POPULARITY
Melissa and Jam delve into the fascinating chemistry behind fireflies' bioluminescence. They explore how fireflies produce light through a complex series of chemical reactions involving specific molecules like luciferin and enzymes like luciferase. The discussion extends to how these mechanisms find applications in scientific research, such as identifying tumors in mice. The episode is interspersed with nostalgic summer stories, making it a blend of chemistry education and personal anecdotes. 00:00 Nostalgic Summer Evenings 00:33 Fireflies and Childhood Wonder 01:04 Introduction to Firefly Chemistry 02:22 Shoutout to Ash and Podcast Tips 03:58 Diving into Bioluminescence 04:52 The Chemistry Behind Firefly Light 11:17 Understanding Acid-Base Reactions 16:13 The Role of Luciferase 18:43 The Unstable Four-Membered Ring 28:39 Understanding Molecular Structures 29:33 The Instability of Molecular Rings 33:39 Fireflies and Bioluminescence 40:53 Applications in Medical Science 45:37 Nostalgic Summer Memories 52:48 Supporting the Show and Final Thoughts ★ Support this podcast on Patreon ★ ★ Buy Podcast Merch and Apparel ★ Check out our website at chemforyourlife.com Watch our episodes on YouTube Find us on Instagram, Twitter, and Facebook @ChemForYourLife References from this episode: https://www.chemistryworld.com/podcasts/luciferin/3005839.article https://www.science.org/content/article/watch-chemistry-behind-how-fireflies-glow https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.258103 https://youtu.be/pTPMwZK2-yM https://pubs.acs.org/doi/10.1021/jacs.5b03820 https://pubs-acs-org.libproxy.library.unt.edu/doi/10.1021/jp301910p https://chemistry-europe-onlinelibrary-wiley-com.libproxy.library.unt.edu/doi/10.1002/cphc.201300330 https://chemistry-europe-onlinelibrary-wiley-com.libproxy.library.unt.edu/doi/10.1002/cphc.201200195 https://iubmb-onlinelibrary-wiley-com.libproxy.library.unt.edu/doi/10.1002/iub.134 https://chemistry-europe-onlinelibrary-wiley-com.libproxy.library.unt.edu/doi/10.1002/cbic.200500443 https://www.chemistryworld.com/news/rainbow-makers/3003381.article https://www.acs.org/molecule-of-the-week/archive/f/firefly-luciferin.html Thanks to our monthly supporters Kyle McCray Justine Emily Hardy Ash Vince W Julie S. Heather Ragusa Autoclave Chelsea Morelos Dorien VD Scott Beyer Jessie Reder Ciara Linville J0HNTR0Y Jeannette Napoleon Cullyn R Erica Bee Elizabeth P Rachel Reina Letila Katrina Barnum-Huckins Suzanne Phillips Venus Rebholz Lyn Stubblefield Jacob Taber Brian Kimball Kristina Gotfredsen Timothy Parker Steven Boyles Chris Skupien Chelsea B Avishai Barnoy Hunter Reardon ★ Support this podcast on Patreon ★ ★ Buy Podcast Merch and Apparel ★ Check out our website at chemforyourlife.com Watch our episodes on YouTube Find us on Instagram, Twitter, and Facebook @ChemForYourLife
Could neutrinos be fragments of prophecy, leaking backward through time from events yet to come? Is it possible that ancient machines buried in polar ice are still running, altering physics from below? What if the planet itself is engaged in a silent war, and these strange upward signals are its scars?GET THE MUSIC HERE! -- https://troubledfans.com/collections/featured-launch-products/products/rogue-tulpas-troubled-minds-greatest-hits-a-this-is-a-digital-downloadIf you are having a mental health crisis and need immediate help, please go to https://troubledminds.org/help/ and call somebody right now. Reaching out for support is a sign of strength. LIVE ON Digital Radio! Http://bit.ly/40KBtlW http://www.troubledminds.net or https://www.troubledminds.org Support The Show! https://www.spreaker.com/podcast/troubled-minds-radio--4953916/support https://ko-fi.com/troubledminds https://patreon.com/troubledminds https://www.buymeacoffee.com/troubledminds https://troubledfans.com Friends of Troubled Minds! - https://troubledminds.org/friends Show Schedule Sun--Tues--Thurs--Fri 7-10pst iTunes - https://apple.co/2zZ4hx6 Spotify - https://spoti.fi/2UgyzqM TuneIn - https://bit.ly/2FZOErS Twitter - https://bit.ly/2CYB71U----------------------------------------https://troubledminds.substack.com/p/signals-beneath-the-silence-the-icehttps://thedebrief.org/antarctica-scientists-dont-actually-have-an-explanation-for-strange-radio-pulses-coming-from-below-the-ice/https://www.psu.edu/news/research/story/strange-radio-pulses-detected-coming-ice-antarcticahttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.121003https://en.wikipedia.org/wiki/Tau_neutrinohttps://www.mentalfloss.com/article/87733/retrobituaries-charles-fort-chronicler-unexplained-phenomenahttps://massivesci.com/articles/anita-experiment-physics-neutrinos/http://data.duvernois.org/papers/ANITA-factsheet.pdfhttps://www.psychologytoday.com/us/blog/our-new-discontents/202309/our-mysterious-epidemic-of-despair-has-a-historyhttps://x.com/SandyofCthulhu/status/1934363015849406568
Le pulsar PSR J0453+1559 a été découvert en 2015, il est remarquable car il s'agit d'un système binaire rare composé de deux étoiles à neutrons. Ce qui a rendu PSR J0453+1559 encore plus surprenant, ce sont les masses des étoiles à neutrons. Alors que l'étoile première a une masse de 1,559 masses solaires, la seconde atteint seulement 1,174 M☉, ce qui en fait l'étoile à neutrons la plus petite connue, une masse si faible qu'elle est difficile à expliquer. Une équipe d'astrophysiciens ont effectué des simulations et arrivent à produire une étoile à neutrons de 1,192 masses solaires... on y est presque. L'étude est parue dans Physical Review Letters. Source Minimum Neutron Star Mass in Neutrino-Driven Supernova ExplosionsBernhard Müller et al.Physical Review Letters vol 134 (21 february 2025)https://doi.org/10.1103/PhysRevLett.134.071403 Illustration Simulation d'une supernova d'une étoile de 9,9 masses solaires (Müller et al.)
Noticias de Astronomía y Exploración del Espacio – Marzo 11, 2025. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 0) JWST observa detalles de un sistema estelar en formación. https://phys.org/news/2025-03-webb-wows-incredible-star.html https://webbtelescope.org/contents/news-releases/2025/news-2025-111 + 1) Fusiones de estrellas de neutrones pueden ser la fuente de los rayos cósmicos de más alta energía. https://www.sci.news/physics/ultrahigh-energy-cosmic-rays-neutron-star-mergers-13713.html https://phys.org/news/2025-03-theory-star-mergers-universe-highest.html https://www.nyu.edu/about/news-publications/news/2025/february/how-do-the-universe-s-highest-energy-particles-originate--magnet.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.081003 + 2) Posible hoyo negro supermasivo en la Nube Magallánica Mayor. https://www.sci.news/astronomy/supermassive-black-hole-large-magellanic-cloud-13728.html https://phys.org/news/2025-03-runaway-stars-reveal-hidden-black.html https://www.cfa.harvard.edu/news/runaway-stars-reveal-hidden-black-hole-milky-ways-nearest-neighbor https://arxiv.org/abs/2502.00102
Okay, okay, wir beruhigen uns erst einmal. Nein, der Titel und das Thumbnail sind kein Clickbait – die Aussage stimmt zu 100 %. Dennoch sollten wir ganz ruhig bleiben. Was ist also wirklich passiert? Forscher in den USA haben etwas Unglaubliches geschafft: Sie haben den Quantenzustand eines Photons erfolgreich über ein Glasfaserkabel teleportiert – über eine Distanz von mehr als 30 Kilometern und das mitten in einem überlasteten Internetverkehr. Mit anderen Worten: Ein Teleport à la Star Trek inmitten der Datenflut unseres normalen Internets! Klingt nach einer technischen Meisterleistung, und das ist es auch. Doch was genau ist hier passiert, und was bedeutet das für unsere Zukunft? Bleib dran, denn die Antwort wird dich überraschen! Was ist Quanten-Teleportation wirklich? Entropy Podcast: https://open.spotify.com/show/6rKLAIJtuDgejHv5gXsbd1 Hat dir das Video gefallen? Dann würde ich mich sehr über einen Daumen nach oben freuen! Es kostet euch nichts und lässt Youtube wissen, dass euch das Video gefällt! Und empfehlt es weiter, an genau so neugierige Entropies die hier noch nicht abonniert haben! Abonniere jetzt die Entropy, um keines der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 Zu meinen Social Media Links: https://linktr.ee/JourneyDE Discord Channel: https://discord.gg/xGtUAaAw98 Erfahre mehr (Quellen): https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.181501 https://theconversation.com/how-einsteins-general-theory-of-relativity-killed-off-common-sense-physics-50042 Abonniere jetzt die Entropy, um keine der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 ♦ MEINE NEUE WEBSITE - WISSENSCHAFT IM ÜBERBLICK: https://www.entropywse.com ♦ MERCH: https://yvolve.shop/collections/vendors?q=Entropy ♦ PATREON: https://www.patreon.com/entropy_wse ♦ TWITTER: https://twitter.com/Entropy_channel ♦ INSTAGRAM: https://www.instagram.com/roma_perezogin/ ♦ INSTAGRAM: https://www.instagram.com/entropy_channel/ ♦ DISCORD-SERVER: https://discord.gg/xGtUAaAw98 ♦ GOODNIGHT STORIES: https://open.spotify.com/show/5Mz5jx2lm7DXN3FizSigoJ
In this special edition of Fusion News, Fusion Industry Association CEO Andrew Holland summarizes fusion's progress in 2024 and introduces some of the major headlines from the year. Links to news stories are included below. Wishing you and your loved ones a happy and healthy 2025! 1. Nuclear Startup Pacific Fusion Nabs $900 Million in Funding https://www.bloomberg.com/news/articles/2024-10-25/nuclear-startup-pacific-fusion-raises-900-million-in-funding 2. Thales and the Max Planck Institute for Plasma Physics set a world record in the field of nuclear fusion https://www.thalesgroup.com/en/worldwide/group/press_release/thales-and-max-planck-institute-plasma-physics-set-world-record-field 3. The nuclear fusion industry is having a growth spurt https://www.axios.com/2024/07/17/nuclear-fusion-companies-funding 4. Record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device achieved https://phys.org/news/2024-04-electron-temperatures-small-scale-stabilized.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.155101 5. G7 Puts Fusion Forward at the Climate Energy and Environment Ministers Meeting https://www.fusionindustryassociation.org/g7-puts-fusion-forward-at-the-climate-energy-and-environment-ministers-meeting/ 6. Helion secures license for Polaris fusion https://www.neimagazine.com/news/helion-secures-licence-to-advance-polaris-fusion-facility/
Das Jahr 2024 war voller unglaublicher Entdeckungen in der Physik! In diesem Video findest du die Highlights: Von bahnbrechenden Experimenten in der Quantenmechanik bis hin zu neuen Erkenntnissen über die Struktur des Universums. Dieser Zusammenschnitt vereint die spannendsten Momente aus meinen Videos dieses Jahres. Lass uns gemeinsam auf die größten wissenschaftlichen Meilensteine zurückblicken!
Die allgemeine Relativitätstheorie von Albert Einstein gilt als Meilenstein der Physik, doch sie ist nicht ohne Lücken. Ein berühmtes Beispiel für diese Grenzen ist das Konzept der „Singularität“. Roger Penrose, Physik-Nobelpreisträger, zeigte, dass Singularitäten entstehen, wenn Materie unter ihrer eigenen Gravitation kollabiert. Stell dir vor: ein Punkt, unendlich dicht, unendlich gekrümmt – eine physikalische Absurdität. An Singularitäten scheitert unser Verständnis von Raum, Zeit und Materie. Sie werden buchstäblich ins Unendliche „zerquetscht“ und gleichzeitig ins Unendliche gedehnt, bis sie praktisch aufhören zu existieren. An diesem Punkt brechen alle bekannten Gesetze der Physik zusammen. Das klingt paradox, und genau das ist es. Die Gesetze der Physik, wie wir sie kennen, brechen dort vollständig zusammen. Was bedeutet das wenn wir das grob zusammenfassen müssten? Nun Unsere Fähigkeit, die Zukunft aus der Vergangenheit abzuleiten – ein Grundpfeiler der Wissenschaft – würde schlicht verschwinden. Die Wissenschaft – insbesondere die Physik – basiert auf einem Prinzip namens Determinismus. Dieses Prinzip besagt, dass der Zustand eines Systems zu einem bestimmten Zeitpunkt (z. B. die Position und Geschwindigkeit eines Objekts) die zukünftigen Zustände vollständig bestimmt, solange wir die zugrunde liegenden Gesetze der Physik kennen. Dies ermöglicht es uns, präzise Vorhersagen zu treffen, etwa über die Bewegung von Planeten oder das Verhalten von Teilchen. Doch an Singularitäten bricht dieses Prinzip zusammen. Der Grund ist, dass die physikalischen Gesetze, die normalerweise Raum, Zeit und Materie beschreiben, in einer Singularität nicht mehr anwendbar sind. Die Mathematik liefert „unendliche“ oder undefinierte Ergebnisse – wie etwa eine unendlich starke Krümmung der Raumzeit. Diese Werte sind physikalisch bedeutungslos. Das heißt, sie haben keinen Bezug zu unserer Realität. Wir können sie nicht begreifen, weil sie jenseits unseres Verständnisses und unserer Erfahrung liegen. LEGEN WIR ALSO LOS! Entropy Podcast: https://open.spotify.com/show/6rKLAIJtuDgejHv5gXsbd1 Good Night Stories (Geschichten zum Einschlafen): @goodnightstories8357 Hat dir das Video gefallen? Dann würde ich mich sehr über einen Daumen nach oben freuen! Es kostet euch nichts und lässt Youtube wissen, dass euch das Video gefällt! Und empfehlt es weiter, an genau so neugierige Entropies die hier noch nicht abonniert haben! Abonniere jetzt die Entropy, um keines der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 Zu meinen Social Media Links: https://linktr.ee/JourneyDE Discord Channel: https://discord.gg/xGtUAaAw98 Erfahre mehr (Quellen): https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.181501 https://theconversation.com/how-einsteins-general-theory-of-relativity-killed-off-common-sense-physics-50042
Noticias de Astronomía y Exploración del Espacio – Noviembre 26, 2024. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 0) Imagen de una estrella fuera de nuestra galaxia. https://www.sci.news/astronomy/vlti-image-red-supergiant-large-magellanic-cloud-13446.html https://www.sciencedaily.com/releases/2024/11/241121115752.htm https://phys.org/news/2024-11-astronomers-picture-star-galaxy.html https://www.aanda.org/articles/aa/full_html/2024/11/aa51820-24/aa51820-24.html + 1) Una supernova cercana podría ayudarnos a entender lo que es la materia oscura. https://phys.org/news/2024-11-nearby-supernova-dark.html https://www.sciencedaily.com/releases/2024/11/241121141213.htm https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.211002 + 2) Las misteriosas burbujas extragalácticas en ondas de radio. https://skyandtelescope.org/astronomy-news/galaxies/a-bubbly-origin-for-odd-radio-circles/ https://iopscience.iop.org/article/10.3847/1538-4357/ad70af
I wormhole, noti anche come ponti di Einstein-Rosen, sono teorizzati come tunnel che collegano due punti distanti nello spazio-tempo, permettendo un passaggio rapido tra essi. La spiegazione di come funziona un wormhole si basa sulla relatività generale di Einstein. Secondo alcuni documentari, i wormhole potrebbero teoricamente esistere e essere usati come macchine del tempo. Per costruire un wormhole stabile, sarebbe necessaria materia esotica con energia negativa, che impedirebbe al tunnel di collassare. Nei film come "Interstellar", i wormhole vengono rappresentati come passaggi praticabili per viaggi interstellari e temporali. Il concetto di wormhole come macchina del tempo implica che, manipolando uno degli ingressi con velocità relativistiche o posizionandolo in un forte campo gravitazionale, si potrebbe creare uno sfasamento temporale tra le due estremità. Questo permetterebbe di viaggiare nel tempo entrando in una estremità e uscendo nell'altra in un'epoca diversa. Tuttavia, sebbene l'idea sia affascinante, non esistono attualmente prove che i wormhole esistano nella realtà. Inoltre, costruire un wormhole con le tecnologie attuali è oltre le nostre capacità. La possibilità di viaggiare nel tempo attraverso i wormhole rimane quindi un affascinante tema di ricerca teorica e speculazione scientifica. FONTI • De-Chang Dai and Dejan Stojkovic. "Observing a wormhole." Physical Review D, vol.100, no. 8, 2019, p. 083513, DOI: 10.1103/PhysRevD.100.083513. • John G. Cramer, Robert L. Forward, Michael S. Morris, Matt Visser, Gregory Benford, and Geoffrey A. Landis. "Natural wormholes as gravitational lenses." Physical Review D, vol. 51, no. 6, 1995, pp. 3117-3123, DOI: 10.1103/PhysRevD.51.3117. • A. Einstein and N. Rosen. "The Particle Problem in the General Theory of Relativity." Physical Review, vol. 48, no. 1, 1935, pp. 73-77, DOI: 10.1103/PhysRev.48.73. • Michael S. Morris and Kip S. Thorne. "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity." American Journal of Physics, vol. 56, no. 5, 1988, pp. 395-412, DOI: 10.1119/1.15620. • Michael S. Morris, Kip S. Thorne, and Ulvi Yurtsever. "Wormholes, Time Machines, and the Weak Energy Condition." Physical Review Letters, vol. 61, no. 13, 1988, pp. 1446-1449, DOI: 10.1103/PhysRevLett.61.1446. __________________
Welcome to Theories of Everything's "Rethinking the Foundations of the Physics: What is Unification?" series featuring Latham Boyle. Latham Boyle is a theoretical physicist known for his work on cosmology, quantum gravity, and the early universe, particularly in the context of exploring new models of the Big Bang and time symmetry. SPONSOR: As a listener of TOE, you can now enjoy full digital access to The Economist. Get a 20% off discount by visiting: https://www.economist.com/toe LINKS MENTIONED: - Neil Turok on TOE: https://www.youtube.com/watch?v=ZUp9x44N3uE - Neil Turok's lecture on TOE: https://www.youtube.com/watch?v=-gwhqmPqRl4 - Latham's paper on the Primordial Power Spectrum: https://arxiv.org/pdf/2302.00344v1 - A Model of Leptons (paper): https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.19.1264 - The dominant model of the universe is creaking (article): https://www.economist.com/science-and-technology/2024/06/19/the-dominant-model-of-the-universe-is-creaking - Introduction to Axiomatic Quantum Field Theory (book): https://archive.org/details/introductiontoax0000nnbo/mode/2up TOE'S TOP LINKS: - Support TOE on Patreon: https://patreon.com/curtjaimungal (early access to ad-free audio episodes!) - Listen to TOE on Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e - Become a YouTube Member Here: https://www.youtube.com/channel/UCdWIQh9DGG6uhJk8eyIFl1w/join - Join TOE's Newsletter 'TOEmail' at https://www.curtjaimungal.org SPONSORS (please check them out to support TOE): - THE ECONOMIST: As a listener of TOE, you can now enjoy full digital access to The Economist. Get a 20% off discount by visiting: https://www.economist.com/toe - INDEED: Get your jobs more visibility at https://indeed.com/theories ($75 credit to book your job visibility) - HELLOFRESH: For FREE breakfast for life go to https://www.HelloFresh.com/freetheoriesofeverything Other Links: - Twitter: https://twitter.com/TOEwithCurt - Discord Invite: https://discord.com/invite/kBcnfNVwqs - iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-with-curt-jaimungal/id1521758802 - Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything #science #physics #podcast #universe #theoreticalphysics #theory #bigbang #singularity Learn more about your ad choices. Visit megaphone.fm/adchoices
The final parsec problem is a mystery that is yet to be answered by cosmology. On paper, supermassive black holes shouldn't merge. But yet they do. Why is it happening? What helps them slow down? Could it be dark matter? Looking for answers in this interview.
The final parsec problem is a mystery that is yet to be answered by cosmology. On paper, supermassive black holes shouldn't merge. But yet they do. Why is it happening? What helps them slow down? Could it be dark matter? Looking for answers in this interview.
Noticias de Astronomía y Exploración del Espacio – Julio 30, 2024. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 0) Imagen del exoplaneta alrededor de Epsilon Indi por el JWST. https://arstechnica.com/science/2024/07/webb-directly-images-giant-exoplanet-that-isnt-where-it-should-be/ https://www.sci.news/astronomy/webb-super-jupiter-epsilon-indi-ab-13125.html https://www.sciencedaily.com/releases/2024/07/240724123002.htm https://www.nature.com/articles/s41586-024-07837-8 + 1) Nuevo modelo de fusión de hoyos negros incluye materia oscura. https://phys.org/news/2024-07-astrophysicists-uncover-supermassive-black-holedark.html https://www.sciencedaily.com/releases/2024/07/240722175905.htm https://www.sci.news/astronomy/final-parsec-problem-13122.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.021401 + 2) Comportamiento de la materia oscura en la fusión de galaxias. https://phys.org/news/2024-07-dark-flies-mega-galaxy-cluster.html https://www.sciencedaily.com/releases/2024/07/240724171512.htm https://iopscience.iop.org/article/10.3847/1538-4357/ad3fb5
Noticias de Astronomía y Exploración del Espacio – Junio 4, 2024. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 0) Premios de Obsesión por el Cielo: Mayo 2024. Constelación: Primeros resultados del Telescopio Espacial Euclides. https://www.sci.news/astronomy/euclid-first-science-new-views-universe-12962.html https://phys.org/news/2024-05-scientists-reveal-euclid-telescope-snapshot.html Movimiento Retrógrado: El plan de retornar muestras del suelo de Marte cambia y se retrasa. https://www.universetoday.com/166658/the-current-mars-sample-return-mission-isnt-going-to-work-nasa-is-going-back-to-the-drawing-board/ + 1) 1. Hoyos negros de masa intermedia en los cúmulos globulares. https://phys.org/news/2024-05-simulations-potential-mechanisms-intermediate-mass.html https://www.sciencedaily.com/releases/2024/05/240530182143.htm https://www.science.org/doi/10.1126/science.adi4211 + 2) ¿Dónde están los hoyos negros primordiales? https://www.sciencedaily.com/releases/2024/05/240529144206.htm https://phys.org/news/2024-05-aims-lack-miniature-black-holes.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.221003
Could the concept of sending quantum messages across time to prevent disasters, enhance archaeological discoveries, and accelerate scientific breakthroughs truly become a reality? These ideas challenge our understanding of time and technology, suggesting a future where the past and present are interconnected in unprecedented ways. Are we on the brink of a temporal revolution that could reshape our world?If you are having a mental health crisis and need immediate help please go to https://troubledminds.org/help/ and call somebody right now. Reaching out for support is a sign of strength.LIVE ON Digital Radio! http://bit.ly/3m2Wxom or http://bit.ly/40KBtlWhttp://www.troubledminds.org Support The Show!https://www.spreaker.com/podcast/troubled-minds-radio--4953916/supporthttps://ko-fi.com/troubledmindshttps://rokfin.com/creator/troubledmindshttps://patreon.com/troubledmindshttps://www.buymeacoffee.com/troubledmindshttps://troubledfans.comFriends of Troubled Minds! - https://troubledminds.org/friendsShow Schedule Sun-Mon-Tues-Wed-Thurs 7-10pstiTunes - https://apple.co/2zZ4hx6Spotify - https://spoti.fi/2UgyzqMTuneIn - https://bit.ly/2FZOErSTwitter - https://bit.ly/2CYB71U----------------------------------------https://troubledminds.org/a-temporal-disclosure-influencing-the-futures-past/https://www.newscientist.com/article/mg26234932-900-quantum-time-travel-the-experiment-to-send-a-particle-into-the-past/https://images.newscientist.com/wp-content/uploads/2024/05/28162639/SEI_205926795.jpg?width=900https://journals.aps.org/pr/abstract/10.1103/PhysRev.47.777https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150202https://www.newscientist.com/article/2340852-nobel-prize-in-physics-awarded-to-pioneers-of-quantum-information/https://www.bbc.com/future/article/20231110-doctor-who-is-time-travel-really-possible-heres-what-physics-sayshttps://theconversation.com/is-time-travel-even-possible-an-astrophysicist-explains-the-science-behind-the-science-fiction-213836https://en.wikipedia.org/wiki/Tachyonhttps://www.space.com/tachyons-facts-about-particleshttps://theconversation.com/can-we-time-travel-a-theoretical-physicist-provides-some-answers-182634https://www.scientificamerican.com/article/what-is-known-about-tachy/https://en.wikipedia.org/wiki/Retrocausalityhttps://theconversation.com/quantum-mechanics-how-the-future-might-influence-the-past-199426https://www.learnreligions.com/janus-the-two-faced-god-2561967
Jasmine Mund, mechanical engineer, gives today's Fusion News update - summarizing the major recent headlines in fusion energy. Links to all of the stories mentioned are included below. 1. Record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device achieved https://phys.org/news/2024-04-electron-temperatures-small-scale-stabilized.html Phys. Rev. Lett. 132, 155101 (2024) - Elevated Electron Temperature Coincident with Observed Fusion Reactions in a Sheared-Flow-Stabilized $Z$ Pinch https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.155101 2. MIT's superconducting magnets are ready for fusion | MIT Technology Review https://www.technologyreview.com/2024/04/23/1090425/mits-superconducting-magnets-are-ready-for-fusion/ 3. U.S. lawmakers introduce bill aimed at accelerating nuclear fusion https://www.power-eng.com/nuclear/u-s-lawmakers-introduce-bill-aimed-at-accelerating-nuclear-fusion/#gref 4. Creating an island paradise in a fusion reactor https://phys.org/news/2024-04-island-paradise-fusion-reactor.html 5. Europe delivers equipment for ITER's cold vacuum circuit - Fusion for Energy https://fusionforenergy.europa.eu/news/europe-delivers-equipment-for-iters-cold-vacuum-circuit/ Bonus: Q&A: Dr. Michael Ford on the Potential for Fusion-Powered Ships Sea Technology magazine (sea-technology.com) https://sea-technology.com/dr-michael-ford-princeton-plasma-physics-laboratory-interview-nuclear-fusion-ship-energy Energy Switch | Nuclear Fusion | Season 4 | Episode 1 | PBS https://www.pbs.org/video/nuclear-fusion-lgmexv/ The race to fusion energy: a geopolitical opportunity that encourages international collaboration. https://www.theconferencecorner.info/post/the-race-to-fusion-energy-a-geopolitical-opportunity-that-encourages-international-collaboration Building the cruise control of a nuclear fusion reactor | Dutch Institute for Fundamental Energy Research https://www.differ.nl/news/phd-gijs-derks-2024 The Hope and Hype of Fusion Energy, Explained - Joseph Polidoro - The Dispatch https://thedispatch.com/article/the-hope-and-hype-of-fusion-energy-explained/ The EU blueprint for fusion energy https://www.youtube.com/watch?v=6AY7807KGJI
Au cours de ses dix années d'existence, l'Observatoire de neutrinos IceCube en Antarctique a enregistré les signaux de près d'un million de neutrinos énergétiques, principalement des neutrinos de la saveur électronique et muonique, fournissant ainsi des informations précieuses sur les sources de particules de haute énergie dans l'Univers. L'année dernière, la collaboration IceCube a rapporté le premier signal candidat directement liés à un neutrino de la saveur tau. Et aujourd'hui, ce ne sont pas deux, ce ne sont pas trois, mais ce sont six nouveaux neutrinos tau qui ont été détectés par IceCube. Les physiciens de la grande collaboration internationale publient leur étude dans Physical Review Letters. Source Observation of Seven Astrophysical Tau Neutrino Candidates with IceCubeCollaboration IceCubePhysical Review Letters 132, 151001 (11 april 2024)https://doi.org/10.1103/PhysRevLett.132.151001
Noticias de Astronomía y Exploración del Espacio – Marzo 19, 2024. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 0a) Nueva imagen del remanente de la supernova Vela. https://www.sci.news/astronomy/dark-energy-camera-image-vela-supernova-remnant-12758.html https://phys.org/news/2024-03-dark-energy-camera-captures-massive.html + 0b) Betelgeuse pierde brillo de nuevo. https://skyandtelescope.org/astronomy-news/is-betelgeuse-fading-again/ + 1) La Tensión de Hubble persiste... https://arstechnica.com/science/2024/03/latest-webb-space-telescope-data-confirms-hubbles-value-for-expansion-of-universe/ https://www.sci.news/astronomy/webb-hubble-tension-12759.html https://www.sciencedaily.com/releases/2024/03/240311145812.htm https://phys.org/news/2024-03-webb-hubble-telescopes-affirm-universe.html https://iopscience.iop.org/article/10.3847/2041-8213/ad1ddd + 2) Explicando el "collar de perlas" que se forma en las explosiones de supernova. https://www.sciencedaily.com/releases/2024/03/240313135615.htm https://phys.org/news/2024-03-supernova-pearls.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.111201
歡迎嚟到 搞乜咁科學 GMG Science 第21集!今集嘅主題係聲音 Sound
Noticias de Astronomía y Exploración del Espacio – Diciembre 12, 2023. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 0) Ocultación de Betelgeuse. https://phys.org/news/2023-12-asteroid-front-bright-star-betelgeuse.html https://skyandtelescope.org/astronomy-news/asteroid-will-cover-betelgeuse-may-reveal-its-visible-surface/ + 1) Nueva teoría para explicar los efectos de la materia oscura. https://phys.org/news/2023-12-dark-theory-puzzles-astrophysics.html https://iopscience.iop.org/article/10.3847/2041-8213/ad0e09 + 2) Explicando anomalías en la rotación de estrellas de neutrones. https://www.sciencedaily.com/releases/2023/12/231205114739.htm https://phys.org/news/2023-12-neutron-star-rotation-anomalies-insights.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.223401
This week we talk about stainless steel, DARPA, and GNoME.We also discuss ceramics, DeepMind, and self-driving labs.Recommended Book: Drunk On All Your Strange New Words by Eddie RobsonTranscriptIn a recent episode, I talked a bit about the bronze and copper ages, and how reaching the level of technological know-how so that it's possible to heat metals so you can blend them with other metals, forge them into useful things, and generally work with them in a more fundamental way than is possible if you're simply chipping away at them, bending them with brute strength, and so on, grants you all sorts of additional powers that those cruder methods do not offer.Copper's a pretty basic material to work with, as metals go, in part because of its elemental properties, and in part because it appears in nature, on Earth, in its pure form, so it's not something our ancestors would have had to imagine from whole cloth—they could see it, work with it, and thus, had a pretty good sense of what it was and what it was capable of.Bronze, an alloy of copper—with some amount of tin mixed into the copper to make it more resilient and strong, and thus, useful for many things—was different in that it's not natural and doesn't occur unless we synthetically produce it.Iron is similar to copper in that it's natural, though it's also a lot stronger and thus harder to work with, lacking the metallurgical capacity to melt it down and reshape it in a liquified form, and steel is in this way a bit like bronze in that it's an alloy of iron—iron mixed with carbon—and variations on the theme, like stainless steels, have some amount of chromium blended in with the iron and carbon, alongside nickel, in some cases, which makes it even more complex, and thus essentially impossible to imagine if you're limited to what nature provides you, in terms of practicality, and thus, often at least, your conception of materials-related possibilities.So part of the challenge in attaining mastery over difference materials, including but not limited to metals, is discovering them and having access to the requisite natural resources, like iron and copper, in the first place, but then also, over time, learning that you can manipulate them in various ways, and then over time—often long, long stretches of time, generationally long periods of time in some cases—refining those methods of manipulation until it's possible to do so economically, but also, typically, at some kind of productive scale: allowing you to make enough of the material so you can churn out, for instance, armor and swords made out of it, or if we're talking about ceramic goods, stuff made of clay and silica and carbon, among other substances, scaling-up the process so you can produce more jugs and pots and urns, more food-preservation technologies and clay tablets for writing and bricks for building homes and other structures; and that's alongside the parallel process of simply learning how to capably work with these materials, once a sufficient volume of them becomes available.So while metal and clay are different sorts of substances, they're both materials that we use to make objects—we take basic, earth-derived stuff and reshape it into things that are useful to us in some way, whether that means as a weapon or means of manufacturing things, or as clothing, homes, or objects of beauty—artworks and such.Materials science is a field focused on the many facets of these types of resources, with some practitioners working with existing materials in order to better understand them, others sussing out various means of scaling-up production or iterating upon existing modes of production to make them more economical or sustainable, while still others aim to produce new materials of this kind: in some cases discovering existing-but-rare new materials, in the sense that we haven't discovered them, at least in the scientific sense, before, but often production, in this context, means combining different elements or other raw materials to create new materials.Just like our ancestors figured out how to make stronger, longer-lasting ceramic pots and how to make stainless steal out of iron alloyed with other substances, the contemporary version of that field often means working in laboratories and manufacturing hubs to investigate the blending-potential of various materials, and to then refine successful blends to see if the resulting whatever might have utility that can be exploited for some kind of productive purpose.What I'd like to talk about today is materials science, and how new innovations in the AI realm could push this field into an entirely new, and much faster-moving, paradigm.—As I mentioned in the intro, we've been doing what you might call materials science research and development since our earliest days of civilizational evolution, and almost certainly for quite a long while before that, too, because our deep, deep ancestors were all about making clever use of their environments and the materials in those environments, to get a leg-up over their competition.That said, modern materials science arose out of earlier, differentiated fields like metallurgy and ceramics engineering classes and laboratories, some of these educational and commercial hubs slammed together into unified, materials science departments in the 1960s when the US Advanced Research Projects Agency—the precursor to the Defense Advanced Research Projects Agency, or DARPA—started throwing money at universities with laboratories that seemed capable of helping the US economy, and by association the US military, gain broad-scale advantages over their international competition, by approaching materials research not just from the 30,000-foot, macro-scale view that pretty much every such department had approached such things from until this point, but also the micro-scale, atomic-level perspective: something more fields were beginning to attempt in the wake of WWII and the increasingly common realization that we've been missing out on a lot, not looking at things from the atomic level, up till that point, and that by leveraging advanced understandings about how these substances work from other fields, like physics, we could probably speed-up our development of new incredibly useful, omni-versatile materials, like steel or aluminum, dramatically.This would allow us to start our research with assumptions based on molecular and atomic science, rather than empirical, observational, comparably quite slow approaches, and that meant rather than waiting to observe and measure something interesting that happened, usually by doing a lot of fiddling around and hoping for good luck, over and over, day after day, we could instead very intentionally start cycling through all the potential blends that these other scientific understandings have told us are both possible and might be useful or interesting for various reasons.In the decades since, materials science has expanded still-further, encompassing new and ever-smaller scales, and new material types, like polymers—plastics, basically—that weren't really a thing when the unified field first, itself, became a thing.The impact this reorganization and refocus has had on the development of new materials cannot be overstated: among other things, innovations in this space has led to the development of artificial skin for burn victims, metal composites that have worked their way into all kinds of consumer products, making them more durable and lightweight, the production of medical hardware capable of performing magnetic resonance imaging and ultrasounds, the materials required to produce microchips of ever-smaller sizes, but with ever-denser capacities, nanotechnologies that have allowed for the shrinking of all sorts of components and devices, and the materials that have made the rapidly increasing efficiencies of solar panels possible, alongside the materials used in wind turbine blades and batteries with ever-embiggening capacities, safety features, and durabilities.The modern world, in essence, all modern technologies, and especially all digital goods, but also everything made out of any kind of metal or plastic that isn't raw iron or copper, both of which are increasingly rare in consumer goods, at least, was enabled by the field of materials science; lacking that mid-20th century development, it's a fair bet we would have been held back in pretty much every other scientific field, and thus, technological development, as well.That ubiquity and importance is part of why a recent announcement by Google's DeepMind division—an artificial intelligence lab under the larger company's brand-umbrella—has been getting so much attention.DeepMind has become well-known for its upending of chess, the game of Go, and more recently for creating a protein structure database that contains all its predictions for the 3D structures of folded proteins—showing how more than 200 million proteins will likely look based on their amino acid sequences, alone, solving what has long been called the "protein folding problem," which I spoke about at greater length in a previous episode, by the way.So we've got a database full of protein ingredients, amino acids, for all the proteins we've ever discovered, but just having those ingredients doesn't tell us what the finished proteins will look like in three-dimensions, once they've been built, because they fold up into a final shape after construction.Figuring out how finished, folded proteins made up of those ingredients we knew about, how they would actually look in real-life, has thus been a time-consuming, ponderous and expensive effort—all of science, our entire human civilization-wide scientific effort, was able to demonstrate the final, folded structures of something like 170,000 of the more than 200 million proteins we knew about, up till the early 2020s.That changed with DeepMind's AlphaFold program, which—using an AI technique called deep learning—was able to predict, imperfectly, but with enough accuracy to successfully predict single-mutation effects (what will happen if a protein has a single change to one of its amino acids, and how that will impact the final shape of the folder protein) all of those known proteins in our existing database.So predictions that are usable for many use-cases, and at what's been called a borderline miraculous or magical scale, applying this prediction model to every single protein we know about, as a species, at this point.That same lab has now applied a similar AI system to predicting and simulating how various materials will work together, if blended, and how their fusion, the product of that blending, will behave; what properties it will have.The company announced that they've developed a new deep learning system optimized for this purpose, called Graph Networks for Materials Exploration, or GNoME, and the initial outcome of running this tool was the discovery of about 2.2 million new crystalline structures, about 380,000 of which are stable enough to warrant further materials science investigation.Using current methods and extrapolating on the research currently being done and funding currently available to researchers in this space around the world, it's estimated that around 736 of these 380,000 new potential materials have already been discovered by researchers in experimental settings, and that this stockpile is equivalent to about 800 years'-worth of knowledge based on current levels of investment and output.So it would take about 800 years, at current levels of research in this space, to discover this many new potentially useful materials.All of which is wonderful, as—like with the folded protein predictions provided by AlphaFold—this new GNoME model gives materials scientists some focused areas to be looking at, making every experiment more likely to provide us with useable outcomes, rather than the shot-in-the-dark approach that's more common when looking into unfamiliar blends of materials.Many of these 380,000 potential new structures will likely be not useful for today's purposes, then, but this type of research rigs the dice so that each investigation is relatively more likely to yield something really valuable, which could prove to be hugely beneficial, especially since that catalog of potentially useful structures, like the protein fold catalog, has been published and made available to whomever wants it, for free.That's still a lot of work to do, of course, churning through all these potentially useful materials, which is why another development in this space—what's sometimes called self-driving labs—is also notable and potentially vital for the more-rapid development of materials science.Self-driving labs are basically lab spaces optimized for robotics that allow non-human, robot arms and other hardware, to perform the requisite, and often slogging, ponderous, tedious work of basic materials science experimentation, safely and continuously, around the clock.So just as you might automate a fast-food restaurant by telling some software what ingredients to combine and how to process them, in order to make a burger or some fries, keeping tabs on the temperature of everything and what's been mixed with what along the way, using specialized, automated equipment, you can also tell some software which materials to combine, and how, and have it keep track of everything's properties throughout the process using an array of sensors, and then some robot arms perhaps, or maybe just a big box with pipes and the ability to move stuff from here to there when prudent, will combine a slew of varied substances from a catalog of options, and then keep tabs on the resulting materials, tucking away examples for further, human exploration and confirmation if they're auto-tagged as being interesting for the sorts of properties we want to see, but otherwise maybe just categorizing them according to their properties, adding to the body of knowledge we already have for such things, and giving us a sort of materials reference library that we can tap into when we need a specific material with specific attributes, in the future.What this potentially does, then, is robotically automate the checking of the AI-generated catalog of potentially useful materials.The degree to which this could change the field cannot be overstated, as while that earlier, 1960s-era formalization of the field, combining earlier realms of inquiry was a big deal, changing everything, this next step could do the same, replacing humans—who are in many cases doing systematic, tedious work—with sleepless, emotionless, unkillable robots working from software-generated possibilities in order to provide us with a new menu of materials we might use, moving forward.This sort of development is especially important, arguably, because of all these new possibilities we now have available to try out: the number of possible combinations grows incredibly rapidly as the number of new materials and possible materials increases, and because there are only so many humans with the necessary skills and knowledge to do this kind of work, those human researchers have become kind of a bottleneck: good at what they do, but mostly tasked with responsibilities that can be automated, at least to some degree, their hands and eyes replaced with robot versions of the same, nothing lost in the transition and possibly a lot to be gained by swapping them out, including the optimization of those boring, predictable processes, and the ability to work more AI into the loop, those AI empowered to make more predictions and assumptions as new data from these experiments roll in, further speeding up the process of development and further optimizing the economics of such research, alongside the tangible fruits of that research.All of this, of course, is still bleeding-edge new, and there's a nonzero chance that some component of it ends up being not as useful or accurate as predicted or claimed, or that there will be some other glaring flaw that makes it not as desirable as it currently seems to be.And that might mean we have some wonderful new predictions to work from, but are stuck with the same plodding pace of working through them—or in contrast, maybe those predictions turn out to be not as great as advertised, and instead we have super-fast experimental robots in our arsenal, but a much smaller menu of potential materials to work through, limiting what we can do with those self-driving laboratories—at least in this field, at this moment.This is a maybe quite exciting moment for a field that touches essentially every other field, though, and if even a single-digit percentage of the purported possibilities of these new developments turn out to be accurate and manifestable, a lot of things could change very quickly, across many aspects of many industries, similar to the development of steel or plastics, but possibly even more rapidly deployed, and at a scale that the folks innovating those earlier wonder materials couldn't have dreamed of.Show Noteshttps://www.nature.com/articles/s41586-023-06734-whttps://www.nature.com/articles/s41586-023-06735-9https://www.mtu.edu/materials/what/https://interestingengineering.com/innovation/google-deepmind-invents-400000-materialshttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.218401https://en.wikipedia.org/wiki/AlphaFoldhttps://deepmind.google/discover/blog/millions-of-new-materials-discovered-with-deep-learning/https://www.science.org/doi/10.1126/sciadv.aaz8867https://www.nature.com/articles/s44160-022-00231-0https://en.wikipedia.org/wiki/Ceramichttps://en.wikipedia.org/wiki/Stainless_steelhttps://en.wikipedia.org/wiki/Materials_sciencehttps://en.wikipedia.org/wiki/History_of_materials_science This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit letsknowthings.substack.com/subscribe
GW190521 est la détection gravitationnelle de la fusion de trous noirs les plus massifs à ce jour menant à un trou noir de 142 masses solaires. Plus de quatre ans après sa détection, des physiciens ont réanalysé les données et ils parviennent à isoler le signal de ringdown qui a suivi la fusion, le signal d'ondes gravitationnelles qui correspond au moment où le trou noir final reprend une forme parfaitement sphérique. C'est la toute première fois que l'on parvient à observer ce signal spécifique, qui nous permet de vérifier à nouveau la théorie de la relativité générale. L'article est paru dans Physical Review Letters la semaine dernière.https://www.ca-se-passe-la-haut.fr/2023/12/mesure-inedite-du-ringdown-dans.html Source Multimode Quasinormal Spectrum from a Perturbed Black HoleCollin D. Capano, et al.Phys. Rev. Lett. 131, 221402 (28 November 2023)https://doi.org/10.1103/PhysRevLett.131.221402
Van zowel "witte gaten" (de theoretische tegenhangers van zwarte gaten) als negatieve massa kunnen we ons afvragen of dit alleen concepten van overactieve wetenschappers zijn of zaken die we ook in deze contreien van het heelal ooit zullen tegenkomen.Negatieve massa volgens Wikipedia:https://en.wikipedia.org/wiki/Negative_massPhysicists observe negative mass:https://www.bbc.com/news/science-environment-39642992Negative-Mass Hydrodynamics in a Spin-Orbit–Coupled Bose-Einstein Condensate:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.155301De Zimmerman en Space podcast is gelicenseerd onder een Creative Commons CC0 1.0 licentie.http://creativecommons.org/publicdomain/zero/1.0
À mesure que l'univers évolue, la relativité générale et le modèle cosmologique standard qui en dérive prédisent que les grandes structures cosmiques doivent croître à un certain rythme : les régions denses comme les amas de galaxies, deviennent plus denses, tandis que les vides deviennent plus vide, à un certain rythme. Mais des chercheurs viennent de trouver que ce rythme de croissance est plus lent que ne le prévoit la théorie. Cela permet de résoudre des tensions existantes sur des paramètres du modèle standard, mais ça en crée une nouvelle et met le modèle standard à nouveau en difficulté. L'étude est publiée dans Physical Review Letters.https://www.ca-se-passe-la-haut.fr/2023/09/la-croissance-ralentie-des-grandes.html Source Evidence for Suppression of Structure Growth in the Concordance Cosmological ModelNhat-Minh Nguyen, Dragan Huterer, and Yuewei WenPhys. Rev. Lett. 131, (11 September 2023)https://doi.org/10.1103/PhysRevLett.131.111001
Pour la première fois, des astrophysiciens ont analysé l'émission gamma de Jupiter. Cette recherche est importante car elle pourrait indiquer des traces de phénomènes très particuliers comme des annihilations de particules de matière noire qui se seraient accumulées dans la géante gazeuse. La détection des rayons gamma par le télescope Fermi-LAT montre la présence d'un signal à basse énergie mais qui n'est pas statistiquement significatif, menant donc à la détermination de limites drastiques sur la probabilité d'interaction de la particule de matière noire hypothétique avec les protons. Jupiter est ainsi devenue notre plus gros détecteur de matière noire et le plus sensible à basse énergie. L'étude est parue dans Physical Review Letters. Source First Analysis of Jupiter in Gamma Rays and a New Search for Dark MatterRebecca K. Leane and Tim LindenPhys. Rev. Lett. 131, 071001 (14 August 2023)https://doi.org/10.1103/PhysRevLett.131.071001
Depuis la découverte en 2007, grâce à des simulations numériques, que la fusion de trous noirs binaires ayant des spins différents peut conduire à des vitesses de recul gravitationnel importantes du trou noir résultant, une recherche de tels trous noirs est en cours. Pour déterminer quelle serait la plus grande vitesse de recul atteinte par un trou noir issu d'une fusion, deux physiciens ont effectué un grand nombre de simulations numériques en faisant varier les différents paramètres physiques en jeu. Ils trouvent une valeur maximale de vitesse qui défie l'entendement… Ils publient leur étude dans Physical Review Letters. Source Ultimate Black Hole Recoil: What is the Maximum High-Energy Collision Kick?James Healy and Carlos O. LoustoPhysical Review Letters 131, 071401 (18 august 2023)https://doi.org/10.1103/PhysRevLett.131.071401
Noticias de Astronomía y Exploración del Espacio – Agosto 08, 2023. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 0) Imágenes de prueba del telescopio espacial Euclides https://phys.org/news/2023-07-euclid-images-riches.html https://www.esa.int/Science_Exploration/Space_Science/Euclid/Follow_Euclid_s_first_months_in_space + 1) ¿Acaso el hoyo negro supermasivo de nuestra galaxia tiene un compañero? https://phys.org/news/2023-08-milky-supermassive-black-hole-companion.html https://arxiv.org/abs/2307.16646 + 2) Rayos gamma del Sol. https://www.sciencedaily.com/releases/2023/08/230803213824.htm https://phys.org/news/2023-08-scientists-highest-energy-sun.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.051201
Today you'll learn about new treatments the wealthy are using to try and stay young forever, the cultural and social evolution of the word please, and how the snap fit mechanism used in things like lego bricks is being updated for even bigger projects. Find episode transcripts here: https://curiosity-daily-4e53644e.simplecast.com/episodes/immortality-tech-please-is-not-polite-snap-fit-physicsImmortality Tech “People are desperately trying to live forever. Here are the biggest anti-aging trends sweeping the nation.” by Lakshmi Varanasihttps://finance.yahoo.com/news/people-desperately-trying-live-forever-090000189.html“Taking the Plunge: Is Cold Exposure Worthwhile?” by Lisa Fieldshttps://www.cedars-sinai.org/blog/cold-exposure-therapy.html“How can fasting help fight aging?” by Linnea Zielinskihttps://ro.co/health-guide/fasting-and-aging/?irclickid=SG20AsU8gxyNTy0TnAXIvwzyUkAW13QJMWdhz80&irgwc=1&utm_source=impact&utm_medium=affiliate&utm_campaign=10078&utm_content=1262348&utm_term=businessinsider.com&ro_con=1&ro_ch=pubs&ro_p=impact&ro_n=Skimbit%20Ltd.&ro_c=10078&ro_g=Online%20Tracking%20Link&ro_t=1262348&survey_code=Skimbit%20Ltd.“Telomeres, DNA Damage and Ageing: Potential Leads from Ayurvedic Rasayana (Anti-Ageing) Drugs” by Rohit Sharma and Natália Martinshttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465058/“Red Light Therapy” by Cleveland Clinichttps://my.clevelandclinic.org/health/articles/22114-red-light-therapyPlease Is Not Polite “How Please Stopped Being Polite” By Walker Mimmshttps://www.theatlantic.com/family/archive/2023/03/polite-words-is-please-rude/673397/“Oh Please Stop Saying Please” by Choire Sichahttps://www.nytimes.com/2018/12/20/business/ghosting-your-job.html“7 words you probably didn't know were acronyms” by BBChttps://www.bbc.co.uk/programmes/articles/2grMKJ29Ghlw36WXCHGJvKk/7-words-you-probably-didnt-know-were-acronymsSnap Fit Physics “From LEGOs to Ziploc: The Science of the Snap Fit” by Katharine Gammonhttps://www.insidescience.org/news/legos-ziploc-science-snap-fit“Mechanics of a Snap Fit” by Keisuke Yoshida and Hirofumi Wadahttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.194301“LEGO ‘snap-fit' inspires scientific study” by Adam Baschhttps://www.brickfanatics.com/lego-snap-fit-inspires-scientific-studyFollow Curiosity Daily on your favorite podcast app to get smarter with Calli and Nate — for free! Still curious? Get exclusive science shows, nature documentaries, and more real-life entertainment on discovery+! Go to https://discoveryplus.com/curiosity to start your 7-day free trial. discovery+ is currently only available for US subscribers.
Ein Team aus Wissenschaftlern aus den USA haben in einer neuen Forschung gezeigt, dass sich Wellen, die aus Gruppen von Photonen bestehen, unter bestimmten Bedingungen sich schneller als das Licht bewegen können. Die meisten von uns sind mit dem Gesetzt vertraut, das die Geschwindigkeit begrenzt ist, mit der sich Informationen durch den leeren Raum bewegen kann: die Lichtgeschwindigkeit, die bei 300.000 Kilometern pro Sekunde ihren Höhepunkt erreicht. Während es unwahrscheinlich ist, dass Photonen selbst diese Geschwindigkeitsgrenze jemals überschreiten werden, gibt es Eigenschaften des Lichts, die nicht nach denselben Regeln spielen. Die Manipulation dieser Eigenschaften wird uns zwar nicht die Reise zu den Sternen erleichtern, aber sie könnten uns den Weg zu einer völlig neuen Klasse von Lasertechnologien ebnen. Schon seit einiger Zeit spielen die Forscher mit der Geschwindigkeitsgrenze von Lichtimpulsen, indem sie sie mit verschiedenen Materialien wie kalten Atomgasen, brechenden Kristallen und optischen Fasern beschleunigen oder sogar bis zum Stillstand verlangsamen. Dazu habe ich bereits ein Interview mit Prof. Dr. Florian Schreck geführt, er und sein Team haben in diesem Jahr unglaubliche Bahnbrechende Forschungsergebnisse im Bereich der Atomlaser Technik erreicht. Doch im vergangenen Jahr gelang es Forschern des Lawrence Livermore National Laboratory in Kalifornien und der University of Rochester in New York auf beeindruckende Weise, die Geschwindigkeit von Lichtwellen im Plasma auf etwa ein Zehntel der üblichen Vakuumgeschwindigkeit des Lichts bis zu mehr als 30 Prozent zu beschleunigen. Das Interview mit Dr. Florian Schreck: https://www.youtube.com/watch?v=QprxL8fCNks Quellen: https://www.rp-photonics.com/group_velocity.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.205001 Good Night Stories: Auf YouTube - https://www.youtube.com/channel/UCOGzvEVuggur7x8BxoL84-A Auf Spotify - https://open.spotify.com/show/5Mz5jx2lm7DXN3FizSigoJ Abonniere jetzt die Entropy, um keine der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 ♦ PATREON: https://www.patreon.com/entropy_wse ♦ TWITTER: https://twitter.com/Entropy_channel ♦ INSTAGRAM: https://www.instagram.com/roma_perezogin/ ♦ INSTAGRAM: https://www.instagram.com/entropy_channel/ ♦ DISCORD-SERVER: https://discord.gg/xGtUAaAw98
Noticias de Astronomía y Exploración del Espacio – Diciembre 20, 2022. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + Deshechos orbitales y el peligro a los astronautas. https://arstechnica.com/science/2022/12/space-debris-expert-orbits-will-be-lost-and-people-will-die-later-this-decade/ + 1) Dos exoplanetas acuáticos. https://phys.org/news/2022-12-montreal-astronomers-exoplanets.html https://www.sciencedaily.com/releases/2022/12/221215120718.htm https://www.nature.com/articles/s41550-022-01835-4 + 2) Brillo cósmico puede ser causado por decaimiento de axiones. https://phys.org/news/2022-12-axion-decay-underlie-excess-cosmic.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.231301 https://arxiv.org/abs/2208.13794
What happens when you push water to the limits on earth and in Space? Water has really weird properties especially when it gets really cold. How can we understand and model the behaviour when it moves to fast for us to capture? How do droplets form and why do you need the ISS to study it? What can microgravity tell us about the way droplets form? Thomas E. Gartner, Pablo M. Piaggi, Roberto Car, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti. Liquid-Liquid Transition in Water from First Principles. Physical Review Letters, 2022; 129 (25) DOI: 10.1103/PhysRevLett.129.255702 J. McCraney, J. Ludwicki, J. Bostwick, S. Daniel, P. Steen. Coalescence-induced droplet spreading: Experiments aboard the International Space Station. Physics of Fluids, 2022; 34 (12): 122110 DOI: 10.1063/5.0125279
Noticias de Astronomía y Exploración del Espacio – Diciembre 13, 2022. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + Imágenes de la luna de Saturno Titán con el Telescopio Espacial Webb. https://webbtelescope.org/contents/early-highlights/webb-keck-telescopes-team-up-to-track-clouds-on-saturns-moon-titan + 1) Tenue brillo del Sistema Solar observado por el telescopio espacial Hubble. https://phys.org/news/2022-12-hubble-ghostly-solar.html https://www.sciencedaily.com/releases/2022/12/221209135557.htm https://www.nasa.gov/feature/goddard/2022/hubble-detects-ghostly-glow-surrounding-our-solar-system https://iopscience.iop.org/article/10.3847/1538-3881/ac8d02 https://iopscience.iop.org/article/10.3847/1538-3881/ac82af https://iopscience.iop.org/article/10.3847/2041-8213/ac9cca https://arxiv.org/abs/2210.08010 + 2) “Fotones oscuros” pueden ser la fuente de calentamiento del gas intergaláctico. https://phys.org/news/2022-12-explores-possibility-dark-photons-source.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.211102
What do some amoebozoans and the urban planners of Tokyo have in common? And who is smarter? What even is intelligence? Find out by learning about Physarum polycephalum, a slime mold (aka "slimy guy") you could find on a walk in the woods. Scientist Kyle David talks about the lifestyle and weird features of P. polycephalum and how, even when it's meters long and wrapping itself around trees, it's really still only one single cell. We also talk about human vs. non-human intelligence, how this amoeba defies the human-created and often nebulous paradigms of "biological sex", and what we can learn from the formidable microbes around us.Dr. Kyle T. David, PhD is a postdoctoral fellow in the Rokas Lab at Vanderbilt University, who has studied the evolution of many organisms, from yeasts to frogs! To follow his work, check out his Google Scholar page or follow him on Twitter: @KyleTheDavid, where he regularly goes viral for posting weird science stuff.Here are some links to studies referenced in this episode if you're interested in further reading:1. https://www.nature.com/articles/350351592. https://www.pnas.org/doi/full/10.1073/pnas.09121981073. https://www.pnas.org/doi/full/10.1073/pnas.12150371094. https://royalsocietypublishing.org/doi/10.1098/rspb.2016.0446#d4543081e15. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.018101For more info on microbes and to follow updates of this podcast, find @couch_microscopy on Instagram, @CouchMicroscopy on Twitter, or visit www.couchmicroscopy.com/store for merch!Music is "Introducing Cosmic Space" by Elf Power and "Vorticella Dreams" by L. Felipe Benites.While some of the content on this podcast may be relevant to human or veterinary medicine, this information is not medical advice. The views and opinions expressed on this program are those of the host and guests and do not reflect the views of any institution.
Noticias de Astronomía y Exploración del Espacio – Diciembre 6, 2022. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + Premio “Constelación”: Equipo de operadores del Telescopio Espacial James Webb. + Premio “Movimiento Retrógrado”: Contaminación lumínica por el satélite BlueWalker 3. https://phys.org/news/2022-12-bluewalker-enormous-bright-communications-satellite.html + 1) Hoyo negro lejano devorando una estrella provoca jet relativístico. https://phys.org/news/2022-11-mysteriously-bright-black-hole-jet.html https://phys.org/news/2022-11-distant-black-hole-swallowing-star.html https://www.sciencedaily.com/releases/2022/11/221130114509.htm https://www.sci.news/astronomy/very-luminous-relativistic-jet-tidal-disruption-event-11440.html https://www.nature.com/articles/s41550-022-01820-x https://www.nature.com/articles/s41586-022-05465-8 + 2) Materia oscura no puede ser causada por cúmulos de hoyos negros primordiales. https://phys.org/news/2022-11-clustered-primordial-black-holes-dark.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.191302
A counter-intuitive feature of wind power is that it is usable regardless of the direction the wind is blowing, so long as it is sufficiently steady and you have the right technology. A windmill th… https://www.ribbonfarm.com/2022/12/07/worldwinds/ divergencepoints of sailWisner-Gross modelGary Marcus points outDestruction and Creation
Kollisionen von Licht erzeugen Materie und Antimaterie aus reiner Energie. Studie demonstriert einen seit langem vorhergesagten Prozess zur direkten Erzeugung von Materie aus Licht – plus Beweise dafür, dass Magnetismus polarisierte Photonen entlang verschiedener Pfade im Vakuum biegen kann. Wissenschaftler, die Teilchenkollisionen am Relativistic Heavy Ion Collider (RHIC) untersuchen – haben nun endgültige Beweise für zwei physikalische Phänomene erbracht, die vor mehr als 80 Jahren vorhergesagt wurden. Diese Vorhersage gehört heute zu den sieben grundlegenden theoretischen Vorhersagen der Quantenelektrodynamik. Der Effekt, der auch als Breit-Wheller-Theorie bekannt ist, konnte aber bis heute nicht bestätigt werden. Der Hauptgrund liegt darin, dass für das Experiment so große Photonendichte benötigt wird, wie sie selbst die stärksten Laser derzeit nicht erzeugen können. Quellen: https://www.forschung-und-wissen.de/nachrichten/physik/neue-materie-aus-licht-erschaffen-13371940 https://www.forschung-und-wissen.de/nachrichten/physik/physiker-wollen-licht-in-materie-umwandeln-13372620 https://www.augsburger-allgemeine.de/bayern/Wissenschaft-Wir-erschaffen-voellig-neue-Dinge-Ein-Blick-ins-Silicon-Valley-Bayerns-id59218891.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.052302 Abonniere jetzt die Entropy, um keine der coolen & interessanten Episoden zu verpassen! Das unterstützt mich natürlich und hilft mir meinen Content zu verbessern und zu erweitern! Hier abonnieren: https://www.youtube.com/channel/UC5dBZm6ztKizdUnN7Puz3QQ?sub_confirmation=1 ♦ PATREON: https://www.patreon.com/entropy_wse ♦ TWITTER: https://twitter.com/Entropy_channel ♦ INSTAGRAM: https://www.instagram.com/roma_perezogin/ ♦ INSTAGRAM: https://www.instagram.com/entropy_channel/
The Field Guide to Particle Physics : Season 3https://pasayten.org/the-field-guide-to-particle-physics©2022 The Pasayten Institute cc by-sa-4.0The definitive resource for all data in particle physics is the Particle Data Group: https://pdg.lbl.gov.The Pasayten Institute is on a mission to build and share physics knowledge, without barriers! Get in touch.The Positron ExcessSpace is not a safe place. Matter and energy take on a totally different form than is familiar from our planetary lifestyle. Radiation is everywhere, and with it we find high energy particles flying all over the place. One of the biggest challenges in a voyage to Mars is shielding the travelers from all that radiation. Our magnetosphere and atmosphere do an outstanding job of filtering out the most of the high energy particles flying at us from all directions.Many energetic particles come from the sun. Fast moving protons and electrons that boil off our friendly plasma ball get trapped in the van Allen belts of our earth's magnetic field. Way above the atmosphere, we can see them sometimes as the Aurora.Other energetic particles come to us from inside the Milky Way galaxy. Exploding stars, neutron stars and other monsterous astrophysical objects can shed or accelerate their own high energy particles. Often these particles have more energy than those put off by the sun, but it's the same story: A lot of protons, a few electrons, and also some heavier nuclei: like alpha particles. Much less often, we see cosmic rays made up of even bigger things, like the nuclei of Carbon, Silicon or even Iron!Some particles come from outside our galaxy. These can sometimes have outrageously high velocities, and are observed as miles-wide particle showers by large, ground based detector arrays. They aren't common. One of the biggest of these was observed by the Fly's Eye camera back in 1991. It had over 50 J of energy packed into a single particle - probably a proton. That's about the same kinetic energy as baseball being thrown around… in a single particle.Fast moving high energy particles - the ones flying in from outside our solar system - are typically called Cosmic Rays. A tiny fraction of these Cosmic Rays are actually antimatter. Antiprotons and positrons, specifically. Understanding where all these cosmic rays come from is an important scientific question in its own right, but understanding where the antimatter comes from - and how much of it there is - has been a truly fascinating question. Especially of late.Where does the cosmic antimatter come from?The ratio of matter to antimatter in Cosmic Rays is small, and varies with particle speed. Typical numbers are 1 or 2 antiprotons for every ten thousand protons. The ratio of positrons to electrons is higher, closer to a few parts in a hundred. One thing we haven't seen? Bigger antiparticles. No antideutrons or antialpha particles have been observed - at all - let alone bigger antinuclei. But of course, we see big nuclei in Cosmic Rays all the time.Because Cosmic Rays come from other parts of the galaxy - or even outside of it - these ratios are basically consistent with our typical assumption that all observed antimatter is secondary. It is created - in other words - through collisions or decay of so-called “normal” matter.Really fast Cosmic Rays occasionally interact with other particles in our galaxy: the tiny, sparse bits of gas and dust in the large voids between stars, sometimes called the interstellar medium. Those collisions often generate more particles, and just like in our own atmosphere, antiparticles are part of that collision debris.Just like the proton and the electron, to the best of our knowledge, the antiproton and the positron are stable particles. So unless they annihilate, these particles of antimatter just hang around. The collective effect of all these Cosmic Rays bounding around our galaxy is a very small - but measurable - population of antiprotons and positrons flying at us as secondary cosmic rays.If we were to assume that all antimatter is secondary - that is, if antiprotons and positrons are created only from collisions in the interstellar medium - we can use that assumption to calculate how much of it we expect to see. In these calculations, the number of antiprotons pretty much lines up expectations. While on the high side, the population of antiprotons in our galaxy essentially agrees with what you'd expect from collisions of other cosmic rays in the interstellar medium.While it is possible that antideutrons and antialpha particles can be also created in these collisions, they are rare. The expected number of them is currently far below current experimental sensitivity.Positrons are a different story. What's fascinating astroparticle physicists these days is that the number of positrons observed in Cosmic Rays is noticeably higher than we expect from these calculations. In particular, the number of positrons at higher energies is much bigger than we'd expect if they were only created in collisions, upwards of 10 percent or more!In short, we see too many positrons flying at us as Cosmic Rays and we don't know why!What we do know about Cosmic RaysEarth's atmosphere is much denser than interstellar space, so Cosmic Rays that make it to Earth typically collide dramatically with molecules in our upper atmosphere. With land-based detectors, we can see the resulting showers of particles down on Earth. We can calculate how much energy they had, but we can't exactly say what kind of particle they were.To assess the species of particle that's slamming into the Earth, we need to capture, identify and count them before they strike the atmosphere. We need, in other words, particle detectors on satellites.Older experiments like the Fermi Gamma Ray Telescope and the PAMELA detector were put in orbit around the earth on satellites. The current state of the art, the AMS-02 Cosmic Ray experiment is literally in a box attached to the side of the International Space Station.All these experiments agree: Cosmic Rays follow a somewhat predictable pattern. Most particles come equally from every direction in space, so as a population of particles, they're very likely diffused around the entire galaxy. The number of particles we see depends on their energy. Roughly speaking, the more energy a particle has, less common it is to see. But this trend is also true by particle species. In aggregate, simpler particles are also more common than complex ones. And of course, antimatter is far, far less common than matter.There are a few minor exceptions to these rules, and they have all been explained by various physical phenomena: like the distinction between lower energy cosmic rays from inside our galaxy to higher energy cosmic rays from outside our galaxy. Each of these minor bumps on the otherwise clean plots of counts of cosmic rays is a fascinating story in its own right. But today, we'll focus on one, massive, glaring irregularity:Again, the number of positrons observed as cosmic rays at higher energies is much higher than we'd expect.The Positron “Excess”Check out this plot from a 2019 publication by the AMS-02 Collaboration, Towards Understanding the Origin of Cosmic-Ray Positrons:Fig 4. from the above paper, https://doi.org/10.1103/PhysRevLett.122.041102Per the most recent AMS-02 data analysis, the spectrum of positrons in cosmic rays can be cleanly represented with a two-component model. The first component, valid at lower energies, is the usual, expected effect of interstellar media collision debris with higher energy cosmic rays. It peaks at about 5 to 10 GeV with a slightly long tail towards higher energies. The second component, valid at higher energies, appears to be associated with a different and stronger source of positrons, whose peak is closer to a few hundred GeV. This model for an as-yet-unknown source of positrons, is skewed in the other direction, with a longer tail towards lower energies, and a sharp cut-off estimated at about 800 GeV.Now, this two component model is just one interpretation of the data. An agnostic, best fit model. The essential point it captures, is the positrons in Cosmic Rays very likely come from multiple sources. The data associated to the second source term in the model is what we refer to as the “excess” of positrons.As noted in the aforementioned publication, there are few possible explanations for that excess. Pulsars - fast spinning husks of recently desceased stars - may well lose some of their rotational energy to radiation and the production of particle/antiparticle pairs. They could be a source for these positrons (see also this).Another, more intriguing explanation, is that the positrons are created as a byproduct of dark matter/antidark matter annihilation. [1] Dark Matter is a theoretical framework for explaining a vast array of astrophysical phenomena, which are all basically consistent with a new kind of stable or very long lived particle. Such a particle would not interact with light at all, hence the name, Dark Matter.Of course, we don't know if Dark Matter really is made up of particles, and if so, we don't know what those particles would be. They would represent new particle physics, a further extension of the Standard Model. Because many such models of new particle physics include particles that could act like Dark Matter, the positron excess serves as a consistency check or constraint on such models.If the annihilation of a new kind of Dark Matter particle were responsible for the excess of positrons [2], the AMS-02 data already highly constrains its properties. In particular, it has to be heavy, like around a TeV or more, and it has to decay through some intermediate state before producing any of those excess positrons. This scenario is at least qualitatively consistent with the fact that we haven't yet seen any evidence for Dark Matter at the LHC or in direct detectionexperiments [3]. In SummaryAntimatter is out there. It's coming in from outer space. Like the antimuons and positrons that appear in our atmosphere from collisions with these high energy particles, antiprotons and positrons are occasionally formed by tiny collisions all over our galaxy.The number of positrons we see are inconsistent with our understanding of how these secondary Cosmic Rays form. In certain energy ranges, we see far too many positrons. Something is definitely going on. Something we haven't yet accounted for.Something, perhaps... perhaps, like Dark Matter.Footnotes[1] Dr. Rebecca K. Leane, the author of that recent review on these kinds of Dark Matter Indirect Detection results, remarks that pulsars are currently favored to explain the excess. Of course, particle physicists remain excited until its ruled out! See also the following footnote.[2] It's worth pointing out that the as-yet statistically insignificant, slight overabundance of antiprotons could come from Dark Matter annihilation, too! Such antiprotons in cosmic rays also present constraints on Dark Matter annihilation models.[3] The usual disclaimer, with a twist! The DAMA/LIBRA collaboration has been claiming the observation of Dark Matter for years now, although it remains unconfirmed by any other experiment. Convention wisdom remains that Dark Matter has yet to be identified. To bolster that conventional wisdom, a recent, second-party analysis of the DAMA/LIBRA data has suggested their signal may result from a kind of systematic, statistical error.
Season 6 Episode 35 of the Be Conscious Podcast investigates the Time Construct. What defines our basis of time? What separates the past from the future? How can our perceptions of the time construct help us to evolve emotionally and spiritually. Take a listen. References: https://www.scientificamerican.com/article/how-does-one-arrive-at-th/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.1.105https://www.amazon.com/Duality-Being-Perspectives-Multidimensional-Travel/dp/1732433607
Noticias de Astronomía y Exploración del Espacio – Agosto 23, 2022. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 1) Granitos de polvo del asteroide Ryugu son más antiguos que nuestro Sistema Solar. https://phys.org/news/2022-08-grains-asteroid-ryugu-older-solar.html https://iopscience.iop.org/article/10.3847/2041-8213/ac83bd + 2) Lo que aprendemos de las estrellas de neutrones por medio de las ondas gravitacionales de sus fusiones. https://phys.org/news/2022-08-neutron-star-insights-gleaned-gravitational.html https://www.sciencedaily.com/releases/2022/08/220818102753.htm https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081102
Noticias de Astronomía y Exploración del Espacio – Julio 12, 2022. En este programa presentamos, comentamos y explicamos dos o tres noticias astronómicas y de exploración del espacio que fueron dadas a conocer en la semana, y que nos parecieron de particular relevancia e interés. Además, Pablo Lonnie Pacheco, de “Cielos Despejados,” nos presenta sus efemérides astronómicas. Esta semana: + 1) Los primeros cuásares. https://skyandtelescope.org/astronomy-news/where-did-the-first-quasars-come-from/ https://phys.org/news/2022-07-scientists-quasars-universe.html https://www.nature.com/articles/s41586-022-04813-y + 2) Alternativas a la materia oscura. https://phys.org/news/2022-07-composition-dark.html https://phys.org/news/2022-07-dark-ditch-favor-theory-gravity.html https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.021302 https://www.mdpi.com/2073-8994/14/7/1331
Fala pessoal! Fala pessoal! Neste episódio o Hitalo e o César discutem três notícias fresquinhas. Sobre um novo conjunto de benchmark para pesquisas de monopolo magnético https://physicsworld.com/a/new-benchmark-set-for-magnetic-monopole-searches/ https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.201101 Sobre o início do Run 3 do LHC https://physicsworld.com/a/cerns-large-hadron-collider-gears-up-for-run-3/ E sobre a morte de um dos ganhadores do prêmio Nobel em Física https://physicsworld.com/a/nobel-prize-winning-nuclear-physicist-ben-roy-mottelson-dies-aged-95/ Caso queiram nos contatar E-mail: fisicast.oficial@gmail.com Instagram: @fisicast_oficial Twitter: @fisicast Considere ser um apoiador do Podcast catarse.me/fisicast --- This episode is sponsored by · Anchor: The easiest way to make a podcast. https://anchor.fm/app Support this podcast: https://anchor.fm/fisicast/support
Take your protein pills, put your helmet on and begin the countdown because this week sees us venturing into the vast, unimaginably enormous, and unthinkably strange state of all physical reality that humanity has dubbed innocuously as “space.” Journey with us in a crash course through the big bang, crunch, bounce, super-massive-black holes and get to know what higher order super-organism cannibalistic galaxies are creating in the boiling soup of SPACE!!!In this week's episode we discuss:-The Milky Mammaries?-How Old is Space?-Hathoor-Space is Glowing-How Big is Space?-The Observable Universe-GNz-11 Galaxy-Cosmic Microwave Background Radiation-The Big Bang, Crunch and Bounce-Dark Energy-Dark MatterIn the extended show available at www.patreon.com/TheWholeRabbit we discuss:-The Four Fundamental Forces-The Devil Card-Periodic Table of Elements-PADME Black Crystal Experiments-Laniakea Supercluster-Blackholes and Galactic Centers-Astronaut Religious Experience-Cannibalistic Galaxies-Spirituality of Space-Laika the DogMusic By:Spirit Travel Plazahttps://open.spotify.com/artist/30dW3WB1sYofnow7y3V0YoWhere to find The Whole Rabbit:YouTube: https://youtu.be/z4DL6BFdzfMMerch: https://shop.spreadshirt.com/thewholerabbit/Spotify: https://open.spotify.com/show/0AnJZhmPzaby04afmEWOAVInstagram: https://www.instagram.com/the_whole_rabbitSpace is Full of Light:https://www.travelandleisure.com/trip-ideas/space-astronomy/nasa-scientists-discover-outer-space-isnt-pitch-blackBig Bounce:https://phys.org/news/2016-07-big.amphttps://cosmolearning.org/courses/roger-penrose-lecture-before-the-big-bang/https://link.aps.org/doi/10.1103/PhysRevLett.117.021301Modern Physics & Philosophy:https://www.google.com/url?sa=t&source=web&rct=j&url=https://philpapers.org/archive/STEWMP-3.pdf&ved=2ahUKEwjYpZ2ci-X3AhVRFjQIHTzHCLQQFnoECAYQAQ&usg=AOvVaw0sbMu6-FR9jeBkzx3T15GgPre-Big Bang - Dark Matter from Scalar Field Fluctuations:https://link.aps.org/doi/10.1103/PhysRevLett.123.061302Subatomic Particles:https://arxiv.org/abs/2106.03744https://www.livescience.com/62207-higgs-field-instanton-destroy-universe.htmlhttps://physicsworld.com/a/physicists-target-the-dark-photon/Galactic Centers:https://www.astro.ucla.edu/~tdo/gal_center.html#:~:text=The%20center%20of%20the%20Galaxy,stars%20closest%20the%20black%20holeSupport the show
Fala pessoal, Mais um episódio de notícias quentinhas! Nessa edição, o Sato e o Hítalo falaram de buracos negros possivelmente induzindo a criação de estrelas, algoritmos sendo desenvolvidos para computadores clássicos tentando equiparar à velocidade de processamento dos computadores quânticos, e a última notícia foi sobre resultados de simulação de sensores quânticos sendo utilizados para a detecção de SARS-CoV-2, o vírus responsável pelo Covid-19. Vem ouvir e descobrir! 1) Buracos negros induzindo a criação de estrelas https://www.nasa.gov/feature/goddard/2022/hubble-finds-a-black-hole-igniting-star-formation-in-a-dwarf-galaxy 2) Computadores clássicos vs quânticos https://physicsworld.com/a/classical-computers-race-to-catch-up-with-quantum-advantage/ https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180502 3) Sensores quânticos usados para detectar SARS-CoV-2 https://physicsworld.com/a/quantum-sensor-could-detect-sars-cov-2/ https://pubs.acs.org/doi/full/10.1021/acs.nanolett.1c02868 --- This episode is sponsored by · Anchor: The easiest way to make a podcast. https://anchor.fm/app Support this podcast: https://anchor.fm/fisicast/support
In this episode we reconnect with friends of the Nerd Crusade to discuss time travel in popular media and how common tropes within the genre can effect understandings of historical events. This episode was recorded as part of Nerd Crusade's Holiday Rush live stream fundraiser for Santa's Anonymous Edmonton. Academic Articles, Films, Videos, Television, and Books mentioned on the podcast- Academic Articles: Recovery of Damaged Information and the Out-of-Time-Ordered Correlators Bin Yan and Nikolai A. Sinitsyn Phys. Rev. Lett. 125, 040605 – Published 24 July 2020 https://link.aps.org/doi/10.1103/PhysRevLett.125.040605 Tempting Fate The Historian as Time Traveler by Karin Wulf Tempting Fate | Perspectives on History | AHA Drawing the historian back into history: creativity, writing, and The Art of Time Travel By Meg Foster https://content.ebscohost.com/ContentServer.asp?EbscoContent=dGJyMMvl7ESeqLA4zOX0OLCmsEmeprRSsKu4TbWWxWXS&ContentCustomer=dGJyMPGqt0uyrLVRuePfgeyx43zx1%2B6B&T=P&P=AN&S=R&D=31h&K=127698790 Videos on Time Travel: A Concise Breakdown of How Time Travel Works in Popular Movies, Books & TV Shows | Open Culture Books: Miss Peregrine's Home for Peculiar Children by Ransom Riggs The Outlander Series by Diana Gabaldon A Stitch in Time Series by Kelley Armstrong TV Shows: Timeless Outlander Loki Doctor Who Films: Miss Peregrine's Home for Peculiar Children Avengers- Endgame If you are looking to listen to more podcasts like this, we highly recommend checking out Nerd Crusade's podcast on all available podcast directories, or Lit with Vik as well. --- Send in a voice message: https://anchor.fm/interdis-history-group/message
Boogie Man Channel - Up All Night with the Boogie Man Podcast:
This amazing video is proudly presented by our sponsor || SIZZLE CITY || Strings of Bling and Other Shiny Things || Call or Click Today || www.SizzleCity.com || 626.274.6028 || Hot Products / Sizzling Prices || NIBIRU & PLANET X IN OUR UNIVERSE LINKS AND REFERENCES: https://gizmodo.com/researchers-created-holograms-you-can-feel-and-hear-1839869384 https://www.nature.com/news https://www.usatoday.com/story/tech/sciencefair/2017/01/30/universe-hologram-illusion/97249856/ https://www.independent.co.uk/life-style/gadgets-and-tech/news/universe-hologram-holographic-evidence-3d-astrophysics-university-of-southampton-a7553766.html https://www.sciencealert.com/this-might-be-the-first-observational-evidence-that-our-early-universe-was-a-hologram https://phys.org/tags/cosmic+microwave+background/ https://phys.org/news/2017-01-reveals-substantial-evidence-holographic-universe.html http://www.geo600.org/ https://link.aps.org/accepted/10.1103/PhysRevD.95.123505 https://www.sciencedaily.com/releases/2017/01/170130083231.htm https://www.sciencedaily.com/releases/2016/04/160419100006.htm https://www.sciencedaily.com/releases/2015/04/150424105402.htm https://www.sciencedirect.com/search/advanced?qs=space%20lens&tak=space%20lens&show=100 https://reader.elsevier.com/reader/sd/pii/S1074552196902604?token=329990037D236FBA67C1769A9A484846AB7F1BD5EC176EA57440B49EF90C909B48C300DF27BB16F11756ED42C03099D7 https://reader.elsevier.com/reader/sd/pii/S1074552196902598?token=54F3DC8A7CB343EE7B9A79D71C80F4A08006DE0E67AEEC5AF45E0E828CF86418BDCFD8F8DC9FC739A5FB6F4F992E025E https://www.sciencedirect.com/search/advanced?qs=buckyballs&show=100 https://www.sciencedaily.com/releases/2015/03/150306091617.htm https://ui.adsabs.harvard.edu/abs/2013PhLA..377.3304B/similar https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.031602 https://www.worldscientific.com/worldscinet/ijgmmp IF you're a planet x hunter that's been striking out then you've wasted so much time. All you have to do was tell me and I would've given Nibiru to you on a silver platter. I've aways known where she was. I've been watching this system for a long time and I thought the hype was over. 10 years I've been watching Nibiru and the entire planet x system. Nemesis, Planet X, Nibiru, Herculobus, the Moons and other bodies in the group. I feel really bad for anyone that didn't know that I was the go-to expert on this subject. I hope I didn't make you wait too long. I won't waste time on this stream waiting to give you the answers you were looking for. By the end of this stream you will not only have all of the players in the nibiru system but you will be an expert as to where you thought they were. If you would like to check some references to the show I invite you to see the links below: NOTE: These are all of the links you'll need along with references and research documents. Enjoy! If we step back to the Sumerians we're only going to do so tha way I can show you that the Sumerians have never ever talked about this planet - never. Then we'll go look at the hopi and I'll explaint to you there that the hopi were talking about the dog star. If you like looking at planets, stars, moons, suns and other celestial bodies you've never heard of or seen before then Friday night's stream is going to be a doozie for your koozie. This is going to be 3 straight hours of solid observations of new one in the sky the mainstream is calling anything and everything but it's real name. You're NOT going to get me to say it - I don't want there to be any promotion of this incorrect information. Join Us on YouTube Via Boogie Man Channel - 9PM-12PM PST Fire in the sky, blue pulsating heartbeats of light - beams of light so tight you would think it's a laser. It may be. from Lies to the skies, skies filled with lies, high strangeness and everthing in between. This is going to be another mind blowing night and the newest episode of Dot.Connector.Podcast by BMC - everyone's favorite guilty pleasure and the --- This episode is sponsored by · Anchor: The easiest way to make a podcast. https://anchor.fm/app --- Send in a voice message: https://anchor.fm/bmc-dotconnector-podcast/message
Boogie Man Channel - Up All Night with the Boogie Man Podcast:
This amazing video is proudly presented by our sponsor || SIZZLE CITY || Strings of Bling and Other Shiny Things || Call or Click Today || www.SizzleCity.com || 626.274.6028 || Hot Products / Sizzling Prices || NIBIRU & PLANET X SYSTEM IN OUR UNIVERSE LINKS AND REFERENCES: https://gizmodo.com/researchers-created-holograms-you-can-feel-and-hear-1839869384 https://www.nature.com/news https://www.usatoday.com/story/tech/sciencefair/2017/01/30/universe-hologram-illusion/97249856/ https://www.independent.co.uk/life-style/gadgets-and-tech/news/universe-hologram-holographic-evidence-3d-astrophysics-university-of-southampton-a7553766.html https://www.sciencealert.com/this-might-be-the-first-observational-evidence-that-our-early-universe-was-a-hologram https://phys.org/tags/cosmic+microwave+background/ https://phys.org/news/2017-01-reveals-substantial-evidence-holographic-universe.html http://www.geo600.org/ https://link.aps.org/accepted/10.1103/PhysRevD.95.123505 https://www.sciencedaily.com/releases/2017/01/170130083231.htm https://www.sciencedaily.com/releases/2016/04/160419100006.htm https://www.sciencedaily.com/releases/2015/04/150424105402.htm https://www.sciencedirect.com/search/advanced?qs=space%20lens&tak=space%20lens&show=100 https://reader.elsevier.com/reader/sd/pii/S1074552196902604?token=329990037D236FBA67C1769A9A484846AB7F1BD5EC176EA57440B49EF90C909B48C300DF27BB16F11756ED42C03099D7 https://reader.elsevier.com/reader/sd/pii/S1074552196902598?token=54F3DC8A7CB343EE7B9A79D71C80F4A08006DE0E67AEEC5AF45E0E828CF86418BDCFD8F8DC9FC739A5FB6F4F992E025E https://www.sciencedirect.com/search/advanced?qs=buckyballs&show=100 https://www.sciencedaily.com/releases/2015/03/150306091617.htm https://ui.adsabs.harvard.edu/abs/2013PhLA..377.3304B/similar https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.031602 https://www.worldscientific.com/worldscinet/ijgmmp By the time you leave this feed you'll know everything there is to know about the mysterious Planet X and Nibiru System. You're going to know it's location, you'll know it's regular areas of the universe that it frequents. You'll know what all of the planets, suns and moons of the Nibiru system look like, so much that you'll be able to draw them from memory. We've loaded you up with tons of HD footage of Planet X, Nibiru, the Nemesis Star, Herculobus as well as all of the Moons of Nibiru. You're welcome world. Join us every Friday Night and Saturday Night from 9PM PST to 12PM PST for Live Shows and Recordings of Dot.Connector.Podcast by [BMC] IF you're a planet x hunter that's been striking out then you've wasted so much time. All you have to do was tell me and I would've given Nibiru to you on a silver platter. I've aways known where she was. I've been watching this system for a long time and I thought the hype was over. 10 years I've been watching Nibiru and the entire planet x system. Nemesis, Planet X, Nibiru, Herculobus, the Moons and other bodies in the group. I feel really bad for anyone that didn't know that I was the go-to expert on this subject. I hope I didn't make you wait too long. I won't waste time on this stream waiting to give you the answers you were looking for. By the end of this stream you will not only have all of the players in the nibiru system but you will be an expert as to where you thought they were. If you would like to check some references to the show I invite you to see the links above: NOTE: These are all of the links you'll need along with references and research documents. Enjoy! If we step back to the Sumerians we're only going to do so tha way I can show you that the Sumerians have never ever talked about this planet - never. Then we'll go look at the hopi and I'll explaint to you there that the hopi were talking about the dog star. If you like looking at planets, stars, moons, suns and other celestial bodies you've never heard of or seen before then Friday night's stream is going to be a doozie for your koozie. This is going to be --- This episode is sponsored by · Anchor: The easiest way to make a podcast. https://anchor.fm/app --- Send in a voice message: https://anchor.fm/bmc-dotconnector-podcast/message
I've got a treat for you today. Today's author's are Gourab Ghoshal and Petter Holme, who are here to talk about a classic paper. A paper they co-authored and published in PRL in 2006. The paper has a fantastic title, which is basically also a mini abstract. It is called “Dynamics of Networking Agents Competing for High Centrality and Low Degree” (1). In the podcast we get into it!Gourab is at at Rochester University, where he is an Associate Professor of Physics and Astronomy with joint appointments at the departments of Computer Science and Mathematics. He works in the field of Complex Systems. His research interests are in the theory and applications of Complex Networks as well as Non-equilibrium Statistical Physics, Game theory, Econophysics, Dynamical Systems and the Origins of Life.Petter is Swedish scientist living and working in Japan, where he is a Specially Appointed Professor at the Institute of Innovative Research at the Tokyo Institute of Technology. His research focuses on large-scale structures in society, technology and biology; mostly trying to understand them as networks.# Timestamps[0:00:00] Intro and friendly banter[0:04:00] Gourab's dream of becoming Richard Feynman[0:10:10] Petter becomes a network scientist by accident[0:17:45] We dive into the paper! (+ discuss complex systems in general)# References(1) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.098701
Show notes: In the show, The Bio Busters professors, Dr. A and Dr. C and Dr. K, discuss vaccine hesitancy, a new Pfizer protease inhibitor, and have a discussion with Dr. Ben Kolber about pain and brain lateralization. Keep the discussion and comments going on in the comments sections, or feel free to e-mail the podcast with future show ideas and thoughts on the current show. If you think you know the answer to our riddle, please email us for a chance to win a prize! Branding: https://www.andsowedesign.com/ Email us at thebiobusters@gmail.com YouTube link: https://www.youtube.com/channel/UC22s6yGXwduO7BhS32v3Wdg Podcast Audio link: https://thebiobusters.podbean.com/ References: Birthday https://todayinsci.com/ Coronavirus numbers https://www.nytimes.com/interactive/2021/us/covid-cases.html https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html Pfizer antiviral https://cen.acs.org/acs-news/acs-meeting-news/Pfizer-unveils-oral-SARS-CoV/99/i13 Soft Tissue Electricity https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.238101 https://www.nature.com/articles/d41586-019-03806-8 Spirometra erinaceieuropaei https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541736/ Left and right hemispheric lateralization of the amygdala in pain https://pubmed.ncbi.nlm.nih.gov/32730859/
SANS Internet Stormcenter Daily Network/Cyber Security and Information Security Stormcast
HTTPs on Every Port https://isc.sans.edu/forums/diary/HTTPS+on+every+port/23261/ Curl over TOR https://isc.sans.edu/forums/diary/Retrieving+malware+over+Tor/23257/ Spectre/Meltdown Microcode Patch Problems https://newsroom.intel.com/news/root-cause-of-reboot-issue-identified-updated-guidance-for-customers-and-partners/ https://lkml.org/lkml/2018/1/21/192 DNS Rebinding Attacks Against Geth https://ret2got.wordpress.com/2018/01/19/how-your-ethereum-can-be-stolen-using-dns-rebinding/ Chinese Quantum Cryptography Satellite Link Transmits Intercontinental Videolink https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.030501