Podcasts about grenzschicht

  • 6PODCASTS
  • 7EPISODES
  • 33mAVG DURATION
  • ?INFREQUENT EPISODES
  • Jan 19, 2024LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about grenzschicht

Latest podcast episodes about grenzschicht

Sternzeit - Deutschlandfunk
Kurioses Phänomen - Schumann-Resonanzen, kein Herzschlag der Erde

Sternzeit - Deutschlandfunk

Play Episode Listen Later Jan 19, 2024 2:32


Zwischen der Erdoberfläche und einer Grenzschicht der Ionosphäre in rund 100 Kilometern Höhe bewegen sich elektromagnetische Wellen - angeregt durch Blitze. Sie sind ein allgegenwärtiges, äußerst schwaches physikalisches Phänomen. Lorenzen, Dirkwww.deutschlandfunk.de, Sternzeit

Welt der Physik - heute schon geforscht?

Warum unzählige winzige Partikel durch die Luft schweben und wieso manche schädlich und andere durchaus nützlich sein können, erklärt Ina Tegen vom Leibniz-Institut für Troposphärenforschung in dieser Folge.

MDR Wissen Meine Challenge
Ich will saubere Luft

MDR Wissen Meine Challenge

Play Episode Listen Later Nov 12, 2021 33:13


Sie ist unsichtbar und doch immer da: Luft. Ob sie gut oder schlecht ist, darüber hat Daniela nur selten nachgedacht. Bis jetzt. Mit Hilfe der Wissenschaft will sie die Luft in ihrer Umgebung untersuchen und verbessern.

Modellansatz
Lokale Turbulenzen

Modellansatz

Play Episode Listen Later Sep 27, 2017 84:56


Nikki Vercauteren erforscht an der Freien Universität Berlin die mehrskalige Analyse von atmosphärischen Prozessen und traf sich mit Sebastian Ritterbusch in der Urania Berlin, um über ihre Forschung und ihre Experimente auf Gletschern zu sprechen. Zum Zeitpunkt der Aufnahme fand in der Urania das Banff Mountain Film Festival, des Banff Centre for Arts and Creativity aus Kanada, statt. Auf dem Campus des Banff Centre befindet sich auch die Banff International Research Station (BIRS), ein Forschungsinstitut und Tagungsort nach Vorbild des Mathematischen Forschungsinstituts Oberwolfach, das sich der mathematischen Forschung und internationalen Zusammenarbeit verschrieben hat, und welches Nikki Vercauteren Anfang des Jahres zu einem Workshop besuchen konnte. Das Forschungsgebiet der Meteorologie umfasst viele Phänomene, von denen einige durch Fluiddynamik beschrieben werden können. Dabei geht es um eine große Menge von Skalen, von der globalen Perspektive, über kontinentale Skalen zur Mesoskala im Wetterbericht und der Mikroskala zu lokalen Phänomenen. Die Skalen bilden sich auch in den Berechnungsmodellen für die Wettervorhersage wieder. Das Europäische Zentrum für mittelfristige Wettervorhersage (EZMW) betrachtet die globale Perspektive mit Hilfe von Ensemblevorhersagen. Von dort verfeinert das aus dem lokalen Modell des Deutschen Wetterdienstes (DWD) entstandene COSMO Modell die Vorhersage auf die europäische und schließlich nationale Ebenen. Hier geht es um die sehr lokale Analyse von Windgeschwindigkeiten, die bis zu 20mal pro Sekunde gemessen werden und damit die Analyse von lokalen Turbulenzen bis zum natürlichem Infraschall ermöglichen. Die Erfassung erfolgt mit Ultraschallanemometer bzw. ultrasonic anemometers, wo bei manchen Typen durch die Erfassung des Doppler-Effekts bewegter Staubteilchen die Bewegungsgeschwindigkeit der Luft durch mehrere Sensoren räumlich bestimmt wird. Teilweise werden auch Laser-Anemometer eingesetzt. Im Rahmen ihrer Promotion in Umweltwissenschaften an der École Polytechnique Fédérale de Lausanne (EPFL) bekam Sie die Gelegenheit selbst vor Ort eine Messanlage auf einem Gletscher mit aufzubauen und in Stand zu halten. Der See- und Landwind sind typische Phänomene in der mikroskaligen Meteorologie, die Nikki Vercauteren zu ihrer Promotion am Genfersee zur Analyse von turbulenten Strömungen von Wasserdampf untersucht hat. Mit mehreren Laser-Doppler-Anemometern in einer Gitter-Aufstellung konnte sie so die Parametrisierung einer Large Eddy Simulation dadurch testen, in dem sie die im Modell angesetzte Energie in den kleinen Skalen mit den tatsächlichen Messungen vergleichen konnte. Kernpunkt der Betrachtung ist dabei das Problem des Turbulenzmodells: Als Verwirbelung in allen Skalen mit teilweise chaotischem Verhalten ist sie nicht vorhersagbar und kaum vollständig mathematisch beschreibbar. Sie spielt aber wegen der wichtigen Eigenschaften der Vermischung und Energietransfers eine elementare Rolle im Gesamtsystem. Glücklicherweise haben Turbulenzen beobachtete statistische und gemittelte Eigenschaften, die modelliert und damit im gewissen Rahmen und diesem Sinne mit Hilfe verschiedener Modelle durch identifizierte Parameter simuliert werden können. Besonderes Augenmerk liegt dabei auf der Betrachtung der Grenzschicht über dem Erdboden, die zum einen durch die Sonneneinstrahlung besonders durch die Aufwärmung und Abkühlung der Erdoberfläche beinflusst wird und gleichzeitig den Bereich beschreibt, wo das bewegte Fluid Luft auf die stehenden Erde reagiert. Eine meteorologische Eigenschaft der unteren Grenzschicht ist das theoretische logarithmische Windprofil, das aber bei Sonneneinstrahlung oder Nachts durch Verformung der Turbulenzen Korrekturterme erforderlich macht. In einer Temperaturinversion wird die Grenzschicht stabiler und es bildet sich weniger Turbulenz aus, wodurch sich Schadstoffe auch weniger verteilen können. In diesen Wetterlagen kann sich durch den fehlenden Luftaustausch im Stadtgebiet leichter Smog bilden. Entgegen der Theorie kann es interessanterweise trotz stabiler Schichtung zu Turbulenzen kommen: Ein Grund dafür sind Erhebungen und Senken des Bodens, die Luftpakete beeinflussen und damit lokale Turbulenzen erzeugen können. Eine besondere Fragestellung ist hier die Frage nach der Intermittenz, wann ein stabiles dynamisches System chaotisch werden kann und umgekehrt. Ein anschauliches Beispiel von Intermittenz ist das Doppelpendel, das von einem sehr stabilen Verhalten plötzlich in chaotisches Verhalten umschwenken kann und umgekehrt: Trajektorie eines DoppelpendelsCC-BY-SA 100 Miezekatzen Leider ist bisher die Intermittenz in der Wettervorhersage nicht alleine aus der Theorie zu berechnen, jedoch kann man die Richardson-Zahl bestimmen, die den Temperaturgradienten in Verhältnis zur Windscherung stellt. Dieses Verhältnis kann man auch als Verhältnis der Energieverteilung zwischen kinetischer Bewegungsenergie und potentieller Wärmeenergie sehen und daraus Schlüsse auf die zu erwartende Turbulenz ziehen. Als ein dynamisches System sollten wir ähnlich wie beim Räuber-Beute Modell eine gegenseitige Beeinflussung der Parameter erkennen. Es sollte hier aus der Theorie auch eine kritische Zahl geben, ab der Intermittenz zu erwarten ist, doch die Messungen zeigen ein anderes Ergebnis: Gerade nachts bei wenig Turbulenz entstehen Zustände, die bisher nicht aus der Theorie zu erwarten sind. Das ist ein Problem für die nächtliche Wettervorhersage. In allgemeinen Strömungssimulationen sind es oft gerade die laminaren Strömungen, die besonders gut simulierbar und vorhersagbar sind. In der Wettervorhersage sind jedoch genau diese Strömungen ein Problem, da die Annahmen von Turbulenzmodellen nicht mehr stimmen, und beispielsweise die Theorie für das logarithmische Windprofil nicht mehr erfüllt ist. Diese Erkenntnisse führen auf einen neuen Ansatz, wie kleinskalige Phänomene in der Wettervorhersage berücksichtigt werden können: Die zentrale Frage, wie die in früheren Modellen fehlende Dissipation hinzugefügt werden kann, wird abhängig von der beobachteten Intermittenz mit einem statistischen Modell als stochastischen Prozess beantwortet. Dieser Ansatz erscheint besonders erfolgsversprechend, wenn man einen (nur) statistischen Zusammenhang zwischen der Intermittenz und der erforderlichen Dissipation aus den Beobachtungen nachweisen kann. Tatsächlich konnte durch statistisches Clustering und Wavelet-Analyse erstmalig nachgewiesen werden, dass im bisher gut verstanden geglaubten so genannten stark stabilen Regime es mehrere Zustände geben kann, die sich unterschiedlich verhalten. Für die Entwicklung der Wavelet-Transformation erhielt Yves Meyer den 2017 den Abelpreis. Im Gegensatz zur Fourier-Transformation berücksichtig die Wavelet-Transformation z.B. mit dem Haar-Wavelet die von der Frequenz abhängige zeitliche Auflösung von Ereignissen. So können Ereignisse mit hohen Frequenzen zeitlich viel genauer aufgelöst werden als Ereignisse mit tiefen Frequenzen. Das von Illia Horenko vorgeschlagene FEM-BV-VARX Verfahren kann nun mit den Erkenntnissen angewendet werden, in dem die verschiedenen Regimes als stochastische Modelle berücksichtigt und durch beobachtete bzw. simulierte externe Einflüsse gesteuert werden können. Darüber hinaus konnten weitere interessante Zusammenhänge durch die Analyse festgestellt werden: So scheinen im stabilen Regime langsame Wellenphänomene über mehrere Skalen hinweg getrennt zeitliche schnelle und lokale Turbulenzen auszulösen. Andere Phänomene verlaufen mit stärkeren Übergängen zwischen den Skalen. Aus der Mathematik ist Nikki Vercauteren über die Anwendungen in der Physik, Meteorologie und Geographie nun wieder zurück in ein mathematisches Institut zurückgekehrt, um die mathematischen Verfahren weiter zu entwickeln. Literatur und weiterführende Informationen N. Vercauteren, L. Mahrt, R. Klein: Investigation of interactions between scales of motion in the stable boundary layer, Quarterly Journal of the Royal Meteorological Society 142.699: 2424-2433, 2016. I. Horenko: On the identification of nonstationary factor models and their application to atmospheric data analysis, Journal of the Atmospheric Sciences 67.5: 1559-1574, 2010. L. Mahrt: Turbulence and Local Circulations Cesar Observatory, Cabauw site for meteorological research. Podcasts S. Hemri: Ensemblevorhersagen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 96, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. I. Waltschläger: Windsimulationen im Stadtgebiet, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 14, Fakultät für Mathematik, Karlsruhe Institut für Technologie (KIT), 2014. L. Wege: Schwebestaub und Wassertröpfchen. Wie Wolken Wetter machen. Folge 5 im KIT.audio Forschungspodcast des Karlsruher Instituts für Technologie, 2017. M. Wendisch: Meteorologie, omegatau Podcast von Markus Voelter, Nora Ludewig, Episode 037, 2010. R. Heise, K. Ohlmann, J. Hacker: Das Mountain Wave Project, omegatau Podcast von Markus Voelter, Nora Ludewig, Episode 042, 2010. B. Marzeion: Gletscher, Podcast Zeit für Wissenschaft von Melanie Bartos, Universität Innsbruck, 2015. B. Weinzierl: Die Atmosphäre, Raumzeit Podcast von Tim Pritlove, Metaebene Personal Media, 2011.

stand system mit arts creativity berlin journal als dabei dar workshop promotion rolle campus hilfe entwicklung energie beispiel ort schl universit bereich rahmen verh analyse sinne luft prozess menge perspektive zusammenarbeit zusammenhang erde verhalten aufnahme wissenschaft str technologie ereignisse tats institut gelegenheit forschung vorbild zahl regime ansatz theorie modell eigenschaften kanada zentrum literatur ebenen zusammenh aufl typen einfl verfahren erkenntnissen ereignissen abk zust modelle sekunde experimente betrachtung physik prozessen beobachtungen anwendungen eigenschaft mathematik innsbruck im gegensatz nachts smog modellen regimes aufw frequenz ein grund teilweise parameter lokale annahmen fragestellung entgegen turbulenzen atmospheric science fakult sensoren beeinflussung vorhersage gletscher frequenzen erfassung heise senken clustering messungen schadstoffe zum zeitpunkt erdboden geographie banff centre freien universit wetterbericht meteorologie urania wettervorhersage quarterly journal bodens forschungsinstitut stadtgebiet erdoberfl karlsruher institut besonderes augenmerk das europ erhebungen vermischung gletschern dissipation podcast zeit genfer see tim pritlove dieser ansatz der see wasserdampf sonneneinstrahlung diese erkenntnisse lausanne epfl wassertr technologie kit wetterlagen skalen kernpunkt gesamtsystem polytechnique f infraschall banff mountain film festival royal meteorological society karlsruher instituts turbulenz energieverteilung tagungsort die erfassung verformung schichtung parametrisierung bewegungsenergie staubteilchen luftaustausch markus voelter sebastian ritterbusch windscherung grenzschicht das forschungsgebiet modellansatz podcast nora ludewig metaebene personal media
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05
Tropical-cyclone evolution in a minimal axisymmetric model

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 03/05

Play Episode Listen Later Jul 25, 2011


Diese Arbeit untersucht mithilfe eines axisymmetrischen numerischen Modells die Prozesse, die zur Intensivierung tropischer Zyklone führen. Das Modell ist hydrostatisch, die Mo-dellgleichungen sind in Sigmakoordinaten auf einer f-Ebene formuliert. Es besteht aus drei Schichten: einer für die Grenzschicht und zwei für die freie Troposphäre. Insbesondere wird der Einfluss des Coriolisparameters f auf die Intensität und Größe von tropischen Zyklonen untersucht. In der ersten von zwei Experimentreihen zeigt sich, dass sich die stärksten Stürme bei mittleren Werten von f entwickeln. Ebenso gibt es einen optimalen Wert von f im mittleren Bereich, bei dem die größten Stürme entstehen. Diese Ergebnisse scheinen zunächst mit klassischen Laborexperimenten von Turner und Lilly übereinzustimmen. Eine mögliche Analogie dieser Laborexperimente zu tropischen Zyklonen wird eingehend untersucht. Dabei zeigt sich, dass diese Analogie unter anderem aufgrund des in der Grenzschicht stattfindenden Intensivierungsprozesses begrenzt ist. Zum weiteren Verständnis wird eine zweite Experimentreihe durchgeführt. Die modellierten Stürme werden hierbei durch ein vorgeschriebenes Profil der diabatischen Erwärmungsrate angetrieben. Andere Feuchtprozesse werden ausgeschlossen. Es ergibt sich nun kein optimaler Wert von f für die Intensität der Stürme. Die Beziehung zwischen der Stärke des Antriebs und der Stärke der Rotation ist somit ein wichtiger zusätzlicher limitierender Faktor bei tropischen Zyklonen. Dennoch gibt es einen optimalen Breitengrad für die Größe der Zyklone, vergleichbar mit dem in der ersten Experimentreihe. Außerdem wird die Sensitivität des Modells bezüglich der horizontalen Auflösung, des Eddy-Diffusions- und Reibungskoeffizienten und der Windgeschwindigkeitsabhängigkeit des Bodenflusses von Enthalpie untersucht. Die Intensität nimmt geringfügig mit größerer horizontaler Auflösung zu, die Größe des Sturms bleibt nahezu unverändert. In Übereinstimmung mit anderen Ergebnissen in der Literatur ist die Intensität stark abhängig vom horizontalen Eddy-Diffusionskoeffizienten. Erhöht man den Reibungskoeffizienten und lässt den Wärmeaustauschkoeffizienten konstant, bewirkt dies eine erhöhte Feuchtekonvergenz und damit einen früheren Beginn der schnellen Intensivierung. Die Intensität am Ende der Simulation nimmt, im Unterschied zu neuesten Ergebnissen von Montgomery et al., jedoch ab. Kappt man die Windgeschwindigkeitsabhängigkeit des Bodenflusses von Enthalpie bei kleinen Werten von 10 m/s, so simuliert das Modell dennoch Stürme mit Intensitäten, die Hurrikanstärke übersteigen. Dies zeigt, dass der in weiten Kreisen akzeptierte 'Verdunstungs-Wind-Rückkopplungsmechanismus' nicht wesentlich für die Intensivierung tropischer Zyklone ist.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Der Einfluss des dreidimensionalen Strahlungstransportes auf Wolkenbildung und -entwicklung

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Apr 27, 2007


In der vorliegenden Arbeit wurde der Einfluss des dreidimensionalen Strahlungstransportes, insbesondere der differentiellen Einstrahlung, auf die Wolkenbildung und -entwicklung untersucht. Hierzu wurde ein Verfahren zur Berechnung der Bestrahlungsstärke am Boden unter inhomogener Bewölkung entwickelt und in das Grobstruktursimulationsmodell EULAG implementiert. Durch Vergleich von Simulationen mit der originalen Modellversion und dem weiterentwickelten Modell wurde der Einfluss der differentiellen Einstrahlung, verursacht durch Wolkenschatten, auf die konvektive Grenzschicht untersucht. Das Verfahren beruht auf der tilted independent column approximation (TICA). Hierbei werden einzelne Säulen, die in Richtung der Sonne ausgerichtet sind, betrachtet und für diese die Strahlung unabhängig voneinander berechnet. Die Methode wurde optimiert, parallelisiert und dadurch so stark beschleunigt, dass die Rechenzeiten der in dieser Arbeit durchgeführten Simulationen mit EULAG-TICA nur maximal 3% über denen mit EULAG ohne Strahlung liegen. Durch Vergleich mit exakten dreidimensionalen Strahlungstransportrechnungen wurde gezeigt, dass die TICA eine sehr gute Näherung zur Berechnung solarer Bestrahlungsstärken am Boden für unterschiedliche Wolkensituationen und verschiedene Sonnenzenitwinkel darstellt. Hingegen ist die verbreitete independent column approximation (ICA) zur Berechnung von Bestrahlungsstärken am Boden nur für im Zenit stehende Sonne geeignet, da die ICA aufgrund der Beschränkung auf den Strahlungstransport in senkrechten Säulen keinen realistischen Schatten produziert. Die berechnete Bestrahlungsstärke wurde an die Modellphysik gekoppelt durch die Anpassung des Wärmeflusses am Boden. Dieser wirkt sich auf die Temperatur in der Atmosphäre aus. Anhand von Vergleichen mit Messreihen unter gleichen Wolkenbedingungen wurde gezeigt, dass die durch die Wolkenschatten verursachten Temperaturfluktuationen am Boden in Simulationen mit EULAG-TICA realistisch sind. Zur Untersuchung des Einflusses der differentiellen Einstrahlung auf die Wolkenbildung wurden Simulationen einer einzelnen konvektiven Wolke durchgeführt. Der Einfluss auf die Wolkenentwicklung wurde anhand von Simulationen der konvektiven Grenzschicht untersucht. Die Simulationen mit und ohne Wolkenschatten zeigen deutliche Unterschiede. Im Bereich des Wolkenschattens ist der Aufwind wie erwartet schwächer ausgeprägt als in der Referenzsimulation ohne Schatten. Als Folge des schwächeren Aufwindes reicht die Wolke in den Simulationen mit Schatten weniger hoch und weist daher ein geringeres Volumen und einen geringeren Flüssigwasserpfad auf. Ist das Wolkenwachstum nach oben durch eine Inversion begrenzt, so wie in der konvektiven Grenzschicht, zeigen sich kaum Unterschiede im Bedeckungsgrad und Wolkenvolumen zwischen den Berechnungen mit und ohne Wolkenschatten. In jedem Fall hat die differentielle Einstrahlung jedoch einen starken Einfluss auf die Zirkulation. Vertikalprofile der horizontalen Windgeschwindigkeiten zeigen mittleren Wind von der Wolke in Richtung ihres Schattens in Höhe der Wolken und in entgegengesetzter Richtung in Bodennähe. Dies bedeutet, dass die an konvektiven Wolken vorhandene Zirkulation (aufsteigende Luft unterhalb der Wolke, Ausfließen in der Höhe der Wolke aus der Wolke heraus in alle Richtungen, absinkende Luft neben der Wolke und am Boden Luftbewegung von allen Seiten unter die Wolke) in Richtung des Schattens orientiert wird. Des Weiteren zeigen die Ergebnisse eine Bewegung der Wolken weg von ihrem Schatten, bzw. eine Auflösung der Wolken oberhalb ihres Schattens und Wolkenwachstum auf der der Sonne zugewandten Seite. Steht die Sonne im Zenit ist die Lebensdauer der einzelnen Wolken kürzer. Sie lösen sich schneller wieder auf, da der sie bildende Aufwind durch den Schatten abgeschwächt wird.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Numerical Simulations of low-level convergence Lines over north-eastern Australia

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Jul 28, 2006


Im Gebiet des Carpentaria Golfes im Norden Australiens entstehen regelmäßig mesoskalige Konvergenzlinien in der unteren Troposphäre. Diese produzieren gegen Ende der Trockenzeit oft spektakulären Wolkenlinien, die auf Satellitenbildern zu sehen sind und je nach ihren Eigenschaften ''Morning Glory'' oder ''North Australian Cloud Line'' (NACL) genannt werden. Morning Glories sind glatte Wellenwolken während NACLs konvektive Wolkenlinien sind. Sie stehen unter dem Verdacht, später im Jahr, während der Australische Sommermonsun ruht, eine Reihe von Unwettern auszulösen, die ein bedeutendes Vorhersageproblem für diese Region darstellen. Des Weiteren stellt die einhergehende bodennahe Windscherung eine große Gefahr für tieffliegende Flugzeuge dar. Um die Entstehung dieser Konvergenzlinien mit bis dahin einmaliger Genauigkeit zu dokumentieren, wurde im Herbst 2002 die internationale Meßkampagne GLEX (Gulf Lines Experiment) durchgeführt. Das mesoskalige Modell der Pennsylvania State University und des National Center for Atmospheric Research, MM5, wird in dieser Arbeit für eine Untersuchung dieser Linien benutzt. Da die Linien intrinsisch nicht hydrostatisch sind, sollte das MM5 bei der geforderten hohen horizontalen Auflösung als nichthydrostisches Modell in Vorhersage und Modellierung den für frühere Studien verwendeten hydrostatisch balancierten Modellen überlegen sein. Den zunächst vorgestellten Fallstudien gingen Sensitivitätsstudien bezüglich der Grenzschichtparameterisierung und der Bodenfeuchte voraus, die aber aus Gründen der Lesbarkeit erst später beschrieben werden. Im Rahmen der Fallstudien werden Modellergebnisse mit Ergebnissen aus der Meßkampagne und verfügbaren Satellitenbildern verglichen, sowie weitere Charakteristika der sich bildenden Linien untersucht. Das Modell kann in der gewählten Konfiguration die Konvergenzlinien in noch nie da gewesener Detailliertheit reproduzieren und die Ergebnisse stimmen gut mit den Beobachtungen überein. Weitere Ergebnisse dieser Studie bestätigen früher aufgestellte Theorien, nach denen das nordöstliche Morning Glory und die NACL in Folge eines Zusammenstoßes zweier Seebriesen über der Kap York Halbinsel entstehen. Zum ersten Mal hat ein Modell zwei getrennte Konvergenzlinien produziert, die dem nordöstlichen Morning Glory und der NACL entsprechen. Als Trennungsmechanismus beider sich aus der Ostküstenseebriese entwickelnden Konvergenzlinien wird hier zunächst die Geometrie der Ostküste vorgeschlagen, die auf dem Breitengrad, auf dem die Trennung im allgemeinen erfolgt, einen ausgeprägten Knick aufweist. Für die Entstehung des südlichen Morning Glorys wird eine erst kürzlich aufgestellte Theorie bestätigt, in der die Kollision der südlichen Seebriese mit einer sich von Süden her nähernden Front als Mechanismus angenommen wird. Diese Front formiert sich am Abend entlang einer Troglinie, die ein klimatisches Merkmal Queenslands ist. In einigen der Fälle wurden Trockenlinien beobachtet, die auf das südliche Morning Glory folgten. Auch diese stimmen im Modell gut mit den Beobachtungen überein. Eines der seltener beobachteten südöstlichen Morning Glories kann leider nicht vom Modell reproduziert werden. Als Ursache wird vermutet, daß eine Troglinie im datenarmen Gebiet südlich des Golfs von Carpentaria nicht korrekt in den Anfangsbedingungen positioniert ist. Eine Untersuchung der Strömung hinter den Konvergenzlinien zeigt, daß Morning Glories Wellenphänomene sind. NACLs hingegen behalten den Dichteströmungscharakter der Seebriese bei. Eine Sensitivitätstudie bezüglich der Grenzschichtparameterisierung wird durchgeführt, weil sich die hier untersuchten Phänomene in der planetaren Grenzschicht abspielen. Eine Gruppe von Parametrisierungen stellt sich anderen als überlegen heraus und als Grund für diese guten Ergebnisse wird die Berücksichtigung der großräumigen Gradienten identifiziert, die in den schlechter abschneidenden Parametrisierungen fehlt. Als beste Parametrisierung wird das MRF Schema für alle weiteren Simulationen ausgewählt. Eine Untersuchung der Sensitivität der Ergebnisse bezüglich der Bodenfeuchte zeigt, daß die Seebriesen um so schneller landeinwärts strömen, je trockener die Bodenverhältnisse sind. Die Erklärung hierfür ist, daß ein größerer Teil der eingehenden solaren Strahlung als fühlbare Wärme an die Atmosphäre abgegeben wird und so die Seebriesenzirkulation antreibt. Daraus resultiert, daß Morning-Glory Konvergenzlinien sowohl intensiver sind, als auch die Fortpflanzungsgeschwindigkeit größer ist wenn die Bodenfeuchte abnimmt. Ein solcher Zusammenhang konnte für die NACLs nicht bestimmt werden. Eine optimale Bodenfeuchte, mit der die Modellergebnisse am besten mit den Beobachtungen übereinstimmen, kann leider nicht ermittelt werden, da geeignete Methoden hierfür nicht zur Verfügung stehen. Die Güte der Ergebnisse bezogen auf die Bodendruck an den einzelnen Stationen des Experiments nimmt jedoch mit abnehmender Bodenfeuchte zu. Da aber die geringst möglichen Werte unrealistisch sind beziehungsweise keinen physikalischen Sinn haben und keine Meßdaten vorhanden sind, wird für alle weiteren Simulationen ein Wert für die Bodenfeuchte gewählt, wie er vom Australischen Wetterdienst benutzt wird. Um einige der aufgezeigten Zusammenhänge noch gründlicher zu untersuchen, wurden noch einige Modellexperimente mit modifizierter Orographie durchgeführt. Diese zeigen, daß weder Morning Glories noch NACLs entstehen, wenn keine Seebriese vom Golf von Carpentaria landeinwärts strömt und mit der Ostküstenseebriese beziehungsweise der sich von Süden her nähernden Kaltfront kollidiert. Ein systematischer Zusammenhang zwischen Höhe der Orographie und der Intensität oder der Geschwindigkeit der sich bildenden Konvergenzlinien kann nicht festgestellt werden. Die im Rahmen der Fallstudie aufgestellte Hypothese für die Trennungsursache von NACL und nordöstlichem Morning Glory kann nicht bestätigt werden und die horizontale Windscherung über der Kap York Halbinsel wird stattdessen als Ursache vorgeschlagen. Diese Hypothese wird durch die Ergebnisse eines Experiments mit uniformer Strömung in westlicher Richtung bestätigt. In diesem Experiment bildet sich nur eine Konvergenzlinie, die dem nordöstlichen Morning Glory entspricht und weit in das Gebiet hineinragt, in dem sich die NACL normalerweise befindet. Am zweiten Tag dieser Simulation entwickelt sich eine horizontale Windscherung, in der sich zwei unabhängige Konvergenzlinien bilden, die dem nordöstlichen Morning Glory und der NACL entsprechen.