Danish physicist
POPULARITY
Sun explores breaking the cycles of fear and hurt by making conscious choices and connecting to one's own power and intuition. She sees current global challenges as indicators of an evolutionary leap in consciousness urging us to explore the integration of intuitive and rational thinking, also known as right brain/left brain thinking. Patricia Sun is a scientific mystic, philosopher, spiritual teacher, and consciousness pioneer. She has traveled the world empowering people to tap into their inherent creative capacity, resulting in new ways of thinking. She graduated Phi Beta Kappa in 3-1/2 years from the University of California, Berkeley, with degrees in Social Sciences and Psychology and Conservation and Natural Resources. She concentrates directly on creative solutions: "re-creating" thought patterns and "re-perceiving" experience. She's considered to be a teacher's teacher and leads workshops and gives private consultations.Interview Date: 5/23/2025. Tags: Patricia Sun, genius, imagination, interconnectedness of life, paradox, rational mind, intuition, right brain, left brain, perspective, despair, collective consciousness, astrology, Niels Bohr, love, imaginal cells, duality, creativity, either/or thinking, trust, Health & Healing, Personal Transformation, Philosophy, Psychology
Last time we spoke about Operation Downfall. The Allies, under General Krueger, initiated a decisive campaign to clear the Japanese from Luzon. As they faced the entrenched Shobu Group, challenges included treacherous terrain and a resilient enemy. Simultaneously, Japan braced for an invasion, mobilizing reinforcements and devising defensive strategies to ward off the impending Allied assault. As July approached, General Yamashita's forces prepared to execute a final breakout, but progress was hampered by relentless guerrilla attacks and adverse weather conditions. With Operation Downfall looming, Allied troops focused on strategic landings in Kyushu and Honshu, driven by a relentless determination to defeat the Japanese militarily. The intense battles of Luzon became a precursor to this monumental operation, marking a turning point in the Pacific War. This episode is The Siege of Japan Welcome to the Pacific War Podcast Week by Week, I am your dutiful host Craig Watson. But, before we start I want to also remind you this podcast is only made possible through the efforts of Kings and Generals over at Youtube. Perhaps you want to learn more about world war two? Kings and Generals have an assortment of episodes on world war two and much more so go give them a look over on Youtube. So please subscribe to Kings and Generals over at Youtube and to continue helping us produce this content please check out www.patreon.com/kingsandgenerals. If you are still hungry for some more history related content, over on my channel, the Pacific War Channel you can find a few videos all the way from the Opium Wars of the 1800's until the end of the Pacific War in 1945. Boy I have been waiting a long time to come to this point. One of the most significant events in human history that deeply affects us to this very day. Nuclear war is as much a threat today as it was during the cold war. The dropping of the Atomic bombs on Hiroshima and Nagasaki were deeply complicated events fraught with issues of morality. It goes without saying whether or not the bombs needed to be dropped, their actual impact on the surrender of Japan and so forth are still issues hotly debated to this very day. I have spoken on the issue countless times on my personal channel and podcast, but I figure to do this subject justice I will create a full episode for it. Thus in this episode we are going to just cover what happened, but rest assured I will come back to this later on. As we last explored, following the successful invasion of Luzon in the Philippines, along with the fall of Iwo Jima and Okinawa, American forces began preparing for the final invasion of the Japanese Home Islands. This operation was codenamed Operation Downfall. One key initiative leading up to this invasion was a comprehensive air-sea blockade and bombardment campaign against Japan itself. Previously, we detailed the extensive firebombing and precision bombing efforts executed by General LeMay's 21st Bomber Command. However, during this crucial period, the B-29 Superfortress bombers undertook a distinct operation under the codename Starvation. This single operation would be one of the largest factors that contributed to the surrender of Japan and its one most people have never heard of. In July 1944, Admiral Chester W. Nimitz proposed a bold plan to use B-29 Superfortress bombers to mine the waterways surrounding the Japanese Home Islands. Although Generals Henry H. Arnold and Walter Hansell expressed concerns that this mining campaign could distract from the B-29's primary role as a strategic bombardment aircraft, they eventually agreed to assign one bomber group to focus on aerial mining when conditions permitted. On December 22, Hansell's 21st Bomber Command was directed to formulate a naval mining program aimed at executing between 150 to 200 sorties each month, which was set to begin in April 1945. However, by this time, General Curtis LeMay had taken command of the 21st Bomber Command. LeMay was notably enthusiastic about the idea and successfully recommended to Washington an upgraded mining program that aimed to deploy up to 1,500 mines each month using a full B-29 wing. LeMay viewed aerial mining in a different light than Arnold or Hansell, seeing it as a vital extension of strategic bombing. He recognized that most of Japan's war production materials, as well as a significant portion of its food supplies, were imported from regions such as China, Southeast Asia, and the Dutch East Indies. Japan's industrial heartland is primarily found on Honshu, its largest and most industrialized island, while Shikoku, another island, also lacks essential resources such as iron ore and high-quality coal. These crucial materials were sourced from Kyushu and Hokkaido, both of which are other Japanese islands. All these resources were transported by sea, so without easy access to raw materials, Japan's industrial output would come to a grinding halt. The only aircraft capable of deploying mines effectively where they were needed were the B-29s. Areas such as the Inland Sea, the Sea of Japan, and the Korean Peninsula were out of reach for other Allied aircraft. Additionally, Allied submarines could only venture into these perilous waters with great risk. Notably, about 80% of Japan's merchant fleet utilized the Shimonoseki Strait, a critical waterway that separates Kyushu from Honshu. Understanding the strategic advantage of closing this strait, LeMay decided to allocate an entire wing of B-29s specifically to mine this vital route. Brigadier General John Davies commanded the 313th Bombardment Wing, tasked with deploying approximately 2,000 naval mines each month into Japanese waters. The primary goals of this operation were to prevent essential raw materials and food supplies from reaching the Home Islands, hinder the supply and mobilization of Japanese military forces, and disrupt transportation routes in the Inland Sea of Japan. Between March 27 and April 12, Davies' bombers targeted key enemy shipping bases located in Kure, Sasebo, and Hiroshima. They also focused on the Shimonoseki Strait, a narrow and strategically important waterway that links the Inland Sea with the Tsushima Strait. Notably, after these attacks, this strait was successfully closed for two weeks. On May 3 and 5, the 313th Bombardment Wing laid down a total of 1,422 mines in the waters surrounding the Shimonoseki Strait, as well as near major urban centers like Tokyo, Nagoya, Kobe, and Osaka. These efforts aimed to severely disrupt maritime commerce between Japan's major industrial areas. Just a week later, the minefields expanded from the Shimonoseki Strait to include Kyushu, the southernmost of Japan's four main islands, and northwest Honshu, the largest island containing Tokyo. By the end of that month, these mines were proving remarkably effective, accounting for the sinking of more ships than Japanese submarines. In fact, within the Shimonoseki Strait alone, 113 ships had been sunk. Between June 7 and July 8, American forces expanded and fortified minefields along the western coast of Japan while also replenishing the existing minefields in the Shimonoseki Strait and the Inland Sea. During this effort, they successfully laid a total of 3,542 mines across 14 missions. The "total blockade" officially commenced on July 9 and continued until the end of the war. Throughout this period, American forces executed 474 sorties, dropping another 3,746 mines that replenished existing minefields and extended coverage to harbors in Korea. In total, Brigadier General Davies conducted 46 missions that laid down 26 minefields containing 12,135 mines. Remarkably, only 15 B-29s were lost during these operations. In turn, the mines accounted for the sinking or damaging of 670 Japanese ships, with a total loss of 1.25 million tons. This mining campaign effectively strangled Japanese industry, as the denial of essential raw materials to factories proved more disruptive than the direct bombing of the plants themselves. Despite the clear vulnerability of Japan's economy to disruptions in coastal shipping, Japanese authorities were alarmingly unprepared to address the threat posed by air-dropped mines. By August 1945, Japan had committed 349 ships and 20,000 personnel to counter the Starvation campaign, but these efforts were overwhelmingly ineffective. The shipping crisis escalated to such a degree that searchlights and anti-aircraft batteries were redeployed from urban centers to defend expected mining targets. Additionally, suicide boats were employed in desperate attempts to clear the minefields. Royal Navy historian S.W. Roskill commented on the situation, stating, “The blockade had, in fact, been far more successful than we realized at the time. Although submarines initially played a critical role in enforcing the blockade, it was the air-laid mines that ultimately strangled Japan.” Japanese officials shared this assessment. A director from a Tokyo steel company reflected on the situation, noting that the denial of essential raw materials to factories caused far greater disruption than the direct bombing of the plants themselves. This contradicted the views of US Army Air Forces experts back in Washington. In a striking remark after the war, a Japanese minesweeping officer told American forces, “The result of B-29 mining was so effective against shipping that it eventually starved the country. You could have likely shortened the war by starting this campaign earlier.” Meanwhile, General LeMay continued his firebombing campaign against Japan. By the end of May, urban areas around Tokyo Bay had been devastated, prompting the 21st Bomber Command to shift focus westward toward the densely populated industrial complexes lining Osaka Bay. On June 1, 521 B-29s were dispatched to bomb industrial targets situated along the Yodo River, with an escort of 148 P-51 fighters. Unfortunately, an undetected thunderstorm struck en route, which meant only 27 P-51s reached Osaka, while another 27 crashed, and the remaining fighters had to return to Iwo Jima. Despite these complications, the B-29s bombed from altitudes ranging between 18,000 and 28,500 feet, successfully dropping 2,788 tons of incendiary bombs on Osaka. The attack resulted in the burning of 3.15 square miles, destroying 136,107 houses and 4,222 factories. Four days later, on June 3, 530 unescorted B-29 Superfortresses launched a bombing raid on the city of Kobe. Of those, 473 aircraft targeted the city, resulting in the destruction of 4.35 square miles. This devastating strike led to the demolition of 51,399 buildings, while another 928 suffered significant damage. The raid, however, came with losses, as 11 bombers were downed, and 176 were damaged in the operation. On June 7, 449 B-29s returned to Osaka. Despite facing heavy cloud cover that restricted visibility, they managed to burn an additional 2.21 square miles of the city, destroying another 55,333 buildings. By the conclusion of General Curtis LeMay's maximum-effort area bombing campaign, the six most significant industrial cities in Japan, Tokyo, Nagoya, Kobe, Osaka, Yokohama, and Kawasaki, had been left in ruins. Major factories were either destroyed or severely damaged, while thousands of smaller household and feeder industrial units were consumed by flames. Casualty figures surged into six figures, leaving millions of people homeless. The evacuation of survivors further complicated efforts to secure labor for the factories that remained operational. Japan's air-raid protection system proved woefully inadequate to withstand a protracted siege by very heavy bombers. The system lacked sufficient organization, trained personnel, shelters, fire-fighting equipment, and facilities for relief and evacuation. Additionally, there was a significant deficiency in civilian indoctrination regarding emergency procedures. Under the relentless pressure of repeated major attacks, local Air Raid Precaution organizations collapsed, adding strain to an already overburdened imperial government. Japanese civilians, who had been conditioned by victory propaganda, displayed little of the discipline that helped German citizens endure years of aerial bombardment. As news of military defeats and the impact of B-29 precision strikes filtered into the great cities, residents began to lose confidence in their leaders' ability to protect them or care for the victims of the attacks. Abe Motoki, the Minister of Home Affairs at the time, later remarked, “I believe that after the raids on Tokyo on May 23-24, 1945, civilian defense measures in that city, as well as in other parts of Japan, were considered a futile effort.” Regarding the operational cost of this campaign for the 21st Bomber Command, it was not considered excessively burdensome. Over the course of 17 maximum-effort incendiary attacks, LeMay dispatched a total of 6,960 B-29s, which dropped 41,592 tons of bombs. The losses amounted to 136 B-29s, averaging only 1.9% of the sorties, a rate significantly lower than what had been endured in earlier months, and quite acceptable by the standards of conventional strategic bombing. Meteorologists predicted that the summer monsoon would keep Japan's skies covered with clouds for most of the upcoming months, from June to August. As a result, LeMay shifted strategies under what became known as the Empire Plan. This approach prioritized targeting industrial and military sites during daylight hours when the weather permitted, while secondary cities that had sufficient industrial capability became targets for nighttime area attacks. This change meant that since no single target warranted a full four-wing maximum effort, multiple missions could be scheduled in a single day. Accordingly, on June 9, 110 B-29s attacked three aircraft factories located in Narao, Atsuta, and Akashi. The strikes successfully destroyed the factories in Narao and Atsuta, but an unfortunate miscalculation led to the bombing of the town near Akashi. The following day, June 10, a force of 280 B-29s, escorted by 107 P-51 Mustang fighters, targeted six distinct sites in the Tokyo Bay area. The mission yielded significant results, with all targets sustaining heavy damage. Finally, on June 15, 516 B-29s were dispatched for one last firebombing raid against Osaka and the neighboring city of Amagasaki. In this combined assault, 444 bombers dropped over 1,350 tons of incendiary bombs, incinerating an additional 1.9 square miles in Osaka and more than half a square mile in Amagasaki. Starting on June 17, General Curtis LeMay's firebombing campaigns began to focus on medium-sized secondary cities across Japan. On that day, 477 B-29 Superfortresses targeted the cities of Omuta, Hamamatsu, Yokkaichi, and Kagoshima, burning a combined total of six square miles in these urban areas. The success of this initial multi-target mission ensured the continuation of the program, establishing an operational pattern that would remain standard during the final weeks of the war. In total, multiple incendiary attacks were conducted on sixteen occasions, averaging about two missions per week. Between June 17 and August 14, American forces carried out 8,014 sorties, dropping a staggering 54,184 tons of incendiaries across 58 secondary cities. On June 22, 446 B-29s were dispatched to strike six targets located in southern Honshu, including the crucial Kure Naval Arsenal. In this mission, 382 bombers released 2,103 tons of bombs, inflicting heavy damage to these essential manufacturing facilities. Just four days later, on June 26, a force of 510 B-29s, accompanied by 148 P-51 Mustang escorts, targeted locations in southern Honshu and the nearby island of Shikoku. However, dense clouds over much of the area complicated assembly and forced many aircraft to attack targets of opportunity individually or in small groups. As a result, adverse weather conditions would delay subsequent daytime raids until July 24. In the coordinated strike program that commenced in June, the decision to focus on either the Empire Plan or urban industrial targets was largely influenced by weather conditions. As the program took shape, the 315th Bombardment Wing (VH) became available for combat operations. This wing operated somewhat independently from the other bomber units, with its activities significantly guided by the specialized equipment of its aircraft. Authorized for deployment in the Pacific in December 1944, the 315th settled at Northwest Field, Guam, during May and June. Its commander, Brigadier General Frank A. Armstrong, Jr., was a seasoned veteran of the strategic air offensive against Germany. The B-29s of the 315th Wing differed in two key respects from those of other units. They were equipped with the AN/APQ-7 (Eagle) radar, a sophisticated radar system designed for bombing, instead of the conventional AN/APQ-13 radar. The latter had primarily served as a navigational aid. While crews had become adept at using the AN/APQ-13 for night or poor-weather bombing, it lacked the precision necessary for accurate strikes. The Eagle radar, however, offered significantly greater definition and, although it required a long bomb run averaging seventy miles, this was not considered a serious hindrance in the tactical context of Japan. To further enhance its night-bombing capabilities, the Superfortresses had been stripped of all armament except for the tail gun. This modification, along with the Eagle radar, clearly marked the 315th as a dedicated night-bombing unit. There were various proposals for the use of these specially equipped B-29s, including high-altitude bombing, area bombing, and aerial mining. However, by the time the 315th Wing was ready for combat, the 313th Bombardment Wing had already gained proficiency in aerial mining, while all wings had become adept at area bombing using the AN/APQ-13. Training for the 315th had focused heavily on night radar tactics, with less emphasis on visual bombing and daytime formation flights. It was evident that if the Eagle radar was to undergo a thorough scientific evaluation, it should be tested against a specific set of targets that were preferably large in size and located along the coastline. In the view of the 21st Bomber Command, the oil industry met these requirements perfectly. The 315th Bombardment Wing initiated its specialized campaign on June 26 with a targeted strike against the Utsube Oil Refinery in Yokkaichi, the top-priority target. By August 14, the wing had conducted 15 additional missions against a total of 10 targets, which included various petroleum refineries and synthetic plants, such as the Maruzen Oil Company in Wakayama, Mitsubishi Oil Company in Kawasaki, and Nippon Oil Company plants spread across Akita, Kansai, Kudamatsu, and Amagasaki, as well as the Imperial Fuel Industry Company in Ube and Toa Fuel Industry in Wakayama. During the campaign, the 315th Wing dispatched a total of 1,200 B-29s, 1,095 of which successfully bombed their primary targets, dropping 9,084 tons of 500-pound general-purpose bombs deemed particularly effective against the scattered installations. The increase in bomb load capacity was made possible by stripping the planes of unnecessary equipment and conducting bombing missions individually at night. As the crews gained experience, they were able to increase the average weight carried from 14,631 pounds during the first mission to 20,684 pounds by August 9. Despite concerns about safety from removing most of the aircraft's armaments, only four planes were lost and 66 sustained damage throughout the campaign. The 20th Air Force estimated that the B-29 attacks led to the destruction of approximately 6 million barrels of tank storage capacity, and the United States Strategic Bombing Survey (USSBS) reported that refining capacity had been reduced from 90,000 barrels a day in December 1941 to around 17,000 barrels. However, the strategic impact was more apparent than real, as many storage tanks were empty and refinery production had fallen to just 4% of capacity before the very heavy bomber campaign began. The lack of precise intelligence regarding the state of Japan's economy had justified the emphasis on the oil program as a form of reinsurance. Nevertheless, the blockade had effectively severed the nation's oil resources, resulting in tankers remaining idle at the docks. On July 1, Admiral Halsey's 3rd Fleet departed San Pedro Bay to initiate the first preliminary strikes in preparation for Operation Olympic. This operation involved battleships and heavy cruisers conducting surface bombardments of industrial targets in eastern Japan, while lighter forces performed anti-shipping sweeps along the coast. Additionally, a fleet of submarines advanced ahead of Admiral McCain's Task Force 38 to eliminate picket boats and establish lifeguard positions. At 18:15 on July 9, the force began its 25-knot approach toward the Home Islands, launching its first strikes against the Tokyo area at 04:00 on July 10. A total of 1,732 sorties were executed, targeting locations from Koriyama to Hamamatsu, dropping 454 tons of bombs and 1,648 rockets over Honshu with negligible opposition. American airmen reported the destruction of 109 enemy aircraft and damage to 231 during these strikes. Following this, Halsey's fleet moved north to bombard Hokkaido and northern Honshu, which were beyond the effective range of the B-29s and had previously evaded attack. At 05:59 on July 14, Rear-Admiral John Shafroth's Bombardment Group Able, consisting primarily of three battleships and two heavy cruisers, was tasked with attacking the Kamaishi Works of the Japan Iron Company. By midday, Shafroth's forces had opened fire on Kamaishi, marking the first surface bombardment of Japan by a hostile fleet in over 80 years. Between 12:10 and 14:19, a total of 802 16-inch shells, 728 8-inch shells, and 825 5-inch shells were expended, setting the town ablaze as key industrial and residential targets were hit and resulting in the sinking of one oil tanker, two barges, and one small ship in the harbor. Simultaneously, McCain's carriers closed to within 80 nautical miles of Japan, launching 1,391 sorties against Hokkaido and northern Honshu to target railways, shipping, and airfields, again facing only light resistance. In the ensuing strikes, American planes sank over 50,000 tons of shipping and naval craft, including the destroyer Tachibana, four minesweepers, eight naval auxiliaries, and around 20 merchant vessels, with significant losses occurring at Muroran and Hakodate. In addition, 25 enemy planes were destroyed, while American losses totaled 24 aircraft and 17 airmen, about half of whom were lost in combat. Task Force 38 launched another assault on July 15, executing 966 combat sorties that dropped 355 tons of bombs and expended 2,093 rockets. This operation resulted in the sinking of 65 vessels and damaging 128 others, as well as the destruction of 48 locomotives and damage to 28. Widespread destruction was inflicted on several facilities, particularly the Aomori–Hakodate railcar ferry system, which transported 30% of the coal between Hokkaido and Honshu. The strikes devastated the ferry system, sinking eight ferries, beaching eight more, and damaging two. In total, 70 auxiliary sailing colliers were sunk, and 11 were damaged, along with 10 steel freighters lost and 7 damaged. The ferry strikes were the brainchild of Halsey's operations officer, Captain Ralph “Rollo” Wilson. “When the first action reports began to sift in,” Halsey related: He snatched them up and pored over them; the ferries were not mentioned. Later reports also ignored them. Rollo was sulking and cursing when the final reports arrived. I heard him whistle and saw him beam. “Six ferries sunk!” he said. “Pretty soon we'll have ‘em moving their stuff by oxcarts and skiffs!” Additionally, 20 city blocks in Kushiro were razed. The most significant outcome of these operations was the virtual severance of Hokkaido from Honshu. By the end of the raids, Halsey's 3rd Fleet had achieved the sinking of 140 ships and small craft, damaging 235 others, and destroying 38 planes while damaging 46. Meanwhile, Rear-Admiral Oscar Badger's Bombardment Group Baker, composed of three battleships, two light cruisers, and eight destroyers, was assigned to bombard Muroran. Between 09:36 and 10:25, this group fired 860 16-inch shells at the Nihon Steel Company and the Wanishi Ironworks, targeting both the coal liquefaction plant and coke ovens. This bombardment inflicted severe damage on those facilities and resulted in the destruction or damage of 2,541 houses in Muroran. As Hasley recalled “These sweeps and bombardments accomplished more than destruction. they showed the enemy that we made no bones about playing in his front yard. From now on, we patrolled his channels and shelled his coast almost every night that the weather permitted.” Additionally, Rear-Admiral James Cary Jones' four light cruisers conducted a sweep along the east coast of Honshu to hunt for Japanese shipping; however, they reported no contacts during their mission. Early on July 16, Task Force 38 retired east of Honshu to begin refueling and rendezvoused with Admiral Rawlings' Task Force 37, which agreed to operate closely as an additional task group for Admiral Halsey. At 03:50 on July 17, the two task forces began launching strikes against central Honshu despite adverse weather conditions. The American forces executed 205 sorties targeting the Mito area, while British aircraft flew 87 sorties against airfields and railyards along the northwest coast of Honshu. Despite the bad weather, several small craft and locomotives were destroyed, though the operation resulted in the loss of nine aircraft and four airmen. Later that afternoon, Halsey detached Badger's augmented Bombardment Group to attack Hitachi, a significant industrial and electronics-producing city. The 53-minute bombardment commenced in fog and rain at 23:14, during which 1,207 16-inch shells, 267 14-inch shells, and 292 6-inch rounds were expended against the Tago and Mito Works of the Hitachi Manufacturing Company, as well as the Yamate Plant and copper refining facilities of Hitachi Mine, resulting in severe devastation. On July 18, McCain's two leading carriers launched a total of 592 sorties against Yokosuka, specifically targeting the heavily camouflaged battleship Nagato at the naval base. The attacks resulted in the sinking of one old cruiser, one minesweeper, one submarine, one incomplete destroyer, and three patrol vessels, in addition to damaging one subchaser, one old destroyer, and one old battleship. Although Nagato was hit multiple times and suffered heavy damage, it managed to stay afloat. Meanwhile, three carriers also targeted airfields and other opportunities in Tokyo, while Task Force 37 attacked a seaplane base at Kitaura and airfields at Nobara, Naruto, Chosi, Kanoike, Natori, and Kitakawa. The recent raids resulted in the destruction of 43 enemy planes and damage to 77 others on the ground, along with the destruction of three locomotives and the derailing of four electrified train cars by rockets. However, the American forces incurred losses of 14 aircraft and 18 aircrew, as the 3rd Fleet flyers reported encountering the fiercest anti-aircraft fire they had yet experienced. Additionally, Rear-Admiral Carl Holden's four light cruisers were detached during the night to sweep shipping off Sagami Bay and to target the radar site at Cape Nojima. On July 21, Captain Thomas Hederman's Destroyer Squadron 61, consisting of nine destroyers, was assigned to conduct another anti-shipping sweep off Sagami Bay. Pursuing four radar contacts, the destroyers engaged targets at midnight on July 22, firing guns and torpedoes from 7,000 yards. This action resulted in the sinking of the 800-ton freighter No.5 Hakutetsu Maru and damaging the 6,919-ton Enbun Maru. In response, Japanese coastal artillery, the minesweeper W-1, and subchaser Ch-42 returned fire, but Hederman's squadron successfully retired without damage. Although minor in scale, the Battle of Sagami Bay would ultimately be the last surface action of the war. Meanwhile, as part of Operation Barney, a planned submarine penetration of the Sea of Japan, nine submarines succeeded in sinking 27 Japanese merchant vessels and one submarine, totaling 54,786 tons. On June 8, the submarine Barb commenced her twelfth patrol, tasked with terrorizing the Sea of Okhotsk using her newly installed 5-inch rocket launchers. Over the following weeks, Skipper Commander Eugene “Luckey” Fluckey executed successful rocket bombardments on Shari, Hokkaido, and targets in Shikuka, Kashiho, and Shiritoru on Karafuto (southern Sakhalin), also employing the submarine's deck guns to destroy 35 sampans in the town of Kaihyo To. Observing Karafuto trains transporting military supplies to ports, Fluckey devised a plan to intercept these trains. Engineman Third Class Billy Hatfield recalled how, as a child, he had placed nuts on railroad ties and watched as the weight of passing trains cracked them between rail and tie. Realizing this principle could be adapted, he suggested rigging an automatic detonator. Fluckey had many volunteers for the mission, including a Japanese POW, and carefully selected Hatfield and seven others, deciding against leading the shore party himself. Just after midnight on July 23, 1945, Fluckey maneuvered Barb to within 950 yards of the Karafuto coast. Led by Lieutenant William Walker, the team launched two rubber rafts at 00:30. Before they left, Fluckey instructed them, “Boys, if you get stuck, head for Siberia, 130 miles north, following the mountain ranges. Good luck.” Upon reaching the shore, the Americans located the tracks and buried a 55-pound scuttling charge and battery beneath the rails, positioning it under a water tower they planned to use as a lookout. As Motor Machinist's Mate First Class John Markuson climbed up, he unexpectedly found he was scaling a sentry tower, causing him to retreat without alerting the sleeping guard. When a train passed, the team dove for cover before resuming their work after it had gone by. Shortly after 01:30, Walker's team signaled their return to Barb, which was now just 600 yards offshore. Fifteen minutes later, while the boats were halfway back, Fluckey heard the rumble of an approaching train. He hoisted a megaphone and urged the crew to “Paddle like the devil, boys!” At 01:47, a 16-car Japanese train struck Hatfield's detonator, resulting in a massive explosion that sent debris soaring 200 feet into the air and reportedly killed 150 Japanese. Minutes later, all eight Americans were safely aboard Barb, which then slipped back into the night, having successfully executed the only amphibious invasion of Japan during World War II. Returning to the main action, Halsey aimed to eliminate the remnants of the Combined Fleet at the heavily fortified Kure Naval Base. Consequently, Task Force 38 began launching the first of 1,363 sorties against ships and airfields in Kyushu, Shikoku, and Honshu, ringing the Inland Sea at 04:40 on July 24. A total of 599 tons of bombs and 1,615 rockets were unleashed over Kure, resulting in the sinking or damaging of 22 warships, which totaled 258,000 tons. Among the affected vessels were the battleships Hyuga, Ise, and Haruna; fleet carriers Amagi and Katsuragi; the escort carrier Kaiyo; heavy cruisers Tone and Aoba; as well as light cruisers Oyodo and Kitakami. In addition, another 53 vessels amounting to 17,000 tons were sunk at various locations, including Hiroshima Bay, Niihama, Bungo Channel, and Kii Channel. At Kobe, the incomplete fleet carrier Aso was also attacked and damaged. American Hellcats and Corsairs effectively swept aside Japanese aerial opposition, shooting down 18 enemy planes while destroying 40 aircraft and damaging another 80 on the ground. Furthermore, around the Inland Sea, 16 locomotives were destroyed and five were damaged, while 20 hangars sustained damage. Three oil tanks were set ablaze at Kure and one at Tano. Additionally, four electric trains and a roundhouse were strafed at Hamamatsu, and various military installations, including barracks, warehouses, power plants, and factories around the airfields, received significant damage. Simultaneously, Rear-Admiral Rawlings' Task Force 37 conducted 257 sorties against targets in Japan and the surrounding offshore areas, sinking the escort carrier Shimane Maru in Shido Bay, along with a number of destroyers, small escorts, and coasters. Meanwhile, Jones' light cruisers swept through the Kii Channel before bombarding the Kushimoto seaplane base and airfields at Cape Shionomisaki during the night. Supporting these efforts, General LeMay dispatched 625 B-29s against seven targets in the Nagoya and Osaka areas, successfully inflicting heavy damage on all of them despite the spotty weather, marking this as the last major attack on the Japanese mainland during the war, as two weeks of cloudy weather ensued. In the early hours of July 25, McCain's aircraft carriers resumed launching strikes against airfields and shipping in the Inland Sea and the Nagoya-Osaka areas. During this operation, they executed a total of 655 sorties, expending 185 tons of bombs and 1,162 rockets, successfully sinking nine ships totaling 8,000 tons and damaging another 35 vessels. The strikes also resulted in the downing of 21 Japanese planes, with an additional 61 aircraft destroyed on the ground and 68 damaged. After refueling on July 27, Halsey's carrier forces moved to launch points located 96 nautical miles off Shikoku. At 04:43 on July 28, they resumed strikes over the Inland Sea, focusing on targets from northern Kyushu to Nagoya, as well as airfields across Honshu along the Sea of Japan. This resulted in McCain flying a total of 1,602 sorties, dropping 605 tons of bombs and expending 2,050 rockets. These attacks sank 27 ships, amounting to 43,000 tons, including the battleships Ise and Haruna, the fleet carrier Amagi, and the Combined Fleet flagship Oyodo. Additionally, 78 vessels totaling 216,000 tons were reported damaged, among them the fleet carrier Katsuragi, heavy cruiser Tone, and light cruiser Kitakami. American pilots reported the destruction of 21 Japanese aircraft in the air and claimed 115 destroyed on the ground across 30 area airfields. They also successfully destroyed 14 locomotives, four oil cars, two roundhouses, three oil tanks, three warehouses, one hangar, and a transformer station. In support of these efforts, Task Force 37 conducted 260 sorties against the eastern Inland Sea, targeting the dockyard at Harima and sinking or severely damaging four corvettes at Maizuru. Meanwhile, the 7th Air Force's 11th and 494th Bombardment Groups carried out a day-long raid on Kure, successfully sinking the heavy cruiser Aoba. By sunset that evening, the Imperial Japanese Navy had effectively ceased to exist, though the cost for the Americans was steep, with losses amounting to 101 planes and 88 men since July 24. As Halsey moved east to target the Osaka-Nagoya area, Shafroth's reinforced Bombardment Group was detached on July 29 to bombard Hamamatsu. During the night, they successfully unloaded 810 16-inch shells, 265 14-inch shells, and 1,035 8-inch shells, damaging the Imperial Government Railway locomotive works, igniting a blaze at the Japanese Musical Instrument Company, and wreaking havoc on infrastructure along the critical Tokaido main line. The following day, McCain's carriers conducted 1,224 sorties against airfields in Osaka, Kobe, Maizuru, and Nagoya, expending 397 tons of bombs and 2,532 rockets. These strikes resulted in the sinking of 20 vessels totaling 6,000 tons and damaging another 56 ships. The pilots also claimed destruction of 115 enemy aircraft on the ground, while inflicting severe damage on numerous industrial targets, including aircraft factories and naval docks in Maizuru. In Miyazu Bay, the destroyer Hatsushino struck an air-dropped naval mine, marking the final loss of 129 Japanese destroyers sunk during the war. That night, seven destroyers advanced deep into Suruga Bay, unleashing 1,100 5-inch shells on Shimizu within seven minutes, successfully destroying or damaging 118 industrial buildings. Typhoon weather would impede the operations of the 3rd Fleet for the next two weeks, as Admiral Nimitz ordered Halsey to steer clear of southern Japan, which was set to become the target of a new and deadly weapon: the atomic bomb. The U.S. Army had begun its project to develop an atomic bomb on August 16, 1942, under the auspices of the Manhattan Project. The project was directed by Major-General Leslie Groves and involved renowned scientists such as Robert Oppenheimer, Enrico Fermi, Niels Bohr, Richard Feynman, and Albert Einstein. Over time, it expanded to include a design center at Los Alamos and two production facilities at Hanford and Clinton. By August 1945, the teams at Los Alamos had successfully designed, developed, and built a gun-type atomic bomb capable of forcing five pounds of uranium-235 against another 17 pounds at high speed, thereby achieving critical mass and releasing immense heat, light, blast, and radiation. The team was also experimenting with an even more powerful device: the plutonium bomb, which utilized an implosion method whereby a sphere of plutonium was compressed by conventional explosives to reach criticality. By early August, scientists had managed to produce enough nuclear material to create only one uranium device, known as Little Boy, and one plutonium bomb, referred to as Fat Man. Each weapon had the potential to annihilate an entire city, and American leaders were prepared to use them if it could compel the Japanese Empire to surrender without necessitating an invasion of Japan. A Targeting Committee led by Groves, consisting of Manhattan Project and Air Force personnel, recommended Hiroshima, Niigata, Kokura, and Nagasaki as primary targets. Groves' Targeting Committee employed several criteria to select sites for atomic bomb targets. The chosen targets had to possess strategic value to the Japanese and be situated between Tokyo and Nagasaki. Additionally, the target needed to feature a large urban area with a minimum diameter of three miles and must be relatively untouched by previous bombings, ironically spared for potential atomic destruction at a later stage. A crucial condition was that, to the best of their knowledge, these areas should harbor no concentrations of Allied prisoners of war. However, this requirement was challenging to ascertain accurately due to a lack of reliable information about the locations of prisoners. Initially, the committee considered 17 candidates and selected five primary targets: Hiroshima, Yokohama, Kokura, Niigata, and Kyoto. On May 28, they narrowed the list to three: Kyoto, Niigata, and Hiroshima. Hiroshima was significant as it housed Hata's 2nd General Army headquarters and featured a large shipyard, while Niigata was a major industrial city with an important port. Moreover, Kyoto held considerable cultural and religious significance for the Japanese. Secretary of War Stimson, having previously cautioned General Arnold about the humanitarian consequences of targeting cities with incendiary bombings, insisted on removing Kyoto from the list after intense discussions with Groves. On July 21, President Truman concurred with Stimson during their meetings in Potsdam, deciding that Kyoto should be spared. Subsequently, Kokura, known for its large arsenal and ordnance works, replaced Kyoto. Additionally, LeMay's staff reportedly included Nagasaki as an alternate target due to potential weather issues, as it was home to Mitsubishi's arms factories, electric production facilities, ordnance works, and extensive dockyards, making it a valuable target. Meanwhile, a high-level civilian Interim Committee, under Secretary of War Henry Stimson, ultimately advised President Truman on the use of nuclear weapons, reasoning that their deployment would be no worse than the current incendiary bombing campaigns against Japan. The committee also recommended that an atomic bomb be deployed as soon as possible, without warning, to maximize shock value and target a "war plant… surrounded by workers' houses." Following a successful operational test of the experimental plutonium bomb conducted at Trinity on July 16, President Truman authorized General Spaatz to prepare for the bomb drops before August 3. Colonel Paul Tibbets' 509th Composite Group had been specially organized in secret since September 1944 to deliver nuclear weapons, and by June, it had arrived at Tinian under the command of LeMay's 21st Bomber Command. General Twinning replaced LeMay as commander of the 21st on August 1, and he would ultimately issue the direct orders for Tibbets to drop the atomic bomb. The atomic bomb mission had a convoluted command structure. The Joint Chiefs of Staff were largely left out of the chain of command. LeMay was Tibbet's nominal commander; however, Groves still had extensive control over the operation through his deputy Brigadier General Thomas Farrell on Tinian. The 21st Bomber Command would determine when the atomic bomb mission was launched, based on suitable weather conditions. Even at this stage, General of the Air Force Henry "Hap" Arnold and LeMay were still skeptical about the Manhattan Project; they thought B-29 incendiary and high-explosive bombing operations would suffice to end the war soon. LeMay even questioned the 509th CG pilots' ability to conduct the mission; he wanted seasoned Pacific B-29 veteran crews to drop the nuclear cargo. While the Imperial Japanese Army (IJA) and Imperial Japanese Navy (IJN) prepared for an impending invasion, the U.S. Army Air Forces (USAAF) continued its bombing campaign against Japan. The crews of the 509th Composite Group needed to acclimate to the navigational challenges, varied weather conditions, extensive distances, and the geography of the region, all while becoming accustomed to combat situations. Training commenced at Tinian on June 30, with conventional operational missions over Japan beginning on July 20. To prepare for their atomic missions, the crews trained with "pumpkins," which were specially constructed bombs designed to mimic the appearance and weight of nuclear weapons. This allowed them to practice handling and releasing the bombs. They also rehearsed navigational procedures, visual bomb release techniques, and dropping the weapon at an altitude of approximately 30,000 feet. Following the drop, the crew conducted high-speed, radical turns to evade the nuclear effects after detonation. During their first mission, a B-29 from the 509th sought an alternative target in Tokyo. The crew aimed to drop their 10,000-pound "pumpkin" on the Imperial Palace, but unfortunately, they missed their target. Had they succeeded in killing the emperor, it could have significantly impacted Japan's decision-making process, potentially fortifying the Japanese people's resolve to continue the war. Military leaders might have seized control in the aftermath, pushing their forces to keep fighting. Throughout their training, the units of the 21st Bomber Command intentionally avoided targeting Hiroshima, Niigata, Kokura, and Nagasaki during these practice runs. In total, Tibbets directed his crews on numerous combat missions that targeted 28 cities and involved the dropping of 49 "pumpkins." Remarkably, the 509th lost no aircraft during these operations. While Tibbets focused on perfecting the delivery method, the weapons Little Boy and Fat Man were being transported to Tinian. Some weapon assemblies were delivered by C-54 and B-29 aircraft from Kirtland Field near Albuquerque, while the cruiser Indianapolis delivered the fissionable material for Little Boy from San Francisco on July 26. Four days later, the submarine I-58 unexpectedly attacked the Indianapolis with six torpedoes while the cruiser was en route to Guam, successfully sinking it. Of the crew, 850 Americans survived the sinking, and another 316 were belatedly rescued by August 8. By July 31, most of the assembly of Little Boy had been completed. However, a detonation expert would need to emplace the cordite charges to fire the uranium "bullet" through the gun device to the uranium core after take-off, minimizing the risk of an inadvertent nuclear explosion in the event of a B-29 crash. Additionally, the crew carrying the atomic bomb had to exercise caution when descending once Little Boy was armed because the primary radar or a backup barometric fuse could potentially trigger an explosion if the aircraft descended too rapidly with the fuses in place. On August 2, B-29 crews arrived at Tinian with the assemblies for Fat Man. On that same day, General Twinning and President Truman approved the plan to bomb Hiroshima. Two days later, Colonel Tibbets briefed the crews about the mission, confirming that he would pilot the aircraft carrying the atomic bomb. Tibbets' B-29 No. 82, later named Enola Gay, was supported by three weather reconnaissance aircraft that reported conditions at Hiroshima, Kokura, and Nagasaki, as well as two additional B-29s assigned to conduct scientific and photographic missions. At 02:45 on August 6, Enola Gay took off from Tinian, with diversionary attacks by 604 B-29s throughout Japan also scheduled for that day, as coordinated by Twinning. After passing through Iwo Jima at approximately 05:55, Captain William Parsons and Second-Lieutenant Morris Jeppson armed the bomb at 07:30. Throughout the journey, the B-29s ascended slowly, reaching an altitude of over 30,000 feet as they crossed Shikoku and Honshu, finally reaching Hiroshima at 31,060 feet. At 09:12, Tibbets executed his final approach from the 'initial point', flying east-west over the city towards the intersection of the Ota and Motoyasu Rivers. Approximately at 09:15, Little Boy was released, and Enola Gay immediately began its turn away to escape the impending explosion. However, the bomb mistakenly descended towards the Shima Surgical Hospital rather than the intended target, the Aioi Bridge. At 09:16, Little Boy detonated at an altitude of 1,890 feet, just as Tibbets was about six miles away from the blast point. As a result of the atomic blast, the immediate area around the epicenter was heated to an astonishing 1 million degrees Celsius, instantly incinerating or vaporizing all people, animals, buildings, and other items within that zone. Hiroshima police officials estimated that immediate casualties amounted to 71,379 individuals who were either killed or reported missing. In the surrounding areas, the blast effects crushed unreinforced structures before igniting them, resulting in an additional 68,023 wounded, with 19,691 of those injuries classified as serious. Subsequent assessments, potentially incorporating the impacts of radiation sickness or more precise accounting, recorded 30,524 individuals as seriously wounded and 48,606 as slightly wounded. Just two minutes after detonation, a growing mushroom cloud of highly radioactive dust and debris soared to a height of 20,000 feet. Within eight minutes, Tibbets' crew could observe the mushroom cloud from 390 miles away. Ultimately, the dust cloud peaked at approximately 60,000 feet in altitude. Soon after, a thick, black, radioactive rain fell upon the areas beneath the cloud. The center of the city was utterly devastated; over four square miles of the urban center, which encompassed seven square miles in total, were completely flattened, resulting in about 60% of the city's area being destroyed. An additional 0.6 square miles suffered damage, while more than 75% of the city's 90,000 buildings were obliterated. The ensuing fires compounded the devastation, contributing to countless deaths and injuries. Tragically, some American prisoners of war were present in Hiroshima and lost their lives in the explosion. Meanwhile, Enola Gay safely returned to Tinian at 14:58, where Tibbets was awarded the Distinguished Service Cross, while the rest of the crew received Distinguished Flying Crosses for their participation in the mission. I would like to take this time to remind you all that this podcast is only made possible through the efforts of Kings and Generals over at Youtube. Please go subscribe to Kings and Generals over at Youtube and to continue helping us produce this content please check out www.patreon.com/kingsandgenerals. If you are still hungry after that, give my personal channel a look over at The Pacific War Channel at Youtube, it would mean a lot to me. Japan was broken. To be perfectly honest she had been broken long ago. Her leadership had been spending months trying to figure out the best possible way to surrender, while the civilians and troops were suffering horribly. Aerial mining strangled her of food, high explosive and incendiary bombs, killed untold scores of people, and then the Atomic weapons were let loose upon her. It was over.
Waar is alle materie uit opgebouwd, en welke wetten volgen die deeltjes om alles op aarde en de rest van het heelal vorm te geven? Wat is antimaterie, en wat heeft quantumtheorie daarmee te maken? In Reis naar de kern neemt Ivo van Vulpen, deeltjesonderzoeker bij CERN in Genève en verbonden aan de Universiteit van Amsterdam, je mee langs al deze grote vragen. Je denkt misschien dat dat ver van je normale belevingswereld afstaat, maar al deze inzichten worden dagelijks gebruikt. Van de GPS op je telefoon, tot de scanners in ziekenhuizen.. Over Reis naar de Kern Na Terug naar de Oerknal met Govert Schilling en Baan door het Brein met Iris Sommer is het nu tijd voor een nieuw avontuur: Reis naar de kern. Een fascinerende duik in de wereld van de allerkleinste deeltjes, waar de allergrootste vragen worden beantwoord. In vijf afleveringen zoomen we in op de wereld van het atoom, de quantummechanica, antimaterie en de ontdekking van het Higgs Boson. Reis naar de Kern is een podcast van BNR. Tekst en presentatie: Ivo van Vulpen. Concept: Connor Clerx. Eindredactie: Annick van der Leeuw. Montage: Gijs Friesen en Connor Clerx. Sounddesign en mixage: Gijs Friesen. Over Ivo Ivo van Vulpen is als deeltjesfysicus werkzaam aan de Universiteit van Amsterdam, het Nationaal Instituut voor subatomaire fysica (Nikhef) en hij doet onderzoek bij de deeltjesversneller (Large Hadron Collider) bij CERN in Genève. Hij is hoogleraar Wetenschapscommunicatie, in het bijzonder betreffende de natuurkunde, aan de Universiteit Leiden. In 2018 verscheen zijn eerste boek: De melodie van de natuur. Transcript aflevering Als je gaat vertellen over de zoektocht naar de bouwstenen van de natuur kunnen we het best starten bij het moment dat iedereen ziet als de start van de reis: het jaar 1912 als het ons voor het eerst lukt om een plaatje te maken van een atoom. Die stap levert een schat aan informatie op en maakt dat we in één klap ons beeld van hoe de natuur werkt compleet moeten herzien. We leren bijvoorbeeld dat alles op aarde uiteindelijk maar uit drie unieke bouwsteentjes bestaat. En we leren dat de logica die de natuur volgt op die piepklein schaal to-taal anders is dan die van onze wereld als mensen. We zien dingen die helemaal niet zouden moeten kunnen volgens alles wat we tot dan toe dachten. Deeltjes blijken op meerdere plekken tegelijk te kunnen zijn en we ontdekken verborgen eigenschappen en nieuwe krachten. Kortom, het hele bouwwerk moet op de schop. En hoewel de zoektocht naar de logica en fundamenten achter deze nieuwe realiteit tot op de dag van vandaag voortduurt geef ik in deze aflevering ook een paar voorbeelden van hoe de inzichten al een toepassing hebben gevonden: niet alleen in de werking van een computerchip of de quantumcomputer, … maar diep in het atoom vonden we ook een manier om onszelf als mensheid te vernietigen. Het onderwerp van deze aflevering is de atoomrevolutie. Maar laten we starten waar we nu zijn: op straat, in de studio, in de auto of waar je deze podcast dan ook beluistert. Als je om je heen kijkt zie je dat de wereld is opgebouwd uit een groot aantal verschillende materialen: de stof van de stoel waarin je zit, de bakstenen van het gebouw waar je langsloopt of het keramiek van de beker waar je je koffie uit drinkt. Op school hebben we geleerd dat er zo’n kleine honderd elementaire bouwstenen zijn, de elementen, waarvan het kleinste ondeelbare brokje een atoom wordt genoemd. Er zijn in de natuur stoffen zoals zuurstof en ijzer die opgebouwd zijn uit één type atoom, in dit geval zuurstofatomen of ijzeratomen, maar er zijn ook veel stoffen waarvan de kleinste unieke bouwsteen een combinatie is van verschillende atomen. Zo’n bouwsteen noemen we een molecuul. Een bekend voorbeeld is bijvoorbeeld water (dat is een combinatie is van 2 waterstofatomen en 1 zuurstofatoom), maar ook suiker, alcohol en DNA zijn ingewikkelde combinaties van atomen van verschillende elementen. Als je wilt begrijpen waarom stoffen hun eigen unieke eigenschappen hebben is het cruciaal om hun bouwstenen te begrijpen. Maar dat gaat niet zomaar. De natuur geeft haar geheimen namelijk niet zomaar prijs. Atomen zijn meer dan een miljoen keer kleiner dan het kleinste voorwerp dat je met je oog kunt zien en het lijkt dan ook een onmogelijke opgave deze wereld te leren kennen. Dé grote truc om dingen zo klein als een atoom in kaart te brengen hebben we in de vorige podcast al kort besproken. In essentie komt het erop neer dat je iets kunt leren over een object door te bestuderen hoe andere deeltjes er vanaf ketsen. Dat is simpeler gezegd dan gedaan, maar in 1912 was het uiteindelijk Ernest Rutherford die het voor het eerst voor elkaar kreeg. Deze aflevering heeft best veel technische elementen, maar ik ga ze toch benoemen, omdat het een belangrijke stap is en de start van al het moderne deeltjesonderzoek. Ik hoop dat het me lukt je er veilig langs te loodsen. Daar gaan we. Die Ernest Rutherford vuurde deeltjes met grote snelheid af op een heel dun laagje goudatomen, iets dat je het best kunt voorstellen als een vel aluminiumfolie, maar dan van goud. En als ik grote snelheid zeg dan bedoel ik niet 200 of 300 km/uur, maar net iets minder dan een miljard kilometer per uur. Om te kijken waar al die afgeketste deeltjes terecht kwamen had hij een scherm gemaakt dat een lichtflits gaf als er een deeltje op viel. To-taal onverwacht bleek dat sommige deeltjes gewoon bijna recht terugkwamen. Na wat puzzelen bleek dat de enige manier om dat te verklaren was als er in een atoom een kei-harde pit zou zitten. En na alle metingen geanalyseerd kwam inderdaad het bekende beeld van een atoom naar voren zoals we dat op de middelbare school leren en het plaatje van een atoom dat Google of ChatGPT je geeft: Atomen bestaan uit een piepkleine zware atoomkern met een positieve lading Om de atoomkernen draaien lichte elektronen in vaste banen rondjes Elke elektronenbaan heeft een maximum aantal elektronen Omdat we dit beeld kennen klinkt het niet heel spectaculair, maar in die tijd was het revolutionair! Zo‘n atoom kon namelijk helemaal niet bestaan volgens de toen bekende natuurwetten. Het eerste probleem met dit beeld is dat volgens de theorie elektronen helemaal geen rondjes rond de kern mochten draaien. Dat klinkt gek, want de beweging van een deeltje dat om iets zwaars heen draait lijkt precies hetzelfde als de beweging van een planeet die om de zon draait. En dat begrijpen al een paar honderd jaren tot in groot detail dankzij de wetten van Newton. Maar er is wel een cruciaal verschil: een elektron is elektrisch geladen en de theorie van de elektromagnetische kracht zegt dat zulke deeltjes energie verliezen als ze om iets heen draaien. Een elektron in een atoom zou dus energie verliezen en binnen een fractie van een seconde op de kern storten. En zelfs als elektronen om de een of andere onverklaarbare reden al keurig rondjes draaien, waarom dan alleen op bepaalde afstanden? Daar is geen en-ke-le reden voor. Het model van een atoom dat uit de experimenten tevoorschijn kwam, kon volgens de theorie dus helemaal niet bestaan. In zo’n situatie waarin theorie en experiment met elkaar in tegenspraak zijn, delft de theorie meestal het onderspit. Ook in het geval van de elektronen, die vrolijk hun rondjes draaiden. Het was duidelijk dat we iets over het hoofd zagen. Maar wat dan? In de zoektocht naar een verklaringen voor het atoomprobleem zou uiteindelijk de Deense natuurkundige Niels Bohr de impasse doorbreken met een net zo vreemd als briljant idee. Hij stelde voor, - en let op, dit is volledig uit de lucht gegrepen - dat voor elektronen alleen een combinatie van de snelheid en hun afstand tot de atoomkern toegestaan was. Namelijk alleen als het pre-cies een veelvoud was van een klein brokje basis-energie: ℏ. We zeggen dan ook dat de combinatie van snelheid en afstand gequantiseerd is. En omdat snelheid en afstand gekoppeld zijn legt deze eis daardoor een snoeiharde restricties op aan de plek waar elektronen hun rondjes mogen draaien. Met die nieuwe regel kon Bohr ineens niet alleen de stabiele banen verklaren, op precies dezelfde plek als we in het experiment zagen, maar ook nog eens met de juiste energie. Super! Opgelost dus, al wist niemand waarom die quantisatie er was. In de jaren erna is er een veel complexer theoretisch bouwwerk ontstaan rond dit idee: de quantummechanica. Het klassieke beeld van een elektron als een bolletje dat rondjes draait om de kern is vervangen door een elektron als golf en een wolk van waarschijnlijkheden. Een van de vele bizarre gevolgen van de theorie is dat deeltjes op meerdere plekken tegelijk kunnen zijn. Dat klinkt als waanzin en kan haast niet waar zijn. Maar het bleek te kloppen, net als bij alle andere experimenten die de bizarre voorspellingen van de quantumtheorie gingen controleren. De theorie hield moeiteloos stand en is nu een van de belangrijkste pijlers waar de moderne natuurkunde op rust. Een van de vragen die de quantummechanica niet beantwoordde was de vraag waarom er een maximum aantal elektronen is per baan. Kortom, waarom zitten de eerste twee elektronen van een stof als Lithium gezellig bij elkaar in de eerste baan en zit dat derde elektron in zijn eentje een stuk verderop waar hij veel minder sterk vastgebonden zit aan de kern? Belangrijk om te weten, want dat losse derde elektron maakt dat Lithium (een metaal) zich chemisch volstrekt anders gedraagt dan Helium (een gas). Ook hier werd weer een merkwaardige oplossing gevonden door een andere wetenschapper, Pauli, die net als Bohr ook de volstrekt arbitraire eis oplegde dat geen twee elektronen in het atoom hetzelfde mogen zijn. Twee jonge Leidse promotiestudenten theoretische natuurkunde - Samuel Goudsmit en George Uhlenbeck verzonnen (of ontdekten, het is maar hoe je het wilt zien) precies 100 jaar geleden dat elektronen een verborgen eigenschap hadden. Elektronen kwamen in twee smaken en de analogie die daarbij vaak gebruikt wordt is het beeld dat elektronen kunnen draaien: en wel linksom óf rechtsom. Als je van veraf kijkt zie je het verschil helemaal niet tussen een linksom en rechtsom draaiende bal en pas als je het aanraakt voel je dat er toch een verschil is. Met dat nieuwe idee pasten er dus ineens wél twee elektronen in de eerste baan (een linksom-draaiend en een rechtsom-draaiend elektron zijn immers niet hetzelfde), maar die derde ‘mag’ er niet meer bij want ja, dan zou hij hetzelfde zijn als een van de andere elektronen die er al waren. En dat mag niet volgens de nieuwe eis … en dus moet hij wel een stuk verderop gaan zitten. Hebben we hier in de praktijk nou wat aan? Zeker! Absoluut! Het quantummechanisch gedrag van deeltjes is cruciaal om materiaaleigenschappen te begrijpen en dat is weer belangrijk voor de bouwstenen van een computerchip. En ik nodig je uit om een dag door te brengen zonder daar gebruik van te maken en daarna eens een schatting te maken hoe belangrijk dat is voor de Nederlandse economie. De eigenschap spin wordt ook gebruikt in MRI scans in ziekenhuizen. En die wonderlijke voorspellingen van de quantummechanica dat een deeltje twee verschillende eigenschappen tegelijk kan bezitten en dat het op een mysterieuze wijze verstrengeld kan zijn met een ander deeltje, vormt de basis van de quantumcomputer. Die quantumcomputer, als hij er eenmaal is, zal ons ongekende nieuwe mogelijkheden geven en het is dan ook niet vreemd dat er in veel landen stevig in geïnvesteerd wordt. Ook in Nederland. Kortom, ‘quantum is overal’ en gaat in de toekomst een nog veel enorm belangrijke rol spelen in onze maatschappij. Het is goed om te zien dat er collega’s zijn, zoals bijvoorbeeld Julia Cramer die bij de Universiteit Leiden onderzoek doen naar hoe we ook de maatschappij mee kunnen nemen in deze ontwikkelingen en professor Margriet van der Heijden die bij de Technische Universiteit Eindhoven werkt aan de dialoog met de samenleving over de natuurkunde in brede zin. Na het succes van Rutherford was het een kwestie van tijd voordat de techniek zou verbeteren en we ook de atoomkern zelf zouden kunnen bestuderen. Dat duurde even, maar begin jaren dertig ging het ineens heel erg snel. Zowel in het Verenigd Koninkrijk als in de Verenigde Staten lukte het om deeltjes genoeg energie mee te geven zodat ze de atoomkern konden raken. Een experimentele prestatie van wereldformaat die de onderzoekers de Nobelprijs opleverde en die bekend staat als ‘het splijten van het atoom’. Ik maak even wat reuzenstappen, maar toen het stof neerdaalde bleek de atoomkernen inderdaad piepklein te zijn en opgebouwd uit twee bouwstenen: positief geladen protonen en ongeveer evenveel neutrale neutronen, elk ongeveer 2000 keer zo zwaar waren als een elektron. Een atoom bestaat dus uit een aantal dicht opeengepakte protonen en neutronen in de kern en daaromheen op grote afstand wolken van elektronen om het atoom neutraal te houden. En omdat dit geldt voor alle atomen betekent dit dus dat alles op aarde, en sterker nog, ook alle sterren en andere planeten in het heelal, zijn opgebouwd uit maar drie bouwstenen. Als je Helium wilt maken heb je twee protonen, twee neutronen en twee elektronen nodig en als je goud wilt maken dan pak je ‘gewoon’ 79 protonen, 118 neutronen en 79 elektronen. Het heelal als een puzzel met maar drie verschillende stukjes: ongelooflijk! Maar, het zal eens niet, het leverde ook weer een hoofdpijndossier op. Hoe kan zo’n atoomkern namelijk überhaupt bestaan? Die positief geladen protonen zitten superdicht bij elkaar als als ze dezelfde lading hebben zouden ze elkaar heel hard af moeten stoten. En waarom blijven die neutrale neutronen eigenlijk bij elkaar zitten? De enige oplossing, weer een noodgreep, was om een nieuwe kracht te verzinnen. Een nieuwe natuurkracht die tegelijkertijd heel sterk moet zijn (namelijk sterker dan de elektromagnetische kracht), maar die buiten de atoomkern weer alle kracht verliest (omdat anders de hele wereld zou samenklonteren tot één grote atoomkern). Het werd snel duidelijk dat de energie waarmee neutronen en protonen elkaar aantrekken in de kern, de zogenaamde bindingsenergie, afhangt van het aantal protonen en neutronen. Er bleek on-voor-stel-baar veel energie opgeslagen te zijn in atoomkern en we ontdekten dat het energie op kan leveren als atoomkernen samensmelten of juist splitsen. Dit inzicht gaf ons niet alleen antwoord op de vraag hoe de zon aan zijn energie kwam, maar gaf ons als mensheid ook de mogelijkheid om onszelf te vernietigen met atoombommen. Om deze kernfusie en kernsplijting beter te begrijpen is het handig om, gek genoeg, een link te maken met het bedrijfsleven. We weten dat het voor grote bedrijven op een gegeven moment efficiënter wordt om op te splitsen in kleinere eenheden. De meerwaarde van het bij elkaar blijven weegt dan niet meer op tegen de flexibiliteit en energie die in kleinere eenheden te behalen is. Er is soms een klein zetje nodig om de splitsing in gang te zetten, maar de kosten en het juridisch gedoe betalen zich enorm snel terug. Voor kleine bedrijven geldt juist precies het tegenovergestelde. Want waar de winst voor grote bedrijven te vinden is in opsplitsen, is het voor kleine bedrijven juist verstandig om te fuseren. Natuurlijk moet er eerst geïnvesteerd worden in het proces, maar daarna levert het nieuwe energie en winst op. Gek genoeg blijken voor atoomkernen precies dezelfde wetmatigheden te gelden: het levert energie op als grote atomen splitsen (kernsplijting) en voor kleine atomen als ze fuseren (kernfusie). Eerst splijten: Alle protonen en neutronen bij elkaar houden in grote atoomkernen kost veel meer energie dan de situatie waarin je hetzelfde aantal verdeelt over twee kleinere atomen. Grote atoomkernen zoals Uranium splitsen dan ook maar al te graag, al is daar soms een klein duwtje voor nodig. Bij die splitsing komt energie vrij die in kerncentrales weer gebruikt wordt om water te verwarmen tot stoom … dat weer gebruikt wordt om met behulp van een turbine elektriciteit op te wekken. Bij sommige splijtende atoomkernen blijken neutronen vrij te komen die precies genoeg energie hebben om andere atomen ook het zetje geven om te splijten … waarbij natuurlijk weer neutronen vrijkomen etc. Het idee van een kettingreactie en toepassing in een bom ligt dan voor de hand en dat werd de start van een ongekende wapenwedloop die binnen een paar jaar de atoombom opleverde via het beroemde Manhattan-project. Fuseren: Bij kleine atoomkernen werkt het dus precies andersom. Daar levert het dus juist energie op door samen te smelten. Maar omdat de kernen elektrisch geladen zijn en elkaar afstoten als ze bij elkaar in de buurt komen gebeurt dat samensmelten alleen op plekken waar het erg warm is waardoor de atoomkernen enorm snel bewegen en elkaar dus wel kunnen raken (net zoals twee magneten wel op elkaar kunnen als je maar hard genoeg drukt). Een van die warme plekken is het centrum van onze zon waar het een paar miljoen graden is. Hoewel we al duizenden jaren weten dat de zon elke dag opkomt, wist tot de ontdekking van de atoomkern gek genoeg niemand waar de zon zijn energie vandaan haalde. En nee, zelfs Albert Einstein niet. De brandstof van de zon, waterstof, is ook hier op onze planeet ruim voorradig, dus het is niet gek dat mensen nadenken over kernfusie hier op aarde. Dat kan, maar blijkt een enorme technologische uitdaging te zijn i.v.m. de temperaturen van miljoenen graden die nodig is. Lastig dus, …. maar niet onmogelijk en natuurkunde-collega's vanuit de hele wereld werken samen in grote onderzoeksprojecten om het voor elkaar te krijgen. Ook Nederlanders! Sterker nog, we hebben een apart instituut in Nederland: DIFFER in Eindhoven. Ik kan me heel goed voorstellen dat het je nu een beetje duizelt na verhalen over de quantumcomputer en de kernkrachten. Hopelijk ben je er nog. Al die nieuwe inzichten hebben zowel de wetenschap als de maatschappij ingrijpend veranderd. En hoewel veel raadsels nu opgelost waren, levert deze nieuwe theorie ook weer nieuwe vragen op. Zijn die protonen en neutronen dan echt de kleinste bouwstenen van de natuur? En wat zit er nou achter die rare wetten van de quantummechanica? Een extra punt van zorg is dat de quantumtheorie niet in overeenstemming lijkt met die van de zwaartekracht. We missen dus iets. Maar er was meer vreemds. Veel meer. In het onderzoek naar straling uit de ruimte zagen we deeltjes die geen proton, geen neutron en geen elektron waren. Maar dat waren de enige deeltjes die er waren hadden we net geleerd. Wat is dat nou weer? In de decennia erna leerden we zelf deeltjes maken door protonen op elkaar te schieten in deeltjesversnellers en de ontdekkingen zouden elkaar enorm snel opvolgen, wat uiteindelijk leidde tot de beschrijving van de kleine deeltjes zoals we dat nu nog steeds hebben: het Standaard Model met drie families van elementaire deeltjes, nog kleiner dan de protonen en neutronen en drie quantumkrachten. Maar genoeg voor vandaag. Die ontwikkelingen bespreken we in de volgende aflevering.See omnystudio.com/listener for privacy information.
72 minuter tros det ta innan världen som vi känner den går under vid ett totalt kärnvapenkrig. Dan Jönsson reser till Hiroshima och ser hur ingenting tycks ha hänt och allt förändrats. Lyssna på alla avsnitt i Sveriges Radio Play. ESSÄ: Detta är en text där skribenten reflekterar över ett ämne eller ett verk. Åsikter som uttrycks är skribentens egna.AtomvårSom ett förfärligt fossil från något av framtidens naturhistoriska museer ligger den där och ruvar i all sin nakenhet: den suddiga konturen, skuggan av en mänsklig kropp. Fortfarande tydligt urskiljbar efter så många år tecknar den sin svartnade silhuett i det slitna brottstycket av den stentrappa som fram till den 6 augusti 1945 utgjorde entrén till bankkontoret i Hiroshima. På morgonen den dagen, som verkade bli varm och solig, hade någon slagit sig ner på trappan i väntan på att banken skulle öppna; någon, som när atombomben briserade klockan kvart över åtta i likhet med tiotusentals andra invånare i denna storstad helt enkelt försvann, förintades i den extrema hettan. Men skuggan blev kvar. Framtida civilisationer till varnagel och besinning.Nu ingår stenen med skuggan bland artefakterna på Fredsmuseet i Hiroshima, bland föremål som smälta klockor, sönderbrända skor, väggbitar med spåren av det svarta, radioaktiva regn som följde senare på dagen – ett museum som i sin krampaktiga saklighet kramar hjärtat ur besökaren. Plötsligt förstår jag precis vad han menar, den japanske mannen i Alain Resnais film ”Hiroshima, mon amour”, när han gång på gång förnekar att hans tillfälliga franska älskarinna skulle kunna förstå något: ”Tu n'as rien vu a Hiroshima.” Du såg ingenting i Hiroshima. Ute i parken blommar körsbärsträden; vid utgången skriver jag en rad i museets gästbok och hajar till vid något som någon har präntat dit ett litet stycke ovanför. ”If only they had surrendered earlier…” läser jag på engelska. Om de bara gett upp tidigare.Föreställningen att atombomberna över Hiroshima och Nagasaki var moraliskt försvarbara eftersom de gjorde slut på kriget och tvingade fram den japanska kapitulationen några veckor senare, hör till den västerländska historieskrivningens mest långlivade myter. Men sann, det är den inte. Bomben bör kallas för vad den var, en förbrytelse; vill man förklara den bör man förstå den som en maktdemonstration inte bara mot Japan utan kanske främst mot Sovjetunionen, vars röda armé i krigets slutskede avancerade mot de japanska öarna. Men förödelsen i Hiroshima ska också ses som det logiska slutsteget i en process som påbörjats nästan femtio år tidigare, en vetenskaplig omvälvning som redan i grunden hade skakat bilden av vår värld och vår plats i den. Människan hade dyrkat upp naturens lås, sprängt den gamla världsbilden i småbitar. Det återstod att demonstrera.Fram till dess hade naturvetenskapen varit överens om att materiens minsta beståndsdelar utgjordes av ett slags rörliga partiklar, atomer. Ordet atom användes första gången av den grekiske naturfilosofen Leukippos på 400-talet före vår tideräkning och betyder odelbar – när den moderna atomläran formulerades i början av 1800-talet var det alltså ett sätt att hävda just att vetenskapen i dessa elementarpartiklar hade identifierat en materiens orubbliga grund, en fast punkt. Den rubbades 1897, när fysikern Joseph John Thomson lyckades visa att atomen förutom sin positiva kärna också består av en mindre, negativ partikel, elektronen. Året innan hade Henri Becquerel upptäckt det som Marie Curie några år senare skulle ge namnet radioaktiv strålning, och decennierna som följde kom genombrotten slag i slag: makarna Curies utforskande av radioaktiviteten, Ernest Rutherfords kartläggning av atomens inre struktur och hans modell – som sedan utvecklades och förfinades av den danske fysikern Niels Bohr – av hur elektronerna kretsar runt kärnan som i ett litet solsystem.Människan öppnade dörren till atomåldern, och världen var förändrad. ”Upplösningen av atomen,” skrev den ryske konstnären Vassily Kandinsky 1913, ”var för min själ detsamma som upplösningen av världen. De tjockaste murar störtade med ens samman. Allt blev osäkert, instabilt, mjukt.” Det var ungefär samtidigt som Kandinsky gjorde sina första helt abstrakta bilder – och känslan av en värld i upplösning var han knappast ensam om. Kubister, futurister, rayonnister: alla försökte de på olika sätt spegla denna söndersprängda verklighet. ”Jag är en atom i universum,” skrev Hilma af Klint om sina målningar i serien ”Atom”, och i Paris uppförde dansösen Loïe Fuller sin experimentella ”Radiumdans” med fosforescerande kostymer och – enligt uppgift – Marie och Pierre Curie som förundrade åskådare.Men fascinationen för det nya och oerhörda bar redan från början på ett mörkt stråk. 1909 publicerade H G Wells sin autofiktiva roman ”Tono-Bungay” där kvacksalvaren George Ponderevo upptäcker det radioaktiva materialet ”quap”, ett ämne med en outsinlig inre energi som också med tiden drabbar dem som kommer i kontakt med det med en dödlig, lepraaktig sjukdom. Detta kärnfysikens janusansikte var alltså tidigt uppenbart för både forskare och konstnärer, liksom för den breda allmänheten. I USA inleddes mot slutet av 20-talet en rättsprocess när en grupp kvinnliga arbetare i en urfabrik, ”the radium girls”, stämde staten efter att många av dem drabbats av cancer på grund av exponering för fluorescerande radiumfärg. Bävande anade man i den nya fysiken samtidigt lösningen på många av mänsklighetens problem – och fröet till dess slutgiltiga undergång.Men någon väg tillbaka fanns inte. Modernitetens bild av den tekniska utvecklingen som ett framåtskridande till varje pris laddade atomteorin med en ödesmättad förening av utopiska löften och dödliga hot. Dadaisten Hugo Ball förkunnade hur ”elektronteorin orsakat en märklig vibration i alla ytor, linjer och former”, hur ”dimensionerna krökte sig och gränser föll”. Men det slutliga genombrottet kom först 1938 när en grupp tyska fysiker gjorde upptäckten att en urankärna kunde klyvas när den besköts med neutroner. Och hur det då frigjordes extrema mängder energi.Det återstod nu sju år till Hiroshima. Om vetenskapen fram till dess stått på tröskeln till atomåldern togs nu de sista stegen in i den – och som så ofta var det vapenindustrin som gick i bräschen. Redan i januari 1939 tog USA:s president Roosevelt emot en rapport som visade hur man med en nukleär kedjereaktion skulle kunna producera en förödande bomb; samma teknik kunde också användas för att producera fredlig elektricitet, men med det krig som snart bröt ut kom andra prioriteringar. Från nyåret 1943 sysselsatte det så kallade Manhattanprojektet mer än hundratusen personer runt om i USA och efter två och ett halvt år, i juli 1945, gjordes den första provsprängningen. Bara tre veckor kvar: vid tvåtiden på morgonen den 6 augusti lyfte bombplanet Enola Gay från sin bas på ön Tinian i Marianerna. Vid spakarna satt piloten Paul Tibbets och i lastutrymmet fanns en fyra ton tung bomb som kärleksfullt fått namnet Little Boy. Knappt sju timmar senare nådde den sitt mål. Framtidens portar hade sprängts. Och ljuset flödade. AtomsommarDet sägs att det första som sker när en atombomb exploderar är att allt blir vitt. Berättelserna från dem som överlevde och kan berätta är fyllda av en vantrogen bävan, en övertygelse om att ha varit med om något som är omöjligt att beskriva. Ändå måste man försöka. Hisashi Tohara var arton år och satt just på ett tåg i väntan på att det skulle lämna perrongen. Dagen var en måndag, skriver han. Höstterminen hade precis börjat. Eleverna i hans gymnasieklass var mobiliserade vid ett stålverk, men den här dagen hade strömmen slagits ut och arbetarna fått ledigt. Pendeltåget in till centrum skulle alldeles strax gå när plötsligt allt flammade upp i ett bländande ljus – ögonblicket efter var det som om jorden skakade i sina grundvalar och hans nacke blixtrade till av en ohygglig smärta.Hisashi Tohara ägnar nästan en sida åt att försöka ge en föreställning om detta oerhörda ljus. Det var, förklarar han, ett ljus som aldrig slutade att strömma ut: ”oräkneliga partiklar av ljus” – ”bländande, gyllene med röda reflexer” – ”mikroskopiska, finare än ett damm av ljus” – ”en stormflod av ljus som översvämmade världen” – ”himmel och jord flöt i ett rött, gult, gyllene skimmer där man urskilde myriader av partiklar, än mer strålande. Under två eller tre sekunder kanske? Men det tycks mig” – minns han – ”som det varade betydligt längre. Och ändå inte mer än ett ögonblick.”Ögonvittnesskildringarna från Hiroshima har alla det gemensamt att de står mer eller mindre vanmäktiga inför den intensiva intighet som bomben utlöser. Hisashi Toharas minnesbilder är nedtecknade ett år efter bomben, därefter skrev han aldrig något mer. Enligt hans hustru var det heller ingenting han någonsin talade om; först efter hans död 2011 hittade hon berättelsen i en byrålåda. Som hos så många andra som överlevt liknande katastrofer genomsyras den inte bara av försöken att ge konkret gestalt åt det obeskrivliga, utan också av en dov, irrationell skam över att vara den som skonades. De sargade, sönderbrända, fastklämda, drunknande offer som kantar flyktvägen ut ur den förstörda staden hemsöker hans minnen som en kör av tysta, anklagande spöken.Samma dunkla upplevelse av hur skulden på något obevekligt vis faller på de oskyldiga offrens axlar går också som en sugande underström genom den främsta litterära skildringen av katastrofen i Hiroshima: Masuji Ibuses dokumentära kollektivroman ”Kuroi ame” – Svart regn. Ibuse var redan före kriget en av Japans mest uppburna författare, och ”Svart regn” blev bland det sista han skrev. Boken utgavs först 1969 och bygger på ett stort antal vittnesmål som fogats samman till en lågmäld, kollektiv berättelse. Titeln, ”Svart regn”, syftar på det våldsamma skyfall som bröt ut några timmar efter explosionen och som många av de brännskadade offren hälsade med jubel – utan att veta, förstås, att vattnet var radioaktivt och att de som drack det gick en säker död till mötes.Detta historiska markperspektiv är det fina med Ibuses roman. Ingen vet ju riktigt vad som hänt. Men att det är något exceptionellt blir uppenbart redan under de första veckor efter bomben när berättelsen utspelar sig. Ogräsen skjuter fart och blir monsterhöga, mystiska utslag visar sig på de överlevandes kroppar och leder snabbt till döden. Inga förklaringar ges, allt framstår som en obarmhärtig prövning. Frågan är, å andra sidan, om någon alls skulle bli lugnad av att veta vad sådana fenomen beror på, vad som faktiskt sker i en kropp som smittas av akut strålsjuka. Hur vävnaderna i de inre organen faller sönder, hur blodkärlens väggar drabbas av nekros, hur blodet slutar producera antikroppar och immunförsvaret upphör att fungera. Hur vatten tränger ut under huden där det bildar stora blåsor som brister, hur syrebristen i blodet orsakar så kallad cyanos, ett slags lilafärgade utslag som spricker upp och blöder. Hur bakterier från inälvorna tar sig ut och infekterar blodet och leder till akut sepsis.Som sagt, jag vet inte om det gör katastrofen mer begriplig. Men allt detta vet vi idag. Det är helt enkelt några av de nya kunskaper atomåldern fört med sig. Dessutom: med bomben föddes insikter som också utlöste en helt ny etisk diskussion. Den tyske filosofen Günther Anders, som besökte Hiroshima och Nagasaki i slutet av femtiotalet, beskrev det som att det som drabbat dessa båda städer var den första konkreta erfarenheten av hur kärntekniken och dess konsekvenser från och med nu förenar hela mänskligheten i en kuslig ödesgemenskap. Historiefilosofiskt, skriver han, är dessa vapensystem inte längre ett medium utan själva scenen där historien utspelar sig.Efter hemkomsten från Japan tar Anders kontakt med Hiroshimapiloten Claude Eatherly, som vid den här tiden sitter intagen på ett mentalsjukhus för sina samvetsbetänkligheter. Deras korrespondens, som sträcker sig över nästan två år, utkommer så småningom under titeln ”Samvete förbjudet” – och i ett av dessa publicerade brev minns Eatherly hur han på morgonen den 6 augusti slås av den förfärande insikten om vad som är på väg att ske. Han sitter själv inte i bombplanet, utan flyger i förväg för att rekognoscera målet: en järnvägsbro i utkanten av staden. Han ser den tydligt genom de lätta cumulusmolnen. I samma ögonblick som han ger klartecken glider molnen bort, bomben riktas fel och han inser att den nu kommer att träffa stadens centrum.Claude Eatherly kommer så länge han lever aldrig att bli fri från det han varit med om. Samma sak gäller förstås de tusentals överlevande, på japanska hibakusha, som likt offren för de nazistiska förintelselägren bär sitt ofattbara trauma i tysthet mitt i en till synes likgiltig omvärld. Vad är det för mening att berätta? Hur beskriver man det obeskrivliga? Hur förklara skuldkänslorna hos den som överlevt? ”Du såg ingenting i Hiroshima”, som det heter i Marguerite Duras manuskript till Alain Resnais ”Hiroshima, min älskade”. Nej – men på stadens Fredsmuseum finns några konkreta kvarlevor: en bit vägg med långa strimmor av det svarta, radioaktiva regnet, trappstenen med skuggan efter någon som satt och väntade på att banken skulle öppna. Men också mängder med teckningar, utförda av hibakusha under åren efter bomben; bilder som började dyka upp i offentligheten på sjuttiotalet och sedan vuxit till en egen genre av vittnesmål. Enkla, expressiva försök att skildra förödelsen, paniken, massdöden. Mänskliga spöken med håret på ända, kläderna i trasor och skinnslamsor hängande från kroppen. Floden som svämmar över av lik. Vanmäktiga bilder av de första sekundernas intensiva ljus.Barnen som överlevde, skriver Hisashi Tohara, kom att kalla bomben för ”pikadon”: av orden för ”ljus” och ”dån”. Det ljuset, och det dånet, är det som lyser upp och genljuder genom decennierna som följer. Med skuggorna av hundratusen döda. Atomhöst”Din första tanke när du vaknar skall vara 'atom'.” Så inleder Günther Anders sina Atomålderns bud, publicerade i dagstidningen Frankfurter Allgemeine 1957. Den tyske filosofen och författaren hade då sedan ett decennium ägnat sig åt att försöka greppa den moraliska vidden av atombomberna mot Hiroshima och Nagasaki – och kommit till slutsatsen att bombens själva existens i grunden hade förändrat mänskligheten som kollektiv. Som han uttryckte det i sin brevväxling med den olycklige Hiroshimapiloten Claude Eatherly något år senare hade hotet om planetens totala förintelse fört oss alla samman i en ofrivillig ödesgemenskap av ”oskyldigt skyldiga”. Eatherly, med sina förtärande självförebråelser – som till slut drev honom så långt att han upprepade gånger begick våldsbrott och bankrån, bara för att bevisa sig skyldig till något, och slippa ifrån sin roll som krigshjälte – framstod för Anders som en förebild i denna universella olycksgemenskap. Ett offer för bomben, han också.Om någon tycker det här påminner om hur man idag tänker kring klimatförändringarna, ligger det mycket i det. Men detta första decennium efter bomben var det inte många i västvärlden som delade Anders tankar. När han och Eatherly brevväxlade satt piloten inspärrad på ett militärt mentalsjukhus med sina skuldkänslor. I femtiotalets USA fanns ingen plats för sådana som han. Det skulle så småningom förändras – men trots att bilderna och vittnesmålen från Hiroshima nått den amerikanska allmänheten redan 1946, i John Herseys berömda reportage, fick de väldigt liten effekt i offentligheten. Här dominerade den officiella historieskrivningen där det som skett i Hiroshima och Nagasaki var ett nödvändigt ont, närmast framtvingat för att äntligen få den japanska krigsmakten att kapitulera. Den berättelsen gäller till stor del än idag, trots att den faktiskt inte har mycket fog för sig. Som historikern Tsuyoshi Hasegawa kunde visa redan 2005 var Japans kapitulation bara en tidsfråga; det som fick USA att detonera bomberna var att Sovjetunionen efter Tysklands kapitulation fått händerna fria i Fjärran Östern. I en stormoffensiv hade Röda armén ockuperat Manchuriet och var på väg mot Japan över öarna i norr. Vad det handlade om för USA:s del var att inte Sovjet skulle hinna först.Atombombsåldern kom alltså att inledas i en stämning av förnekelse och förträngning. Medan efterkrigstidens optimistiska konsumtionssamhälle tog form började en vanvettig atomkapprustning. Från de första bomberna hade den amerikanska atombombsarsenalen vuxit till 170 stycken 1949, när Sovjetunionen gjorde sitt första kärnvapenprov, och åren som följde gick det slag i slag. 1952 testsprängde USA sin första termonukleära vätebomb, stark som tusen Hiroshimabomber, och redan i mitten av decenniet hade de båda kärnvapenmakterna bomber nog för att med marginal spränga hela den mänskliga civilisationen till grus. Detta samtidigt som politikerna drömde om en framtida teknokratisk utopi flödande av billig energi, där bilarna drevs av små kärnreaktorer. Skulle kriget ändå råka bryta ut fick skolbarnen lära sig att krypa ner under bänkarna, och speciella dräkter tillverkades för att skydda mot strålningen.Under tiden drogs ritningarna upp för den oundvikliga förintelsen. 2008 berättade den pensionerade amerikanske försvarstjänstemannen John Rubel hur han i december 1960 suttit med under ett hemligt möte där ett par höga officerare lade fram de detaljerade planerna för en så kallad förebyggande kärnvapenattack mot Sovjetunionen. Som Rubel mindes det skulle angreppet enligt ingenjörernas beräkningar leda till döden för cirka sexhundra miljoner människor. Rubel erkände att han själv i stunden saknat civilkurage för att protestera, och jämförde med den nazistiska Wannseekonferensen där planerna för den slutliga, industriella lösningen av judefrågan tog form. ”Jag kände,” skrev han, ”att det jag bevittnade var ett liknande nedstigande i mörkrets hjärta, en grumlig underjordisk värld som styrdes av ett disciplinerat, noggrant och livaktigt men hjärndött grupptänkande med syfte att utrota hälften av människorna som levde på nästan en tredjedel av jordytan.”I Japan däremot var de postnukleära stämningarna annorlunda – av naturliga skäl. Trots att det under hela femtiotalet rådde ett offentligt tabu mot att diskutera katastrofen och dess följder är det ingen överdrift att säga att hela den japanska konsten och litteraturen under efterkrigstiden utvecklades i skuggan av Hiroshima och Nagasaki. Bomberna och den amerikanska ockupationen sände chockvågor genom den japanska kulturen och födde experimentella konströrelser som den minimalistiska arte poveragruppen Mono-ha, eller den betydligt våldsammare Gutai, vars medlemmar besköt sina målardukar med kanon: bägge strömningar som i sin tur också gjorde djupa intryck på yngre konstnärer som Yoko Ono, Tetsumi Kudo och Yayoi Kusama. Nobelpristagaren Kenzaburo Oe gav 1965 ut sina Anteckningar från Hiroshima, en samling personliga reportage där de överlevande, som efter tjugo år fortfarande lever i skräck för blodcancer och andra efterverkningar, lyfts upp till en sorts nationella, moraliska förebilder: ”Bara genom liv som deras,” skriver Oe, ”kan människor framträda med värdighet i vårt samhälle.”Och med tiden växte protesterna i styrka även i västvärlden. Precis som man likt Theodor Adorno kunde se det som ”barbariskt” att skriva poesi efter Auschwitz kunde man som Günther Anders spekulera i vad det betydde att bedriva filosofi efter Hiroshima. Hans kollega Hannah Arendt delade synen på bomben som en mänsklighetens vändpunkt – men för henne stod den framför allt för en förlust av politiskt handlingsutrymme, där teknologins råa styrka tog förnuftets plats. Man frestas citera president Trumans tillkännagivande den 6 augusti 1945, där han proklamerar Hiroshimabomben som ”den organiserade vetenskapens största historiska bragd”. Som Arendt uttrycker det i Människans villkor har denna etiskt förblindade vetenskap trätt ut i offentligheten som en av ”de mäktigaste, maktgenererande grupperingar historien skådat.”Atomålderns etik måste med andra ord ta formen av en civilisationskritik. Mot slutet av sextiotalet uppgick antalet atombomber i världen till över 30 000 – men då var också motståndet i full kraft. Ett motstånd som inte bara riktades mot kärnvapenrustningen utan också mot den fredliga atomkraften och hela den teknokratiska kultur som gjort det möjligt att spela med så fruktansvärda insatser. Att en olycka vid ett kärnkraftverk kan få precis samma förödande effekter som en bomb har världen sedan dess tvingats till insikt om, gång på gång: i Harrisburg, Tjernobyl, Fukushima. Namnen hemsöker vår tid, som skuggan av en mardröm. Den där tanken som man nuddar när man vaknar. Och som sedan försvinner. AtomvinterEtt minne från när det kalla kriget var som kallast, början på åttiotalet: jag sitter hemma i soffan i föräldrahemmet och ser på teven där USA:s president Reagan flinande avslöjar att en kärnvapenattack mot Sovjetunionen kommer att starta om fem minuter. Ett skämt, tydligen. Mitt minne av händelsen är lite oklart: eftersom ”skämtet” gjordes inför en radiosändning borde ljudupptagningen ha spelats upp till stillbilder, jag vet inte – men det jag tydligt minns är hur det medan skratten klingar ut i teven ändå hinner gå ett frostigt spöke genom vardagsrummet. Hur mina föräldrar liksom fryser till i tevesoffan och hur vi sedan också skrattar, lättade – och lite chockade: det var nära ögat. Om det är något vi har förstått på sista tiden är det ju hur nära det faktiskt verkar vara. Atomklockan, som den kallas, har länge stått på bara någon minut i tolv.Världen, kanske särskilt Europa, gick i detta tidiga åttiotal nästan bara och väntade på den stora smällen. Om vi idag förskräcks av de klimatförändringar som utsläppen av växthusgaser är på väg att leda till så är de trots allt ingenting emot det som skulle bli följden om ett fullskaligt kärnvapenkrig bröt ut. Inte som en effekt av själva explosionerna – men allt stoft de rörde upp, alla bränder de orsakade skulle lägga sig som ett lock på atmosfären i flera års tid och sänka temperaturen på jordytan till katastrofala nivåer. Fenomenet gick under begreppet atomvinter: ett ord som de här åren låg som ett kylelement under den dystopiska tidsandan med dess undergångsfantasier och nihilistiska yuppieideal. Med dess apolitiska alienering, och en popkultur som manglade ut sin svarta depprock och sina frostiga syntslingor över en ekande posthistorisk avgrund.Men den hotande atomvintern gav också näring åt en växande proteströrelse. Civilisationskritiken, som under sextio- och sjuttiotalen blivit ett allt tyngre inslag i kärnvapenmotståndet förenades på åttiotalet med feministiska, postkoloniala och antikapitalistiska strömningar i en gränsöverskridande skepsis mot den tekniska utvecklingen som filosofen och antikärnvapenveteranen Günther Anders såg som ett senkommet historiskt genombrott när han i början av åttiotalet samlade sina reflexioner i de här frågorna i boken Hiroshima ist überall, Hiroshima är överallt. I England tog ett feministiskt fredsläger form i protest mot utplaceringen av kärnvapen vid armébasen i Greenham Common. I Australien protesterade urbefolkningen mot uranbrytningen på traditionell aboriginsk mark, i New Mexico i USA krävde Navajofolket kompensation för kärnvapenprovens radioaktiva kontaminering. Och i Oceaniens övärld växte rörelsen för ”ett kärnvapenfritt Stilla Havet”, som en reaktion på de franska och amerikanska provsprängningar som gjort många öar obeboeliga. För dem som tvingats bort från sina hem var stormakternas så kallade ”nukleära kolonialism” bara ännu en form av cyniskt imperialistiskt våld.Denna världsomspännande folkrörelse såg för en kort tid ut att faktiskt stå inför ett globalt genombrott. I juni 1982 samlade en demonstration i New York en miljon deltagare i protest mot kärnvapenrustningen; några veckor tidigare hade bortåt hundratusen människor tågat genom Göteborg under samma paroller. Jag var själv en av dem. Liknande fredsmarscher ägde rum över hela den europeiska kontinenten. Vad vi kanske inte riktigt förstod, tror jag – hur vi nu skulle kunnat göra det, där vi vällde fram, mitt i alltihop – var hur snärjda vi alla redan var i den nukleära terrorbalansens världsordning. För om nu ”Hiroshima är överallt”, som Günther Anders skrev – måste det då inte betyda att också protesterna blir en del av systemet: en balanserande motvikt som invaggar oss i tron att den nukleärteknologiska utvecklingen trots allt ska gå att tämja och hantera? Sedda från dagens tidsavstånd kan de ju faktiskt se så ut, som en avledande, kringgående rörelse, en historiens list som tillfälligt öppnade en politisk ventil och lät oron pysa ut, utan att i grunden ändra något överhuvudtaget. Allt medan utvecklingen gick vidare i sina obevekliga spår.Nej, jag vet inte. Men kanske var det en sådan insikt som landade i världens medvetande i april 1986, med haveriet i Tjernobyl. Plötsligt visade det sig mycket konkret – om man nu inte redan hade förstått det – att Hiroshima verkligen var överallt: i luften, i vattnet, i maten vi äter. Helt oberoende av nationsgränser och politiska system. Sociologen Ulrich Beck skrev i sin uppmärksammade bok Risksamhället hur händelser som just den i Tjernobyl tvingar hela samhället att orientera sig efter potentiella risker, försöka förutse och förebygga – och inte minst: uppfostra sina medborgare i riskmedvetenhet, eller uttryckt på ett annat sätt, i oro. Vi får i förlängningen ett samhälle där rädslan är det som binder samman, ett samhälle vars främsta uppgift blir att vidmakthålla en bedräglig illusion om säkerhet.I detta risksamhälle måste till slut också kärnteknologin banaliseras och kläs i termer av säkerhet. Det talas om kärnvapnen som ett skyddande ”paraply”, om kärnenergin som en trygghet i en osäker och föränderlig omvärld. Hiroshima känns mycket avlägset. Att besöka staden idag ger upphov till en märklig svindelkänsla: åttio år efter bomben sjuder staden av liv som vilken modern metropol som helst, de hypersnabba shinkansentågen anländer och avgår på sekunden på den centrala järnvägsterminalen, nästan som om inget hänt. Men det har det. Det har det, verkligen – under ytan ömmar fortfarande traumat, men med sin ärrvävnad av monument och museala artefakter, all denna rekvisita i en minneskultur som hoppas läka det som inte går att läka.Kanske är det det han menar, den japanske mannen i Alain Resnais film Hiroshima, min älskade, när han säger till sin franska älskarinna att hon aldrig har sett något i Hiroshima. För det som skett går inte att se. Med varje gest som återkallar minnet följer en som hjälper till att utplåna det. I filmen är den franska kvinnan själv på flykt undan ett krigstrauma: hennes första kärlek var en tysk ockupationssoldat – och minnet av hur hon blev vittne till hans död för en anonym kula från en motståndsman är, förstår man, det hon nu på ett bakvänt sätt försöker bearbeta genom att vara med och spela in en ”fredsfilm” (som det kallas) i Hiroshima.Men traumat, visar det sig, går inte att förtränga. Det finns kvar. Precis som atomvintern finns kvar – som en iskall, omedveten rysning under kärnvapenparaplyet. Spöket från Hiroshima, skuggan av den okände som satt och väntade på bankens trappa just när bomben föll, har vuxit till ett skymningsdunkel som vi mer eller mindre tycks ha vant oss vid. Om det totala atomkriget bryter ut skulle det, enligt en vanlig uppgift, ta sjuttiotvå minuter innan det mesta av vår civilisation är ödelagd. En dryg timme. Längre är den inte, framtiden.Dan Jönssonförfattare och essäistLitteraturAnnie Jacobsen: Kärnvapenkrig – ett scenario. Översättare: Claes-Göran Green. Fri Tanke, 2024.Tsuyoshi Hasegawa: Racing the Enemy – Stalin, Truman, and the Surrender of Japan. Harvard University Press, 2005.Marguerite Duras: Hiroshima, mon amour – filmmanus och berättelse. Översättare: Annika Johansson. Modernista, 2014.H. G. Wells: Tono-Bungay. (Ej översatt till svenska i modern tid, original: Macmillan, 1909.)Günther Anders: Hiroshima ist überall. C. H. Beck, 1982.Hisashi Tōhara: Il y a un an Hiroshima. översättare: Dominique Palmé. Gallimard, 2011 (postum utgåva från återfunnen text).Masuji Ibuse: Black Rain. Översättare: John Bester. Kodansha International, 1969.Claude Eatherly / Günther Anders: Samvete förbjudet – brevväxling. Översättare: Ulrika Wallenström. Daidalos, 1988.Kenzaburō Ōe: Hiroshima Notes. Översättare: David L. Swain & Toshi Yonezawa. Marion Boyars, 1995.Peter Glas: Först blir det alldeles vitt – röster om atomvintern. Natur & Kultur, 1984.Ulrich Beck: Risksamhället – på väg mot en annan modernitet. Översättare: Svenja Hums. Bokförlaget Daidalos, 2018.Hannah Arendt: Människans villkor. Översättare: Alf Ahlberg. Rabén & Sjögren, 1963.LjudSylvain Cambreling, Nathalie Stutzmann, Theresa Kohlhäufl, Tim Schwarzmaier, August Zirner med Bayerska Radions Kör och Symfoniorkester (München): Voiceless Voice In Hiroshima. Kompositör: Toshio Hosokawa med texter från liturgin, Paul Celan och Matsuo Bashō. Col legno, 2001.Sveriges Radios arkiv.US National archives.Hiroshima mon amour (1959), regi: Alain Resnais, manus: Marguerite Duras. Producent: Argos Films. Musik: Georges Delerue och Giovanni Fusco.
Imagine being able to tear through the fabric of reality itself - to quantum leap across the multiverse of possibilities and land precisely in the version of your life where abundance flows like water, where your highest potential has been realized, where the YOU that exists there wakes up every morning in awe of the magic that surrounds them! This is not science fiction, my friends - this is the bleeding edge where ancient wisdom meets quantum physics. The mana force - that primordial energy the Polynesians harnessed for centuries - combined with the reality-bending principles of quantum mechanics that scientists like Max Planck and Niels Bohr unveiled to our astonished minds. What if I told you that the version of you that has already achieved everything you desire is simply vibrating at a different frequency? That your dream life exists RIGHT NOW in a parallel timeline, and all you need is the right technology of consciousness to SHIFT yourself there? The meditation you're about to experience is that technology - a precise protocol combining the energy-generating mana force breath work with visualization that programs your neural pathways, connects to your higher self, activates the reality-selecting plait from Transurfing, and executes the quantum jump that catapults your consciousness into your optimal timeline.
Une protéine du rein impliquée dans lʹhypertension Les brèves du jour LʹAcadémie pontificale des Sciences… et Camille Flammarion Bohr et Einstein face à lʹinfiniment petit
El cerebro es el órgano más complejo y el que más tarda en desarrollarse. Existen periodos críticos en la infancia y la adolescencia en los que pequeñas perturbaciones en forma de mutaciones genéticas o agresiones ambientales pueden alterar el desarrollo y derivar en un trastorno mental. Conocer esos mecanismos permitirá diseñar estrategias para prevenir o tratar esas dolencias. Hemos entrevistado a Óscar Marín, director del Centro de Trastornos del Neurodesarrollo del King’s College de Londres. Con José Antonio López Guerrero hemos analizado la posible relación de los virus del herpes con el Alzheimer. Verónica Fuentes nos ha hablado de las tierras raras, un grupo de 17 elementos químicos (los 15 lantánidos más escandio e itrio) que se han hecho muy populares en los últimos tiempos por sus aplicaciones en la industria tecnológica y su interés geoestratégico. Hemos informado del Premio BBVA Fronteras del Conocimiento en la categoría de Medio Ambiente a Camille Parmesan por demostrar el impacto del cambio climático sobre el desplazamiento geográfico de las especies en todo el planeta. Jesús Pérez Gil nos ha contado como la temperatura afecta no solo a la producción de espermatozoides sino también a la velocidad que pueden alcanzar en su carrera hacia el óvulo. En nuestros Destinos con ciencia, nuestra compañera Esther García nos ha llevado a la capital danesa, Copenhague, para conocer el instituto que fundó el nobel de física Niels Bohr, una institución que reunió a los mejores científicos de inicios del siglo 20.Escuchar audio
El cerebro es el órgano más complejo y el que más tarda en desarrollarse. Existen periodos críticos en la infancia y la adolescencia en los que pequeñas perturbaciones en forma de mutaciones genéticas o agresiones ambientales pueden alterar el desarrollo y derivar en un trastorno mental. Conocer esos mecanismos permitirá diseñar estrategias para prevenir o tratar esas dolencias. Hemos entrevistado a Óscar Marín, director del Centro de Trastornos del Neurodesarrollo del King’s College de Londres. Con José Antonio López Guerrero hemos analizado la posible relación de los virus del herpes con el Alzheimer. Verónica Fuentes nos ha hablado de las tierras raras, un grupo de 17 elementos químicos (los 15 lantánidos más escandio e itrio) que se han hecho muy populares en los últimos tiempos por sus aplicaciones en la industria tecnológica y su interés geoestratégico. Hemos informado del Premio BBVA Fronteras del Conocimiento en la categoría de Medio Ambiente a Camille Parmesan por demostrar el impacto del cambio climático sobre el desplazamiento geográfico de las especies en todo el planeta. Jesús Pérez Gil nos ha contado como la temperatura afecta no solo a la producción de espermatozoides sino también a la velocidad que pueden alcanzar en su carrera hacia el óvulo. En nuestros Destinos con ciencia, nuestra compañera Esther García nos ha llevado a la capital danesa, Copenhague, para conocer el instituto que fundó el nobel de física Niels Bohr, una institución que reunió a los mejores científicos de inicios del siglo 20.Escuchar audio
Albert Einstein, Genel Görelilik'i yazmış, hemen ardından bu teorisini gözleme dayalı bir şekilde kanıtlamıştı. Evrenin şifrelerini çözecek bir noktaya gelmişti artık. Kağıt üzerindeki tüm tahminleri evrende sıfır sapmayla karşılık buluyordu. Tüm gözler onun üzerindeydi. Ama o bunlarla da yetinmeyecekti. Kendince son bir misyonu daha vardı... Bilimin kutsal kasesini, yani Her Şeyin Teorisini bulmak.Hiçbir Şey Tesadüf Değil'deki Albert Einstein serimizin dördüncü ve son bölümünde bu hikayeye odaklanıyoruz. Einstein'ın son yıllarında yaşadıklarını ve Her Şeyin Teorisi'ni ararken başından geçenleri mercek altına alıyoruz.------- Podbee Sunar -------Bu podcast, Kuveyt Türk hakkında reklam içerir.Miles&Smiles Kuveyt Türk, ayrıcalıklı Mil dünyası ve size özel fırsatlarıyla her devirde yanınızda! Siz de mobilden Kuveyt Türklü olarak Miles&Smiles Kuveyt Türk kart başvurunuzu yapın, ayrıcalıklardan faydalanmaya başlayın. Detaylı bilgi için web sitesini ziyaret edebilirsiniz.See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.
Av alle grunnstoffene er det kanskje Plutonium som bærer på det mest destruktive potensialet – og dermed også mest makt. Eller… er det egentlig så enkelt?I denne episoden får vi besøk av en av våre mest kjente og respekterte vitenskapshistorikere, Helge Kragh fra Niels Bohr-instituttet i København. Han har skrevet flere titalls bøker og hundrevis av artikler om de største oppdagelsene innen kjemi, fysikk og kosmologi. Men for Helge handler det minst like mye om menneskene bak oppdagelsene – og hvordan vitenskapen i seg selv er en dypt menneskelig og sosial prosess.Og når vi først skal snakke om hvordan vitenskap påvirker menneskers liv og historiens gang, er det få grunnstoff som har hatt en mer dyptgripende politisk og historisk betydning det siste århundret enn nettopp Plutonium.Plutonium var blant de aller første grunnstoffene som ble fremstilt kunstig – og vi produserer fortsatt store mengder den dag i dag. Fortsatt går mye til militære formål, men én spesiell isotop er faktisk helt avgjørende for at vi i det hele tatt kan utforske solsystemet vårt – ja, til og med sende sonder hele veien til Pluto.Vi snakker også om forholdet mellom religion og vitenskap, og stiller spørsmålet: Når kan man egentlig si at et grunnstoff eksisterer?Tre grunnstoff er edelgassene, rene og frie,syv er edelmetallene i bergets skjulte riker,ni er livets grunnstoffer,som gir mennesket kjød og kraft.Men for Mørkets herre – ett eneste ett,i den dype reaktor der Plutoniumet rår.Ett grunnstoff skal samle dem, ett skal finne dem,ett skal betvinge dem og i mørket binde dem,i den dype reaktor der Plutoniumet rår.Bli med oss på vår vimsete reise gjennom det periodiske system der vi får nerdet fra oss og gravd oss dypt ned i hvert enkelt grunnstoff, men på et nivå som alle skal kunne forstå. Med oss på reisen har vi eksperter som kan mer enn de fleste om de ulike grunnstoffene og hjelper oss å skjønne litt mer av det vi alle er lagd av. Vi er Gunstein Skomedal (materialteknolog UiA), Ole Martin Løvvik (fysiker, UiO/Sintef) og Birte Runde (journalist i Eyde-klyngen)Har du forslag til grunnstoff vi bør snakke om, gjester/eksperter vi bør invitere eller besøke, eller morsomme fakta og historier om et grunnstoff? Eller har du innspill til lyd, form, innhold eller annet? Send oss gjerne tilbakemelding på gunstein.skomedal@uia.no.Sjekk ut våre nettsider grunnstoffene.no for en periodisk oversikt over podcastepisodene. Du finner også videoer og annet stoff på vår youtube-kanal Grunnstoffene og eksperimenter - YouTube eller på Facebook
Alain Aspect a voulu écrire ce livre pour nous faire partager sa fascination pour le débat entre deux géants de la physique, Niels Bohr et Albert Einstein, portant sur l'interprétation de la mécanique quantique. Presque un demi-siècle après ses propres expériences, Alain Aspect a reçu le prix Nobel de physique pour avoir montré que l'on doit renoncer à la vision du monde quantique défendue par Einstein. Alain Aspect replace le débat dans l'incroyable histoire de la physique quantique. Ne cachant pas son admiration pour Einstein, il nous montre comment la controverse quasi philosophique que celui-ci a engagée avec Niels Bohr a conduit à des expériences bien réelles et à l'invention de nouvelles technologies quantiques. Tout en faisant le récit de son parcours, Alain Aspect nous explique avec passion et clarté comment il a mis en évidence l'une des propriétés les plus extraordinaires de l'intrication quantique, et il tente d'imaginer la réaction d'Einstein à ses résultats expérimentaux. Merci pour votre écoute N'hésistez pas à vous abonner également aux podcasts des séquences phares de Matin Première: L'Invité Politique : https://audmns.com/LNCogwPL'édito politique « Les Coulisses du Pouvoir » : https://audmns.com/vXWPcqxL'humour de Matin Première : https://audmns.com/tbdbwoQRetrouvez tous les contenus de la RTBF sur notre plateforme Auvio.be Retrouvez également notre offre info ci-dessous : Le Monde en Direct : https://audmns.com/TkxEWMELes Clés : https://audmns.com/DvbCVrHLe Tournant : https://audmns.com/moqIRoC5 Minutes pour Comprendre : https://audmns.com/dHiHssrEt si vous avez apprécié ce podcast, n'hésitez pas à nous donner des étoiles ou des commentaires, cela nous aide à le faire connaître plus largement. Distribué par Audiomeans. Visitez audiomeans.fr/politique-de-confidentialite pour plus d'informations.
Koncertsalen i DR, supersygehusene og Niels Bohr-byggeriet, der stod færdigt i efteråret 2024. Det er alle sammen eksempler på kæmpe store byggerier, der er blevet voldsomt meget dyrere end planlagt og gået rigtig meget over tid. I denne episode af Byen Forfra diskuterer vi: Hvad er det, der gør det så svært at lykkes med de store byggerier – og hvor stiller det os ift. byggeriets store nye opgaver, hvis vi ikke bliver meget bedre til at håndtere dem? Medvirkende: Christian Thuesen, lektor på Danmarks Tekniske Universitet og Gyrithe Saltorp, direktør i rådgivningsvirksomheden Byen forfra er optaget til Dansk Arkitektur Centers live-event, MorgenDAC, som er for dig, der vil have et nuanceret indblik i byens udvikling og arkitektur. Podcasten er produceret af Dansk Arkitektur Center og redigeret af Munck Studios.
Lise Meitner was the most important female physicist of the 20th century. She made fundamental discoveries on the atom, including, most famously, being the first to discover the idea of fission. This she did as she puzzled over experimental results generated by her colleague Otto Hahn. Hahn, but not Meitner, received the Nobel Prize in Chemistry for this monumental discovery. More generally, Meitner overcame profound obstacles facing women in science to become a central figure in physics during its heyday as she worked with the likes of Niels Bohr and Albert Einstein to understand the atom, and hence the universe. With us to discuss the life and legacy of Lise Meitner is Marissa Moss. Marissa is the award-winning author and illustrator of over 70 books for children and young adults, including the book we discuss today, The Woman Who Split the Atom: The Life of Lise Meitner.
Alain Aspect ne sait plus où donner de la tête depuis la sortie de son livre Si Einstein avait su (Editions Odile Jacob). Les chaines de télévision et les journaux se l'arrachent. Treize ans de réflexion et deux années de boulot pour enfin sortir cet ouvrage riche et dense qui raconte la façon dont la physique quantique a émergé au début du XXe siècle. La physique quantique, proclame-t-il, « c'est la plus grande révolution conceptuelle depuis Galilée, et ça a bouleversé la société tout autant que la machine à vapeur. » Le scientifique de 77 ans y a pris sa part, tranchant dans le débat sur l'interprétation de la mécanique quantique entre les deux grands physiciens Niels Bohr et Albert Einstein, pour démontre que le second avait tort. Des travaux qui lui ont valu, 50 ans plus tard, en 2022, le Prix Nobel de physique. Et il profite de l'audience que lui offre cette prestigieuse récompense « pour parler de science auprès du public. » Sa mission essentielle, dit-il. Son discours est un plaidoyer pour les sciences et l'innovation. Et aussi un message d'espoir : pour lui, l'Europe et la France, en particulier, ne sont pas si mal armées. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Grunther states that we're in the midst of a New Renaissance when the greatest knowledge and wisdom, both ancient and contemporary, is just a few keystrokes away through digital screens that billions around the planet can access. He shares the three key shifts in human consciousness taking place today, ranging from quantum physics to AI and left/right-brain thinking. Douglas Grunther is the creator and host of the Woodstock Roundtable an award winning radio talk show covering philosophy, depth psychology, and spiritual insight. He is also a dream work facilitator. He is the author of The Quantum & The Dream: Visionary Consciousness, AI, and The New Renaissance (Epigraph Books 2024)Interview Date: 11/15/2024 Tags: Douglas Grunther, AI, Right hemisphere of the brain, left hemisphere of the brain, Lynn Margulis, Elisabet Sahtouris, Albert Einstein, Iain McGilchrist, Wolfgang Pauli, Carl Jung, Sigmond Freud, Max Planck, Wermer Heinsenberg, Niels Bohr, Yin-Yang, Gaia theory, Plato, Marshall McLuhan, Science, Personal Transformation, History, Social Change/Politics
durée : 00:47:25 - La Terre au carré - par : Mathieu Vidard - Dans son livre "Si Einstein avait su", qui vient de paraître chez Odile Jacob, le physicien Alain Aspect raconte sa fameuse découverte, qui lui a permis de trancher le duel historique de la physique quantique entre Albert Einstein et Niels Bohr, et lui a valu le prix Nobel de physique en 2022. - réalisé par : Jérôme BOULET
An expert is a man who has made all the mistakes which can be made, in a narrow field. - Niels Bohr Check out John Lee Dumas' award winning Podcast Entrepreneurs on Fire on your favorite podcast directory. For world class free courses and resources to help you on your Entrepreneurial journey visit EOFire.com
An expert is a man who has made all the mistakes which can be made, in a narrow field. - Niels Bohr Check out John Lee Dumas' award winning Podcast Entrepreneurs on Fire on your favorite podcast directory. For world class free courses and resources to help you on your Entrepreneurial journey visit EOFire.com
PRC: Deflation: Anne Stevenson-Yang, author of Wild Ride: China's Short-Lived Experiment in Capitalism, on @GordonGChang, Gatestone, Newsweek, The Hill https://www.cnbc.com/2024/12/12/china-stresses-plans-to-boost-growth-at-top-agenda-setting-meeting.html 1937 Niels Bohr at Peking University
Als er die Lösung fand, fühlte sich Max Born wie ein Seefahrer nach langer Irrfahrt. Der Physik-Nobelpreis als Anerkennung ließ bis zum 10.12.1954 lange auf sich warten. Von Wolfgang Burgmer.
Subscribe, Rate, & Review on YouTube • Spotify • Apple Podcasts✨ About This Episode“The best academic lecture/slam poetry/sermon/magical invocation/attunement and invitation to engage I've experienced in a long while.”– Daniel LindenbargerNext week, after nearly nine years of development, this show grows up to become Humans On The Loop, a transdisciplinary exploration of agency in the age of automation. For long-time listeners of Future Fossils, not much will really change — philosophical investigations in the key of psychedelic futurism, voyages into the edges of what is and can be known, and boldly curious riffs on the immeasurable value of storytelling and imagination have always characterized this show. Many of the episodes I've shared in this last year especially were, effectively, preparations for this latest chapter and play as large a part in my ongoing journey to synthesize and translate everything I've learned from years of independent scholarship and institutional work in esteemed tech, science, and culture orgs…But we are no longer waiting for a weird future to arrive. We're living in it, and shaping it with every act and utterance. So in this “final” episode of Future Fossils before I we bring all of these investigations into the domain of practical applied inquiry, it felt right to ramp from FF to HOTL by sharing my talk and discussion for Stephen Reid's recent online course on Technological Metamodernism. This was a talk that left me feeling very full of hope for what's to come, in which I trace the constellations that connect some of my biggest inspirations, and outline the social transformations I see underway.This is a rapid and dynamic condensation of the big patterns I've noticed in the course of over 500 hours of recorded public dialogue and a lively primer on why I'm focusing on the attention and imagination as the two big forces that will continue to shape our lives in the worlds that come after modernity.It is also just the beginning.Thank you for being part of this adventure.✨ Support & Participate• Become a patron on Substack (my preference) or Patreon(15% off annual memberships until 12/21/24 with the code 15OFF12)• Make a tax-deductible donation to Humans On The Loop• Original paintings available as thank-you gifts for large donors• Hire me as an hourly consultant or advisor on retainer• Buy (most of) the books we discuss from Bookshop.org• Join the Future Fossils Facebook group• Join the Holistic Technology & Wise Innovation and Future Fossils Discord servers• Buy the show's music on Bandcamp — intro “Olympus Mons” from the Martian Arts EP and outro “Sonnet A” from the Double-Edged Sword EP• Read “An Oral History of The End of ‘Reality'”, my story mentioned in this episode.✨ ChaptersChapter 1: Reflections & Announcements (0:00:00)Chapter 2: Co-Evolution with AI and the Limits of Control (0:12:49)Chapter 3: Poetry as the Beginning and End of Scientific Knowledge (0:18:06)Chapter 4: The American Replacement of Nature and the Power of Narrative (0:24:05)Chapter 5: The End of “Reality” & The Beginning of Metamodern Nuance (28:58)Chapter 6: Q&A: Myths, Egregores, and Metamodern Technology vs. Wetiko & Moloch (0:34:52)Chapter 7: Q&A: Chaos Magic & Other Strategies for Navigating Complexity (45:59)Chapter 8: Q&A: Musings on Symbiogenesis & Selfhood (0:50:18)Chapter 9: Q&A: How Do We Legitimize These Approaches? (0:55:42)Chapter 10: Q&A: Why Am I Devoting Myself to Wise Innovation Inquiry? (0:61:01)Chapter 11: Thanks & Closing (0:63:22)✨ Mentioned IndividualsA mostly-complete list generated by Notebook LM and edited by Michael Garfield.* William Irwin Thompson - Historian, poet, and author of The American Replacement of Nature, which argues that American culture is future-oriented. (See Future Fossils 42 & 43.)* Evan “Skytree” Snyder - Electronic music producer, roboticist, and co-founder of Future Fossils who departed after ten episodes. (See Future Fossils 1-10, 53, 174, and 207.)* Stephen Reid - Founder of the Dandelion online learning program and The Psychedelic Society; host of a course on “Technological Metamodernism” in which Garfield presented this talk. (See Future Fossils 226.)* Ken Wilber - Author of numerous books on “AQAL” Integral Theory. (See Michael's 2008 interview with him on Integral Art.)* Friedrich Hölderlin - German poet who famously said, "Poetry is the beginning and the end of all scientific knowledge.”* George Lakoff and Mark Johnson - Authors of Metaphors We Live By, which explores the role of embodied metaphor in shaping thought.* John Vervaeke - Philosopher who, along with others, uses the term “transjective” to describe the interconnected nature of subject and object.* Sean Esbjörn-Hargens - Integral theorist who taught Garfield at JFK University. (See Future Fossils 60, 113, and 150.)* Nathalie Depraz, Francisco Varela, and Pierre Vermersch - Embodied mind theorists and authors of On Becoming Aware, a book about phenomenology.* Kevin Kelly - Techno-optimist Silicon Valley futurist and author on “the expansion of ignorance” in relation to scientific discovery. (See Future Fossils 128, 165, and 203.)* Albert Einstein, Niels Bohr, and David Bohm - Paradigm-challenging physicists mentioned who, by science to its limits, developed mystical insights.* Timothy Morton - Philosopher who coined the term “hyperobjects” to refer to entities so vast and complex they defy traditional understanding. (See Future Fossils 223.)* Caleb Scharf - Astrobiologist, author of The Ascent of Information, in which he coins the term “The Dataome” to refer to the planet-scale body of information that constrains human behavior.* Iain McGilchrist - Psychiatrist and author of The Master and His Emissary, known for his work on the divided brain and the importance of right-brained thinking.* Eric Wargo - Anthropologist and science writer who suggests that dreams are precognitive and the brain binds time as a four-dimensional object. (See Future Fossils 117, 171, and 231.)* Regina Rini - Philosopher at York University who coined the term “epistemic backstop of consensus” to describe what photography gave society and what, later, deepfakes have eroded.* Friedrich Nietzsche and Fyodor Dostoevsky - Philosophers and authors who explored the implications of the loss of a universal moral order grounded in religion.* Duncan Barford - An author and figure associated with chaos magic.* Lynn Margulis - Evolutionary biologist known for her work on symbiogenesis and the importance of cooperation in evolution.* Primavera De Filippi - Co-author of Blockchain and the Law: The Rule of Code with Aaron Wright and technology theorist who theorized the "Collaboration Monster."* Joshua Schrei - Ritualist and host of The Emerald Podcast who produced episodes on Guardians and Protectors and on the role of The Seer. (See Future Fossils 219.)* Hunter S. Thompson - American journalist and author known for his gonzo journalism and the quote, "When the going gets weird, the weird turn pro.”* Tim Adalin - Host of the VoiceCraft podcast, on which Garfield discussed complex systems perspectives on pathologies in organizational development. (See Future Fossils 227.) This is a public episode. If you'd like to discuss this with other subscribers or get access to bonus episodes, visit michaelgarfield.substack.com/subscribe
Det var ikke bare verdens allermindste bestanddele, den danske fysiker og Nobelpristager Niels Bohr forstod og kunne forklare med kvantemekanikken. Han forstod også, hvordan man får nogle af de skarpeste hjerner til at arbejde sammen om at gøre endnu større opdagelser. Og sådan forvandlede han for 100 år siden et hus på Blegdamsvej i København til en internationale metropol for videnskabsmænd. Men tænk nu, hvis vi kunne gøre det igen. Få folk på tværs af fag til at tænke og tale sammen. Man kunne opføre en stor, supermoderne bygning, samle en stribe naturvidenskabelige fag under samme tag og opkalde den efter Bohr. Hvad kan gå galt? Svaret kender vi i dag: Så godt som alting. Dagens gæst i 'Du lytter til Politiken' er Politikens arkitekturskribent og anmelder Karsten Ifversen, som tager os med på en meget lang og meget dyr rejse.See omnystudio.com/listener for privacy information.
The definitive account of the great Bohr-Einstein debate and its continuing legacyIn 1927, Niels Bohr and Albert Einstein began a debate about the interpretation and meaning of the new quantum theory. This would become one of the most famous debates in the history of science. At stake were an understanding of the purpose, and defense of the integrity, of science. What (if any) limits should we place on our expectations for what science can tell us about physical reality?Our protagonists slowly disappeared from the vanguard of physics, as its centre of gravity shifted from a war-ravaged Continental Europe to a bold, pragmatic, post-war America. What Einstein and Bohr had considered to be matters of the utmost importance were now set aside. Their debate was regarded either as settled in Bohr's favour or as superfluous to real physics.But the debate was not resolved. The problems of interpretation and meaning persisted, at least in the minds of a few stubborn physicists, such as David Bohm and John Bell, who refused to stop asking awkward questions. The Bohr-Einstein debate was rejoined, now with a new set of protagonists, on a small scale at first. Through their efforts, the debate was revealed to be about physics after all. Their questions did indeed have answers that could be found in a laboratory. As quantum entanglement became a real physical phenomenon, whole new disciplines were established, such as quantum computing, teleportation, and cryptography. The efforts of the experimentalists were rewarded with shares in the 2022 Nobel prize in physics.As Quantum Drama reveals, science owes a large debt to those who kept the discussions going against the apathy and indifference of most physicists before definitive experimental inquiries became possible. Although experiment moved the Bohr-Einstein debate to a new level and drew many into foundational research, it has by no means removed or resolved the fundamental question. There will be no Nobel prize for an answer. That will not shut off discussion. Our Drama will continue beyond our telling of it and is unlikely to reach its final scene before science ceases or the world ends.Jim Baggott, Freelance science writer, John L. Heilbron, Professor Emeritus of History, University of California, Berkeley Jim Baggott is an award-winning science writer. Trained as a scientist in the Universities of Oxford and Stanford, and a former lecturer at the University of Reading, he has written popular books on science, philosophy, and history. His books include Quantum Reality (2020), Quantum Space (2018), Mass (2017), for which he won the 2020 Premio Cosmos prize, Higgs (2012), and The Quantum Story (2011). His books have been translated into a dozen different languages, and he has won awards both for his scientific research and his science writing. John L. Heilbron is Professor of History and Vice Chancellor Emeritus at the University of California, Berkeley, as well as an Honorary Fellow of Worcester College, Oxford. After training in physics, he studied history of science under T. S. Kuhn in the 1960s, when Kuhn was writing The Structure of Scientific Revolutions. He is the recipient of several prizes and honorary degrees from multiple universities. His books include The Incomparable Monsignor (2022), Niels Bohr: A Very Short Introduction (2020), Galileo (2012), and Love, Literature, and the Quantum Atom (with Finn Aaserund, 2013), on Bohr's 1913 trilogy of scientific papers.Buy the book from Wellington Square Bookshop - https://www.wellingtonsquarebooks.com/book/9780192846105
El 7 de octubre de 1885 nació en Copenhage (Dinamarca) el físico Niels Bohr, científico fundamental para la comprensión del átomo y cuyo trabajo le valió el Nobel de su disciplina.
Can consciousness be explained by quantum physics? What is quantum physics in the first place? Time to go down the rabbit hole. FRUMESS is POWERED by www.riotstickers.com/frumess JOIN THE PATREON FOR LESS THAN A $2 CUP OF COFFEE!! https://www.patreon.com/Frumess
Vous aimez notre peau de caste ? Soutenez-nous ! https://www.lenouvelespritpublic.fr/abonnement Une émission de Philippe Meyer, originellement diffusée le 25 juin 2023. Avec cette semaine : Alain Aspect, physicien, spécialiste de l'optique quantique et récipiendaire du prix Nobel de physique. Sven Ortoli, journaliste scientifique. Nicole Gnesotto, vice-présidente de l'Institut Jacques Delors. Marc-Olivier Padis, directeur des études de la fondation Terra Nova. LA PHYSIQUE QUANTIQUE Alain Aspect, vous êtes physicien, spécialiste de l'optique quantique et membre de l'Académie des Sciences. Vous avez reçu la médaille d'or du CNRS en 2005, la médaille Albert-Einstein en 2012, ainsi que la médaille Niels-Bohr et le prix Balzan en 2013. Le Prix Nobel de physique vous est décerné en 2022, aux côtés de John F. Clauser et d'Anton Zeilinger, pour vos expériences pionnières sur l'intrication quantique, qui ont ouvert la voie aux technologies associées. La physique quantique a considérablement bouleversé notre représentation du monde et nos technologies depuis le XXe siècle, au point d'être comparée à la « révolution industrielle » du siècle précédent. Dans votre ouvrage de vulgarisation, publié aux éditions du CNRS en 2019, vous distinguez deux révolutions au sein de la physique quantique. La première remonte au commencement du XXe siècle : elle s'articule autour du principe de dualité onde – particule, formulé par Einstein et de Broglie dans la lignée des travaux de Planck. Selon ce principe, les objets physiques peuvent parfois présenter des propriétés d'ondes et parfois des propriétés de particules, comme vous l'avez-vous-même illustré sur des photons dans une expérience au retentissement considérable, réalisée dans les années 1980 et publiée en 1982 avec un de vos étudiants de thèse, Philippe Grangier qui, depuis, a mis au point une technologie de cryptographie quantique. Ce concept révolutionnaire a nourri l'essentiel de la recherche en physique quantique jusque dans les années soixante. Il a permis d'expliquer des propriétés physiques, fondamentales mais jusque-là incompréhensibles, comme la stabilité de la matière ou les propriétés électriques et thermiques des corps. Il a également rendu possible nombre de nouvelles technologies, aujourd'hui monnaie courante, comme le transistor ou les lasers. Alain Aspect, vos travaux ont principalement contribué à la seconde révolution quantique. Celle-ci naît du concept d'intrication, selon lequel deux particules, dans certaines conditions forment un système lié et présentent des caractéristiques corrélées, dépendantes l'une de l'autre, quelle que soit la distance qui les sépare. Ce concept est introduit dès 1935 dans la littérature scientifique par Einstein, Podolsky et Rosen, mais présente des complications si considérables qu'il faudra attendre de nombreuses années avant d'en pouvoir attester l'existence. Vous jouez dans cette histoire un rôle de premier plan. En 1964, Bell pose les fondements d'une approche expérimentale du problème, fondée sur la mesure du degré de corrélation entre les deux particules sensément intriquées. En 1969, Clauser et ses coauteurs traduisent cette découverte en un cadre expérimental concret, fondé sur l'étude des photons et de leur polarisation. En 1982, c'est vous qui démontrez expérimentalement, pour la première fois et de manière quasiment irréfutable, la validité empirique du principe d'intrication. Cette propriété est au cœur de la deuxième révolution quantique et de ses promesses technologiques. L'ordinateur quantique, par exemple, serait capable de traiter un volume exceptionnel de données pour réaliser en quelques minutes des opérations aujourd'hui insolubles par les ordinateurs classiques. Ces technologies aiguisent les appétits des acteurs privés, comme Google ou IBM, et des décideurs publics comme la France et son plan quantique de 1.8 milliards d'euros.Chaque semaine, Philippe Meyer anime une conversation d'analyse politique, argumentée et courtoise, sur des thèmes nationaux et internationaux liés à l'actualité. Pour en savoir plus : www.lenouvelespritpublic.fr
Patreon: https://bit.ly/3v8OhY7 David Albert is the Frederick E. Woodbridge Professor of Philosophy at Columbia University, director of the Philosophical Foundations of Physics program at Columbia, and a faculty member of the John Bell Institute for the Foundations of Physics. This is David's eighth appearance on Robinson's Podcast. He last appeared on episode 210 with Tim Maudlin, which was a more advanced episode on Niels Bohr and the foundations of quantum mechanics. In this episode, David gives a pedagogical and introductory overview of the measurement problem, which is the issue at the core of many discussions about the foundations of quantum mechanics. David's most recent book is A Guess at the Riddle (2023). If you're interested in the foundations of physics, then please check out the JBI, which is devoted to providing a home for research and education in this important area. Any donations are immensely helpful at this early stage in the institute's life. Note: Unfortunately, the cameras turned off in the middle of the episode. For twenty minutes there is no video, and for most of the episode only the camera focusing on David is recording. A Guess at the Riddle: https://a.co/d/6qcsidl The John Bell Institute: https://www.johnbellinstitute.org OUTLINE 00:00 Introduction 04:54 On Philosophy and the Foundations of Physics 15:35 The Bizarreness of the Quantum World 19:16 What Is the World of Classical Physics? 24:00 How Quantum Mechanics Destroyed the Classical World 29:19 What Is Quantum Mechanical Superposition? 32:18 How Quantum Mechanics Became the Theory of Reality 39:53 What Is the Measurement Problem of Quantum Mechanics? 51:05 Niels Bohr and the Foundations of Quantum Mechanics 01:01:14 Niels Bohr and the EPR Paper 01:08:45 Was Niels Bohr the Most Charming Physicist of All Time? 01:15:59 Is the Measurement Problem a Scientific Problem? 01:21:24 Is String Theory Pseudoscience? 01:31:03 Why Don't Many Philosophers Work on String Theory? 01:34:08 The Wave Function and the Measurement Problem 01:37:57 Quantum Measurement and Wave Function Collapse 01:41:34 Hidden Variable Theories of Quantum Mechanics 01:44:54 Quantum Mechanics and the Multiverse 01:48:47 Solving the Measurement Problem with Experiment 01:56:41 Quantum Mechanics and the Scientific Project Robinson's Website: http://robinsonerhardt.com Robinson Erhardt researches symbolic logic and the foundations of mathematics at Stanford University. Join him in conversations with philosophers, scientists, historians, economists, and everyone in-between. --- Support this podcast: https://podcasters.spotify.com/pod/show/robinson-erhardt/support
What is the nature of quantum physics? Neil deGrasse Tyson and comedian Chuck Nice get quantum, exploring Schrodinger's Cat, electrons, Hilbert Space, and the biggest ideas in the universe (in the smallest particles) with theoretical physicist Sean Carroll. NOTE: StarTalk+ Patrons can listen to this entire episode commercial-free here: https://startalkmedia.com/show/the-smallest-ideas-in-the-universe-with-sean-carroll/Thanks to our Patrons Justin Smith, Joanna oneal, Rick Rocket, ShyRaven, Catherine A Ousselin, Cindie Flaig, Akshay Kulkarni, David, Greg Craven, and John Frankki for supporting us this week.
An expert is a person who has made all the mistakes that can be made in a very narrow field. - Niels Bohr Check out John Lee Dumas' award winning Podcast Entrepreneurs on Fire on your favorite podcast directory. For world class free courses and resources to help you on your Entrepreneurial journey visit EOFire.com
The Human Trial with Audrey Gale The Human Trial takes us back to the early 1900s, the dawn of quantum physics—when Niels Bohr and Albert Einstein were unwrapping the relationship between light, vibration, and matter. The book begins in 1921, when a brilliant but impoverished 16-year-old, Randy Archer, gets an unexpected fully-paid scholarship to Harvard Medical School, beginning his incredible, but challenging, rise to becoming the groundbreaking pathology researcher that he dreams of becoming. Coming from the background of a steel-mill worker's son to the blue-blooded hallways of Cambridge, he is viewed as an outsider—the one who doesn't belong. This powerful thriller, which speaks to all those who question medical- or establishment-interference in our lives that blocks innovative, energetic lifesaving modalities, This is Audrey Gale's second novel. After 20 years in the banking industry, she walked away from corporate gamesmanship to fulfill her dream of being a writer. She then pursued a master's in fiction writing at the University of Southern California To learn more about Audrey visit: audreygaleauthor.com *************************************************** For more information about BITEradio products and services visit: http://www.biteradio.me/index.html To view the photography of Robert at: http://rpsharpe.com/
Jim talks with Tor Nørretranders about the ideas in his 1991 book The User Illusion: Cutting Consciousness Down to Size. They discuss the dialogue between Niels Bohr and Albert Einstein, defining consciousness, primary vs extended consciousness, the origins of the user illusion in computer interface design, the mind as an attempt to create a relevant myth, measuring the human mind in terms of information theory, consciousness as a story of reduction & compression, the physics of information, Maxwell's demon, I & me, Benjamin Libet's experiments on the delay of consciousness, being the spectator of our own acts, delayed auditory feedback, the veto theory, moving free will to the "me," Robert Sapolsky's arguments against free will, the reality of emergence, exformation, a simple translation of The Iliad, Julian Jaynes's theory of the origins of consciousness, why modern lives have less information, the problem with a subtractive approach to happiness, and much more. Episode Transcript The User Illusion: Cutting Consciousness Down to Size, by Tor Nørretranders JRS EP203 - Robert Sapolsky on Life Without Free Will "The Hedgehog's Song," by The Incredible String Band The Origin of Consciousness in the Breakdown of the Bicameral Mind, by Julian Jaynes Tor Nørretranders is an independent author, thinker and speaker based in Denmark, serving an international audience. Generally seen as a leading science communicator of Denmark, Tor has involved himself in numerous activities in the public arena, from newspaper journalism through books and magazine articles to hosting and producing television shows on science and the general world view. His lecture tours, gathering tens of thousands of people, have been major events on the Scandinavian scene.
Patreon: https://bit.ly/3v8OhY7 David Albert is the Frederick E. Woodbridge Professor of Philosophy at Columbia University, director of the Philosophical Foundations of Physics program at Columbia, and a faculty member of the John Bell Institute for the Foundations of Physics. Tim Maudlin is Professor of Philosophy at NYU and Founder and Director of the JBI. This is David's seventh appearance on Robinson's Podcast. He last appeared on episode 189 with Barry Loewer to talk about the Mentaculus, their joint project on the foundations of statistical mechanics. This is Tim's sixth appearance on the show. He last appeared on episode 188 with Sheldon Goldstein to discuss Bohmian mechanics. Tim and David last joined Robinson together for episode 67, which gave an overview of the foundations of quantum mechanics. In this episode, Robinson, David, and Tim talk about the measurement problem, the role of philosophy in physics, various thought experiments, like Schrödinger's cat and Wigner's friend, and Niels Bohr's effects both on quantum mechanics and the philosophy of science. If you're interested in the foundations of physics, then please check out the JBI, which is devoted to providing a home for research and education in this important area. Any donations are immensely helpful at this early stage in the institute's life. A Guess at the Riddle: https://a.co/d/6qcsidl Tim's Website: www.tim-maudlin.site The John Bell Institute: https://www.johnbellinstitute.org OUTLINE 00:00 Introduction 04:04 Einstein, Bell, and Pearl on the Measurement Problem 13:00 On “Measurement” in Quantum Mechanics 25:34 What IS the Measurement Problem? 34:42 John Bell on the Measurement Problem 40:32 An Example of the Measurement Problem 43:08 Von Neumann on the Measurement Problem 45:38 Niels Bohr and the Measurement Problem 57:54 Niels Bohr's Drastic Revision of Physics 1:08:36 Quantum Measurement and the Philosophy of Physics 1:22:52 On Schrodinger's Cat and Wigner's Friend 1:38:34 On Consciousness and Quantum Mechanics 1:45:40 The Measurement Problem, Solved? 1:51:04 On the Role of Philosophy in Physics Robinson's Website: http://robinsonerhardt.com Robinson Erhardt researches symbolic logic and the foundations of mathematics at Stanford University. Join him in conversations with philosophers, scientists, and everyone in-between. --- Support this podcast: https://podcasters.spotify.com/pod/show/robinson-erhardt/support
Science writer George Musser on the unsung role of friendship in science's biggest discoveries. Science writer George Musser discusses the essence and nature of science, emphasizing its purpose as a means to understand and create a consistent view of reality. While we often imagine science geniuses such as Einstein as lone rangers in their field, scientists continuously share and refine ideas among colleagues, underlining the importance of friendships and trust in discoveries. Such relationships enable the initial testing of concepts in a supportive environment before they face the broader, often critical scientific community. Citing Einstein's interactions with Niels Bohr, Musser illustrates how even foundational principles, like the Heisenberg Uncertainty Principle, were continually probed and questioned — not out of disbelief, but out of a quest for deeper understanding. However, not all scientific dialogues result in consensus. One study suggested that the most innovative scientists often remain firm in their views, hinting that a certain degree of stubbornness might be beneficial for scientific progress. In essence, the rigorous, collaborative, and sometimes contentious interactions among scientists are fundamental to advancing knowledge. ------------------------------------------------------------------------------------------------ ❍ About The Well ❍ Do we inhabit a multiverse? Do we have free will? What is love? Is evolution directional? There are no simple answers to life's biggest questions, and that's why they're the questions occupying the world's brightest minds. So what do they think? How is the power of science advancing understanding? How are philosophers and theologians tackling these fascinating questions? Let's dive into The Well. ----------------------------------------------------------------------------------------
(NOTAS COMPLETAS Y ENLACES DEL CAPÍTULO AQUÍ: https://www.jaimerodriguezdesantiago.com/kaizen/197-creatividad-viii-espera-lo-inesperado-y-iii-monty-python-paradojas-y-brebajes-extranos/)«Graham Chapman, coautor del sketch “el loro muerto” ya no existe. Ha dejado de ser, ha pasado a mejor vida, descanse en paz. Ha palmado, se ha ido al más allá, ha mordido el polvo, la ha diñado, ha exhalado su último aliento y ha ido a encontrarse con el gran jefe del entretenimiento ligero del cielo. Y creo que todos pensamos lo triste que es que un hombre de tan talento, de tal capacidad y amabilidad, de tal inusual inteligencia se haya desvanecido así de repente a la edad de sólo 48 años, antes de que pudiese alcanzar muchas de las cosas de las que era capaz y antes de que se hubiese divertido lo suficiente. Bueno, a eso creo que debería decir: «tonterías». ¡Que tenga un buen viaje, el cabrón aprovechado ése! Y la razón por la que pienso que debería decir esto es que él nunca me perdonaría si no lo hiciese, si desperdiciara esta gloriosa oportunidad de tomaros el pelo en su honor. Él tenía de todo excepto «buen gusto, imbécil». Pude oírle susurrarme al oído anoche, mientras escribía estas palabras. Decía: «Muy bien, Cleese, estás muy orgulloso de ser la primera persona en haber dicho “mierda” en la televisión británica. Si este funeral es realmente para mí, para empezar quiero que seas la primera persona, en un funeral británico, en decir “joder”»Así despedía un mítico Humorista inglés, John Cleese, a uno de tus compañeros en los Monty Python. Cleese es, además, el protagonista de uno de los tres cuadros que hay en el despacho en el que grabo el podcast. Bueno, más bien su silueta, en un homenaje a uno de sus sketches más conocidos. Como ya hemos dicho muchas veces, detrás del mejor humor se esconde habitualmente un enorme ejercicio de creatividad. La que se necesita para inventar situaciones absurdas o sorprendentes capaces de hacernos cosquillas en el cerebro.Hace ahora la friolera de 50 años, Cleese fundó una empresa, Videoarts, para dar formación en otras empresas usando, claro, el humor. Haciendo un poco de arqueología en Youtube es relativamente sencillo encontrar algunas de sus charlas. En concreto hay una que está muy bien sobre creatividad. «Hay algo negativo que os puedo decir sobre la creatividad. Y es que es más sencillo decir lo que la creatividad no es. Un poco como aquel escultor que, al ser preguntado cómo había esculpido un maravilloso elefante, explicó que había tomado un gran bloque de mármol y después había ido quitando todas aquellas partes que no se parecían a un elefante. Y aquí viene la parte negativa: la creatividad no es un talento. No es un talento. Es una forma de operar»Es decir, según él, la creatividad es una forma de hacer las cosas. Volveremos a sus ideas en algún capítulo futuro, seguro, aunque si no aguantas hasta entonces te he dejado un enlace a una de sus charlas en las notas. Pero hoy vamos a seguir profundizando en esa forma de hacer las cosas vista desde otra perspectiva, la de un filósofo griego que odiaba a la humanidad. Y es que vamos a tratar de terminar con esas ideas que hemos ido rescatando de un libro extraño llamado «Espera lo inesperado», en el que Roger von Oech trataba de sacar aprendizajes sobre creatividad de un tal Heráclito. Un plan sin fisuras. ¿Te gusta kaizen? Apoya el podcast uniéndote a la Comunidad y accede a contenidos y ventajas exclusivas: https://www.jaimerodriguezdesantiago.com/comunidad-kaizen/
Today we're proud to share another talk from DemystiCon '24 with legendary history of physics, Dr. Alberto Martinez from the University of Texas, Austin. This is our second podcast with Dr. Martinez, unpacking the hidden history of the physicists that brought us to the strange quantum foundation for reality where reality stops making sense. In his talk, Dr. Martinez explores a few key moments where things appear to have gone astray around the turn of the 20th century. He then entertains a luxuriously deep Q&A session exploring solution sets, alternative approaches to physics education, and the role of epistemic humility in truly productive science. Professor Martinez is a prolific, and ingenious author and we can't recommend his books enough. Tell us your thoughts in the comments!!! Sign up for our Patreon and get episodes early + join our weekly Patron Chat https://bit.ly/3lcAasB Grab one of Dr. Martinez' many books and support both us and the author here: https://amzn.to/4a0tnt6 (00:00) Go! (00:37:12) Q&A (00:37:12) Debates over the nature of negative and imaginary numbers (00:41:05) If Niels Bohr had been a regular mechanic instead of a quantum mechanic, how would history have gone differently? (00:45:04) On the helical travel of light (01:00:25) What should physics education look like? (01:05:20) Are experimental apparatuses obscuring the real meaning of results? (01:09:57) How did the history of the world affect the evolution of physics? (01:19:52) What was Niels Bohr's Problem? (01:21:42) The seductive influence of fame (01:23:35) Is obscurantism a way of never saying "I don't know"? (01:25:17) How difficult are honest assessments of any influential field? (01:29:07) How does mathematics play into the power of physics? (01:40:14) How do "particles" contribute to the confusion at the heart of physics? (01:46:38) Has the word "materialism" been ruined? (01:53:45) Who else played a role in the development of fundamental physics? (01:58:28) Is there a graceful way of dealing with the problems of modern physics? (02:06:35) What is the relationship between quantum and mysticism? (02:16:04) Closing thoughts #sciencepodcast, #PhysicsHistory, #QuantumParadoxes, #AtomicTheory, #RealityShifts, #QuantumMechanics, #HistoricalPhysics, #EinsteinRevolution, #QuantumDebate, #RealityDuality, #WaveParticleDuality, #QuantumWorldview, #PhysicsDiscussion, #HistoricalAnalysis, #QuantumJourney, #PhysicsParadoxes, #RealityPerception, #QuantumConcepts, #AtomicEra, #PhysicsEvolution, #QuantumExploration Check our short-films channel, @DemystifySci: https://www.youtube.com/c/DemystifyingScience AND our material science investigations of atomics, @MaterialAtomics https://www.youtube.com/@MaterialAtomics Join our mailing list https://bit.ly/3v3kz2S PODCAST INFO: Anastasia completed her PhD studying bioelectricity at Columbia University. When not talking to brilliant people or making movies, she spends her time painting, reading, and guiding backcountry excursions. Shilo also did his PhD at Columbia studying the elastic properties of molecular water. When he's not in the film studio, he's exploring sound in music. They are both freelance professors at various universities. - Blog: http://DemystifySci.com/blog - RSS: https://anchor.fm/s/2be66934/podcast/rss - Donate: https://bit.ly/3wkPqaD - Swag: https://bit.ly/2PXdC2y SOCIAL: - Discord: https://discord.gg/MJzKT8CQub - Facebook: https://www.facebook.com/groups/DemystifySci - Instagram: https://www.instagram.com/DemystifySci/ - Twitter: https://twitter.com/DemystifySci MUSIC: -Shilo Delay: https://g.co/kgs/oty671
Why do complex systems self-organise? What is cellular uncertainty and stem cell plasticity? Can we create artificial digital life that's subject to the same creative adaptability that nature and life demonstrate? Today we have the extraordinary phenomena of self-organisation in Complex Systems to look into. We're going to be looking into the conditions for a system to be considered complex, how a certain amount of randomness in the system releases the creativity required to permit adaptability, and how the feedback loops within that adaptability lead to a self-correcting organisational principle that keeps the system's order and randomness in balance as it evolves. We're going to be seeing how that self-organisation is operative at almost every level of scale in the universe and in life and death, and trying to get our heads around what that means for the nature of reality and consciousness. So who better to discuss this with than stem cell biologist and diagnostic pathologist Neil Theise. Neil is is a professor of pathology at the NYU Grossman School of Medicine and a pioneer of adult stem cell plasticity research. In 2018 the news of his discovery of the interstitial, a vast communication network throughout the human body went viral and was featured in the New York Times and Scientific American among many others. Theise is also a long term student of Zen meditation and Kabbalah. And his studies of complexity theory, summarised in his new book “Notes on Complexity: A scientific theory of connection, consciousness and being”, have led to interdisciplinary collaborations in fields as diverse integrative medicine, consciousness studies and the science-spirituality interface. Since speaking with biologist Michael Levin on Cellular cognition, and cognitive scientist John Vervaeke on collective intelligence, in the last series; I've been keen to speak to Neil about stem cell plasticity and self-organising systems, as their elegant sophistication begs so many questions about the nature of reality and consciousness. So without further ado, let's go! 00:00 Intro 05:45 Livers have stem cells, Neil's first of many discoveries 13:50 “Cellular Uncertainty” - Stem-cell plasticity. 17:43 Heisenberg's ‘Uncertainty principle' analogy. 20:20 Cellular sensitivity 22:00 The TechnoSphere - interacting with virtual creatures 26:20 Emergent bottom-up structure, self-organising inside the game 27:20 Artificial Life. 29:20 Complexity Theory explained by Ants. 34:20 Randomness allows the creativity to adapt to changes: in the environment Divergent ants. 35:20 A minimum of elements are needed over time to become self-organising. 36:50 Cells, ants and humans all self-organise: micro macro phenomena. 38:40 No planning or top-down intelligence managing complex systems. 42:55 ‘Wholarchies' not hierarchies. 47:50 Living systems and complexity arise at the boundary between perfect order and fractal chaos. 49:55 Extinction is also part of complexity, as much as creative adaptivity. 50:30 “What makes you able to be a living system, inevitably, given enough time will lead you to die. You can't separate life and death”. 53:10 Self correction 55:50 Cancer, economic crashes, extinction events: Pruning away the corrective negative feedback loops leads to collapse. 57:30 Every scale of nature adheres to complex system behaviours. 59:50 Complementarity exists at all levels of scale - Niels Bohr. 01:01:40 Biological complementarity. 01:04:50 Breaking down the separations between discrete organisms. 01:10:50 Not upward or downward causation but complementarity. 01:35:50 Zen meditation insights which led to scientific insight. 01:18:20 The risk of over-rating our personal experience. 01:23:20 Where you find mind, you find life. References: Neil Theise, “Notes on Complexity: A scientific theory of connection, consciousness and being” Evan Thompson - Deep Continuity (of Life and Mind) Francisco Varela - (Evan Thompson's mentor)
Welcome to the Instant Trivia podcast episode 1162, where we ask the best trivia on the Internet. Round 1. Category: Anagrammed Birds 1: Illinois' state bird:CLAN RAID. cardinal. 2: A real show-off:COP CAKE. peacock. 3: A holiday standard:KEY RUT. turkey. 4: Seen at the seashore:DARN PIPES. sandpiper. 5: It's game if you are:HATE NAPS. pheasant. Round 2. Category: Are You Eating Right? 1: You can eat ice cream from a dull, ordinary cone, or from one named for this breakfast food. waffle cone. 2: It's cooking food by immersing it in hot oil; it's a Scottish practice to do it to Mars bars. deep-fat frying. 3: Sweet and sour sauce is a popular dip for these fried Chinese dumplings for which a soup is also named. won tons. 4: It can be an apparatus to make a popular movie snack, or a jalapeno and cheese concoction. popper. 5: Popular in Cajun cooking, this sausage with a French name is full of tripey goodness. Andouille. Round 3. Category: I'M On The Money 1: His smiling face beams on a 5-rand coin released in 2008 to honor his 90th birthday. Nelson Mandela. 2: Maybe if you climb Mt. Everest you can get your face on a New Zealand $5 bill, like him. Hillary. 3: Starting in 1975, you could nurse a beer or two with a British 10-pound note featuring her. Florence Nightingale. 4: It's a scientific fact--this physicist, who died in 1962, was on a Danish note. Niels Bohr. 5: Indonesia's 100,000-rupiah note features Prime Minister Hatta and the first president, him--an airport is named for them, too. Sukarno. Round 4. Category: The Four Seasons 1: It's the 7-word first line of "Richard III". "Now is the winter of our discontent". 2: The fall guy in the Teapot Dome scandal, Albert Fall, was born November 26, 1861 in this season. the fall. 3: In the northern hemisphere, the first day of fall falls in this month. September. 4: "The Four Seasons" consists of 4 concertos for this instrument and orchestra. Violin. 5: According to "You've Got A Friend", it's when you can call your "friend" James Taylor. winter, spring, summer, or fall. Round 5. Category: 1950s People 1: In 1954 he ran unoppposed for president of Cuba. (Fulgencio) Batista. 2: Israel offered this physicist the presidency in 1952; feeling he didn't have the personality for the job, he declined. Einstein. 3: In 1950 this sen. said there were 205 Communists in the State Dept. but in Sen. testimony gave no proof of a single card carrier. Joe McCarthy. 4: William M. Gaines wasn't worried when he launched this irreverent humor magazine in 1952. Mad. 5: Born in New York, she moved with her family to Greece and was back for her Metropolitan Opera debut as Norma in 1956. Maria Callas. Thanks for listening! Come back tomorrow for more exciting trivia!Special thanks to https://blog.feedspot.com/trivia_podcasts/ AI Voices used
An expert is someone who knows some of the worst mistakes, which can be made, in a very narrow field - Niels Bohr Check out John Lee Dumas' award winning Podcast Entrepreneurs on Fire on your favorite podcast directory. For world class free courses and resources to help you on your Entrepreneurial journey visit EOFire.com
In Conversation with a Genius: Albert Einstein's Insights on Life, Science, and HumanityThis in-depth interview with Albert Einstein delves into his personal and professional life, philosophies, and the impact of his work. Einstein discusses the importance of curiosity, the distinction between arrogance and confidence, and reflects on the colleagues who influenced him, including Max Planck and Niels Bohr. He openly regrets his role in promoting atomic research that led to the atomic bomb, emphasizing the ethical responsibilities of scientists. The conversation also explores Einstein's views on modern physics advancements, the necessity of a well-rounded education, and the value of humanities. Einstein stresses the urgency of addressing global issues like climate change, artificial intelligence, and misinformation. He champions scientific literacy and encourages a sense of shared responsibility for the planet's future. Throughout the interview, Einstein advocates for continuous learning, open-mindedness, and the embrace of both science and art to cultivate a fulfilling life and a better world.00:00 Introduction: A Unique Interview with Albert Einstein01:05 Diving Into Einstein's Genius: The Interview Begins02:28 Einstein on Arrogance vs. Confidence in Science03:52 Einstein Reflects on His Scientific Legacy and Peers05:38 The Ethical Dilemma of the Atomic Bomb07:49 Einstein's Hope and Concern for Humanity's Future17:47 Exploring Einstein's Personal Relationships and Views24:58 The Roots of Einstein's Pacifism26:20 Einstein's Academic Freedom and Isolation28:03 Einstein Reflects on His Legacy and Public Image29:41 Let's Talk Science with Einstein29:53 Einstein on Modern Physics: Quantum Mechanics and String Theory33:24 Einstein's Views on Other Scientific Advancements36:33 Einstein on the Ethics of Scientific Research37:57 The Intersection of Art and Science39:45 Einstein on Current Global Issues43:45 The Importance of a Well-Rounded Education47:16 Einstein's Final Words of Wisdom49:50 Closing Thoughts and FarewellFind the transcript of this episode on https://englishpluspodcast.com/the-mind-of-a-genius-a-conversation-with-albert-einstein/Support the showSupport our mission to keep creating high-quality educational and entertaining content available to everyone around the world. Become my patron on Patreon today and unlock a world of learning and knowledge through exclusive premium episodes, audio and video series/courses.And never stop learning with the myriad of topics and content types that I add daily to my website englishpluspodcast.com
Join Chris and his brilliant daughter, Geneva, on a journey filled with laughter, learning, and a dash of dental humor in Episode 192 of "Another Great Day," airing on Tuesday, February 20, 2024. Dive into the world of eponymous discoveries with Niels Bohr, unravel the history behind the United States Post Office Department, and ponder over a letter to Cinderella, all while soaking in words of wisdom from Proverbs. Whether you're bracing for a day of errands or banding together for a family road trip, this episode is your ticket to fostering creativity, sparking conversations, and encouraging interaction among young families and their 3-13 year olds. Don't forget to share the joy by rating, reviewing, and spreading the word about our podcast. Make every day Another Great Day, and let us help you turn your commute into an adventure of discovery and laughter. --- Send in a voice message: https://podcasters.spotify.com/pod/show/anothergreatday/message
Was ist alles möglich im Quantenfeld? Es soll Niels Bohr, ein dänischer Physiker, gewesen sein, der bereits Anfang des 20. Jahrhunderts sagte: „Denn wenn man nicht zunächst über die Quantentheorie entsetzt ist, kann man sie doch unmöglich verstanden haben.“ Die Quantenphysik ist vielleicht die Mutter aller Naturwissenschaften, aktuell gefühlt in aller Munde, aber wirklich erklären oder begreifen können sie vermutlich nur eine Handvoll Menschen. Zumindest wollen wir in dieser Folge einen Versuch starten, uns dem Thema mit Respekt und Neugierde ein wenig zu nähern. Kathies Gäste: Dr. Natalie Knapp. Sie ist Philosophin, Autorin und Rednerin, hat lange Zeit als Rundfunkjournalistin gearbeitet und neben zwei weiteren Büchern bereits 2011 ein Buch über die Quantenphysik geschrieben: Der Quantensprung des Denkens – was MIR glücklicherweise in diesem Sommer in die Hände fiel. An ihrer Seite ist Ulrich Schnabel. Er ist Wissenschaftsjournalist bei der Zeit, ein wunderbarer Autor und Kommunikator, dessen Herz nicht nur für die Verbundenheit schlägt – über die er in seinem aktuellen Buch „Zusammen“ schreibt - sondern auch für die Quantenphysik. Denn im Quantenfeld ist ja bekanntlich auch alles verbunden.
*Niels Bohr discovered the structure of the atom in a dream, Coleridge wrote Kubla Khan after a dream, Mary Shelley's Frankenstein was inspired by a dream, Hergé 's 'Tintin in Tibet' - the first of many Tintin stories - the same. *Keith Richards claimed to have dreamed the riff to 'Satisfaction', Paul McCartney the melody to 'Yesterday' - the most covered pop song in history. Hell, even Aphex Twin says that 70% of his album 'Selected Ambient Works Volume II' was written whilst lucid dreaming *This episode is all about The Dreaming - and our guide is one of the UK's foremost dream researchers: SARAH JANES. *We talk about dreaming as countercultural consciousness, lucid dreaming, dreams and psychedelics, neuroscience, dreams as creative inspiration, the imagination, sleep cycles, REM, memories in dreams, alchemy, wet dreams, the dream space as the underworld - and dreaming as preparation for the afterlife. *Sarah gives some great tips on how to become a lucid dreamer, tells us about her work - and drops a couple of mind bombs on us. *For more on Sarah and her amazing work #dreaming #psychedelics #theunconscious #consciousness #truth #madness #counterculture #sleep #luciddreaming #dreams #neuroscience #consciousness
Chemistry 221 Video Lecture from November 17, 2023. This video covers material from Chapter 6 Part I of our textbook including Niels Bohr and the Bohr equation, sharp line spectra (emission lines, and compared to absorbance lines), and more. CH 221 website: http://mhchem.org/221 Let me know if you have any questions! Peace!
Historically Thinking: Conversations about historical knowledge and how we achieve it
“The scientific community is by any measure a very strange kind of community”, writes my guest. “For starters, no one knows who exactly belongs to it... Its members are a miscellany of individuals but also of disparate institutions…Nor does it have a fixed location. …the village conjured up by the term “scientific community” is scattered all over the globe and its inhabitants meet only occasionally, if at all. Far from living in neighborly harmony or even collegial mutual tolerance, the members of this uncommunal community compete ferociously and engage in notoriously vitriolic polemics … Although modern science has been called the locomotive of all modernity, the scientific community more closely resembles a medieval guild…” Given this, one is bound to ask how precisely this scattered contentious stratified “community” even exists, let alone cooperates. Yet cooperation has been a continuous strand uniting modern science. Lorraine Daston has described the growth and mutations of that community in her new book Rivals: How Scientists Learned to Cooperate. She is the Director Emerita of the Max Planck Institute for the History of Science in Berlin, visiting professor in the Committee on Social Thought at the University of Chicago, and permanent fellow at the Berlin Institute of Advanced Study. For Further Investigation Lorraine Daston, Rules: A Short History of What We Live By Here is an excellent conversation with Lorraine Daston about her book Rules which, unfortunately, was not a conversation on Historically Thinking We've had numerous conversations about topics within the history of science over the years. Here is a list. The featured image below is of the Fifth Solvay Conference, at which every luminary of past and future physics seems to have been gathered. Hopefully you recognize the bushy-haired man with the big mustache more or less in the center of the first row. Less identifiable than Albert Einstein: Max Planck (first row, 2nd from left); Marie Curie (first, row 3rd from left); Niels Bohr (second row, extreme right); Paul Dirac (second row, fifth from left); Ernst Schrödinger (third row, sixth from right); Wolfgang Pauli (third row, fourth from right); Werner Heisenberg (third row, third from right). And many more who deserve mention, which you can find here.
Winner of the Tony Award for Best Play in 2000, “Copenhagen,” is a gripping and intellectually stimulating play that explores the events surrounding a mysterious and fateful meeting between two of the most brilliant minds of the 20th century: Niels Bohr and Werner Heisenberg. The play is being performed through October 29th at the Berkshire Theatre Group's Unicorn Theatre. Eric Hill directs the production for BTG and he joins us.
NEILS BOHR – LARGER THAN LIFE, 77min., Denmark, Documentary Directed by Marie Breyen, Anna von Lowzow Niels Bohr – Larger Than Life” is an international documentary film that has great relevance to the world of today, with a war in Europe and the importance of co-operation between nations and science. The story is about one of the world's greatest scientists and his Institute – Niels Bohr, who received the Nobel Prize in 1922 for his ground-breaking model of the atom. At the time no-one imagined that his Institute would accommodate 27 Nobel Prize recipients and be the leading centre for quantum mechanics, thus laying the bricks for the computer revolution but also for the most powerful man-made weapon ever created. Get to know filmmaker: The years 2021 and 2022 was the 100 years anniversary for the Niels Bohr Institute and The year that Niels Bohr received Denmark's first Nobel prize In physics. Years before that we decided to do the documentary so that it could be part of the anniversary. You can sign up for the 7 day free trial at www.wildsound.ca (available on your streaming services and APPS). There is a DAILY film festival to watch, plus a selection of award winning films on the platform. Then it's only $3.99 per month. Subscribe to the podcast: https://twitter.com/wildsoundpod https://www.instagram.com/wildsoundpod/ https://www.facebook.com/wildsoundpod
La primera bomba atómica de la historia hizo explosión en la madrugada del 16 de julio de 1945 en un desierto del Estado de Nuevo México. No mató a nadie, fue una simple prueba que culminaba el denominado Proyecto Manhattan, nombre en clave que empleó el Gobierno de Estados Unidos para desarrollar las tres primeras armas nucleares. La primera de ellas, llamada Trinity, fue la que detonaron en el desierto para comprobar si las investigaciones realizadas en el laboratorio les habían llevado a buen puerto. Fabricaron otras dos: Little Boy, que sería arrojada sobre la ciudad japonesa de Hiroshima el 6 de agosto de 1945, y Fat Man, que se lanzó sobre Nagasaki tres días después. Estas bombas forzaron al imperio japonés a solicitar la rendición y así concluyó la Segunda Guerra Mundial. El director de ese proyecto que convirtió a Estados Unidos en la primera potencia nuclear fue Julius Robert Oppenheimer, un físico teórico de Nueva York que en sólo un par de años reunió en el laboratorio nacional de Los Álamos a muchos de los mejores científicos de la época. Gracias a su intuición y sus dotes de liderazgo, consiguió demostrar que lo que tan sólo era una novedosa teoría se transformase en el arma más temida de la historia. Quizá por eso mismo y ya en condición de héroe nacional fue posteriormente matizando su visión del arma atómica. En ese cambio tuvo mucho que ver la experiencia de los bombardeos de Hiroshima y Nagasaki. Cuando observó con sus propios ojos la destrucción absoluta que había ayudado a crear, se convirtió en un crítico de su uso, se opuso al desarrollo de la bomba de hidrógeno e insistió en que se controlase la proliferación de armas nucleares. Ese Oppenheimer de posguerra es mucho menos conocido, pero ayuda a entender al personaje histórico. Oppenheimer no era un físico al uso. Hijo de un rico comerciante textil hecho a sí mismo, estudió en Harvard, pero no física, sino química. Se interesó entonces por la física experimental y decidió cruzar el Atlántico para estudiar en la universidad de Cambridge junto a uno de los físicos experimentales más famosos del mundo. Una vez allí comprobó que lo suyo no era experimentar, sino trabajar la teoría, eso le llevó de cabeza a Alemania, a la universidad de Gotinga, para realizar su doctorado. En esos años en Europa trabó contacto con los principales físicos de su época, gente como Max Born, Enrico Fermi, Werner Heisenberg, Wolfgang Pauli o Niels Bohr que se encontraban en ese momento realizando contribuciones revolucionarias a esa ciencia. De regreso a Estados Unidos obtuvo un puesto de profesor en la universidad de Berkeley donde empezó a colaborar con Ernest Lawrence, un compatriota suyo y físico experimental que años después sería galardonado con el premio Nobel. En Berkeley, aparte de desarrollar alguna actividad política menor, se convirtió en un profesor muy reconocido tanto por sus alumnos como por sus colegas. Esa sería su carta de presentación cuando la Segunda Guerra Mundial y el Proyecto Manhattan se cruzaron en su vida. El Gobierno tenía la urgente necesidad de anticiparse a los alemanes en el desarrollo de la bomba atómica y ahí estaba Robert Oppenheimer con todo su conocimiento, su red de contactos y sus dotes organizativas para resolver ese problema. Fue ese proyecto el que le catapultaría hacia la inmortalidad y seguramente también del que más se arrepintió años después. En El ContraSello: - Historia de Yugoslavia - El 'Tanto Monta' del Fernando el Católico - Mazarino y Richelieu como cardenales Bibliografía: - "Prometeo americano" de Kai Bird y Martin Sherwin - https://amzn.to/3OEVLcQ - "Trinity: Historia gráfica del Proyecto Manhattan"de Jonathan Fetter-Vorm - https://amzn.to/3KsdjGF - "Robert Oppenheimer" de Sandra María Álvarez - https://amzn.to/47k5Y5y - "Oppenheimer y la bomba atómica" de Paul Strathern - https://amzn.to/3rWahUG · Canal de Telegram: https://t.me/lacontracronica · “Hispanos. Breve historia de los pueblos de habla hispana”… https://amzn.to/428js1G · “La ContraHistoria de España. Auge, caída y vuelta a empezar de un país en 28 episodios”… https://amzn.to/3kXcZ6i · “Lutero, Calvino y Trento, la Reforma que no fue”… https://amzn.to/3shKOlK · “La ContraHistoria del comunismo”… https://amzn.to/39QP2KE Apoya La Contra en: · Patreon... https://www.patreon.com/diazvillanueva · iVoox... https://www.ivoox.com/podcast-contracronica_sq_f1267769_1.html · Paypal... https://www.paypal.me/diazvillanueva Sígueme en: · Web... https://diazvillanueva.com · Twitter... https://twitter.com/diazvillanueva · Facebook... https://www.facebook.com/fernandodiazvillanueva1/ · Instagram... https://www.instagram.com/diazvillanueva · Linkedin… https://www.linkedin.com/in/fernando-d%C3%ADaz-villanueva-7303865/ · Flickr... https://www.flickr.com/photos/147276463@N05/?/ · Pinterest... https://www.pinterest.com/fernandodiazvillanueva Encuentra mis libros en: · Amazon... https://www.amazon.es/Fernando-Diaz-Villanueva/e/B00J2ASBXM #FernandoDiazVillanueva #oppenheimer #proyectomanhattan Escucha el episodio completo en la app de iVoox, o descubre todo el catálogo de iVoox Originals
Slavoj Žižek is international director of the Birkbeck Institute for the Humanities at the University of London, visiting professor at New York University, and a senior researcher at the University of Ljubljana's Department of Philosophy. He was also the guest for Robinson's Podcast #109 on psychoanalysis, wokeness, racism, and a hundred other topics. Sean Carroll is Homewood Professor of Natural Philosophy at Johns Hopkins University and fractal faculty at the Santa Fe Institute. He is also host of Sean Carroll's Mindscape, a terrific show (that influenced the birth of Robinson's Podcast) about science, society, philosophy, culture, arts, and ideas. Sean was one of the guests—along with David Albert of Columbia—on Robinson's Podcast #106, which covers the Many-Worlds theory of quantum mechanics, entropy and Boltzmann Brains, and the fine-tuned universe. In this episode, Robinson, Sean, and Slavoj (though mostly Sean and Slavoj) talk about quantum mechanics, the indeterminacy of small-scale reality, cosmology and the big bang, major figures like Niels Bohr, Einstein, and Stephen Hawking, and the world of sci-fi, including movies like Everything Everywhere All at Once, Indian Jones, and the Avengers. If you're interested in the foundations of physics—which you absolutely should be—then please check out the John Bell Institute (Sean is an Honorary Fellow at the JBI), which is devoted to providing a home for research and education in this important area. At this early stage any donations are immensely helpful. Robinson's Podcast #109 | Slavoj Žižek: Wokeness, Psychoanalysis, and Quantum Mechanics: https://youtu.be/IxmZ4AVac7U Robinson's Podcast #106 | David Albert & Sean Carroll: Quantum Theory, Boltzmann Brains, & The Fine-Tuned Universe: https://youtu.be/U6ZtmGIhIhU Sean's Website: https://www.preposterousuniverse.com Sean's Twitter: https://twitter.com/seanmcarroll The Biggest Ideas in the Universe: https://a.co/d/dPKZ40X The John Bell Institute: https://www.johnbellinstitute.org OUTLINE 00:00 In This Episode… 00:38 Introduction 04:40 Quantum Incompleteness 15:56 A Problem with Many-Worlds? 27:08 Niels Bohr and the Copenhagen Interpretation 40:30 Ontological Indeterminacy and Quantum Physics 47:23 On Superposition, History, and Art 01:02:10 What's The Status of the Big Bang? 01:09:57 Albert Einstein, Niels Bohr, and Indeterminacy 01:21:13 Will Quantum Mechanics Be in a Theory of Everything? 01:27:55 Everything Everywhere All at Once, Indiana Jones, and The Avengers 01:33:03 Time Travel and Killing Hitler 01:41:54 On Stephen Hawking Robinson's Website: http://robinsonerhardt.com Robinson Erhardt researches symbolic logic and the foundations of mathematics at Stanford University. Join him in conversations with philosophers, scientists, weightlifters, artists, and everyone in-between. --- Support this podcast: https://podcasters.spotify.com/pod/show/robinson-erhardt/support
An expert is a person who has made all the mistakes that can be made in a very narrow field. - Niels Bohr Check out John Lee Dumas' award winning Podcast Entrepreneurs on Fire on your favorite podcast directory. For world class free courses and resources to help you on your Entrepreneurial journey visit EOFire.com
On this special episode of the Deja Blu podcast, we are joined by two brilliant minds: Richard Rudd, founder of the Gene Keys, and Polymath Robert Edward Grant, to discuss our collective awakening. They explore the intersection of their individual works and ideas, and how these things overlap. Richard shares for the first time his relationship to Hermes, and how he inspired much of what came through in the Gene Keys. Robert Edward Grant explains what he has learned through Hermes, and how he weaves in ancient symbologies. They also dive deep on reincarnation, and the golden thread of avatar consciousness that weaves throughout each of our lives. Exploring how to tap into our own unique genius, and alchemize pain into beauty - during this process of collective awakening. === Timestamps: 0:00 A Tapestry of Two Masters of their Craft 5:15 Hermes's Inspiration in Richard's Work 12:49 How Hermes inspired Robert & The Aquarian Renaissance 20:20 Symbologies of Hermes and Thoth in Ancient Egypt 25:46 Richard's Perspective on Reincarnation 34:12 The Golden Thread of Avatar Consciousness 37:30 Niels Bohr and Walter Russell's views on physics and light 54:22 Alchemizing Pain into Beauty through Contemplation 1:03:15 Seeing The Divine in all Things 1:08:23 Conclusion === Richard Rudd: A teacher, mystic and award-winning poet, Richard Rudd's inner journey began early in life as he experienced strange energies rushing throughout his body, culminating in a major spiritual experience at the age of 29. Emerging from what he calls ‘a field of limitless light' that lasted 3 days and 3 nights, Richard was entrusted with a sacred teaching – the wisdom of the Gene Keys. A born explorer, Richard has studied with great teachers in the East, traveled through the Himalayas, the Pacific, the Americas and the Arctic. Earning a Master's Degree in metaphysics and literature from Edinburgh University, he went on to work in the film industry in Australia, trained as a teacher of Chi Kung in Thailand and sailed across the Atlantic Ocean on a small yacht. During this time he lived in Manhattan, Oregon and Hawaii before finally returning to the UK in 1998, where he met Marian his wife. Over the following years they had three children and moved to Devon in southern England. Throughout his adventures Richard has explored his love of writing and in 2006 he won the FISH international poetry award in Ireland. All Richard's travels and studies coalesced into a synthesis in 2002 when he began to write and conceive the Gene Keys. It took seven years to write the book and understand its teachings and applications. Today Richard continues to expand the wisdom that he was gifted, remaining always a student of the Gene Keys while teaching all around the world. In 2019, Richard was named on the Watkins list of The 100 Most Spiritually Influential Living People. Website: https://genekeys.com/ Instagram: https://www.instagram.com/genekeys/ The Art of Contemplation: https://www.amazon.com/Art-Contemplation-Richard-Rudd/dp/0956975097/ref=sr_1_1?keywords=art+of+contemplation&qid=1560865235&s=gateway&sr=8-1 Robert Edward Grant: Robert is a successful entrepreneur, best-selling author of PHILOMATH, prolific inventor, and founder of several corporate enterprises. Additionally, he is also a prodigious artist, sculptor, music theorist, musician, and author of several research and patent publications spanning biology, DNA combinatorics, number theory, geometry, and physics. Instagram: https://www.instagram.com/robertedwardgrant/ Robert's TEDx Talk: https://www.youtube.com/watch?v=1XDpa2HLXV0&list=PLr1rhWrc_lmIOLMKYOhPVPaeRsFo4dbFK&index=1 Robert's Books: https://www.amazon.com/stores/Robert-Edward-Grant/author/B093LSCH9L?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true === BLU: https://www.instagram.com/bluofearth/ https://www.bluofearth.com/ https://www.florescence.earth DONATE TO THE DEJA BLU PODCAST: https://www.paypal.com/donate/?hosted_button_id=VACWQVBHTCQ3Q