Podcasts about lattice boltzmann

  • 7PODCASTS
  • 10EPISODES
  • 41mAVG DURATION
  • ?INFREQUENT EPISODES
  • May 25, 2023LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about lattice boltzmann

Latest podcast episodes about lattice boltzmann

Colloques du Collège de France - Collège de France
Colloque - La nanofluidique à la croisée des chemins : Computer Explorations of Soft Flowing Matter

Colloques du Collège de France - Collège de France

Play Episode Listen Later May 25, 2023 27:58


Innovation technologique Liliane Bettencourt (2022-2023) - Lydéric BocquetCollège de FranceAnnée 2022-2023Colloque - La nanofluidique à la croisée des chemins : Computer Explorations of Soft Flowing MatterMajor progress in experimental micro-nanofluidics over the last decades has spawned the opportunity to explore new states of droplet-based soft flowing matter, such as microfluidic crystals, high-density confined emulsions, bijels, as well as various types of soft granular flows. These novel states of soft matter raise fundamental challenges to non-equilibrium statistical physics mostly on account of strong nonlinear and nonlocal effects, which set their mechanical and rheological properties far apart from those of the three fundamental states of matter (solid,liquid and gas) they are made of. In this talk, I shall present selected computer simulations and machine-learning algorithms which help shedding light into these fascinating states of soft flowing matter and lay the ground for future applications in science and engineering.Sauro SucciDr Succi holds a degree in Nuclear Engineering from the University of Bologna and a PhD in plasma physics from the Ecole Polytechnique Federale de Lausanne. He currently serves as Senior Research Executive and Principal Investigator at the Center for Life Nano-Neuro Sciences at la Sapienza of the Italian Institute of Technology. He is also a Research Affiliate of the Physics Department of Harvard University and a Honorary Professor at the University College London. His research activity covers a broad range of topics related to complex states of flowing matter, such as thermonuclear plasmas, fluid turbulence, micro and nanofluidics, soft matter as well as quantum and subnuclear fluids. He is best known for his contributions to the early inception, development and application of the Lattice Boltzmann method, for which he has received a number of international awards, including the APS 2017 Aneesur Rahman Prize in Computational Physics, the 2019 CECAM Berni Alder Prize for exceptional contributions to the microscopic simulation of matter. He is an elected member of Academia Europaea (2015) and in 2017 he has been awarded the ERC-AdG "Computational design of mesoscale porous materials".

Engineered-Mind Podcast | Engineering, AI & Neuroscience
The Lattice Boltzmann Method - Eugen Riegel | Podcast #73

Engineered-Mind Podcast | Engineering, AI & Neuroscience

Play Episode Listen Later Jun 4, 2022 50:04


Based on his fascination for GPU and 3D graphics, Eugen initiated the development of a prototypical GPU-accelerated program for simulating flows as early as 2007 during his studies in aerospace at the Technical University of Munich (TUM). Following his studies, he brought the software prototype into an existing spin-off company, which he had previously helped to build through his expertise in HPC and GPU. With the experience he gained, he started his own business in 2013 to develop pacefish® to market maturity as a highly efficient tool for simulating fluid flows. In 2016, he then founded Numeric Systems GmbH. Since then, Eugen Riegel and his team have been working on pacefish®, a product he has always believed in and which is characterized by his strong perseverance and enthusiasm for highly efficient software. —————————————————————————————

Modellansatz
Binärströmung

Modellansatz

Play Episode Listen Later Oct 3, 2019 19:24


In dieser Folge spricht Gudrun mit Anne Bayer und Tom Braun. Sie sind im Bachelorstudiengang Wirtschaftsmathematik bzw. Mathematik am KIT eingeschrieben und haben 2019 das Projektorientierte Softwarepraktikum in Gudruns Arbeitsgruppe absolviert. Das Gespräch dreht sich um ihre Erfahrungen in dieser Lehrveranstaltung. Das Projektorientierte Softwarepraktikum wurde 2010 als forschungsnaher Lernort konzipiert. Studierende unterschiedlicher Studiengänge arbeiten dort ein Semester lang an konkreten Strömungssimulationen. Es wird regelmäßig im Sommersemester angeboten. Seit 2014 liegt als Programmiersprache die Open Source Software OpenLB zugrunde, die ständig u.a. in der Karlsruher Lattice Boltzmann Research Group weiter entwickelt wird. Außerdem wird das Praktikum seit 2012 vom Land Baden-Württemberg gefördert als eine Möglichkeit für Studierende, sich im Studium schon an Forschung zu beteiligen. Konkret läuft das Praktikum etwa folgendermaßen ab: Die Studierenden erhalten eine theoretische Einführung in Strömungsmodelle und die Idee von Lattice-Boltzmann-Methoden und finden sich für ein einführendes kleines Projekt in Zweiergruppen zusammen. Anschließend wählen sie aus einem Katalog eine Frage aus, die sie bis zum Ende des Semesters mit Hilfe von Computersimulationen gemeinsam beantworten. Diese Fragen sind Teile von Forschungsthemen der Gruppe, z.B. aus Promotionsprojekten oder Drittmittelforschung. Während der Projektphase werden die Studierenden von dem Doktoranden/der Doktorandin der Gruppe, die die jeweilige Frage gestellt haben, betreut. Am Ende des Semesters werden die Ergebnisse in Vorträgen vorgestellt und diskutiert. Hier ist die ganze Arbeitsgruppe beteiligt. In einer Ausarbeitung werden außerdem die Modellbildung, die Umsetzung in OpenLB und die konkreten Simulationsergebnisse ausführlich dargelegt und in den aktuellen Forschungsstand eingeordnet. Diese Ausarbeitung wird benotet. Die Veranstaltung wird mit 4 ECTS angerechnet. Anne und Tom betrachten einen Würfel, in dem zwei Flüssigkeiten enthalten sind, die sich nicht mischen können. Konkret ist eine Tropfen von Fluid 1 ist in ein Fluid 2 eingebettet. Dadurch entsteht insbesondere eine diffuse Grenzfläche zwischen beiden, die durch mehrere physikalische Faktoren beeinflusst ist, wie z.B. die Viskosität der Flüssigkeiten oder die Größe des Tropfens. Wo die Grenzfläche verläuft ist Teil des physikalischen Problems. Grundlage des verwendeten sehr einfachen Modells ist die Oberflächenspannung. Der Tropfen hat aufgrund dieser Oberflächenspannung einen anderen Druck im Inneren als im das Fluid im außen. Dies kann mit dem Laplace-Operator modelliert und berechnet werden. Sie berechnen die im numerischen Modell vorliegende Druckdifferenz, indem der Druck im kugelförmigen Tropfen und dem Punkt am weitesten entfernt betrachtet wird (in diesem Fall den Punkt aus der linken unteren Ecke). Literatur und weiterführende Informationen A. Komrakova e.a.: Lattice Boltzmann simulations of drop deformation and breakup in shear flow International Journal of Multiphase Flow 59, 24-43, 2014. Podcasts L. Dietz, J. Jeppener, G. Thäter: Gastransport - Gespräch im Modellansatz Podcast, Folge 214, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019. A. Akboyraz, A. Castillo, G. Thäter: Poiseuillestrom - Gespräch im Modellansatz Podcast, Folge 215, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.

Talking CFD
NUMECA

Talking CFD

Play Episode Listen Later Jun 25, 2018 36:15


It’s always a pleasure to talk to a guest that has been at the top of our industry long enough to help shape how it looks today. Professor Charles Hirsch founded NUMECA 25 years ago, and has grown it into one of the pillars of commercial CFD, particularly in the maritime sector. It’s difficult to distil 25 years into a 30-minute interview, so we don’t even try. Instead, Professor Hirsch gives us the benefit of his experience on: • how they’ve been “appifying” CFD since before it was trendy • working hand-in-hand with academia for R&D • how they tackle the eternal CFD balancing act — accuracy vs. reliability vs. robustness • why Lattice Boltzmann is so hot right now Shownotes https://www.numeca.com/ – All about NUMECA https://youtu.be/7hVlwSpYe-E – NUMECA and the America’s Cup

america cfd lattice boltzmann
Modellansatz - English episodes only
Automatic Differentiation

Modellansatz - English episodes only

Play Episode Listen Later May 24, 2018 34:57 Very Popular


Gudrun talks with Asher Zarth. He finished his Master thesis in the Lattice Boltzmann Research group at the Karlsruhe Institute for Technology (KIT) in April 2018. Lattice Boltzmann methods (LBM) are an established method of computational fluid dynamics. Also, the solution of temperature-dependent problems - modeled by the Boussinesq approximation - with LBM has been done for some time. Moreover, LBM have been used to solve optimization problems, including parameter identification, shape optimization and topology optimization. Usual optimization approaches for partial differential equations are strongly based on using the corresponding adjoint problem. Especially since this method provides the sensitivities of quantities in the optimization process as well. This is very helpful. But it is also very hard to find the adjoint problem for each new problem. This needs a lot of experience and deep mathematical understanding. For that, Asher uses automatic differentiation (AD) instead, which is very flexible and user friendly. His algorithm combines an extension of LBM to porous media models as part of the shape optimization framework. The main idea of that framework is to use the permeability as a geometric design parameter instead of a rigid object which changes its shape in the iterative process. The optimization itself is carried out with line search methods, whereby the sensitivities are calculated by AD instead of using the adjoint problem. The method benefits from a straighforward and extensible implementation as the use of AD provides a way to obtain accurate derivatives with little knowledge of the mathematical formulation of the problem. Furthermore, the simplicity of the AD system allows optimization to be easily integrated into existing simulations - for example in the software package OpenLB which Asher used in his thesis. One example to test the algorithm is the shape of an object under Stokes flow such that the drag becomes minimal. It is known that it looks like an american football ball. The new algorithm converges fast to that shape. References F. Klemens e.a.: CFD- MRI: A Coupled Measurement and Simulation Approach for Accurate Fluid Flow Characterisation and Domain Identification. Computers & Fluids 166, 218-224, 2018. T. Dbouk: A review about the engineering design of optimal heat transfer systems using topology optimization. Applied Thermal Engineering 112, pp. 841-854, 2017. C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer-Verlag, 2013. M. J. Krause and V. Heuveline: Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation. Computers & Fluids 80, pp. 28-36, 2013. A. Kamikawa and M. Kawahara: Optimal control of thermal fluid flow using automatic differentiation. Computational Mechanics 43.6, pp. 839-846, 2009. A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. SIAM, 2008.

Modellansatz
Automatic Differentiation

Modellansatz

Play Episode Listen Later May 24, 2018 34:57


Gudrun talks with Asher Zarth. He finished his Master thesis in the Lattice Boltzmann Research group at the Karlsruhe Institute for Technology (KIT) in April 2018. Lattice Boltzmann methods (LBM) are an established method of computational fluid dynamics. Also, the solution of temperature-dependent problems - modeled by the Boussinesq approximation - with LBM has been done for some time. Moreover, LBM have been used to solve optimization problems, including parameter identification, shape optimization and topology optimization. Usual optimization approaches for partial differential equations are strongly based on using the corresponding adjoint problem. Especially since this method provides the sensitivities of quantities in the optimization process as well. This is very helpful. But it is also very hard to find the adjoint problem for each new problem. This needs a lot of experience and deep mathematical understanding. For that, Asher uses automatic differentiation (AD) instead, which is very flexible and user friendly. His algorithm combines an extension of LBM to porous media models as part of the shape optimization framework. The main idea of that framework is to use the permeability as a geometric design parameter instead of a rigid object which changes its shape in the iterative process. The optimization itself is carried out with line search methods, whereby the sensitivities are calculated by AD instead of using the adjoint problem. The method benefits from a straighforward and extensible implementation as the use of AD provides a way to obtain accurate derivatives with little knowledge of the mathematical formulation of the problem. Furthermore, the simplicity of the AD system allows optimization to be easily integrated into existing simulations - for example in the software package OpenLB which Asher used in his thesis. One example to test the algorithm is the shape of an object under Stokes flow such that the drag becomes minimal. It is known that it looks like an american football ball. The new algorithm converges fast to that shape. References F. Klemens e.a.: CFD- MRI: A Coupled Measurement and Simulation Approach for Accurate Fluid Flow Characterisation and Domain Identification. Computers & Fluids 166, 218-224, 2018. T. Dbouk: A review about the engineering design of optimal heat transfer systems using topology optimization. Applied Thermal Engineering 112, pp. 841-854, 2017. C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer-Verlag, 2013. M. J. Krause and V. Heuveline: Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation. Computers & Fluids 80, pp. 28-36, 2013. A. Kamikawa and M. Kawahara: Optimal control of thermal fluid flow using automatic differentiation. Computational Mechanics 43.6, pp. 839-846, 2009. A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. SIAM, 2008.

Modellansatz
Kinetische Theorie

Modellansatz

Play Episode Listen Later Dec 21, 2017 25:52


Gudrun wollte sich mit unserem neuen Kollegen über sein hauptsächliches Forschungsthema, die kinetische Theorie unterhalten. Diese Denkweise wurde zur Modellierung von Gasen entwickelt und ist inspiriert von physikalischen Vorstellungen, die kinetische Energie als inhärente Eigenschaft von Materie ansieht. Die kinetische Gastheorie schaut auf die mikroskopische Ebene, um schließlich makroskopische Größen wie Wärme und Temperatur besser zu erklären. Im sogenannten idealen Gas bewegen sich unfassbar viele kleine Massepunkte entsprechend der Newtonschen Mechanik frei, ungeordnet und zufällig im Raum, stoßen dabei ab und zu zusammen und wir empfinden und messen den Grad der Bewegungsaktivität der Teilchen als Wärme. Die Einheit, die man dieser Größe zunächst zuwies war Kalorie von lat. Calor=Wärme. Heute ist die richtige SI-Einheit für Energie (und damit auch Wärme) das Joule. Die messbare Größe Temperatur ist damit vereinfacht ausgedrückt die mechanische Engergie im Gassystem und das Modell liefert eine kinetische Theorie der Wärme. Man kann es aber auch als Vielteilchensystem von mikroskopischen Teilchen ansehen aus denen sich in klar definierten (unterschiedlichen) Grenzwertprozessen makroskopische Größen und deren Verhalten ableiten lassen. Die Untersuchung dieser Grenzwerte ist eine mathematisch sehr anspruchsvolle Aufgabe und bis heute ein offenes Forschungsfeld, in dem nur Stück für Stück spezielle Fragen beantwortet werden. Eine Schwierigkeit ist dabei nämlich, dass automatisch immer sehr unterschiedliche Skalen nebeneinander existieren und in ihrer Interaktion richtig gefaßt und verstanden werden müssen. Außerdem ist in der Regel jeder Grenzwert, für den sich interessante Forschungsergebnisse ergeben, innerhalb der Theorie eine Singularität. Schon Hilbert hatte 1900 die axiomatische Fassung der Physik zwischen Mechanik und Wahrscheinlichkeitsrechnung als eines der wichtigen mathematischen Probleme für das 20. Jahrhundert dargestellt. Wir sind seitdem vorangekommen, aber es bleibt noch sehr viel zu tun. Zum Beispiel ist die mögliche Korreliertheit zwischen den Teilchenbewegungen für Gase eine offene Frage (außer für kurze Zeiten). Ein Vorteil gegenüber der Zeit Hilberts ist heute, dass wir inzwischen auch den Computer benutzen können, um Modelle zu entwickeln und zu analysieren. Dafür muss man natürlich geeignete numerische Methoden entwickeln. In der Arbeit von Martin Frank sind es in der Regel Integro-Differentialgleichungen mit hyperbolischer partieller Differentialgleichung für die Modellierung von Bewegungen ohne Dämpfung. Diese haben schon durch die Formulierung viele Dimensionen, nämlich jeweils 3 Orts- und 3 Geschwindigkeitskomponenten an jedem Ort des Rechengebietes. Deshalb sind diese Simulationen nur auf großen Parallelrechnern umsetzbar und nutzen High Performance Computing (HPC). Hieraus erklärt sich auch die Doppelrolle von Martin Frank in der Verantwortung für die Weiterentwicklung der HPC-Gruppe am Rechenzentrum des KIT und der Anwendung von Mathematik auf Probleme, die sich nur mit Hilfe von HPC behandeln lassen. Sehr interessant ist in dieser Theorie die gegenseitige Beeinflussung von Numerik und Analysis in der Behandlung kleiner Parameter. Außerdem gibt es Anknüpfungspunkte zur Lattice Boltzmann Research Group die am KIT das Software-Paket OpenLB entwickeln und anwenden. Auch wenn sich geschichtlich gesehen die kinetische Theorie vor allem als Gastheorie etabliert hat, ist die Modellierung nicht nur in Anwendung auf Gase sinnvoll. Beispielsweise lassen sich Finanzmärkte aus sehr vielen unabhängig handelnden Agenten zusammensetzen. Das Ergebnis der Handlungen der Agenten ist der Aktienpreis - sozusagen die Temperatur des Aktienmarktes. Es lassen sich dann aufgrund dieses Modells Eigenschaften untersuchen wie: Warum gibt es so viele Reiche? Außerdem geht es auch darum, die richtigen Modellannahmen für neue Anwendungen zu finden. Zum Beispiel ist ein Resultat der klassischen Gastheorie das Beer-Lambertsche Gesetz. Es besagt, dass Photonen durch Wolken exponentiell abgeschwächen werden. Messungen zeigen aber, dass dies bei unseren Wolken gar nicht gilt. Wieso? Dafür muss man schon sehr genau hinschauen. Zunächst heißt das wohl: Die zugrunde liegende Boltzmann-Gleichung ist für Wolken eine zu starke Vereinfachung. Konkret ist es die Annahme, dass man sich die Wolken als homogenes Medium vorstellt wahrscheinlich nicht zutreffend, d.h. die Streuzentren (das sind die Wassertropfen) sind nicht homogen verteilt. Um ein besseres Modell als die Boltzmann-Gleichung herzuleiten müsste man nun natürlich wissen: Welche Art der Inhomogenität liegt vor? Martin Frank hat Mathematik und Physik an der TU Darmstadt studiert, weil er schon in der Schulzeit großes Interesse an theoretischer Physik hatte. Im Studium hat er sich schließlich auf Angewandte Analysis spezialisiert und darin auch nach dem Diplom in Mathematik an der TU Darmstadt weiter gearbeitet. In dieser Zeit hat er auch das Diplom in Physik abgeschlossen. In der Promotion an der TU Kaiserslautern wurde es aber die numerische Mathematik, der er sich hauptsächlich zuwandte. In der eigenen universitären Lehre - aber auch in speziellen Angeboten für Schülerinnen und Schüler - pendelt er zwischen Projekt- und Theorie-zentriertem Lehren und Lernen. Literatur und weiterführende Informationen M. Frank, C. Roeckerath: Gemeinsam mit Profis reale Probleme lösen, Mathematik Lehren 174, 2012. M. Frank, M. Hattebuhr, C. Roeckerath: Augmenting Mathematics Courses by Project-Based Learning, Proceedings of 2015 International Conference on Interactive Collaborative Learning, 2015. Simulating Heavy Ion Beams Numerically using Minimum Entropy Reconstructions - SHINE M. Frank, W. Sun:Fractional Diffusion Limits of Non-Classical Transport Equations P. Otte, M. Frank: Derivation and analysis of Lattice Boltzmann schemes for the linearized Euler equations, Comput. Math. Appl. Volume 72, 311–327, 2016. M. Frank e.a.: The Non-Classical Boltzmann Equation, and Diffusion-Based approximations to the Boltzmann Equation, SIAM J. Appl. Math. 75, 1329–1345, 2015. M. Frank, T. Goudon: On a generalized Boltzmann equation for non-classical particle transport, Kinet. Relat. Models 3, 395-407, 2010. M. Frank: Approximate models for radiative transfer, Bull. Inst. Math. Acad. Sinica (New Series) 2, 409-432, 2007.

Modellansatz
Lilium

Modellansatz

Play Episode Listen Later Oct 5, 2017 47:42


Gudrun traf Patrick Nathen im April 2017 neben dem Flugfeld in Oberpfaffenhofen. Vielen ist dieser Ort ein Begriff, weil das Deutsche Zentrum für Luft- und Raumfahrt dort seinen Sitz hat. Auch das von Patrick mitgegründete Startup Lilium Aviation hat dort seine Büros. Die Vision von Lillium ist es ein Anbieter wie Uber zu werden - allerdings für den Luftraum. Dafür wird ein senkrecht startender Jet entwickelt, der mit Elektromotoren relativ leise und mit wenig Platzbedarf beim Starten und Landen Personen in Ballungsgebieten schnell von Punkt zu Punkt transportiert: Mobility on demand. Die Fluggeräte starten senkrecht wie Hubschrauber und auf Reisehöhe werden sie zum Jet. Diesem Traum waren sie zum Zeitpunkt unseres Gespräches schon sehr nahe: Der Prototyp flog und befand sich im Zulassungsverfahren der Europäischen Agentur für Flugsicherheit (EASA). Neben den Fluggeräten muss auch die Infrastruktur entwickelt werden. Einerseits lassen sich die Helipads als Landeplätze in Metropolregionen nutzen, andererseits braucht es auch die Software, die Nutzer, Geräte und Landemöglichkeiten miteinander verbinden wird. In der Zukunft soll es sogar möglich werden, auf Piloten ganz zu verzichten, weil die Geräte vom Boden ferngesteuert werden. Statt - wie Gudrun an dem Morgen - über eine Stunde aus der Innenstadt von München nach Oberpfaffenhofen zu fahren, würde sich die Reisezeit für diese Strecke auf etwa 5 min verkürzen. Das klingt zu schön, um wahr zu werden - diese Idee müssen Menschen erst für möglich halten bevor es Normalität werden kann. Die Geschichte von Lilium begann 2013 in der WG von vier Ingenieurstudenten - Daniel Wiegand, Matthias Meiner, Patrick Nathen and Sebastian Born - mit einer "spinnerten" Idee. Alle haben an der Fakultät für Maschinenwesen der TU München studiert oder promoviert. Sehr schnell hatten sie einen ersten großen Investor gefunden, sind auf ein Team von 40 Leuten gewachsen (Stand April - inzwischen sind es schon 70) und nun wird der Zweisitzer im 1:1 Modell getestet. Das Folgeprodukt soll schließlich auch eine bemannte Zertifizierung bekommen und eine effektive Problemlösung für die Allgemeinheit werden. Das betrifft dicht besiedelte Metropolregionen genauso wie ländliche Regionen mit wenig ÖPNV-Optionen. Dafür haben sie in der zweiten Finanzierungsrunde 90 Millionen Euro Kapital eingeworben. Beim Starten und Landen gibt es auch in der von Lilium entwickelten Technologie Lärm wegen der Propeller, die für den Auftrieb sorgen. Da aber möglichst wenig Lärmentwicklung eine wichtige Voraussetzung dafür ist, dass sich die Technologie möglichst weit durchsetzen wird, wurde nach neuen Ideen zur Lärmvermeidung gesucht. Jetzt hat der Propeller eine Hülle. Dadurch wird weniger Schall abgestrahlt und die Effizienz erhöht. Im Reiseflug trägt sich der Flieger selbst. Um so einfach wie möglich zu bauen, muss man aber mit dem für Starten und Landen nötigen großen Motor irgendwie leben. In der Konstruktion gingen sie approximativ vor. Als ersten Schritt kann man die nötige Spannweite und Flügelfläche zusammen mit der Fluggeschwindigkeit durch vorläufige aerodynamische Faustformeln schätzen. Die zu erreichenden Widerstands- und Auftriebsbeiwerte legen schließlich auch das Profil der Flügel mehr oder weniger fest. Und die statische Stabilität kann mit Hilfe von Vorerfahrungen mit klassischen Flugobjekten gesichert werden. Zum Beispiel durch eine elliptische Auftriebsverteilung, die widerstandsarm ist, weil sie Turbulenzen an den falschen Stellen vermeidet. Für genauere Untersuchungen mussten diese Ideen und die gesamte Geometrie aber zunächst am Computer simuliert werden. Hier gibt es Berührungspunkte zur Arbeit an Gudruns Lehrstuhl, denn die genaue Strömungsrechnung erfordert moderne Softwarepakete auf dem Gebiet. Hinzu kommt, dass Batterien immer kritisch für die Sicherheit der Geräte sind. Sie heizen sich in der Start- und Landephase auf und das Kühlungskonzept muss wirklich clever sein. Die Anforderung ist, dass das Fluggerät im Winter in Schweden und im Sommer in Dubai funktioniert. Außerdem muss sichergestellt werden, dass eine brennende Batterie nicht zur Zerstörung des ganzen Gerätes führt. Schließlich sind auch Ergonomie und Raumluftkomfort keine unwichtigen Themen. Zum Beispiel müssen Böen durch den Flugcomputer abgefangen werden und hierfür ist Redundanz in den Triebwerken nötig. Literatur und weiterführende Informationen K. Weltner: Flugphysik. Physik des Fliegens, Strömungsphysik, Raketen, Satelliten. Books on Demand, Norderstedt, ISBN 978-3-7412-1472-1. W.-H. Hucho: Aerodynamik der stumpfen Körper. Physikalische Grundlagen und Anwendungen in der Praxis. Vieweg + Teubner, Wiesbaden 2011, ISBN 978-3-8348-1462-3. P. Nathen e.a.: An extension of the Lattice-Boltzmann Method for simulating turbulent flows around rotating geometries of arbitrary shape, Conference: 21st AIAA Computational Fluid Dynamics Conference 2013. P. Nathen, D. Gaudlitz, N. Adams:Towards wall-adaption of turbulence models within the Lattice Boltzmann framework Conference: TSFP-9, 2015. Handelsblatt am 5.9.2017 Wired am 20.04.2017 Interview. Investor Frank Thelens Blick auf lilium Mitmachen bei lilium: Offene Stellen Podcasts S. Cannon, M. Voelter: Flying the V-22 Osprey, omega tau Podcast, Episode 219, 2016. R. Rudnik, H. Klein: Auftrieb, Resonator-Podcast der Helmholtz-Gemeinschaft, Episode 71, 2015. W. Rudolf: Ein elektrisch angetriebenes VTOL-Flugzeug, CC2tv Audiocast Folge 568, 2017. (Folge 568 Direktlink zur mp3-Datei) N. Rottger: Die digitale Republik, piqd Podcast Magazin, 2017.

Partial Differential Equations in Kinetic Theories
Lattice Boltzmann equation: what Do We Know and What Can We Do With It?

Partial Differential Equations in Kinetic Theories

Play Episode Listen Later Sep 30, 2010 57:09


Luo, LS (Old Dominion) Tuesday 21 September 2010, 14:00-14:45

equation luo lattice boltzmann
Gyrokinetics in Laboratory and Astrophysical Plasmas
Lattice Boltzmann approaches for magnetohydrodynamics and related models

Gyrokinetics in Laboratory and Astrophysical Plasmas

Play Episode Listen Later Aug 13, 2010 78:05


Dellar, P (Oxford) Monday 09 August 2010, 14:00-15:00

models approaches lattice boltzmann