezogin/ ♦ INSTAGRAM: https://www.instagram.com/entropy_channel/
Immanuel Bloch vom Max-Planck-Institut für Quantenoptik in Garching spricht in dieser Folge über einen extremen Materiezustand, den Satyendranath Bose und Albert Einstein vor fast hundert Jahren theoretisch vorhersagten – dessen Erzeugung im Labor aber leider nicht mehr erlebten.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Diese Arbeit pr"asentiert zwei Analysen des Zerfallskanals hwwlnln mit den Daten des ATLAS experiments am LHC. Die analysierten Daten wurden im Jahr 2011 bzw. 2012 bei einer Schwerpunktsenergie von $sqrt{s} = 7 TeV$ bzw. $8 TeV$ aufgezeichnet und es wurde eine integrierte Luminosit"at von $25,textrm{fb}^{-1}$ erreicht. Die beiden Analysen unterscheiden sich im analysierten Phasenraum, der von der Massen $m_{rm H}$ des Higgs boson Signals abh"angt. Die Analyse f"ur Massen $m_{rm H} < 200 GeV$ wurde "uber die letzten Jahre optimiert, um in der Lage zu sein, eine Pr"azisions Messung der Kopplungen einer Resonanz bei $m_{rm H} approx 125 GeV$ durchzuf"uhren. Dabei wird ein Likelihood Fit der transversalen Masse $mT = sqrt{ (E_{T}^{ell ell} + P_{T}^{nu nu})^2 - | vec{P_{T}^{ell ell}} + vec{P_{T}^{nu nu}|^2} }$ angewendet. Mit einer statistischen Signifikanz von $6.1 sigma$ konnte ein hwwlnln Signal bei einer Masse $m_{rm H} = 125.36 pm 0.41 GeV$ beobachtet werden. Die Messung der Signalst"arke, dem Verh"altniss von experimentell bestimmtem Produktionswirkungsquerschnitt mal Verzweigungsverh"altnis zur theoretischen Prognose, ergab folgenden Wert: begin{align*} mu &= 1.08,^{+0.16}_{+0.15} textrm{(stat.)} ,^{+0.16}_{-0.14} textrm{(syst.)}, end{align*} was im Einklang mit der Standard-Modell-Vorhersage steht. Die Skalierung der Kopplungen des Higgs bosons an Fermionen und Bosonen wurden bestimmt zu: begin{align*} kappa_{F} &= 0.92,^{+0.30}_{-0.23} kappa_{V} &= 1.04,^{+0.10}_{-0.11}. end{align*} Zur Suche nach schweren, Higgs boson artigen Teilchen wurde die Analyse des hwwlnln Zerfallskanals f"ur Massen $m_{rm H} > 200 GeV$ optimiert. Auch im hohen Massenbereich wird ein Likelihood Fit an der Verteilung der transversalen Masse mT durchgef"uhrt. Es wurden obere Grenzen auf Produktionswirkungsquerschnitt mal Verzweigungsverh"altnis f"ur drei Szenarien bestimmt: Standard-Model-Higgs-Boson im Massenbereich $200 leq m_{rm H} leq 1 TeV$, Higgs boson artige Resonanz mit einer Zerfallsbreite von $1 GeV$ im Massenbereich $200 leq m_{rm H} leq 2 TeV$ und das elektroschwache Singlet Szenario im Massenbereich $200 leq m_{rm H} leq 1 TeV$, bei dem die Zerfallsbreite zus"atzlich zur Masse variiert wird. Es konnte in keinem getesteten Szenario ein statistisch signifikanter Daten"uberschuss beobachtet werden und dar"uberhinaus konnte ein Standard Modell artiges Higgs Boson bis zu einer Masse von $m_{rm H} = 661 GeV$ ausgeschlossen werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Topologische Invarianten sind von zentraler Bedeutung für die Interpretation vieler Phänomene kondensierter Materie. In dieser Arbeit wird die erste Messung einer solchen Invarianten vorgestellt. Dazu wird ein neu entwickeltes Messprotokoll mit ultrakalten bosonischen Atomen in einem eindimensionalen optischen Gitter verwendet. Außerdem wird die Messung chiraler Meissner-Ströme in einer Leitergeometrie in einem künstlichen Magnetfeld sowie die Präparation sogenannter "Resonating Valence Bond"-Zustände (RVB) in vier Gitterplätze umfassenden Plaketten präsentiert. Das Hauptmerkmal des experimentellen Aufbaus ist ein Paar orthogonaler Übergitter-Potentiale, die es ermöglichen eine Vielzahl verschiedener Systeme zu simulieren. Die Modulation des Übergitters mit einem weiteren Paar interferierender Strahlen ermöglicht zu dem die Realisierung eines künstlichen Magnetfelds. Die Zak-Phase ist eine Invariante, welche die topologischen Eigenschaften eines Energiebandes charakterisiert. Sie ist definiert als die Berry-Phase eines Teilchens bei adiabatischem Durchlaufen eines Pfades im Quasiimpulsraum durch die Brillouinzone. Ein einfaches Beispiel für ein System mit zwei verschiedenen topologischen Klassen ist eine eindimensionale Kette mit alternierender Tunnelkopplungsstärke. Im Experiment können diese Klassen durch Messung der Differenz zwischen ihren Zak-Phasen $DetaPhi_text{Zak}approxpi$ unter Verwendung von Bloch-Oszillationen und Ramsey-Interferometrie in Übergittern unterschieden werden. Der zweite Teil dieser Arbeit befasst sich mit der Messung chiraler Meissner-Ströme von Bosonen in einer Leitergeometrie mit magnetischem Fluss, welche eines der einfachsten Modelle zur Beobachtung von Orbitaleffekten ist. Obwohl die Atome ladungsneutral sind und daher keine Lorentzkraft auf sie wirkt, kann durch eine externe Modulation im Übergitter ein künstliches Magnetfeld erzeugt werden. Die dadurch hervorgerufenen Wahrscheinlichkeitsströme auf beiden Seiten der Leiter wurden separat mit einer Projektionsmethode gemessen. Beim Ändern der Tunnelkopplung entlang der Leitersprossen wurde, in Analogie zu einem Typ-II Supraleiter, ein Übergang zwischen einer Meissner-artigen Phase mit gesättigtem maximalen chiralen Strom und einer Vortex-Phase mit abnehmendem Strom beobachtet. Dieses System mit ultrakalten Atomen kann auch als Analogon zur Spin-Bahn-Kopplung betrachtet werden. RVB-Zustände gelten als fundamental für das Verständnis von Hochtemperatursupraleitern. Der dritte Teil der Arbeit widmet sich mit der Realisierung eines Minimalbeispiels solcher Zustände auf einer Plakette bei halber Füllung. In diesem System wurden die zwei RVB-Zustände mit s- und d-Wellen-Symmetrie sowie Superpositionen der beiden Zustände präpariert. Die in dieser Arbeit vorgestellten Experimente stellen einen neuen Ansatz dar, die topologischen Eigenschaften von Bloch-Bändern in optischen Gittern zu untersuchen; sie öffnen die Türen zur Erforschung von wechselwirkenden Teilchen in niedrigdimensionalen Systemen in einem homogenen Magnetfeld sowie der Eigenschaften des Grundzustandes des Heisenberg-Modells.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 05/05
Es werden drei Analysen vorgestellt, die nach elektroschwach produzierten supersymmetrischen Teilchen in Proton-Proton-Kollisionen suchen. Die Kollisionen wurden mit dem ATLAS-Experiment am Large Hadron Collider aufgenommen. Zwei Leptonen (Elektronen oder Myonen), Jets und fehlende transversale Energie werden im Endzustand erwartet. `Simplified Models' werden genauso wie das `phenomenological Minimal Supersymmetric Standard Model' (pMSSM) verwendet, um die Produktion und den Zerfall von Gaugino-Paaren, also Paaren aus Charginos und Neutralinos, zu untersuchen. Die erste Analyse wird mit ATLAS Daten, die einer integrierten Luminosität von 4.7 fb^-1 entsprechen und im Jahr 2011 bei einer Schwerpunktenergie von sqrt(s)=7 TeV aufgenommen wurden, durchgeführt. Die direkte Produktion von Sleptonen sowie drei weitere Szenarien, in denen Gaugino-Paare über zwischenzeitliche Sleptonen zerfallen, werden untersucht. Besonders hervorgehoben wird die Triggerstrategie. Da kein Überschuss an Ereignissen in den ATLAS Daten beobachtet wird, können beispielsweise die Massen linkshändiger Sleptonen im Bereich von 85 bis 195 GeV mit 95% Konfidenzniveau ausgeschlossen werden. Hierfür wird ein Simplified Model, das die direkte Produktion von Sleptonen annimmt, verwendet, und das Neutralino besitzt eine Masse von 20 GeV. In einer zweiten Analyse werden 20.3 fb^-1 ATLAS Daten benutzt, die im Jahr 2012 mit sqrt(s)= 8 TeV aufgenommen wurden. Sieben Signalregionen zielen auf supersymmetrische Zerfallsketten ab, in denen zwei Leptonen mit entgegengesetztem Ladungsvorzeichen im Endzustand erwartet werden. Der dominante Standardmodelluntergrund besteht, analog zu der Analyse der 2011er Daten, aus ttbar-, Z/gamma*+jets- und zwei-Boson-Prozessen. Zwei-Lepton-Trigger werden kombiniert um die Ereignisse auszuwählen. Die Ergebnisse entsprechen den Erwartungen des Standardmodells und werden im Rahmen des pMSSM interpretiert. Massen des chi_1^+- können zwischen 100 und 105 GeV, 120 und 135 GeV sowie zwischen 145 und 160 GeV mit 95% Konfidenzniveau für ein masseloses chi_1^0 ausgeschlossen werden. Das Simplified Model für den Prozess chi_1^+ chi_1^- -> W^+ chi_1^0 W^- chi_1^0 -> l^+ nu chi_1^0 l^- nu chi_1^0 wird dazu verwendet. Mit der Simulation der direkten Produktion von Sleptonen in einem weiteren Simplified Model können Sleptonmassen zwischen 90 und 325 GeV ausgeschlossen werden (m_chi_1^0< 30 GeV). Die dritte Analyse wird ebenfalls mit 2012er Daten durchgeführt. Es wird ein Szenario betrachtet, in dem ein Chargino-Neutralino-Paar über ein W- und ein Higgsboson in einen Endzustand mit zwei gleichnamig geladenen Leptonen, zwei Quarks und zwei leichtesten Neutralinos zerfällt. Der Hauptuntergrund beruht auf Leptonen, die nicht vom primären Zerfallsvertex stammen, und wird mit Hilfe von ATLAS Daten bestimmt. Der Beitrag durch Standardmodell-Prozesse mit zwei Bosonen wird z.B. durch Schnitte auf die invariante Masse der Zerfallsprodukte des Higgsbosons und auf die effektive Masse, das ist die skalare Summe der Transversalimpulse der Leptonen, Jets und der fehlenden Transversalenergie, unterdrückt. Die Ergebnisse dieser Analyse sind noch nicht veröffentlicht. Man erwartet, dass die drei Massenpunkte mit Neutralinomassen unter 10 GeV und Charginomassen unter 150 GeV mit 95% Konfidenzniveau ausgeschlossen werden können.
In dieser Dissertation untersuchen wir eine Vielzahl von Themen aus dem Bereich der Kosmologie und der Gravitation. Insbesondere behandeln wir Fragestellungen aus der Inflationstheorie, der Strukturbildung im neuzeitlichen Universum und massiver Gravitation, sowie Quantenaspekte schwarzer Löcher und Eigenschaften bestimmter skalare Theorien bei sehr hohen Energien. Im sogenannten "New Higgs Inflation"-Modell spielt das Higgs-Boson die Rolle des Inflaton-Felds. Das Modell ist kompatibel mit Messungen der Higgs-Masse, weil das Higgs-Boson nichtminimal an den Einstein-Tensor gekoppelt wird. Wir untersuchen das Modell in Hinblick auf die kürzlich veröffentlichten Resultate der BICEP2- und Planck-Experimente und finden eine hervorragende Übereinstimmung mit den gemessenen Daten. Desweiteren zeigen wir auf, dass die scheinbaren Widersprüche zwischen Planck- und BICEP2-Daten dank eines negativ laufenden Spektralindex verschwinden. Wir untersuchen außerdem die Unitaritätseigenschaften der Theorie und räsonieren, dass es während der gesamten Entwicklung des Universums nicht zu Unitaritätsverletzung kommt. Während der Dauer der inflationären Phase sind Kopplungen in den Higgs-Higgs und Higgs-Graviton-Sektoren durch eine großen feldabhängige Skala unterdrückt. Die W- und Z-Bosonen hingegen entkoppeln aufgrund ihrer sehr großen Masse. Wir zeigen eine Möglichkeit auf, die es erlaubt die Eichbosonen als Teil der Niederenergietheorie zu behalten. Dies wird erreicht durch eine gravitationsabhängige nichtminimale Kopplung des Higgs-Felds an die Eichbosonen. Im nächsten Abschnitt konzentrieren wir uns auf das neuzeitliche Universum. Wir untersuchen den sogenannten sphärischen Kollaps in Modellen gekoppelter dunkler Energie. Insbesondere leiten wir eine Formulierung des sphärischen Kollaps her, die auf den nichtlinearen Navier-Stokes-Gleichungen basiert. Im Gegensatz zu bekannten Beispielen aus der Literatur fließen alle wichtigen Fifth-Force Effekte in die Entwicklung ein. Wir zeigen, dass unsere Methode einfachen Einblick in viele Subtilitäten erlaubt, die auftreten wenn die dunkle Energie als inhomogen angenommen wird. Es folgt eine Einleitung in die Theorien von massiven Spin-2 Teilchen. Hier erklären wir die Schwierigkeiten der Formulierung einer nichtlinearen, wechselwirkenden Theorie. Wir betrachten das bekannte Problem des Boulware-Deser-Geists und zeigen zwei Wege auf, dieses No-Go-Theorem zu vermeiden. Insbesondere konstruieren wir die eindeutige Theorie eines wechselwirkenden massiven Spin-2 Teilchens, die auf kubischer Ordnung trunkiert werden kann, ohne dass sie zu Geist-Instabilitäten führt. Der zweite Teil dieser Arbeit widmet sich bekannten Problemen der Physik schwarzer Löcher. Hier liegt unser Fokus auf der Idee, das schwarze Löcher als Bose-Kondensate von Gravitonen aufgefasst werden können. Abweichungen von semiklassischem Verhalten sind Resultat von starken Quanteneffekten die aufgrund einer kollektiven starken Kopplung auftreten. Diese starke Kopplung führt in bekannten Systemen zu einem Quantenphasenübergang oder einer Bifurkation. Die quantenmechanischen Effekte könnten der Schlüssel zur Auflösung lang existierender Probleme in der Physik schwarzer Löcher sein. Dies umschließt zum Beispiel das Informationsparadox und das ``No-Hair''-Theorem. Außerdem könnten sie wertvolle Einblicke in die Vermutung liefern, dass schwarze Löcher die Systeme sind, die Informationen am schnellsten verschlüsseln. Als Modell für ein schwarzes Loch studieren wir ein System von ultrakalten Bosonen auf einem Ring. Dieses System ist bekannt als eines, dass einen Quantenkritischen Punkt besitzt. Wir demonstrieren, dass am kritischen Punkt Quanteneffekte sogar für sehr große Besetzungszahlen wichtig sein können. Hierzu definieren wir die Fluktuationsverschränkung, die angibt, wie sehr verschiedene Impulsmoden miteinander verschränkt sind. Die Fluktuationsverschränkung ist maximal am kritischen Punkt und ist dominiert von sehr langwelligen Fluktuationen. Wir finden daher Resultate die unabhängig von der Physik im ultravioletten sind. Im weiteren Verlauf besprechen wir die Informationsverarbeitung von schwarzen Löchern. Insbesondere das Zusammenspiel von Quantenkritikalität und Instabilität kann für ein sehr schnelles Wachstum von Ein-Teilchen-Verschränkung sorgen. Dementsprechend zeigen wir, dass die sogenannte "Quantum Break Time'', welche angibt wie schnell sich die exakte Zeitentwicklung von der semiklassischen entfernt, wie log(N) wächst. Hier beschreibt N die Anzahl der Konstituenten. Im Falle eines Gravitonkondensats gibt N ein Maß für die Entropie des schwarzen Lochs an. Dementsprechend interpretieren wir unsere Erkenntnisse als einen starken Hinweis, dass das Verschlüsseln von Informationen in schwarzen Löchern denselben Ursprung haben könnte. Das Verdampfen von schwarzen Löchern beruht in unserem Bild auf zwei Effekten. Kohärente Anregungen der tachyonischen radialen Mode führen zum Kollaps des Kondensats, während sich die inkohärente Streuung von Gravitonen für die Hawking-Strahlung verantwortlich zeigt. Hierfür konstruieren wir einen Prototyp, der einen bosonischen Freiheitsgrades mit impulsabhängigen Wechselwirkungen beschreibt. Im Schwinger-Keldysh-Formalismus untersuchen wir die Echtzeit-Evolution des Kondensats und zeigen, dass der Kollaps und die damit einhergehende Evaporation auf selbst-ähnliche Weise verläuft. In diesem Fall ist das Kondensat während des gesamten Kollapses an einem kritischen Punkt. Desweiteren zeigen wir Lösungen, die an einem instabilen Punkt leben, und daher schnelle Verschränkung erzeugen könnten. Der finale Teil der Arbeit befasst sich mit Renormierungsgruppenflüssen in skalaren Theorien mit impulsabhängigen Wechselwirkungen. Wer leiten die Flussgleichung für eine Theorie, die nur eine Funktion des kinetischen Terms enthält her. Hier zeigen wir die Existenz von Fixpunkten in einer Taylor-Entwicklung der Funktion auf. Wir diskutieren, inwiefern unsere Analyse für Einblick in allgemeinere Theorien mit Ableitungswechselwirkungen sorgen kann. Dies beinhaltet zum Beispiel Gravitation.
Schwerpunkt: Alfons Khoukaz von der Universität Münster über die Entdeckung von Teilchen, die sich anders als bekannte Materie aus mehr als drei Quarks zusammensetzen || Nachrichten: Heiße Jupiter besitzen wasserarme Atmosphären | Wann ein Tropfen spritzt | Fledermäuse nutzen polarisiertes Licht zur Orientierung || Veranstaltungen: MS Wissenschaft
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
In den letzten Jahren haben sich atomare Quantengase in optischen Gittern zu einem faszinierenden und interdisziplinär bedeutsamen Forschungsfeld entwickelt. Die in den periodischen Potentialen gefangenen ultrakalten Atome stellen ein ideales Modellsystem dar, anhand dessen sich grundlegende Fragestellungen der modernen Festkörper- und Vielteilchenphysik untersuchen lassen. In der vorliegenden Arbeit werden neue Methoden zur Manipulation und Analyse von Quantenzuständen in optischen Gittern demonstriert. Insbesondere wird mittels der sogenannten Rauschkorrelationsanalyse die Ordnung der Atome im Gitter bestimmt und erstmals fermionisches Antibunching an freien neutralen Atomen nachgewiesen. Grundlage für die vorgestellten Experimente ist eine im Rahmen dieser Arbeit neu entwickelte Apparatur, mit der sich simultan entartete bosonische und fermionische Quantengase aus 87-Rubidium und 40-Kalium präparieren und in einem dreidimensionalen optischen Gitter untersuchen lassen. Die Apparatur zeichnet sich durch eine Serie technischer Innovationen aus: Eine neuartige Spulen- und Fallenkonfiguration eröffnet einen hervorragenden optischen Zugang zu den präparierten Ensemblen und ermöglicht es, starke homogene Magnetfelder bei einer geringen dissipierten Leistung zu erzeugen. Dies sind wichtige Voraussetzungen, um definierte Gitterpotentiale verwirklichen und die interatomaren Wechselwirkungen mittels Feshbach-Resonanzen beeinflussen zu können. Das optische Potential geht aus der Überlagerung einer gekreuzten Dipolfalle und eines blauverstimmten dreidimensionalen Gitters hervor. Eine solche Kombination erlaubt es, sehr tiefe und relativ homogene Gitterpotentiale zu erzeugen sowie den externen Einschluss unabhängig von der Gittertiefe zu variieren. Des Weiteren lassen sich über eine frei einstellbare Wellenlänge speziesabhängige Gitter realisieren. Die Vereinigung der hier aufgeführten Technologien liefert uns eine außergewöhnlich flexible Plattform für das Studium maßgeschneiderter Quantenzustände in periodischen Potentialen. Durch den unabhängigen externen Einschluss kann erstmals ein Fermigas allein über dessen Kompression zwischen einem metallischen und einem isolierenden Zustand hin- und hergeschaltet und – in ersten Ansätzen – die entsprechende Dynamik beobachtet werden. Die Ergebnisse werden mit numerischen Simulationen verglichen. Neben der Durchführung von Transportmessungen lässt sich hieraus ein neues Diagnoseverfahren ableiten, das es ermöglicht, Quantenphasen, wie den bosonischen oder fermionischen Mott-Isolator, anhand der charakteristischen Kompressibilität zu identifizieren. Als weiteres Diagnoseverfahren wird die Korrelationsanalyse von Flugzeitaufnahmen vorgestellt. Durch die Auswertung von Hanbury Brown und Twiss (HBT)-Korrelationen im Quantenrauschen der expandierenden Atomwolken lässt sich die mikroskopische Ordnung der Atome im Gitter nachweisen. Ausgangspunkt für die Messungen sind jeweils vollständig spinpolarisierte bosonische Mott-Isolatoren und fermionische Bandisolatoren. Trotz identischer Dichteverteilungen innerhalb des Gitters, weisen die Korrelationen von Bosonen und Fermionen entgegengesetzte Vorzeichen auf. Mit diesen Messungen gelingt es erstmals, fermionisches Antibunching an freien neutralen Atomen zu beobachten und innerhalb einer selben Apparatur mit dem bosonischen Bunching zu vergleichen. Neben dem Nachweis dieses fundamentalen Quanteneffektes lässt sich die Ordnung und die Temperatur der Fermionen im Gitter bis hinauf zur Fermi-Temperatur bestimmen. Damit erweist sich die Korrelationsanalyse als ein robustes Verfahren, mit dem sich in Zukunft noch weitaus komplexere Quantenphasen in optischen Gittern untersuchen lassen.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Thema der vorliegenden Arbeit ist die Bose-Einstein-Kondensation stark verdünnter atomarer Gase. Nach einer Einführung in die Theorie solcher schwach wechselwirkender Quantengase und einer Zusammenfassung wesentlicher experimenteller Ergebnisse aus dem Gebiet der Bose-Einstein-Kondensation wird zunächst die Physik ultrakalter, in Atomfallen gefangener Fermigase diskutiert. Dieses Gebiet hat sich in den letzten Jahren parallel zu dem der kondensierten Bosegase stark entwickelt und bietet vielversprechende Möglichkeiten, Modelle wie die BCS-Theorie erstmals in fast idealen Fermigasen zu untersuchen. Es werden Ergebnisse zu den thermodynamischen Eigenschaften solcher Gase vorgestellt, die vor allem für mesoskopische Teilchenzahlen (unter 1000) relevant sind. Dabei wird insbesondere auf Schaleneffekte bei der Dichteverteilung in einer Atomfalle und bei der Wärmekapazität eingegangen. Im zweiten Teil der Arbeit wird die Physik von Atomlasern diskutiert. Als "Atomlaser" bezeichnet man Systeme, die in der Lage sind, kohärente Materiewellen aus Atomen zu erzeugen. Die einem Bose-Einstein-Kondensat inhärente Kohärenz wird in Experimenten genutzt, um mittels eines kohärent arbeitenden Auskoppelmechanismus solche Atomstrahlen herzustellen. Die zugehörige Physik wird durch die so genannte Gross-Pitaevskii-Gleichung beschrieben, einer Art nichtlinearen Schrödingergleichung für die Wellenfunktionen der beteiligten Hyperfeinzustände des Bose-Einstein-Kondensats aus 87Rb-Atomen. In der vorliegenden Arbeit wurden unter anderem die Auskoppelstärke mittels analytischer und vor allem numerischer Methoden untersucht. Darüber hinaus konnten Aussagen über das zeitliche Verhalten von Atomlasern gewonnen, die mit zwei Radiofrequenzen betrieben werden. In diesem Fall wird der Atomstrahl aus zwei interferierenden Materiewellen verschiedener Energie gebildet, sodass kohärente, atomare Pulse mit makroskopischen Dimensionen auftreten. Im letzten Abschnitt wird mit der Spurafluidität ein weiterer, sehr interessanter Aspekt von kondensierten Bosegasen behandelt. Nach einer Einführung in die Bestimmung quantenstatistischer Eigenschaften von Vielteilchensystemem mithilfe von Pfadintegral-Monte-Carlo-Verfahren wird der suprafluide Anteil eines kondensierten Bosegases mit verschiedenen Approximationen berechnet. Dazu wird neben den Pfadintegralen eine auf so genannten Permutationszykeln beruhende Methode eingesetzt, mit der man die Zustandssumme von Bosonen im kanonischen Ensemble und damit auch viele andere Größen ausrechnen kann. Auf diese Weise konnte der suprafluide Anteil eines idealen Bosegases im kanonischen Ensemble erstmals vollständig quantenmechanisch exakt ermittelt werden.