Podcasts about rechenzeiten

  • 4PODCASTS
  • 6EPISODES
  • 49mAVG DURATION
  • ?INFREQUENT EPISODES
  • Sep 27, 2018LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about rechenzeiten

Latest podcast episodes about rechenzeiten

Modellansatz
Hybride Strömungsmodelle

Modellansatz

Play Episode Listen Later Sep 27, 2018 34:52


Gudrun ist für die aktuelle Episode zu Gast in der Bundesanstalt für Wasserbau (BAW) am Standort in Karlsruhe. Die BAW ist etwa so alt wie die Bundesrepublik und grob gesagt zuständig für technisch-wissenschaftliche Aufgaben in allen Bereichen des Verkehrswasserbaus an den Bundeswasserstraßen und für Spezialschiffbau. Dabei berät sie die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV). Heute ist der Hauptsitz der BAW in Karlsruhe. Daneben gibt es noch einen Standort in Hamburg. Der Anlass des Besuches ist diesmal der Abschluss der Masterarbeit von Axel Rothert zu einer Fragestellung aus der BAW in Karlsruhe. Der Titel der Arbeit ist "Hybride 2D-3D-Simulation von Strömungsprozessen im Nah- und Fernfeld von Wasserbauwerken in OpenFOAM". Sie entstand in enger Zusammenarbeit mit den Kollegen Dr.-Ing. Carsten Thorenz und Franz Simons im Referat Wasserbauwerke der BAW. Nach dem Abschlussvortrag hat sich Gudrun mit Franz Simons und Axel Rothert über die Ergebnisse der Arbeit unterhalten. Neben traditionellen mathematischen Modellen, die durch physikalische Experimente kalibriert und erprobt werden, haben sich durch den technischen Fortschritt der letzen Jahrzehnte numerische Simulationen inzwischen fest etabliert. Einerseits, um numerische Näherungslösungen für die partiellen Differentialgleichungen des mathematischen Modells zu liefern, andererseits aber auch zur Durchführung virtueller Experimente. Die Simulation von hydrodynamischen Vorgängen ist hier ein gutes Beispiel. Das Fließen von Wasser muss mit Gleichungen beschrieben werden, die wiederum numerische Lösungen brauchen, wobei durch deren Komplexität auch gleich noch Ansprüche an entweder Hochleistungsrechentechnik (und damit Parallelisierung) oder andererseits gut begründete Vereinfachungen erhoben werden müssen. Das ganze muss verlässliche Aussagen liefern, damit die BAW z.B. die Hochwasserneutralität eines Wasserbauwerks garantieren kann bevor es endgültig geplant und gebaut wird. Dabei werden in der dortigen Praxis beide Wege beschritten: man investiert in modernste Rechentechnik und benutzt erprobte Vereinfachungen im Modell. Im Kontext der Umströmung von Wasserbauwerken haben unterschiedliche Regionen verschiedene dominierende Strömungsprozesse: in der Nähe des Bauwerkes gibt es eine starke Interaktion des Fließgewässers mit dem Hindernis, aber in einiger Entfernung kann man diese Interaktion vernachlässigen und den Modellansatz vereinfachen. Deshalb sollten im Nah- und Fernbereich unterschiedliche Modelle benutzt werden. Konkret sind es in der Arbeit die tiefengemittelten Flachwassergleichungen im Fernfeld und die Reynolds-gemittelten Navier- Stokes-Gleichungen (RANS) im Nahfeld der Wasserbauwerke. Wichtig ist dann natürlich, wie diese Modelle gekoppelt werden. Da eine Informationsübertragung sowohl stromaufwärts als auch stromabwärts möglich ist, ist eine Kopplung in beide Richtungen nötig. In der vorliegenden Arbeit wurde eine vorhandene Implementierung eines Mehr-Regionen-Lösers in OpenFOAM der TU München so weiter entwickelt, dass er für die Anwendungen in der BAW geeignet ist. Dafür musste sie auf die aktuell an der BAW verwendete Version von OpenFOAM portiert und anschließend parallelisiert werden, damit praxisnahe Probleme der BAW in sinnvollen Rechenzeiten bewältigt werden können. Außerdem mussten die Implementierungen der Randbedingungen so abgeändert werden, dass allgemeine Geometrien für den Untergrund und ein trocken fallen bzw. benetzen mit Wasser möglich sind. Die Implementierung wurde anhand eines realistischen Beispiels aus dem Verkehrswasserbau bestätigt. Ein etwa 1,1km langer Flussabschnitt wurde hybrid simuliert. Dabei ist ein Staustufe, bestehend aus Wehranlagen, Schleuse und Kraftwerk enthalten. Literatur und weiterführende Informationen Boyer, F. ; Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. New York : Springer-Verlag, 2013 Gerstner, N. ; Belzner, F. ; Thorenz, C.: Simulation of Flood Scenarios with Combined 2D/3D Numerical Models. In: Lehfeldt, R. (Hrsg.) ; Kopmann, R. (Hrsg.): 11th international conference on hydroscience and engineering. Bundesanstalt für Wasserbau, Karlsruhe, 2014 Mintgen, F.: Coupling of Shallow and Non-Shallow Flow Solvers - An Open Source Framework. München, Technische Universität, Diss., 2017 Mintgen, F. ; Manhart, M.: A bi-directional coupling of 2D shallow water and 3D Reynolds-Averaged Navier-Stokes models. 2018. Begutachtet und angenommen vom Journal of Hydraulic Research. Einsehbar: DOI: 10.1080/00221686.2017.1419989 Uijttewaal, W. S.: Hydrodynamics of shallow flows: application to rivers. In: Journal of Hydraulic Research 52 (2014), Nr. 2, S. 157-172 Podcasts R. Kopman, G. Thäter: Wasserstraßen, Gespräch im Modellansatz Podcast, Folge 24, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.

Modellansatz
Poroelastische Medien

Modellansatz

Play Episode Listen Later Feb 22, 2018 28:47


Jonathan Fröhlich hat im Juli 2017 seine Masterarbeit zum Thema "Heterogeneous Multiscale Methods for Poroelastic Media" eingereicht. Sie wurde von Professor Christian Wieners in unserem Institut betreut. Strömungs- und Transportphänomene in sogenannten porösen Medien spielen eine wichtige Rolle in einem breiten Spektrum von Bereichen und Anwendungen, wie zum Beispiel in der Landwirtschaft, der Biomedizin, der Baugeologie und der Erdöltechnik. Betrachtet man beispielsweise den Boden, so stellt man fest, dass der Sand, das Gestein oder der Kies keine homogene Masse ist mit homogenen Materialeigenschaften, sondern aus unzähligen unterschiedlich großen und in den physikalischen Eigenschaften variierenden Teilen bestehen. Die hohe Heterogenität solcher Medien führt auf eine große Komplexität, die im Modell des porösen Mediums stark vereinfacht betrachtet wird. Es liegt deshalb die Frage nahe: Wie verallgemeinert man herkömmliche Modelle für poröse Medien so, dass nicht gleich die komplette Zusammensetzung benötigt wird, aber mehr von der Struktur berücksichtigt wird? Die vorliegende Arbeit und unser Gespräch konzentrieren sich auf einen Spezialfall, nämlich die einphasige Strömung durch poroelastische Medien. Sie sind gekennzeichnet durch die Wechselwirkung zwischen der Beanspruchung der intrinisischen Struktur und der Strömung der Flüssigkeit. Konkret erzwingt die Änderung des Flüssigkeitsdrucks eine Beanspruchung des Materials, wodurch es beschleunigt und bewegt wird. Ein Beispiel hierfür ist der Blutfluß durch Adern. Das Blut verändert im Fließen ständig die konkrete Geometrie der elastisch verformbaren Adern und gleichzeitig ändern die Adern die Fließrichtung und -geschwindigkeit des Blutes. Dieser Prozeß wird mit bestimmten partiellen Differentialgleichungen (PDEs) modelliert. Jonathan verwendete das von Biot (1941) eingeführte linearisierte Modell und erweitert es zu einem quasistatischen Konsolidationsmodell für die Bodenmechanik. Solche Probleme sind charakterisiert durch die enorme Größe des betrachteten Gebietes, beispielsweise mehrere Kilometer an Flussbett. Dies steht im Kontrast zu den sehr kleineskaligen geometrischen Informationen, wie Sandkorngrößen und -formen, die einen Einfluss auf das System haben. Die standardmäßige Finite-Elemente-Methode zur numerischen Lösung dieses Systems von PDEs wird nur dann gute Ergebnisse liefern, wenn die Auflösung des Netzes wirklich extrem hoch ist. Dies würde zu nicht realisierbaren Rechenzeiten führen. Deshalb wird eine Idee von E und Engquist benutzt, die sogenannte Finite Element Heterogene Multiskalen Methode (FE-HMM) von 2003. Sie entkoppelt den heterogenen Teil und löst ihn durch ein mikroskopisch modelliertes Problem. Das makroskopische Problem braucht dann nur ein viel gröberes Netz und benutzt die Informationen aus dem mikroskopischen Teil als Daten. Mathematisch gesehen verwendet die Theorie eine schwache Formulierung mit Hilfe von Bilinearformen und sucht nach Lösungen in Sobolev-Räumen. Die passende Numerik für das makroskopische Problem ist eine gemischte Finite-Elemente-Methode für ein gestörtes Sattelpunktproblem. Deshalb müssen für Existenz und Eindeutigkeit von schwachen Lösungen bestimmte Bedingungen erfüllt sein, die der klassischen LBB-Bedingung (auch inf-sup-Bedingung genannt) ähnlich sind. Das zu lösende mikroskopische Problem ist elliptisch und wird mithilfe klassischer Homogenisierungstheorie hergeleitet, wobei zusätzliche Bedingungen zur Sicherung der Zwei-Skalen Konvergenz erfüllt werden müssen. Literatur und weiterführende Informationen Maurice A. Biot: General Theory of Three‐Dimensional Consolidation Journal of Applied Physics 12, 155, 1941. E. Weinan, Björn Engquist: The Heterogeneous Multiscale MethodsCommunications in Mathematical Sciences, Volume 1, Number 1, 87-132, 2003. M. Sahimi: Flow and Transport in Porous Media and Fractured Rock Wiley Weinheim, 2011. Assyr Abdulle e.a.: The heterogeneous multiscale method Acta Numerica Volume 21, pp. 1-87, 2012. Podcasts J. Fröhlich: Getriebeauswahl, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 028, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. L.L.X. Augusto: Filters, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 112, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.

Modellansatz
Strömungslärm

Modellansatz

Play Episode Listen Later Feb 19, 2015 84:12


Die Gründer Carlos Falquez, Iris Pantle und Balazs Pritz aus dem Karlsruher Institut für Technologie (KIT), befassen sich mit Verfahren für Strömungslärmprognose und bieten diese Ingenieurbüros und Unternehmen zur Nutzung auf ihrer Cloud-Simulationsplattform NUBERISIM an. Während für viele Strömungen die inkompressiblen Navier-Stokes-Gleichungen ausreichen, kommen hier kompressible Gleichungen zum Einsatz. Dies ändert das Gleichungssystem von einem dominant elliptischen zu einem dominant hyperbolischen System, dem die numerischen Verfahren Rechnung tragen müssen. Der Definition des Simulationsgebiets und den an dessen Rändern festzulegenden Randbedingungen kommt hier eine besondere Bedeutung zu: Beides muss aufeinander abgestimmt sein, jede ins Simulationsgebiet einlaufende Störung besitzt selbst wieder die Größenordnung akustischer Wellen und kann daher vom eigentlichen Simulationsergebnis, dem durch die Strömung erzeugten Schall, schlecht getrennt werden. Daneben ergeben sich weitere Herausforderungen, wie den Einsatz von Verfahren höherer Ordnung, um die Wellendispersion zu bewahren, deren Erhaltung in einer typischen Strömungssimulation normalerweise weder forciert wird noch das Ergebnis signifikant verbessern würde. Schließlich sind solche Verfahren hoch-instationär, so dass sich für realistische Fragestellungen äußerst lange Rechenzeiten ergeben. Dadurch wurden sie in der Vergangenheit nur in der akademischen Forschung untersucht und angewendet. Der Schritt zur kommerziellen Nutzung schien lange undenkbar. Durch moderne Parallelisierungstechniken und Cloud-Systeme jedoch steht plötzlich auch kleineren Unternehmen wie z.B. Ingenieursdienstleitern ausreichend Rechenkapazität zur Verfügung – theoretisch, denn der Zugang hierzu ist immer noch Eingeweihten vorbehalten. Darum haben die Gründer die Idee entwickelt, solche Verfahren nicht nur als Software, sondern als Plattform einschließlich Nutzeroberfläche anzubieten, gerade so wie bei einer konventionellen Software – nur eben über einen Browser anzusteuern. Die Plattform wird voraussichtlich im März zugänglich gemacht. Literatur und Zusatzinformationen Falquez, Pantle und Pritz GbR: Nubersim.de Iris Pantle: Strömungsakustik auf der Basis akustischer Analogie mit LES und URANS, Der Andere Verlag, ISBN 978-3936231823, 2002. Christoph Richter, Łukasz Panek, Norbert Schönwald, Mei Zhuang: Numerische Methoden in der Strömungsakustik – CAA, Vorlesungsskript, TU Berlin, 2005.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Der Einfluss des dreidimensionalen Strahlungstransportes auf Wolkenbildung und -entwicklung

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05

Play Episode Listen Later Apr 27, 2007


In der vorliegenden Arbeit wurde der Einfluss des dreidimensionalen Strahlungstransportes, insbesondere der differentiellen Einstrahlung, auf die Wolkenbildung und -entwicklung untersucht. Hierzu wurde ein Verfahren zur Berechnung der Bestrahlungsstärke am Boden unter inhomogener Bewölkung entwickelt und in das Grobstruktursimulationsmodell EULAG implementiert. Durch Vergleich von Simulationen mit der originalen Modellversion und dem weiterentwickelten Modell wurde der Einfluss der differentiellen Einstrahlung, verursacht durch Wolkenschatten, auf die konvektive Grenzschicht untersucht. Das Verfahren beruht auf der tilted independent column approximation (TICA). Hierbei werden einzelne Säulen, die in Richtung der Sonne ausgerichtet sind, betrachtet und für diese die Strahlung unabhängig voneinander berechnet. Die Methode wurde optimiert, parallelisiert und dadurch so stark beschleunigt, dass die Rechenzeiten der in dieser Arbeit durchgeführten Simulationen mit EULAG-TICA nur maximal 3% über denen mit EULAG ohne Strahlung liegen. Durch Vergleich mit exakten dreidimensionalen Strahlungstransportrechnungen wurde gezeigt, dass die TICA eine sehr gute Näherung zur Berechnung solarer Bestrahlungsstärken am Boden für unterschiedliche Wolkensituationen und verschiedene Sonnenzenitwinkel darstellt. Hingegen ist die verbreitete independent column approximation (ICA) zur Berechnung von Bestrahlungsstärken am Boden nur für im Zenit stehende Sonne geeignet, da die ICA aufgrund der Beschränkung auf den Strahlungstransport in senkrechten Säulen keinen realistischen Schatten produziert. Die berechnete Bestrahlungsstärke wurde an die Modellphysik gekoppelt durch die Anpassung des Wärmeflusses am Boden. Dieser wirkt sich auf die Temperatur in der Atmosphäre aus. Anhand von Vergleichen mit Messreihen unter gleichen Wolkenbedingungen wurde gezeigt, dass die durch die Wolkenschatten verursachten Temperaturfluktuationen am Boden in Simulationen mit EULAG-TICA realistisch sind. Zur Untersuchung des Einflusses der differentiellen Einstrahlung auf die Wolkenbildung wurden Simulationen einer einzelnen konvektiven Wolke durchgeführt. Der Einfluss auf die Wolkenentwicklung wurde anhand von Simulationen der konvektiven Grenzschicht untersucht. Die Simulationen mit und ohne Wolkenschatten zeigen deutliche Unterschiede. Im Bereich des Wolkenschattens ist der Aufwind wie erwartet schwächer ausgeprägt als in der Referenzsimulation ohne Schatten. Als Folge des schwächeren Aufwindes reicht die Wolke in den Simulationen mit Schatten weniger hoch und weist daher ein geringeres Volumen und einen geringeren Flüssigwasserpfad auf. Ist das Wolkenwachstum nach oben durch eine Inversion begrenzt, so wie in der konvektiven Grenzschicht, zeigen sich kaum Unterschiede im Bedeckungsgrad und Wolkenvolumen zwischen den Berechnungen mit und ohne Wolkenschatten. In jedem Fall hat die differentielle Einstrahlung jedoch einen starken Einfluss auf die Zirkulation. Vertikalprofile der horizontalen Windgeschwindigkeiten zeigen mittleren Wind von der Wolke in Richtung ihres Schattens in Höhe der Wolken und in entgegengesetzter Richtung in Bodennähe. Dies bedeutet, dass die an konvektiven Wolken vorhandene Zirkulation (aufsteigende Luft unterhalb der Wolke, Ausfließen in der Höhe der Wolke aus der Wolke heraus in alle Richtungen, absinkende Luft neben der Wolke und am Boden Luftbewegung von allen Seiten unter die Wolke) in Richtung des Schattens orientiert wird. Des Weiteren zeigen die Ergebnisse eine Bewegung der Wolken weg von ihrem Schatten, bzw. eine Auflösung der Wolken oberhalb ihres Schattens und Wolkenwachstum auf der der Sonne zugewandten Seite. Steht die Sonne im Zenit ist die Lebensdauer der einzelnen Wolken kürzer. Sie lösen sich schneller wieder auf, da der sie bildende Aufwind durch den Schatten abgeschwächt wird.

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06
Synthese und Charakterisierung von Gold-Azid- und Blei-Halogen-Verbindungen sowie Untersuchungen zur Schlagempfindlichkeit mittels der Fallhammermethode

Fakultät für Chemie und Pharmazie - Digitale Hochschulschriften der LMU - Teil 01/06

Play Episode Listen Later May 22, 2001


Trimesitylblei(IV)bromid und Dimesitylblei(IV)dibromid, Mes3PbBr und Mes2PbBr2 Bei der äquimolaren Umsetzung von Mesityllithium mit Blei(II)chlorid in THF bei Raumtemperatur konnten Mes3PbBr und als Nebenprodukt Mes2PbBr2 isoliert und charakterisiert werden. Die Plumbylene Mes2Pb, MesPbCl oder MesPbBr, können als Intermediate postuliert werden, die mit Mesityllithium weiter zu Mes3PbBr bzw. zu Mes2PbBr2 reagieren können. Die Bildung der Blei−Brom-Bindung ist vermutlich auf einen Austausch von Chlor gegen Brom zurückzuführen, welches sich durch die Synthese von MesLi im Reaktionssystem befindet. Eine Grignard-Umsetzung führte nicht zu einer Ausbeuteverbesserung, sondern die Ausbeute an Mes3PbBr sinkt von 44% aus der Reaktionsgleichung a auf 2% von Gleichung b. Besonders aussagekräftig sind die 207Pb-NMR Spektren der beiden Mesityl-Blei- Verbindungen. Die Spektren zeigen jeweils ein scharfes Signal für die Blei-Resonanz, welches von 13C-Satelliten umgeben ist. Auch alle 1H- und 13C-Resonanzen weisen aufgrund der Kopplung mit 207Pb Bleisatelliten auf. Ein besonders auffallendes Merkmal beim Vergleich der NMR-Daten von Mes3PbBr mit Mes2PbBr2 ist der signifikante Anstieg (~40- 60%) der Werte für die Kopplungskonstanten nJH-Pb (n = 4,6) und nJC-Pb (n = 1-5) vom Bromid zum Dibromid. Die Übereinstimmungen zwischen experimentell ermittelten (Röntgenstrukturanalyse) und quantenchemisch berechneten (PM3) Strukturparametern ist recht gut, was zeigt, dass die PM3 Parameter sogar für die Vorhersage der Eigenschaften von schwermetallorganischen Verbindungen wie Mes3PbBr und Mes2PbBr2 geeignet sind. Die besonders interessanten strukturellen Merkmale sind die Bindungswinkel am zentralen Bleiatom, welche wesentlich von den idealen Tetraederwinkeln (109.5°) abweichen. Die C−Pb−C-Winkel liegen sowohl experimentell, als auch rechnerisch bei 115-123°. Die C−Pb−Br- und Br−Pb−Br-Winkel liegen zwischen 96 und 115°. Diese Tatsachen stimmen hervorragend mit der Bent'schen Regel überein, welche besagt, dass elektronegativere Substituenten Hybridorbitale mit geringerem s-Charakter und elektropositivere Substituenten Hybridorbitale mit höherem s- Charakter bevorzugen [100-102]. Bei Trimesitylblei(IV)bromid handelt es sich um eine sehr stabile Verbindung, die sowohl hydrolyse- als auch luftbeständig ist. Ein Austausch des Halogens gegen eine Azid- Gruppierung konnte nicht zweifelsfrei nachgewiesen werden. Zwar sind in den IR- und Raman-Spektren der erhaltenen Substanzen die symmetrischen und antisymmetrischen Azid- Schwingungen erkennbar, doch sind die gefundenen Stickstoffgehalte zu gering, was zu der Vermutung führt, dass nur ein teilweiser Halogen-Azid-Austausch stattgefunden hat. Leider war bisher jede Trennung eines Mes3PbBr/Mes3PbN3-Gemisches unmöglich, ebenso waren Kristallzüchtungsversuche bislang erfolglos. Tetraphenylphosphonium(arsonium)octabromoplumbat(II), [Ph4E]2[Pb3Br8] mit E = P, As Neue anionische Blei-Halogensysteme wurden hergestellt, z.B. Tetraphenylphosphoniumoctabromoplumbat. Um [Ph4P]2[Pb3Br8] zu erhalten, wurde [Ph4P]Br mit PbBr2 bei 75°C in CH3CN umgesetzt. Das Anion bildet Ketten, in denen zwei verschiedene Arten an Blei-Atomen existieren; das eine besitzt eine oktaedrische Koordinationssphäre, ist somit von sechs Brom-Atomen umgeben, während das zweite Blei-Atom eine mehrfach verzerrt tetraedrische Koordination aufweist (Abbildung A). Das 207Pb-NMR Spektrum einer frisch hergestellten Lösung von [Ph4P]2[Pb3Br8] in DMSOD6 zeigt mit 323 ppm eine andere chemische Verschiebung als eine um ca. 4 Monate gealterte Probenlösung mit 208 ppm. Zu erklären ist dies wahrscheinlich durch einen zunehmenden Einfluss einer DMSO-Koordination über die Sauerstoffatome zum Blei-Atom. Das Anion [Pb3Br8]2− kann auch mit dem Kation [Ph4As]+ durch die Reaktion von [Ph4As]Cl mit PbBr2 bei 75°C in CH3CN isoliert werden. Hierbei konnte kein Chlorid- Transfer zum Blei hin beobachtet werden, so dass kein gemischtes Halogenoplumbat-Anion gebildet wurde. Die Struktur der Verbindung wurde mit Hilfe der Einkristall- Röntgenstrukturanalyse bestimmt. Die Struktur des Anions [Pb3Br8]2− entspricht hierbei dem in der Verbindung [Ph4P]2[Pb3Br8]. Das von einer frisch hergestellten Lösung von [Ph4As]2[Pb3Br8] in DMSO-D6 aufgenommene 207Pb-NMR-Spektrum zeigt eine chemische Verschiebung von 386 ppm. Der wenn auch nur geringe Unterschied im 207Pb-Shift von [Ph4As]2[Pb3Br8] (386 ppm) zu [Ph4P]2[Pb3Br8] (323 ppm), lässt sich durch den unterschiedlichen Einfluss der Kationen, die sich in ihrer Grösse unterscheiden und somit die Umgebung der Blei-Atome verändern, erklären. Wie schon bei [Ph4P]2[Pb3Br8] können die beiden unterschiedlichen Blei-Atome des Anions im 207Pb-Spektrum nicht unterschieden werden. Tetraphenylphosphoniumbromodichloroplumbat(II), [Ph4P][PbBrCl2]·CH3CN Gemischte Halogenoplumbate sind bisher nicht sonderlich gut charakterisiert worden. Setzt man [Ph4P]Br mit PbCl2 bei 70°C in CH3CN um (Gleichung c), so erhält man das gemischte Bromodichloroplumbat [Ph4P][PbBrCl2]·CH3CN. Das in der Verbindung koordinierte Acetonitril kann auch durch ein längeres Erwärmen der Substanz im Vakuum nicht entfernt werden. Die chemische Verschiebung im 207Pb-NMR Spektrum einer frisch hergestellten Lösung von [Ph4P][PbBrCl2]·CH3CN in DMSO-D6 beträgt 466 ppm. Vermisst man diese Probe nach ca. 4 Wochen erneut, so verändert sich der Shift von δ = 466 auf 361 ppm. Da dieses Phänomen auch u.a. bei der Verbindung [Ph4P]2[Pb3Br8] zu beobachten ist, kann ein möglicher Halogenaustausch im [PbBrCl2]−- Anion ausgeschlossen werden. Im Kristall sind die Anionen fehlgeordnet, und es werden keine Blei-Brom-Ketten gebildet, wie es z.B. im [Pb3Br8]2−-Anion der Fall ist, sondern diskrete [PbBrCl2]−-Einheiten. Die experimentell beobachteten und berechneten (MP2 und CCSD) Struktur- und Schwingungsdaten wurden miteinander verglichen. Die Übereinstimmung zwischen berechneten Raman-Daten und den beobachteten Raman-Frequenzen ist sehr gut. Die durch Röntgenstrukturanalyse gemessenen Pb−Cl- und Pb−Br-Bindungslängen liegen ebenfalls im Rahmen der auf MP2-Niveau kalkulierten Werte. Die kürzere Rechenzeiten benötigende und somit billigere MP2-Methode in Kombination mit einem "double-zeta"-Basissatz hat sich dabei als zuverlässige Methode erwiesen, um gute Strukturresultate und Schwingungsfrequenzen zu erhalten. Tetraphenylphosphoniumchlorodibromoplumbat(II), [Ph4P][PbBr2Cl]·CH3CN Dieses weitere, gemischte Halogenoplumbat wurde durch die Umsetzung von [Ph4P]Cl mit PbBr2 bei 70°C in CH3CN erhalten (Gleichung d). Hierbei erfolgt ein Chlorid-Transfer auf das Blei. Wie schon bei [Ph4P][PbBrCl2]·CH3CN lässt sich auch hier das koordinierte Acetonitril nicht aus der Verbindung entfernen. [Ph4P]Cl     →  CN CH PbBr 3 2 , [Ph4P][PbBr2Cl]·CH3CN (d) Die chemische Verschiebung von einer frisch hergestellten Lösung von [Ph4P][PbBr2Cl]·CH3CN in DMSO-D6 im 207Pb-NMR Spektrum liegt mit 439 ppm zwischen den Werten von [Ph4P][PbCl3] mit 430 ppm und [Ph4P][PbBrCl2]·CH3CN mit 466 ppm. Die durchgeführten quantenchemischen Rechnungen auf HF-, BLYP- und B3LYP-Niveaus konnten aufgrund dessen, dass keine experimentell ermittelten Strukturdaten zur Verfügung stehen, nicht verglichen werden. Nur die auf B3LYP/LANL2DZ-Niveau berechnete Schwingungsfrequenz bei 249.4 cm−1 findet sich im gemessenen Raman-Spektrum bei 249 cm−1 als Deformationsschwingung von Br−Pb−Cl wieder. Tetraphenylarsoniumtrichloroplumbat(II), [Ph4As][PbCl3] Die Verbindung wird aus [Ph4As]Cl und PbCl2 in CH3CN gewonnen (Gleichung e). [Ph4As]Cl     →  CN CH PbCl 3 2 , [Ph4As][PbCl3] (e) Der im Vakuum gut getrocknete Feststoff enthält kein gebundenes Acetonitril, während aus CH3CN gewonnene Kristalle ein Äquivalent des Lösungsmittels eingebaut haben. Dieses geht aus den Werten der Elementaranalyse eindeutig hervor. Im von einer in DMSO-D6 gelösten Probe aufgenommenen 207Pb-NMR Spektrum ist nur eine Resonanz bei 450 ppm sichtbar. Der Unterschied zwischen [Ph4P]+ und [Ph4As]+ ist nicht sonderlich gross, sodass die bei diesem Versuch gewonnene Verbindung [Ph4As][PbCl3] die gleichen Strukturmerkmale aufweisen sollte wie das analoge Phosphonium-Salz. Tetrakis(pentafluorphenyl)blei(IV), (C6F5)4Pb (C6F5)4Pb wurde als potentielle Ausgangsverbindung zur Darstellung von (C6F5)nPb-Aziden synthetisiert. Die Darstellung der Verbindung (C6F5)4Pb, die bisher nicht vollständig charakterisiert wurde, erfolgte durch zwei Methoden (Gleichungen f und g), wobei aufgrund der höheren Ausbeute, der beschriebene Syntheseweg in Gleichung f bevorzugt wurde. Die NMR-Studien dieser Verbindung sind sehr aussagekräftig. In den 13C-NMR und 19FNMR Spektren von Tetrakis(pentafluorphenyl)blei(IV) sind die Signale des magnetisch aktiven Blei-Isotops (207Pb, I = ½, 22.6%) teilweise mit denen der nicht magnetisch aktiven Blei-Isotopomere überlagert. Im 207Pb-NMR Spektrum wurde ein Signal bei δ = −391 beobachtet, welches sich in ein komplexes aber gut aufgelöstes Multiplett aufspaltet. Dieses 21-Spinsystem wurde hervorgerufen durch die Kopplung des Pb-Kerns mit allen 19F-Kernen (8 ortho, 8 meta und 4 para). Eine Spektrensimulation mit der PERCH NMR-Software führt zu einem praktisch deckungsgleichen Spektrum. 4 C6F5MgBr + PbCl2 + Br2        →  − − MgBrCl 2 / MgBr 2 2 (f) Ein Vergleich zwischen den experimentell ermittelten (Röntgenstrukturanalyse) und auf semiempirischen PM3-Niveau berechneten Strukturdaten zeigt eine gute Übereinstimmung der Pb−C-Bindungslängen. Wie erwartet, wird auch gezeigt, dass die positive Ladung auf dem Metall mit steigender Substitution durch Fluor von +1.33 für (C6H5)4Pb auf +1.70 für (C6F5)4Pb steigt [107]. Ein Ansteigen der positiven Ladung am Blei, welches auf die elektronegativen Substituenten zurückzuführen ist, steigert die Grössenunterschiede zwischen den 6s- und 6p-Orbitalen und favorisiert somit die effiziente sp-Hybridisierung weniger stark. Es kann erwartet werden, dass (C6F5)4Pb stärkere Hybridisierungseffekte erleidet als (C6H5)4Pb und somit alle Pb−C-Bindungen durch die Substitution von elektronegativen Gruppen verkürzt werden. Deshalb sind die Pb−C-Bindungen in (C6F5)4Pb erwartungsgemäss kürzer als in (C6H5)4Pb. Versuchte Darstellungen von perfluorierten Blei-Verbindungen Die Verbindung (C6F5)2Cd·Diglyme ist als C6F5-Transferreagenz bekannt. Ph2Pb(N3)2 + (C6F5)2Cd·Diglyme →  Ph2Pb(N3)2 / (C6F5)2Pb(N3)2 /... (h) Ph2Pb(NO3)2 + (C6F5)2Cd·Diglyme →  Ph2Pb(NO3)2 / (C6F5)2Pb(NO3)2 /... (i) Die unter Gleichung h beschriebene Reaktion wurde durch die Verwendung verschiedener Lösungsmittel und verschiedener Mengenverhältnisse variiert. Aufgrund der gemessenen IR- und Raman-Spektren, sowie der Elementaranalysen konnte jeweils nur eine Teilumsetzung erkannt werden. Da Kristallisationsversuche bisher fehlschlugen, war eine genaue Charakterisierung der entstehenden Produkte bisher nicht möglich. Dieselben Argumente gelten für die in Gleichung i beschriebene Reaktion. Auch hier konnten nur Teilumsetzungen beobachtet werden. Die Verbindung (C6F5)4Pb ist extrem stabil. Behandelt man sie mit Salpetersäure (65% oder 100%), so findet keine Reaktion statt. Als Schlussfolgerung aus den gesamten Versuchen, neue (C6F5)nPb-Verbindungen darzustellen, lässt sich zusammenfassend sagen, dass es auf den beschrittenen Synthesewegen nicht möglich scheint, die gewünschten Produkte zu isolieren. Die C6F5-Reste lassen sich nicht bzw. nur geringfügig auf Blei-Verbindungen übertragen; ebenso ist (C6F5)4Pb so extrem stabil, dass auch von dieser Seite keine erfolgreiche Route beschritten werden kann. Azido(triphenylphosphan)gold(I), Ph3PAuN3 Kristalle dieser Verbindung konnten aus CH2Cl2 unter Zusatz geringer Mengen an Pentan bei einer Temperatur von 5°C gewonnen werden. Ein Kristall besteht aus diskreten Ph3PAuN3-Molekülen. Besonders interessant sind die Bindungslängen in der Azid-Einheit. Hier ist die Bindungslänge von N1−N2 mit einem Wert von 0.995(7) Å geringer als die von N2−N3 mit 1.294(8) Å. Dieses ist sehr erstaunlich und vermutlich falsch, da die Verhältnisse genau umgekehrt sein sollten. Eine kristallographische Erklärung dieser "verdrehten" Bindungsverhältnisse ist bislang noch nicht gefunden worden. Ausserdem ist der Wert von 0.995(7) Å für einen N−N-Abstand extrem gering. Im Gegensatz zu den durch Einkristall-Röntgenstrukturanalyse bestimmten N1−N2- und N2−N3-Bindungsabständen befinden sich die auf B3LYP-Niveau berechneten Werte in Übereinstimmung mit den Erwartungen, d.h. die Bindungslänge N1−N2 ist grösser, als die von N2−N3. Beide verwendeten Methoden, B3LYP/LANL2DZ und B3LYP/SDD, liefern sehr ähnliche Ergebnisse. Bis auf den P−Au−N1-Bindungswinkel von 164.1 bzw. 176.4° sind alle anderen theoretisch errechneten Abstände und Winkel nahezu gleich. Die Übereinstimmung mit den experimentell gefundenen Daten ist recht gut, mit Aussnahme der N−N-Abstände, wobei hier den quantenmechanisch berechneten Werten grösseres Vertrauen geschenkt werden sollte. Tetraphenylarsoniumtetraazidoaurat(III), [Ph4As][Au(N3)4] Kristalle dieser Verbindung konnten aus CH2Cl2 unter Zusatz geringer Mengen an Pentan bei einer Temperatur von 5°C gewonnen werden. Entgegen einer früheren Röntgenstrukturanalyse, bei welcher ein tetragonales System mit der Raumgruppe P4/n gefunden wurde, konnte nun bei dieser Bestimmung ein monoklines System mit der Raumgruppe C2/c ermittelt werden. Das Gold-Atom ist praktisch quadratischplanar von vier Stickstoff-Atomen umgeben. Die Bindungslänge von N1−N2 ist wie erwartet länger als die Distanz zwischen N2−N3. Die auf B3LYP- und MP2-Niveau theoretisch berechneten Strukturwerte stimmen im Vergleich zu den experimentell ermittelten recht gut überein. Die Bindungsabstände sind bei den Rechnungen länger als in den Röntgenstrukturen, was sich durch Packungseffekte im Kristall erklären lässt. Die Bindungswinkel sind nahezu identisch. Versuche zur Darstellung weiterer Gold-Azide Bei der Gold-Azid-Chemie handelt es sich um ein sehr diffiziles Thema. Die Verbindungen sind extrem explosionsgefährlich. So kam es mehrfach vor, dass bei einer zweiten Elementaranalyse ein und der selben Verbindung, diese explodierte, obwohl bei davor durchgeführten Tests kein explosives Verhalten festzustellen war. Die durchgeführten Versuche werden in der folgenden Übersicht tabellarisch zusammengefasst. Leider konnten bisher keine Kristalle der Verbindungen erhalten werden, so dass sich keine strukturellen Voraussagen treffen lassen. Da die Azid-Gruppe gegenüber Ag+ dasselbe Verhalten zeigt wie auch Cl−, kann man Chlorid-Ionen nicht ohne Probleme nachweisen. Anhand der Schwingungs- und 14N-NMR Spektroskopie lässt sich aber für alle in der Tabelle aufgeführten Reaktionen eindeutig sagen, dass es sich bei den entstandenen Produkten um kovalent-gebundene Gold-Azide handelt. Fallhammer-Explosionsteststand Der konstruierte Fallhammer hat sich als ein nützliches Werkzeug für Forschungszwecke herausgestellt. Die gemessenen Werte der maximalen absoluten Schallpegel ergeben eine wertvolle halb-quantitative Skala über die Explosionsfähigkeit und Schlagempfindlichkeit von potentiellen Explosivstoffen. Alle getesteten Substanzen waren Feststoffe und enthielten mindestens eine Azidgruppe: Silber(I)azid, Blei(II)azid, Cyanurazid, 1,3,5-Trinitro-2,4,6- triazidobenzen (TNTA), 1,3-Dinitro-2,4,6-triazidobenzen (DNTA) und 1,3,5-Trinitro-2- monoazidobenzen (TNMA). Cyanurazid ist ein noch stärkerer Explosivstoff als Silber- und Bleiazid. Eine Explosion von 20 mg Cyanurazid hat fast die gleiche Lautstärke wie eine durch 40 mg Pb(N3)2 oder durch 35 mg AgN3 verursachte Detonation. Neben den anorganischen Verbindungen, wurden einige organische Nitroazidsubstanzen getestet. Selbst die schwächste dieser organischen Explosivstoffe ist kraftvoller als AgN3 oder Pb(N3)2. Die Reihenfolge des Schallpegels ist TNMA < DNTA < TNTA, aber die Werte für DNTA und TNTA sind sehr ähnlich.

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Simulation des Einflusses von Bewölkung auf die UV-Strahlung mittels Neuronaler Netze

Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05

Play Episode Listen Later Jun 29, 1999


Erklärtes Ziel der Modellierung der UV-Strahlung ist die Bereitstellung von Werten für Zeiten und Orte, an denen nicht gemessen werden kann, sowie zur Prognose. Im wolkenfreien Fall lassen sich die UV-Strahlungsgrößen hinreichend genau modellieren. Die Fehler resultieren im Wesentlichen aus der unpräzisen Kenntnis der relevanten atmosphärischen Parameter. Demgegenüber ist die Modellierung der UV-Strahlung bei Bewölkung bisher nur unzureichend gelöst. Die diesbezüglichen Problematiken sind vielfältig. Für eine exakte Berechnung der Strahlungswerte ist ein drei-dimensionales Strahlungsmodell erforderlich, da Wolken weder horizontal, noch vertikal homogen sind. Die detaillierte Kenntnis der mikro- und makrophysikalischen Wolkeneigenschaften ist aber im Einzelfall kaum, für die Prognose nie verfügbar. Zudem weisen die aufwendigen drei-dimensionalen Strahlungsmodelle sehr lange Rechenzeiten auf. Aus diesen Gründen wurde bisher vielfach der Weg beschritten, ein-dimensionale Modelle, wie sie für den wolkenlosen Fall benutzt werden, auch für den bewölkten Fall anwendbar zu machen. Hierzu wird der Einfluß der Wolken auf das UV-Strahlungsfeld nicht mehr exakt physikalisch, sondern statistisch beschrieben. In dieser Arbeit wird der Einfluß von Bewölkung auf die bodennahe UV-Globalstrahlung untersucht. Die Beschreibung der Wirkung von Wolken auf die UV-Globalstrahlung erfolgt mit sogenannten Wolkenmodifikationsfaktoren µ. Diese geben den Quotienten zwischen der UV-Globalstrahlung bei Wolken und derjenigen UV-Globalstrahlung ohne Wolken, bei sonst identischer Atmosphäre, an. In der Vergangenheit wurden die µ-Werte aus Meßreihen der integralen UV-Strahlung an verschiedenen Orten gewonnen. Die Herleitung der µ aus Messungen ist aber mit dem Problem behaftet, für eine beliebige Messung bei Wolkeneinfluß eine dazu vergleichbare Messung bei wolkenlosen Bedingungen zu finden. Dies bedeutet, daß Sonnenzenitwinkel, Ozongesamtgehalt, Aerosol- und Albedobedingungen identisch sein müssen. Dies ist in der Praxis auch bei mehrjährigen Meßreihen nicht gegeben. Meist werden, unter Vernachlässigung von Aerosol und Albedo, Messungen mit ähnlichem Sonnenzenitwinkel verwendet, die auf gleichen Ozongesamtgehalt angepaßt werden. Dementsprechend werden nur grobe Mittelwerte von µ ohne deren Abhängigkeit von anderen Atmosphärenparametern bestimmt. Darüberhinaus sind Untersuchungen hinsichtlich der spektralen Abhängigkeit von µ nicht möglich. Im Rahmen dieser Arbeit wurde ein umfangreiches Datenmaterial an µ-Werten bereitgestellt und mittels der Analysetechnik der Neuronalen Netz systematisch untersucht. Der große Datenumfang wurde dadurch gewährleistet, daß zu jedem gemessenen UVSpektrum bei Wolken das entsprechende UV-Spektrum für wolkenlose Bedingungen, sonst aber gleichen Atmosphäreneigenschaften, nicht innerhalb der UV-Meßreihe gesucht, sondern mit einem Strahlungsübertragungsmodell simuliert wurde. Die Verwendung hochwertiger, spektraler UV-Messungen ermöglichte einerseits eine größtmögliche Genauigkeit bei der Übereinstimmung von Simulation und Meßsignal innerhalb von ca. ± 5% Abweichung, andererseits auch eine Analyse der spektralen Abhängigkeit der µ-Werte. Die Neuronalen Netze dienten der Untersuchung der systematischen Abhängigkeiten dieser µ-Werte von einer adäquaten Wolkenbeschreibung und anderen relevanten Atmosphärenparametern (Sonnenzenitwinkel und Bodenalbedo). Die diesbezüglichen Auswertungen vertiefen das Verständnis über die Strahlungswirkung von Wolken auf die UV-Strahlung, gerade bei durchbrochener Bewölkung. Neben diesen Sensitivitätsstudien wurden mit Hilfe der Neuronalen Netze Algorithmen gewonnen, die, in Kombination mit einem Strahlungsübertragungsmodell, in der Lage sind, die UV-Strahlung bei jeder Art von Bewölkung zu simulieren. Neben der Simulation mittlerer Bedingungen, bzw. der Prognose, wurden auch die Möglichkeiten zur Simulation des aktuellen Falles entscheidend verbessert. Durch die Hinzunahme einfacher integraler Globalstrahlungsmessungen als Wolkenbeschreibung reduziert sich der Fehler der einzelnen Modellierung um mehr als einen Faktor 2. Bei Nutzung jener Algorithmen ist auch die Modellierung signifikanter Erhöhungen der UV-Globalstrahlung bei durchbrochener Bewölkung im Vergleich zum wolkenlosen Fall möglich. Im Rahmen dieser Arbeit konnte damit die UV-Strahlung bei beliebiger Bewölkung für µ-Werte größer als 0.5 in 90% aller Fälle mit einem Fehler von kleiner als ± 15% modelliert werden.