POPULARITY
In this podcast episode, MRS Bulletin's Sophia Chen interviews Lane Martin from Rice University about characterization of relaxor ferroelectrics, materials with noteworthy energy-conversion properties used in sensors and actuators. Martin's research team investigated the material's behavior at the nanoscale. The researchers found that the specific thin film they studied—the alloy lead magnesium niobate lead titanate—exhibited excellent properties down to 25–30 nm thick before they would start to shift. This work was published in a recent issue of Nature Nanotechnology.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Beth Dickey from Carnegie Mellon University about her new approach to inducing ferroelectricity into a material. Dickey's research group worked with a class of materials known as wurtzites. The researchers specifically studied aluminum nitride and zinc oxide, which are not ferroelectric in their pristine form at room temperature. However, alloys of these materials are ferroelectric. When the researchers stacked the ferroelectric alloy with a non-ferroelectric wurtzite and applied electric fields to the material, they found that the crystal lattice of the ferroelectric layer began to invert, then switching propagated into the pristine wurtzite, confirming that the entire material was ferroelectric. The results of this study could lead to development of ferroelectric materials for computers where memory and computation can be brought together into a single device, saving energy. This work was published in a recent issue of Nature.
In this podcast episode, MRS Bulletin's Laura Leay interviews Harry Atwater from the California Institute of Technology about his study on lightsail propulsion in order to understand how the device can be developed to do fly-by space travel riding a beam of laser light. Atwater's research group made a square prototype device where the researchers incorporated springs at each corner, etched out of a single sheet of silicon nitride, fastening it to the support frame. They tested its behavior in a two-beam interferometry experiment. Their comprehensive analysis provides a thorough understanding of key parameters that are essential for lightsail propulsion and paves the way for the next step of research: untethered flight. This work was published in a recent issue of Nature Photonics.
In this podcast episode, MRS Bulletin's Laura Leay interviews Ashwin Shahini and Alan Taub from the University of Michigan about their group's simulations and experimental work detailing the formation mechanisms, morphologies, and microstructures of an in situ Al/TiC metal matrix nanocomposites processed via salt flux reaction. Using these insights, the microstructure of a material can be tuned in order to optimize the materials properties. While the three-dimensional imaging is critical to gaining insight into the structure, computational models can facilitate this optimization. This work was published in a recent issue of Acta Materialia.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Xingchen Ye of Indiana University about his research group's studies on the fundamental behavior of colloidal materials. Colloidal materials consist of liquids with nanoparticles suspended in them. Ye's team is interested in how a colloidal material's properties change as the team spatially rearranges the nanoparticles in the liquid. They looked specifically at the self-assembly of gold nanocubes into a lattice structure. Ye's team studied how that structure gives rise to the material's bulk properties. This work was published in a recent issue of Nature Chemical Engineering.
Executive Officer of the National Academy of Engineering, Dr. Al Romig joins this special edition of AMSEcast, recorded at the National Academy of Sciences Building in Washington. Dr. Romig has led a distinguished career including leadership roles at Sandia National Lab, Lockheed Martin's Skunk Works, and now as Executive Officer of the National Academy of Engineering. He and Alan discuss key innovations from national laboratories and the Skunk Works. He also discusses the importance of risk-taking to foster innovation and why he's skeptical about the future of American innovation. It's not a totally negative outlook. Dr. Roming still thinks the U.S. can thrive by emphasizing talent cultivation, investment in R&D, and a culture that embraces failure as part of success. Guest Bio As executive officer of the National Academy of Engineering, Al Romig is the chief operating officer responsible for the program, financial, and membership operations of the Academy, reporting to the president. Before joining the Academy, he was vice president and general manager of Lockheed Martin Aeronautics Company Advanced Development Programs, better known as the Skunk Works®. Dr. Romig spent most of his career at Sandia National Laboratories, operated by the Lockheed Martin Corporation. He joined Sandia as a member of the technical staff in 1979 and moved through a succession of R&D management positions before his appointment as executive vice president in 2005. He served as deputy laboratories director and chief operating officer until 2010, when he transferred to the Skunk Works. Dr. Romig is a fellow of ASM International, TMS, IEEE, AIAA, and AAAS, and was elected to the National Academy of Engineering in 2003 and the Council of Foreign Relations in 2008. He was awarded the ASM Silver Medal for Materials Research in 1988. He earned BS (1975), MS (1977), and PhD (1979) degrees in materials science and engineering from Lehigh University. Show Highlights (1:59) The innovations that Al saw during his time with Sandia (9:04) How to inspire a culture of innovation at a lab (10:27) The history of Skunk Works (18:29) Explaining Al's role at the National Academy of Engineering (23:27) The challenges American innovation will face in the future (27:22) Where Al thinks we'll see the most innovation in the coming years
In this podcast episode, MRS Bulletin's Laura Leay interviews Fabian Meder from the Italian Institute of Technology in Genova and the Sant'Anna School of Advanced Studies in Piza, Italy about his research group's device that makes use of wind-driven plant leaf motion to generate electricity which can power a chemical delivery system. Their triboelectric nanogenerator involves an artificial leaf made of a 500 μm silicone elastomer layer and an electrode made from indium tin oxide. This is attached to the leaf of a plant. A gold-coated pin electrode inserted in the stem of the plant harvests charges from the plant tissue. This work was published in a recent issue of Bioinspiration & Biomimetic.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Bowen Deng, a graduate student in Gerbrand Ceder's group at the University of California, Berkeley, about their work on increasing the accuracy of artificial intelligence/machine learning materials prediction models. The use of computer simulations to predict the interaction between atoms in a given molecule is being replaced by machine learning. Researchers describe the atoms' collective interactions as a quantity of energy, where higher energies correspond to stronger forces holding the molecule together. Now, Deng's research group studied three machine learning models and found that they tend to predict lower energies than what is accurate by about 20 percent. The researchers have determined that these underpredictions were caused by biased training data and they found a way to remedy the situation. This work was published in a recent issue of NPJ Computational Materials.
In this podcast episode, MRS Bulletin's Laura Leay interviews David Cahen from the Weizmann Institute of Science, Israel, about the impact surface defects have on bulk properties, specifically in the case of lead halide perovskites. In a perspective he co-authored, Cahen connected numerous experimental data from other researchers that exposed this phenomenon. By understanding how surface defects control the material's electronic behavior, researchers can pursue new materials for the development of long-lasting devices. This work was published in a recent issue of Advanced Materials.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Gwangmin Bae of Korea University about his work with colleagues on the design of a new smart window system that utilizes compression. Like other smart windows, this window makes use of pores within the material to adjust its transparency. However, instead of using a stretchy material that controls light scattering through the pores, Bae and colleagues used a material that compresses in thickness. That is, the window becomes more transparent when it is compressed. The researchers place this structured porous material made of the polymer polydimethylsiloxane or PDMS between two panes of glass to create the smart window. This work was published in a recent issue of Nature Communications.
In this podcast episode, MRS Bulletin's Laura Leay interviews Leif Asp of Chalmers University of Technology about his group's development of an all-carbon fiber-based structural battery. The negative electrode uses carbon fiber and, for the positive electrode, the carbon fiber is coated with lithium iron phosphate. In both cases the carbon fiber takes on the roles of mechanical reinforcement and current collection. This work was published in a recent issue of Advanced Materials.
We are pleased to present another intelligent conversation on our podcast with Barbara Bachus, the Co-founder and COO of Exomatter. They have developed a powerful platform that is AI-Powered bringing a whole new meaning to materials research and development. Episode Highlights: Hear about the unique capabilities of Exomatter's platform. Their journey from a spin-off at a German Aerospace Center to a thriving startup. Favourite Quote: "I learned that from each event, if you take seriously, it brings so much to your startup " – Barbara Bachus Connect with ExoMatter For more information about Exomatter and their incredible platform: https://www.exomatter.ai/ https://www.linkedin.com/company/exomatter/posts/?feedView=all Questions or Suggestions? Then email us at info@inam.berlin. Know someone who should be on our deep tech podcast? Reach out, we welcome your suggestions! Don't forget to subscribe and leave a review! Track: Coastline — Ason ID [Audio Library Release] Music provided by Audio Library Plus
The spotlight today is on Romotioncam, a company with an inspection method that works while blades are in motion. René Harendt, CTO at Romotioncam, and Michael Stamm, a researcher from the Bundesanstalt für Materialforschung und -prüfung in Germany, discuss this groundbreaking technology. Learn about innovations at the company, from a new 840 mm focal length camera to thermal imaging data, that will make inspections more helpful for operators. Check out Michael's research at BAM! https://zenodo.org/records/14170341, https://www.bam.de/Content/EN/Projects/KI-Visir/KI-Visir.html Register for Wind Energy O&M Australia! https://www.windaustralia.com Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Pardalote Consulting - https://www.pardaloteconsulting.comWeather Guard Lightning Tech - www.weatherguardwind.comIntelstor - https://www.intelstor.com Welcome to Uptime Spotlight, shining light on wind energy's brightest innovators. This is the progress powering tomorrow. Allen Hall: Welcome to the Uptime Wind Energy Podcast Spotlight. I'm your host, Allen Hall, along with my co host, Joel Saxum. Today we have two experts pioneering innovative wind turbine inspection methods. René Harent is the CTO of Romotioncam whose patented technology enables high res photography of operating wind turbines. And Michael Stamm from Germany's Federal Institute for Materials Research and Testing, who specializes in thermographic inspection methods for wind turbines. Together, they're combining visual and infrared imaging to revolutionize how we detect early stage blade issues. Rene and Michael, welcome to the Uptime Wind Energy Podcast Spotlight. Thank you. We have seen Romotioncam a number of times, and the technology is really good, Rene. I like it because the turbine continues to operate. As you take high quality images, the technology has evolved quite a bit from the last time I have seen it. Do you want to explain where you're at with Romotioncam today? So René Harendt: at the moment, we actually build up a fleet to scale up and to provide it to a bigger market. And yeah, I actually have a new prototype with A bigger focal length. So the actual system has a 500 millimeter focal length. The new system has an 840 millimeter, millimeter focal length. So that means that we can, even on higher turbines and bigger blades, because this is related to our distance to the turbines, we can provide GSDs like 0. 06 centimeter per pixel. So something up to 0. pixel. Allen Hall: So in that kind of imaging resolution, you can detect all kinds of blade abnormalities. René Harendt: Yes, even little hair cracks and stuff like this. Joel Saxum: Yeah, because you're approaching what a drone can do, right? That's, even a couple of years ago, two millimeters per pixel, three millimeters per pixel is normal. But now that one millimeter per pixel, a lot of times you'll see that in an RFP, right? When someone puts out, Hey, we're, we want inspections and they put it out to the market. One millimeter per pixel will be the standard, but you guys are offering this without actually having to stop the turbine. So your value add goes through the roof because you're keeping that production going. René Harendt: That's true. And if you think about it with that, sometimes we add a distance of 160 meters, something like this and provide that kind of GSD. Yeah, this. Sometimes there are. That's amazing, yeah. Allen Hall: So maybe, René, for those uninitiated, who are not familiar with Romotioncam, what are the fundamentals here? How does this system work?
In this podcast episode, MRS Bulletin's Laura Leay interviews Nancy Sottos, the Maybelle Leland Swanlund Endowed Chair and head of the Department of Materials Science and Engineering at the University of Illinois–Urbana Champaign (UIUC), and Justine Paul, a former student at UIUC who now holds a position at DuPont, about their work with frontal polymerization. By mimicking patterns in biological materials such as shells, their research group took a multidisciplinary approach to control crystalline patterning, which ultimately enabled them to control mechanical properties of polymers. By applying heat, they made slight changes in the chemical reactions to achieve specific crystalline patterns. This work was published in a recent issue of Nature.
In this podcast episode, MRS Bulletin's Laura Leay interviews Reza Moini of Princeton University about his group's development of an enhanced additive manufacturing technique to fabricate cementitious materials with excellent fracture toughness. They based their design of the material on the double-helical or double-bouligand structure of coelacanth fish scales that resist deformation. In order to fabricate the material, Moini's research team used a two-component robotic additive manufacturing process. The extrusion system was controlled using specialist algorithms. This work was published in a recent issue of Nature Communications.
In this podcast episode, MRS Bulletin's Sophia Chen interviews postdoctoral research fellow Rohit Pratyush Behera and Prof. Hortense Le Ferrand of Nanyang Technological University in Singapore about their design of a strong and tough ceramic that absorbs energy, inspired from biology. They borrowed microscopic designs found in a mollusk, a mantis shrimp, and the enamel casing surrounding human teeth. The researchers stacked round discs of aluminum oxide particles in horizontal layers in a helical structure, then encased the structure in an extra protective layer made of alumina nanoparticles. The aluminum oxide in the discs is designed to respond to an external magnetic field, modifying the orientation of the discs layer by layer, consequently adjusting the properties of the ceramic composites. This work was published in a recent issue of Cell Reports Physical Science.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Yen-Hung Lin of Hong Kong University of Science and Technology about his work to eliminate defects in perovskite solar cells. Lin's group treated the perovskites with a category of molecules known as amino-silanes, which bind vacancies in the perovskites, preventing recombination of the electrons and holes. The amino-silane treatment retained the device's performance at 95% power conversion efficiency for more than 1500 hours. This work was published in a recent issue of Science.
In this podcast episode, MRS Bulletin's Laura Leay interviews Michael Pettes, deputy group leader and staff scientist at the Center for Integrated Nanotechnologies in Los Alamos National laboratory about a characterization technique that employs a four-dimensional scanning transmission electron microscope (4D-STEM) paired with complex computational data analysis to directly measure the thermal expansion coefficient (TEC) of monolayer epitaxial tungsten diselenide. The standard technique for directly measuring the TEC involves X-ray diffraction, but 2D materials are too thin. 4D-STEM uses a patterned electron probe which enables diffraction positions to be accurately mapped in real space. This method overcomes the challenges of indirect measurements and spatial resolution. This work was published in a recent issue of ACS Nano.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Michael Dickey of North Carolina State University about the discovery and mechanical properties of glassy gels. Dicky credits his postdoc Meixiang Wang who, while studying ionic liquids, created the first glassy gel. Dicky's group found that the mechanical properties of their glassy gel include shape memory, self-healing, and adhesion. While other materials may demonstrate comparable toughness and stretchiness, the glassy gel offers an advantage because of its simple curing process. This work was published in a recent issue of Nature.
In this podcast episode, MRS Bulletin's Laura Leay interviews Coskun Kocabas from The University of Manchester in the UK about his development of a metamaterial that can tailor thermal emission. Rather than using a periodic system, which most topological materials employ, his research team borrowed a concept from laser design and created an optical cavity using a dielectric medium sandwiched between two layers that act as mirrors: a metal substrate and a top layer of platinum. The top layer serves as a thermal emitter, and the thickness of the top layer defines the topological property that regulates thermal emissivity. This work was published in a recent issue of Science.
In this podcast episode, MRS Bulletin's Laura Leay interviews Rasmus Neilsen from the Technical University of Denmark about his fabrication of a monolithic selenium/silicon tandem solar cell. The selenium forms the top cell of the tandem device, with silicon used as the bottom cell. Selenium-based single-junction solar cells have traditionally used fluorine-doped tin oxide. In this work indium-tin oxide was used as a transparent conductive layer that is easier to deposit and its use is more widespread. Neilsen and his research team controlled the thickness of the carrier-selective contacts in the silicon solar cell that protects the silicon layer from the processes used to deposit subsequent layers on top, thus enabling them to deposit the top cell directly onto the substrate. This work was published in a recent issue of PRX Energy.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Mihir Pendharkar of Stanford University about characterizing electronic properties of twistronics materials. Twistronics refers to a type of electronic device consisting of two-dimensional materials layered at a relative twist angle, forming a new periodic structure known as moiré superlattices. Pendharkar and colleagues studied different configurations of graphene layered with hexagonal boron nitride. Determining the twist angle of any particular sample is extremely time-consuming. By developing a characterization technique called torsional force microscopy, Pendharkar and colleagues have reduced the time to a matter of hours. This work was published in a recent issue of Proceedings of the National Academy of Sciences.
In this podcast episode, MRS Bulletin's Laura Leay interviews Falon Kalutantirige from the University of Illinois Urbana-Champaign and Ying Li from the University of Wisconsin-Madison about their approach and discovery when characterizing nanovoids in polymer films. Using polyamide (PA) membranes as their subject of study, the researchers applied graph theory combined with electron tomography and molecular dynamics simulations to characterize the morphology of the nanovoids. The key to understanding permeance of the membranes lies in understanding the void space that was mapped using electron tomography. Using their mixed-method approach, the researchers were able to relate the nanoscale morphology to membrane function. Taking this beyond the study of PA membranes, the research team showed how nanovoids impact the synthesis‒morphology‒function relationships of complex nanomaterials. This work was published in a recent issue of Nature Communications.
In this podcast episode, MRS Bulletin's Laura Leay interviews Alexandre Dmitriev from the University of Gothenburg, Sweden about his group's computational model of a three-dimensional metamaterial exhibiting a magnetoelectric effect—known as the Tellegen effect—when exposed to light. The building blocks of the metamaterial are comprised of disks of silicon, 150 nm in diameter, supporting a cylinder of cobalt. Silicon is chosen for its high refractive index and cobalt for its magnetic properties. These building blocks are randomly distributed in a host medium such as water or a polymer. The metamaterial has applications in areas such as improving the efficiency of solar cells, creating one-way glass, or improving lasers. It also has the potential to revolutionize how the universe is understood and could hold the key to studying dark matter. This work was published in a recent issue of Nature Communications.
In this podcast episode, MRS Bulletin's Laura Leay interviews Antonio Dominguez-Alfaro from the University of Cambridge, UK about the development of a single-step manufacturing approach for a multimaterial 3D-printing method. The research team created two inks. One ink is a polymeric deep eutectic solvent – polyDES – made by combining and heating two salts to form a deep eutectic monomer and adding a photo-initiator to allow the ink to be cured. This ink is an ionic conductor so can capture signals from neurons inside a biological system. The other ink was based on the polymer Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), which is commonly used in bioelectronics as a mixed electronic and ionic conductor. The work resolves many challenges of applying additive manufacturing in the field of bioelectronics. This work was published in a recent issue of Advanced Science.
In this podcast episode, MRS Bulletin's Elizabeth Wilson interviews postdoctoral researcher M. Iqbal Bakti Utama of Northwestern University about a method allowing single photon production without defect. Aryl diazonium chemistry has been used in the past to functionalize the surface of carbon nanotubes. Utama's group found that this chemistry also works for tungsten diselenide surfaces. The group immersed tungsten diselenide monolayers into an aqueous solution of 4-nitrobenzene-diazonium tetrafluoroborate. The electrophilic molecules withdraws electrons from the monolayer, creating aryl diazonium radicals. These radicals react with each other to form nitrophenyl oligomer chains. Instead of binding covalently to the monolayer surface, the oligomers form an adlayer that is physisorbed on the tungsten diselenide surface. The spectra of photons generated when the research team irradiated the coated surface was vastly simpler than the uncoated monolayer. This work was published in Nature Communications.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Irmgard Bischofberger of the Massachusetts Institute of Technology about her investigation of how chirality emerges in nature. She uses liquid crystal molecules of disodium chromoglycate in her studies. When the molecules are dissolved in water, they form linear rods. The research group then forces the rods through a microfluidic cell, causing the rods to assemble into spiral structures without mirror symmetry. The achiral structure transformed into a chiral one. What is unique, says Bischofberger, is that the new material is composed of non-chiral building blocks. This work was published in a recent issue of Nature Communications.
In this podcast episode, MRS Bulletin's Laura Leay interviews Eric Pop, Xiangjin Wu, and Asir Intisar Khan from Stanford University about their work building a phase-change memory superlattice at the nanoscale. They created the superlattice by alternating layers of antimony-tellurium nanoclusters with a nanocomposite made from germanium, antimony, and tellurium (GST467). Each layer is ~2 nm thick and the superlattice consists of 15 periods of these alternating layers. The microstructural properties of GST467 and its high crystallization temperature facilitate both faster switching speed and improved stability. The device operates at low voltage and shows promise for high-density multi-level data storage. This work was published in a recent issue of Nature Communications.
In this podcast episode, MRS Bulletin's Laura Leay interviews Magalí Lingenfelder from the École Polytechnique Fédérale de Lausanne, Switzerland about her group's discovery of the switching mechanism behind H-bond-linked two-dimensional networks. The hydrogen bonding ability was tuned by comparing carboxylates to aldehydes. Lingenfelder's group found that the ability of the structure to switch between an open structure to a close-packed one is governed by a synergistic combination of energetic contributions from both the adsorbate/adsorbate and absorbate/substrate interactions. This work was published in a recent issue of ACS Nano.
In this podcast episode, MRS Bulletin's Laura Leay interviews Aram Amassian from North Carolina State University about his group's achievements using RoboMapper, a materials acceleration platform. In researchers' quest to run environmentally-conscious laboratories, Amassian offers a solution that focuses on characterization of materials. Having found that characterization generates a lot of energy, his group developed an automated approach to screening small samples in order to identify ones that warranted more in-depth study. By using their automated approach, the researchers found quantitative structure–property relationships for wide-bandgap perovskites. This work was published in a recent issue of Matter.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Kaveh Ahadi from The Ohio State University about a material his group developed that maintains superconductivity in a magnetic field. The researchers grew a film of lanthanum manganite on a crystal of potassium tantalate. When lowered to the temperature of 2 Kelvin, the material is a superconductor. When Ahadi's group applied 25 Teslas of magnetic field, the material stayed superconducting. Even though the material is not of practical use, Ahadi says that studying this material will help researchers better understand the mechanisms that lead to superconductivity. This work was published in Nano Letters.
In this podcast episode, MRS Bulletin's Elizabeth Wilson interviews Manos Mavrikakis from the University of Wisconsin–Madison about his group's theoretical work on real-world industrial catalytic conditions. It is often assumed that most catalyst surface atoms stay in place during a reaction, firmly bonded to their metal neighbors. However, Mavrikakis's theoretical framework shows that under industrial reaction conditions, a surprising amount of metal–metal bond breaking is likely happening during catalytic reactions. This framework predicts that under reaction conditions, some adsorbed molecules have the strength to scavenge metal atoms from the catalyst particle, causing metal atoms to be ejected to a different spot on the metal surface. Bonds between metal atoms in certain geometries such as kinks can also break, even without adsorbed species, due to heat. However, the presence of reaction molecules may greatly increase the frequency of these events. The ejected metal atoms can then move around on the surface, collect together into groups such as trimers, tetramers, hexamers, or larger ensembles, forming entirely new types of active sites. This work was published in Science.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Nathan Gabor from the University of California, Riverside about his group's work on imaging and directing the flow of electrons in electronic devices. They designed their device by taking a crystal of yttrium iron garnet, which does not conduct electricity, and putting a nanometers-thick layer of platinum, which does conduct electricity, on top of it. When they illuminate the device with a laser, this device produces an electric current. They further discovered that when they combine the crystal with the platinum, the interface between the two materials exhibits magnetic properties. Gabor's research team used this sensitivity to a magnetic field to steer the electron flow in the device. This work was published in Proceedings of the National Academy of Sciences.
In this podcast episode, MRS Bulletin's Rahul Rao interviews Fereshte Ghahari of George Mason University about the use of a scanning tunneling microscope (STM) to measure the electronic and magnetic properties of moiré quantum materials. Ghahari and collaborators twisted two layers of graphene at a specific angle, then chilled the material to suppress as much motion as possible. They ran an STM across the material while varying the magnetic field. They could precisely observe how those field changes affected the energy levels of the electrons, realizing that they could use those discrete energy levels as a “quantum ruler.” “We hope these new measurements help researchers to optimize these magnetic and electronic properties of quantum materials for specific applications,” says Prof. Ghahari. By manipulating the electrons in moiré quantum matter and shifting its twist angles, materials researchers may be able to improve on materials that are useful for microelectronics or superconductors, for example. This work was published in a recent issue of Science.
In this podcast episode, MRS Bulletin's Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-niobate that is compatible with cell lines similar to neurons. They then studied how the composite material would interact with neural stem cells. They found that the piezolectrically activated composites allowed the cells to spread across the surface of the material and saw an increase in the amount of neurons. Usually the use of piezoelectric materials in tissue engineering requires mechanical stimulation from either movement of the body or the application of ultrasound. In this research, no additional mechanical stimulation was required. This work was published in a recent issue of Advanced Engineering Materials.
In this podcast episode, MRS Bulletin's Laura Leay interviews Professor Jerry Qi and postdoctoral researcher Mingzhe Li of the Georgia Institute of Technology about their new technique to 3D print silica glass. After using two-photon polymerization to cross-link poly-dimethylsiloxane, Qi's research team used deep UV to convert the polymer into silica glass. The deep UV irradiation is carried out in an oxygen-rich atmosphere. The UV light converts the oxygen to ozone, which then reacts with the polymer, prompting the formation of silica glass. Furthermore, printing of the silica glass is accomplished at the low temperature of 200°C, compared to 1000°C required for current methods of 3D printing. Qi's group fabricated structures of several tens of micrometers in size, with a resolution of a few hundred nanometers. This work was published in a recent issue of Science Advances.
Do scientists in the fields of genomics, materials research and other areas deemed important to society have an obligation to educate the general community about their research? Fleet Science Center's Scientist Engagement Manager Andrea Decker discusses the idea of broader impact, and how it affects a researcher's project to benefit society or advance desired societal outcomes. Series: "Exploring Ethics" [Science] [Show ID: 39264]
In this podcast episode, MRS Bulletin's Sophia Chen interviews Surabhi Madhvapathy of Northwestern University about an implantable bioelectronics system that can perform early detection of kidney transplant rejection in rats. Madhvapathy and her colleagues have developed a wireless sensor that attaches to the kidney itself. The biosensor measures the organ's temperature and its thermal conductivity. These can point toward inflammation in the kidney, which can be a sign of organ rejection. This work was published in a recent issue of Science.
In this podcast episode, MRS Bulletin's Laura Leay interviews Kento Katagiri, a postdoctoral scholar at Stanford University, about the propagation speed of dislocations in materials. Using an X-ray free electron laser to collect data from single-crystal diamond, Katagiri and colleagues have determined the velocity of wave propagation to be in the transonic region. Katagiri's work is most applicable to extreme shock events such as missile strikes and shuttle launches where pressures of one terapascal or more might apply. The results are relevant to a type of nuclear fusion known as Inertial Confinement Fusion, which uses intense lasers to compress the fuel. This work was published in a recent issue of Science.
Do scientists in the fields of genomics, materials research and other areas deemed important to society have an obligation to educate the general community about their research? Fleet Science Center's Scientist Engagement Manager Andrea Decker discusses the idea of broader impact, and how it affects a researcher's project to benefit society or advance desired societal outcomes. Series: "Exploring Ethics" [Science] [Show ID: 39264]
Do scientists in the fields of genomics, materials research and other areas deemed important to society have an obligation to educate the general community about their research? Fleet Science Center's Scientist Engagement Manager Andrea Decker discusses the idea of broader impact, and how it affects a researcher's project to benefit society or advance desired societal outcomes. Series: "Exploring Ethics" [Science] [Show ID: 39264]
As the climate emergency escalates, it is clear that the solutions we need are those that can be applied at scale. The materials scientist Veena Sahajwalla is at the forefront as she is already designing and delivering such solutions. In this episode, Veena tells Design Emergency's cofounder, Paola Antonelli, how she is recycling huge quantities of abandoned tyres, clothing and other waste into new materials..Born in India, where she was the only woman on her university engineering course, Veena then studied in Canada and the US, and is now based in Australia, where she is Professor of Materials Science at the University of New South Wales and founding director of its SMART Centre for Materials Research and Technology. Dubbed “the rubbish cop” by her daughter for her obsession with reusing and recycling waste at home, her work is devoted to developing new ways of transforming waste into new raw materials to decarbonise industrial production..Veena explains to Paola how she has invented a polymer injection technology, Green Steel, which has already recycled millions rubber tyres to replace coal in steel production. She also describes how she and her colleagues have developed a process of recycling clothes and glass into Green Ceramics for use in construction and interiors, and a new type of local micro-recycling hubs. All of which, Veena sees as being important steps towards a zero-waste circular economy..Thank you for listening. You will find images of projects described by Veena on our IG grid @design.emergency. And you can tune into this episode of Design Emergency and the others on Apple, Amazon, Spotify and other podcast platforms. Please join us for future interviews with other global design leaders who are forging positive change..Design Emergency is supported by a grant from the Graham Foundation for Advanced Studies in the Fine Arts. .Hosted by Acast. See acast.com/privacy for information. Hosted on Acast. See acast.com/privacy for more information.
Explain what UAMMI is and how it came about. Why is this organization in Utah? (aerospace development, military, etc) Tell us about composites, I understand they are not metal – they are petroleum products as strong as metals. Are they all 3D printed? What are the particular uses of these materials? UAMMI is also an administrator of public funds – public/private partnership aerospace and defense, outdoor sports, and medical products – how do you coordinate with these partners? What kinds of support do you offer to manufacturers? Do you have events? I know that you also partner with CONNEX – please explain what services are offered by CONNEX What about workforce development? Partnerships with Utah universities? Follow the Rethink Reshoring Podcast Other FreightWaves Shows Learn more about your ad choices. Visit megaphone.fm/adchoices
Explain what UAMMI is and how it came about. Why is this organization in Utah? (aerospace development, military, etc) Tell us about composites, I understand they are not metal – they are petroleum products as strong as metals. Are they all 3D printed? What are the particular uses of these materials? UAMMI is also an administrator of public funds – public/private partnership aerospace and defense, outdoor sports, and medical products – how do you coordinate with these partners? What kinds of support do you offer to manufacturers? Do you have events? I know that you also partner with CONNEX – please explain what services are offered by CONNEX What about workforce development? Partnerships with Utah universities? Follow the Rethink Reshoring Podcast Other FreightWaves Shows Learn more about your ad choices. Visit megaphone.fm/adchoices
In this podcast episode, MRS Bulletin's Laura Leay interviews Stanford University's Jennifer Dionne and her PhD student Fareeha Safir and their colleague Amr. Saleh from Cairo University about their work on identifying bacteria in complex samples. Instead of culturing bacteria then identifying them using specific methods such as a polymerase chain reaction test, which takes hours, Dionne's research group uses Raman spectroscopy combined with machine learning to detect the presence of two specific bacteria in samples that contained red blood cells. The addition of gold nanorods to the samples further enhanced the signal from the bacteria. Another way the research team accelerated the detection of bacteria signal was by building an acoustic bioprinter for the liquid samples: the specialist printer uses focused soundwaves to break the surface tension of a larger droplet, maintaining cell viability. This work was published in a recent issue of Nano Letters.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Alice Soragni of the University of California, Los Angeles about her work in precision oncology. Rather than sequence the DNA of a patient's tumor, Soragni uses bioprinting to create organoids from the patient's cells. She then adds various drugs to the cells to directly test their response to each drug. To check the effectiveness of the drugs, Soragni's group measures the organoid's mass with a technique called interferometry. Interferometry is a non-invasive technique that involves shining light on the cells to monitor their response to the drug. This process allows Soragni to characterize the organoid's response to the drug in fine detail. This work was published in a recent issue of Nature Communications.
While thermodynamics suggests that water sorption is more favorable at a low temperature, MRS Bulletin podcaster Laura Leay interviews post-doctoral researcher Xinyue Liu from the Massachusetts Institute of Technology (MIT) who reports a hydrogel that can adsorb more water at elevated temperatures. Liu and the research team from MIT and the University of Michigan were searching for a way to harvest water from the air without using a lot of energy. They want to tackle the problem of water scarcity and find a way of generating water sustainably. To do so, they tested many different sorbents. Most sorbents, such as zeolite and silica gel, have a structure that does not change much when it has adsorbed water; however, the polyethylene glycol – or PEG – hydrogel that the team synthesized is different. While it is semi-crystalline at 25°C, it becomes amorphous at 50°C. This structural change means that more adsorption sites are available at the higher temperature. As water is absorbed, it caused the hydrogel to swell, opening up further adsorption sites. The PEG hydrogel monomers are star-shaped, forming a network where the molecular weight can be precisely controlled. The shape of the monomer leads to very homogeneous structures, facilitating crystallization. The PEG hydrogel exhibited a water uptake of 0.050 grams per gram of polymer at 50°C and 50% relative humidity, with half this water uptake at 25°C and the same humidity. This work was published in a recent issue of Advanced Materials.
Many industrial processes require heat or create it as a by-product. Now, Takayoshi Katase from the Tokyo Institute of Technology has found a way to harness this heat in an eco-friendly way, as he explains in an interview with MRS Bulletin podcaster Laura Leay. One way to harness this heat is to use thermoelectric devices to produce electricity via the Seebeck effect. Conventional thermoelectric materials, however, are composed of heavy metals such as lead and tellurium, which are toxic. To incorporate hydrogen into the structure, and so replace the toxic elements, Katase's research team used a rapid thermal sintering process where the starting material—which already includes the hydrogen—is sealed inside a tube. Some of the oxygen sites in strontium titanate are then substituted by the hydrogen. “More than expected, the hydrogen substitution reduces thermal conductivity less than half, and also increases electronic conductivity, resulting in the large enhancement of energy conversion efficiency,” Katase says. This work was published in a recent issue of Advanced Functional Materials.
In this podcast episode, MRS Bulletin's Sophia Chen interviews Xuchen Wang of Karlsruhe Institute of Technology in Germany about his work on photonic time crystals. While conventional crystals are composed of repeating unit cells in space, such as eight carbon atoms arranged in a cube to form a diamond, a photonic time crystal has a structure that repeats in time. Theoretical predictions of photonic time crystals referred to designs consisting of three-dimensional metamaterials whose properties are difficult to manipulate in the laboratory. Wang and his collaborators have adapted the three-dimensional time crystal design to a two-dimensional metasurface. They arranged copper structures on the surface, using conventional printed circuit board technology. The structures look like a forest of mushrooms where the researchers placed a variable capacitor, known as a varactor, between each mushroom. To create the device, the researchers apply changing external voltages to the varactor, modulating the material's electromagnetic properties in time. Wang then confirmed experimentally that this device amplified microwave signals that he sent across its surface. This work was published in a recent issue of Science Advances.
What happens when a material scientist, an interior designer, and a sustainably minded manufacturer sit down with a legendary design podcaster? To find out, Debbie Millman and guests at down at the Cosentino Showroom on March 9th for a live episode recording of the NYCxDESIGN podcast The Mic, to explore how environmentally mindful materials for the home can be used to reinvigorate interior spaces with vibrancy and enduring timelessness. Be a fly on the wall for a conversation with New York based interior designer, Antonio Deloatch, EVP of Materials Research at Material ConneXion and Chief Material Scientist at Material Bank, Dr. Andrew Dent, and Pablo Abad, Regional Director, Atlantic, Cosentino North America, as they dive into the world of sustainable surface materials. Tune in to hear each guest bring their unique expertise and life experiences to the table to share how creating a domestic environment that is healthy for our planet can also produce a holistically beautiful and inviting abode.