Podcasts about terrasar x

  • 5PODCASTS
  • 6EPISODES
  • 42mAVG DURATION
  • ?INFREQUENT EPISODES
  • Sep 30, 2020LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about terrasar x

Latest podcast episodes about terrasar x

NewSpaceVision
#11: The Bright Future of Radar Satellites (feat. Joerg F. Herrmann, SVP of Capella Space)

NewSpaceVision

Play Episode Listen Later Sep 30, 2020 38:20


The NSV September Episode is all about radar satellites and its applications. We invited a very special guest who helped to shape and grow the SAR Satellite Industry in the 90s and 2000s in Germany like no other: Joerg F. Herrmann, former founding CEO of the TerraSAR-X services entity Infoterra, Sr. business development executive at Airbus Defense and now Sr. VP at Capella Space. From first endeavors to the first wave of commercialization of SAR. Join us for a conversation about the creation of Germany's first Digital Elevation Model in early 2000 to TerraSAR and TandemSAR as well as differences of working for a U.S. start-up compared to his time in Germany, building the TerraSAR. We explore the question: Why is Germany currently lacking a private German SAR constellation with the ambition of Capella Space, Iceye, PredaSAR (U.S.) or Synspective (Japan) or a leading new space hardware startup? ...and even dare to ask: Is there an underutilization of SAR technology?

The Scene From Above Podcast
S02 E03: U got skillz?

The Scene From Above Podcast

Play Episode Listen Later Jun 28, 2018 26:29


In this episode we record ourselves together in the same room for the first time, and discuss what skills are useful to have if you want to get a job dealing with EO imagery, and whether those skills have changed over the decades. In the news we talk about the Geospatial Commission and MasterMap, Sentinel-5P and space harpoons! Amongst other things. If you have questions, comments or corrections then you can contact Alastair (@ajggeoger) and Andrew (@map_andrew) on Twitter using #scenefromabove or @eoscenefrom Shownotes: As we were both in the same building at the same time, we grabbed a seat in the Satellite Applications Catapult which is part of the Harwell Space Cluster  Geospatial Commission moves to open up parts of OS MasterMap Sentinel-5P maps of Formaldehyde Airbus are in the news! TerraSAR-X tasking and links with Planet. PakTES-1A launch announced SSTL launches RemoveDebris space harpoon!

planet eo alastair skillz u got satellite applications catapult removedebris terrasar x
Solarpod podcast
A/2017 U1, egy látogató a Vega irányából. Porfelhők a Proxima Centauri körül, A robbanó Napok

Solarpod podcast

Play Episode Listen Later Nov 5, 2017 65:59


Hasznos linkek (A/2017 U1, stb,) Borítókép - https://apod.nasa.gov/apod/ap171103.html https://www.imo.net/a2017-u1-first-interstellar-asteroid-ever-detected https://www.csillagaszat.hu/hirek/gyorshir-felfedeztek-az-elso-csillagkozi-kisbolygot/ Seti videó - https://www.facebook.com/SETIInstitute/videos/10155677978165535/ TerraSAR-X műholdak - https://earth.esa.int/web/guest/missions/user-services-news/-/article/10-years-of-terrasar-x Zenék, hanganyagok: Sagan Series - https://www.youtube.com/watch?v=gCfemmxqaRg Lensko - Titsepoken Lensko - Sarvagon Lensko - Lets Go Lensko - Circles Lensko - Cetus http://nocopyrightsounds.co.uk/?s=lensko Best of Nocopyrightsound Chillstep 2013 Mix. Oblivion Soundtrack Részlet - https://www.youtube.com/watch?v=sYD_U1CChew

Modellansatz
InSAR - SAR-Interferometrie

Modellansatz

Play Episode Listen Later Sep 24, 2015 40:14


Im Rahmen des ersten Alumitreffens im neu renovierten Mathematikgebäude gibt uns unser Alumnus Markus Even einen Einblick in seine Arbeit als Mathematiker am Fraunhofer IOSB, dem Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung in Ettlingen in der Arbeitsgruppe zur Analyse und Visualisierung von SAR-Bilddaten. Er befasst sich mit der Entwicklung von Algorithmen für die Fernerkundung, genauer gesagt für die Deformationsanalyse mit Hilfe von SAR-Interferometrie (InSAR). Deformation bezieht sich hier auf Bewegungen der Erdkruste oder auf ihr befindlicher Strukturen, z.B. von Bauwerken. Hinter dem Stichwort SAR-Interferometrie verbirgt sich eine Vielfalt von Verfahren der Fernerkundung, die auf Synthetic Aperture Radar, auf Deutsch Radar mit synthetischer Apertur, beruhen, und die die Fähigkeit der Sensorik ein kohärentes Signal zu verarbeiten zur Erzeugung sogenannter Interferogramme nutzen. Für SAR ist es wesentlich, dass der Sensor bewegt wird. Zu diesem Zweck ist er auf einen Satelliten, ein Flugzeug oder auch auf einem auf Schienen laufenden Schlitten montiert. Für die Mehrzahl der Anwendungen wird er entlang einer näherungsweise geradlinigen Bahn bewegt und sendet in festen Zeitabständen elektromagnetische Signale im Mikrowellenbereich aus, deren Returns er, unterteilt in sehr kurze Zeitintervalle, aufzeichnet. Dabei "blickt" er schräg nach unten, um nicht systematisch von zwei verschiedenen Orten der Erdoberfläche rückkehrende Signale zu vermischen. Herauszuheben ist, dass er unabhängig von der Tageszeit- er beleuchtet die Szene selbst- und weitgehend unabhängig von den Wetterverhältnissen- die Atmosphäre verzögert das Signal, ist aber für diese Wellenlängen (ca. 3cm-85cm) bis auf seltene Ausnahmen durchlässig dafür- Aufnahmen machen kann. Dies ist ein Vorzug gegenüber Sensoren, die im optischen oder infraroten Teil des Spektrums arbeiten, und nachts oder bei Bewölkung nicht die gewünschten Informationen liefern können. Neben der Magnitude des rückgestreuten Signals zeichnet der SAR-Sensor auch dessen Phasenverschiebung gegenüber einem Referenzoszillator auf, die die Grundlage für die Interferometrie darstellt und viele Anwendungsmöglichkeiten bietet. Aus dem aufgezeichneten Signal wird das sogenannte fokusierte Bild berechnet. (Mathematisch gesehen handelt es sich bei dieser Aufgabe um ein inverses Problem.) Die Achsen dieses komplexwertigen Bildes entsprechen eine der Position des Satelliten auf seiner Bahn und die andere der Laufzeit des Signals. Der Zahlenwert eines Pixels kann vereinfacht als Mittel der aufgezeichneten Rückstreuung aus dem Volumen angesehen werden, dass durch das jeweilige Paar aus Bahninterval und Laufzeitinterval definiert ist. Dies ist der Kern von SAR: Die Radarkeule erfasst eine größere Fläche auf dem Boden, so dass das aufgezeichnete Signal aus der Überlagerung aller zurückkehrenden Wellen besteht. Diese Überlagerung wird durch die Fokusierung rückgängig gemacht. Dazu benutzt man, dass ein Auflösungselement am Boden zu allen Returns beiträgt, solange es von der Radarkeule erfasst wird und dabei eine bekannte Entfernungskurve durchläuft.Die Magnitude des sich so ergebenden Bildes erinnert bei hochaufgelösten Aufnahmen auf den ersten Blick an eine Schwarzweißphotographie. Betrachtet man sie jedoch genauer, so stellt man schnell Unterschiede fest. Erhabene Objekte kippen zum Sensor, da die höhergelegenen Punkte näher zu ihm liegen. Hohe Werte der Magnitude, also hohe Rückstreuung, sind in der Regel mit günstigen geometrischen Konstellationen verbunden: Eine ebene Fläche muss dazu beispielsweise senkrecht zum einfallenden Signal ausgerichtet sein, was selten der Fall ist. Geht man an die Grenze des aktuell Möglichen und betrachtet ein Bild einer städtischen Umgebung eines luftgetragenen Sensors mit wenigen Zentimetern Auflösung, so scheint es beinahe in punktförmige Streuer zu zerfallen. Diese werden durch dihedrale (Pfosten) und- häufiger- trihedrale Strukturen erzeugt. Trihedrale Strukturen reflektieren das einfallende Signal parallel zur Einfallsrichtung (man kennt das von den an Fahrzeugen verwendeten, Katzenaugen genannten Reflektoren). Sehr niedrige Rückstreuung ist meist darin begründet, dass kein Signal mit der entsprechenden Laufzeit zum Sensor zurückkehrt, sei es weil keine Streuer erreicht werden (Schatten) oder das Signal auf glatten Flächen vom Satelliten weggespiegelt wird. Für Wellenlängen von einigen Zentimetern sind z.B. asphaltierte oder gepflasterte Flächen glatt, bei Windstille ist es auch Wasser. Daneben gibt es auch kompliziertere Streumechanismen, die zu Magnituden mittlerer Höhe führen, etwa Volumenstreuung in Vegetation, Schnee und Sand, verteilte Streuung an Flächen mit vielen kleinen, homogen verteilten Objekten (z.B. Kiesflächen oder andere Flächen mit spärlicher Vegetation) oder einer gewissen Rauigkeit. Außer diesen gibt es noch viele weitere Möglichkeiten, wie Mehrfachreflektionen oder das Zusammenfallen in verschiedenen Höhen positionierter Streuer in einer Entfernungszelle.Die für die SAR-Interferometrie wesentliche Information aber ist die Phase. Sie kann allerdings nur genutzt werden, wenn zwei oder mehr Aufnahmen aus annähernd der gleichen Position vorliegen. Die grundlegende Idee dabei ist die Betrachtung von Doppeldifferenzen der Phase zweier Pixel zweier Aufnahmezeitpunkte. Um sie zu verstehen nehmen wir zunächst an, dass sich in beiden Auflösungszellen je ein dominanter, punktförmiger Streuer befindet, was so gemeint ist, dass die Phase einer Laufzeit entspricht. Da die Subpixelpositionen unbekannt sind und die Größe der Auflösungszelle um Vieles größer als die Wellenlänge ist, ist die Phasendifferenz zweier Pixel eines einzelnen Bildes nicht verwertbar. In der Doppeldifferenz heben sich die unbekannten Subpixelpositionen allerdings heraus. Die Doppeldifferenz ist in dieser idealisierten Situation die Summe dreier Anteile: des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien, des Laufzeitunterschiedes auf Grund einer relativen Positionsänderung der Streuer während der zwischen den Aufnahmen verstrichenen Zeit und des Laufzeitunterschiedes auf Grund der räumlichen und zeitlichen Variation der atmosphärischen Verzögerung. Diese drei Anteile können jeder für sich nützliche Information darstellen. Der Erste wird zur Gewinnung von Höhenmodellen genutzt, der Zweite zur Detektion von Deformationen der Erdoberfläche und der Dritte, obwohl meist als Störterm angesehen, kann bei der Bestimmung der Verteilung von Wasserdampf in der Atmosphäre genutzt werden. Es stellt sich aber die Frage, wie man diese Terme separiert, zumal noch die Mehrdeutigkeit aufgelöst werden muss, die darin liegt, dass die Phase nur bis auf ganzzahlige Vielfache von zwei Pi bekannt ist.Weitere Fragen ergeben sich, da in realen Daten diese Annahmen für viele Pixel nicht erfüllt sind. Stellt man sich beispielsweise eine Auflösungszelle mit mehreren oder vielen kleineren Streuern vor (z.B. mit Geröll), so ändert sich die Phase der überlagerten Returns mit dem Einfallswinkel des Signals. Sie ändert sich auch, wenn manche der Streuer bewegt wurden oder die beiden Aufnahmen nicht ausreichend genau zur Deckung gebracht wurden. Dies führt dazu, dass die Phase sich um einen schlecht quantifizierbaren Betrag ändert. Man spricht dann von Dekorrelation. Eventuell besteht nach Änderung der physischen Gegebenheiten in der Auflösungszelle keine Beziehung mehr zwischen den Phasenwerten eines Pixels. Dies ist etwa der Fall, wenn ein dominanter Streuer hinzu kommt oder nicht mehr anwesend ist, ein Gelände überschwemmt wird oder trocken fällt. Es stellt sich also die Frage, welche Pixel überhaupt Information tragen, bzw. wie ihre Qualität ist und wie sie extrahiert werden kann.Die Geschichte der SAR-Interferometrie begann nach dem Start des ESA-Satelliten ERS 1 im Jahr 1991 mit einfachen differentiellen Interferogrammen. Das berühmteste ist sicher das vom Landers-Erdbeben 1992 in Kalifornien. Zum ersten Mal in der Geschichte der Wissenschaft war es möglich, das Deformationsfeld eines Erdbebens flächig zu messen, wenn auch nur die Komponente in Sichtlinie des Sensors. Statt Werte hunderter in der Region installierter Messstationen stellte das Interferogramm ein Bild des Erdbebens mit Millionen Datenpunkten dar. Diese Fähigkeit, großflächig Deformationen der Erdoberfläche aufzuzeichnen, besitzt nur die SAR-Interferometrie! Allerdings ist zu bemerken, dass dieses Resultat seine Entstehung auch günstigen Umständen verdankt. Landers liegt in der Mojave-Wüste, so dass die Variation der atmosphärischen Verzögerung und die Dekorrelation vernachlässigbar waren. Dank der Verfügbarkeit eines guten Höhenmodells konnte der Anteil des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien eliminiert werden (man spricht dann von einem differentiellen Interferogramm). Ein weiterer Meilenstein war die Shuttle Radar Topography Mission des Space Shuttle Endeavour im Februar 2000, während der die Daten für ein Höhenmodell der gesamten Landmasse zwischen 54 Grad südlicher Breite und 60 Grad nördlicher Breite aufgezeichnet wurden. Für diesen Zweck wurde die Endeavour mit zwei SAR-Antennen ausgestattet, eine am Rumpf, eine an einem 60 Meter langen Ausleger. Dank zeitgleicher Aufnahmen waren die Phasenanteile auf Grund Deformation und atmosphärischer Verzögerung vernachlässigbar. Dekorrelation auf Grund von Änderungen der physischen Gegebenheiten spielt hier auch keine Rolle. Dem Wunsch nach einem weltweiten, dazu deutlich höher aufgelösten Höhenmodell kommt seit 2010 die TanDEM-X-Mission des DLR nach, bei der die beiden SAR-Antennen von zwei Satelliten im Formationsflug getragen werden. Auch in der Algorithmik gab es entscheidende Fortschritte. Einer der fruchtbarsten war die Erfindung von Permanent Scatterer Interferometric SAR (PSInSAR) um das Jahr 2000, das durch die Verwendung einer längeren Zeitreihe von differentiellen Interferogrammen und einiger neuer Ideen das Problem der Separierung der im vorangehenden Abschnitt genannten Terme löste. Der Ausgangspunkt hierfür war die Entdeckung, dass häufig eine größere Anzahl über lange Zeiträume phasenstabile Streuer, die sogenannten Permanent Scatterer (auch Persistent Scatterer oder PS), gefunden werden können, die man sich vereinfacht als Pixel vorstellen darf, deren Auflösungszelle einen dominanten, punktförmigen, über die Zeitreihe unveränderten Streuer enthält. Auf diese wird nun die Auswertung beschränkt, die vereinfacht folgende Schritte durchläuft: Definition eines Graphen mit den PS als Knoten und Paaren benachbarter PS als Kanten; Schätzung einer Modellphase für Deformation und Höhenmodellfehler an Hand der Doppeldifferenzen aller verwendeten differentiellen Interferogramme für alle Kanten; Entrollen von Originalphase minus Modellphase, d.h. Auflösen der Mehrdeutigkeiten; räumlich-zeitliche Filterung, um die Variation der atmosphärischen Verzögerung zu eliminieren. Als Produkt ergeben sich für jeden PS seine Bewegung in Sichtlinie des Sensors und eine Korrektur seiner Höhenlage relativ zum für die Erzeugung der differentiellen Interferogramme verwendeten Höhenmodell. Seither wurden diese Grundideen modifiziert und verfeinert. Vor allem müssen die Berücksichtigung verteilter Streuer (auch Distributed Scatterer oder DS) für die Deformationsanalyse erwähnt werden, was die Informationsdichte vor allem in ariden Gebieten drastisch erhöhen kann, sowie die SAR-Tomographie, die eine Analyse auch dann erlaubt, wenn zwei oder drei vergleichbar starke Streuer in einer Auflösungszelle vorhanden sind (z.B. wenn ein Streuer am Boden, eine Fensterniche und eine Dachstruktur den gleichen Abstand zum Sensor haben). Die SAR-Interferometrie, insbesondere die Deformationsanalyse, verwendet vor allem mathematische Methoden aus den Bereichen Stochastik, Signalverarbeitung, Optimierungstheorie und Numerik. Besondere Herausforderungen ergeben sich daraus, dass die Vielfalt natürlicher Phänomene sich nur bedingt durch einfache statistische Modelle beschreiben lässt und aus dem Umstand, dass die Datensätze in der Regel sehr groß sind (ein Stapel von 30 Aufnahmen mit komplexwertigen 600 Megapixeln ist durchaus typisch). Es treten lineare Gleichungssysteme mit mehreren Zehntausend Unbekannten auf, die robust gelöst sein wollen. Für die Auflösung der Mehrdeutigkeiten verwenden die fortgeschrittensten Algorithmen ganzzahlige Optimierung. Wavelet-basierte Filterverfahren werden genutzt, um die atmosphärische Verzögerung vom Nutzsignal zu trennen. Im Zusammenhang mit der Schätzung der Variation der atmosphärischen Verzögerung werden geostatistische Verfahren wie Kriging eingesetzt. Statistische Tests werden bei der Auswahl der DS, sowie zur Detektion schlechter Pixel eingesetzt. Bei der Prozessierung der DS spielen Schätzer der Kovarianzmatrix eine prominente Rolle. Die SAR-Tomographie nutzt Compressive Sensing und viele weitere Verfahren. Zusammenfassend lässt sich sagen, dass die SAR-Interferometrie auch aus Perspektive eines Mathematikers ein reichhaltiges und spannendes Arbeitsgebiet ist. Eine wichtige Anwendung ist die Deformationsanalyse durch die InSAR-Methode: Die SAR-Interferometrie zeichnet sich vor allen anderen Techniken dadurch aus, dass sie bei geeignetem Gelände sehr großflächige Phänomene mit sehr hoher Informationsdichte abbilden kann. Allerdings liefert sie relative Messungen, so dass in der Regel eine Kombination mit Nivellement oder hochgenauen GPS-Messungen verwendet wird. Ihre Genauigkeit hängt neben der Qualität der Daten von der Wellenlänge ab und zeigt bei 3cm Wellenlänge meist nur wenige Millimeter je Jahr Standardabweichung. Damit können selbst sehr feine Bewegungen, wie z.B. die Hebung des Oberrheingrabens (ca. 2mm/y), nachgewiesen werden. Allerdings können wegen der Mehrdeutigkeit der Phase Bewegungen auch zu stark sein, um noch mit PSInSAR auswertbar zu sein. In diesem Fall können längere Wellenlängen, höhere zeitliche Abtastung oder Korrelationsverfahren helfen. Trotz der diskutierten Einschränkungen lässt sich die Deformationsanalyse mit InSAR in vielen Zusammenhängen nutzensreich einsetzen, denn auch die Ursachen für Deformationen der Erdoberfläche sind vielfältig. Neben geologischen und anderen natürlichen Phänomenen werden sie von Bergbau, Förderung von Wasser, Erdgas, Erdöl, durch Geothermiebohrungen, Tunnelbau oder andere Bautätigkeiten ausgelöst. Meist steht bei den Anwendungen die Einschätzung von Risiken im Fokus. Erdbeben, Vulkanismus, aber auch Schäden an kritischer Infrastruktur, wie Deichen, Staudämmen oder Kernkraftwerken können katastrophale Folgen haben. Ein weiteres wichtiges Thema ist die Entdeckung oder Beobachtung von Erdbewegungen, die sich potentiell zu einem Erdrutsch entwickeln könnten. Allein in den Alpen gibt es tausende Bergflanken, wo sich größere Bereiche in langsamer Bewegung befinden und in Leben oder Infrastruktur gefährdende Hangrutsche münden könnten. Auf Grund der zunehmenden Erderwärmung nimmt diese Bedrohung überall dort zu, wo Permafrost zu tauen beginnt, der bisher den Boden stabilisierte. InSAR wird bei der Erstellung von Risikokarten genutzt, die der Beurteilung der Gefährdungslage und der Entscheidung über Gegenmaßnahmen dienen. In vielen Regionen der Erde werden Deformationen der Erdoberfläche durch veränderte Grundwasserstände verursacht. Nimmt das Grundwasser ab, etwa wegen Entnahme zur Bewässerung oder industriellen Verwendung, so senkt sich die Erdoberfläche. Nimmt das Grundwasser während regenreicher Zeiten zu, so hebt sich die Erdoberfläche. Das Monitoring mit InSAR ist hier aus mehreren Gründen interessant. Bewegungen der Erdoberfläche können Schäden an Gebäuden oder anderen Strukturen verursachen (Bsp. Mexico City). Übermäßige Wasserentnahme kann zu irreversibler Verdichtung der wasserführenden Schichten führen, was Konsequenzen für die zukünftige Verfügbarkeit der lebenswichtigen Flüssigkeit hat. Bei Knappheit muss die Entnahme reguliert und überwacht werden (Bsp. Central Valley, Kalifornien). Von besonderer Bedeutung sind durch geologische Phänomene wie Vulkanismus oder tektonische Bewegungen verursachte Deformationen der Erdoberfläche. Die von SAR-Satelliten gewonnenen Daten werden zur Einschätzung von Risiken benutzt, auch wenn eine sichere, frühzeitige und zeitgenaue Vorhersage von Erdbeben oder Vulkanausbrüchen mit den heutigen Methoden nicht möglich ist. Sie sind aber die Grundlage für eine ausgedehnte Forschungsaktivität, die unser Verständnis der Vorgänge in der Erdkruste stetig wachsen lässt und immer genauere Vorhersagen erlaubt. Dies ist in erster Linie den SAR-Satelliten der ESA (ERS-1, ERS-2, Envisat und aktuell Sentinel-1A) zu verdanken, die seit 1991 mit lediglich einer Lücke von zwei Jahren (2012-2014) kontinuierlich die gesamte Erde aufnehmen. Die Idee dabei ist, dass so in festem zeitlichen Rhythmus (bei ERS alle 35 Tage) jeder Punkt der Erde aufgenommen wird. Dadurch ist ein großes Archiv entstanden, das es nach einem geologischen Ereignis ermöglicht, dieses mit den Methoden der SAR-Interferometrie zu untersuchen, da die Vorgeschichte verfügbar ist. Eine Entwicklung der letzten Jahre ist die Nutzung bei der Erschließung von Erdgas und Erdöl. Die mit InSAR sichtbar gemachten Deformationen erlauben es, neue Einsicht in die Struktur der Lagerstätten zu erhalten, geomechanische Modelle zu kalibrieren und letztlich die Rohstoffe Dank optimierter Positionierung von Bohrlöchern effektiver und kostengünstiger zu fördern. Wer InSAR noch besser verstehen will, der findet in den InSAR Guidlines der ESA die Grundlagen sehr gut erklärt. Einen etwas breiteren Überblick über Anwendungsmöglichkeiten kann man sich auf der Homepage von TRE verschaffen, einem Unternehmen, das von den Schöpfern von PSInSAR gegründet wurde und im Bereich InSAR-Auswertungen nach wie vor führend ist. Die Wettbewerber ADS und e-GEOS bieten außer InSAR weitere Anwendungen von SAR-Daten. Aus wissenschaftlich/politischer Perspektive kann man sich in der Broschüre der DLR über Themenfelder der Erdbeobachtung informieren. Zu dem speziellen Thema der Erdbewegung auf Grund Absenkung des Grundwasserspiegels in den USA gibt es weitere Informationen. Literatur und weiterführende Informationen A. Ferretti, A. Monti-Guarnieri, C. Prati, F. Rocca, D. Massonnet: InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, TM-19, ESA Publications, 2007. M. Fleischmann, D. Gonzalez (eds): Erdbeobachtung – Unseren Planeten erkunden, vermessen und verstehen, Deutsches Zentrum für Luft- und Raumfahrt e.V., 2013. Land Subsidence, U.S. Geological Survey. M. Even, A. Schunert, K. Schulz, U. Soergel: Atmospheric phase screen-estimation for PSInSAR applied to TerraSAR-X high resolution spotlight-data, Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 2010. M. Even, A. Schunert, K. Schulz, U. Soergel: Variograms for atmospheric phase screen estimation from TerraSAR-X high resolution spotlight data, SPIE Proceedings Vol. 7829, SAR Image Analysis, Modeling, and Techniques X, 2010. M. Even: Advanced InSAR processing in the footsteps of SqueeSAR Podcast: Raumzeit RZ037: TanDEM-X Podcast: Modellansatz Modell010: Positionsbestimmung Podcast: Modellansatz Modell012: Erdbeben und Optimale Versuchsplanung Podcast: Modellansatz Modell015: Lawinen

united states man fall er situation leben thema position phase ps geschichte arbeit dabei gef rolle blick definition zeiten grund sand bei idee diese entwicklung fokus hilfe dazu damit pi ideen einblick einen bedeutung unternehmen qualit region bild beziehung entscheidung signal dank neben mexico city wasser verst gonzalez punkt esa analyse schritte aufgabe modeling luft interpretation perspektive trotz grad unterschiede bewegung zum erde daten meter punkte wissenschaft methoden umst kern hinter positions allerdings homepage regel signals pixel auswahl schatten szene geb grundlage konsequenzen mittel allein risiken struktur vielfalt entstehung einsch die geschichte strukturen grenze bahn ds umgebung ursachen grundlagen linie bereiche abstand paar literatur atmosph kombination zweck schnee dadurch nutzung gel aufgrund vieles einschr techniken zusammenh orten anwendung anteil aufl ereignis sar anzahl stellt tm schulz vorg verfahren pixels bew returns infrastruktur regionen flugzeug zweite wellen modelle kalifornien fortschritte bedrohung die idee verwendung betrachtung variation rhythmus aufnahmen entdeckung meist erfindung positionierung alpen sensor bestimmung sensors signale meilenstein volumen daneben nimmt optimierung bewegungen dritte summe anwendungen central valley resultat erstellung magnitude beobachtung algorithmen verz erdbeben verteilung ausnahmen anteile auswertung baut gebieten seither einsicht abschnitt visualisierung komponente erd endeavour gegebenheiten raumfahrt terme landers schichten vorhersagen paaren breite umstand betrag kanten annahmen korrektur knoten beurteilung vorgeschichte rocca dlr eventuell permafrost ers sensoren laufzeit erderw erdgas geosciences vegetation satelliten konstellationen vorhersage fahrzeugen bsp brosch betrachtet objekten stapel geological survey millimeter gewinnung schienen mathematiker anwendungsm schwarz wei schlitten wellenl grundwasser gegenma bildes messungen deckung mehrzahl zeitr bergbau fleischmann arbeitsgruppe erzeugung erschlie im zusammenhang fraunhofer institut datens diese f themenfelder ferretti tageszeit zusammenfassend rumpf pfosten prati sensorik spektrums weitere fragen erdoberfl deformation erdrutsch vulkanausbr vorzug staud geos streuung verdichtung entnahme wasserdampf erdbebens eine entwicklung graphen detektion bauwerken reflektoren kernkraftwerken space shuttle endeavour wetterverh filterung mehrdeutigkeit der ausgangspunkt ettlingen mathematisch zentimetern erdbeobachtung messstationen lagerst zeitabst vulkanismus insar grundideen bohrl erdkruste signalverarbeitung wavelet informationsdichte prozessierung fernerkundung landmasse mojave w systemtechnik forschungsaktivit arbeitsgebiet hebung numerik envisat separierung deformationen vielfache sichtlinie interferometrie formationsflug gleichungssysteme abtastung fokusierung terrasar x
Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

The research focuses on providing reliable spatial information in support of tsunami risk and vulnerability assessment within the framework of the German-Indonesian Tsunami Early Warning System (GITEWS) project. It contributes to three major components of the project: (1) the provision of spatial information on surface roughness as an important parameter for tsunami inundation modeling and hazard assessment; (2) the modeling of population distribution, which is an essential factor in tsunami vulnerability assessment and local disaster management activities; and (3) the settlement detection and classification from remote sensing radar imagery to support the population distribution research. Regarding the surface roughness determination, research analyses on surface roughness classes and their coefficients have been conducted. This included the development of remote sensing classification techniques to derive surface roughness classes, and integration of the thus derived spatial information on surface roughness conditions to tsunami inundation modeling. This research determined 12 classes of surface roughness and their respective coefficients based on analyses of published values. The developed method for surface roughness classification of remote sensing data considered density and neighborhood conditions, and resulted in more than 90% accuracy. The classification method consists of two steps: main land use classification and density and neighborhood analysis. First, the main land uses were defined and a classification was performed applying decision tree modeling. Texture parameters played an important role in increasing the classification accuracy. The density and neighborhood analysis further substantiated the classification result towards identifying surface roughness classes. Different classes such as residential areas and trees were combined to new surface roughness classes, as “residential areas with trees”. The density and neighborhood analysis led to an appropriate representation of real surface roughness conditions. This was used as an important input for tsunami inundation modeling. By using Tohoku University’s Analysis Model for Investigation Near-field Tsunami Number 3 (TUNAMI N3), the spatially distributed surface roughness information was integrated in tsunami inundation modeling and compared to the modeling results applying a uniform surface roughness condition. An uncertainty analysis of tsunami inundation modeling based on the variation of surface roughness coefficients in the Cilacap study area was also undertaken. It was demonstrated that the inundation modeling results applying uniform and spatially distributed surface roughness resulted in high differences of inundation lengths, especially in areas far from the coastline. This result showed the important role of surface roughness conditions in resisting tsunami flow, which must be considered in tsunami inundation modeling. With respect to the second research focus, the population distribution, a concept of population distribution modeling was developed. Within the modeling process, weighting factor determination, multi-scale disaggregation and a comparative study to other methods were conducted. The basis of the developed method was a combination of census and land use data, which led to an improved spatial resolution and accuracy of the population distribution. Socio-economic data were used to derive weighting factors to distributing people to land use classes. Moreover, in case of missing input data, an approach was developed that allows for the determination of generalized weighting factors. The approach to use specific weightings, where possible and generalized ones, where necessary, led to a flexible methodology with respect to the achievable accuracy and availability of data. A comparative study was performed by comparing this new model with previously developed population distribution models. The newly developed model showed a higher accuracy. The detailed population distribution information was a valuable input for the vulnerability assessment being the main data source for human exposure assessment and an important contribution to evacuation time modeling. In support of the population distribution research, settlement classification using TerraSAR-X imagery was conducted. A current classification method of speckle divergence analysis on SAR imagery was further developed and improved by including the neighborhood concept. The settlement classification provided highly accurate results in dense urban areas, whereas the method needs to be further developed and improved for rural settlement areas. Finally, it has been shown how the results of this research can be applied. These applications cover the integration of surface roughness conditions into the tsunami inundation modeling and hazard mapping. The contributions to tsunami vulnerability assessment and evacuation planning were shown. Additionally, the results were integrated into the decision support system of the Tsunami Early Warning Center in Jakarta.

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU
Automatic near real-time flood detection in high resolution X-band synthetic aperture radar satellite data using context-based classification on irregular graphs

Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

Play Episode Listen Later Dec 6, 2010


This thesis is an outcome of the project “Flood and damage assessment using very high resolution SAR data” (SAR-HQ), which is embedded in the interdisciplinary oriented RIMAX (Risk Management of Extreme Flood Events) programme, funded by the Federal Ministry of Education and Research (BMBF). It comprises the results of three scientific papers on automatic near real-time flood detection in high resolution X-band synthetic aperture radar (SAR) satellite data for operational rapid mapping activities in terms of disaster and crisis-management support. Flood situations seem to become more frequent and destructive in many regions of the world. A rising awareness of the availability of satellite based cartographic information has led to an increase in requests to corresponding mapping services to support civil-protection and relief organizations with disaster-related mapping and analysis activities. Due to the rising number of satellite systems with high revisit frequencies, a strengthened pool of SAR data is available during operational flood mapping activities. This offers the possibility to observe the whole extent of even large-scale flood events and their spatio-temporal evolution, but also calls for computationally efficient and automatic flood detection methods, which should drastically reduce the user input required by an active image interpreter. This thesis provides solutions for the near real-time derivation of detailed flood parameters such as flood extent, flood-related backscatter changes as well as flood classification probabilities from the new generation of high resolution X-band SAR satellite imagery in a completely unsupervised way. These data are, in comparison to images from conventional medium-resolution SAR sensors, characterized by an increased intra-class and decreased inter-class variability due to the reduced mixed pixel phenomenon. This problem is addressed by utilizing multi-contextual models on irregular hierarchical graphs, which consider that semantic image information is less represented in single pixels but in homogeneous image objects and their mutual relation. A hybrid Markov random field (MRF) model is developed, which integrates scale-dependent as well as spatio-temporal contextual information into the classification process by combining hierarchical causal Markov image modeling on automatically generated irregular hierarchical graphs with noncausal Markov modeling related to planar MRFs. This model is initialized in an unsupervised manner by an automatic tile-based thresholding approach, which solves the flood detection problem in large-size SAR data with small a priori class probabilities by statistical parameterization of local bi-modal class-conditional density functions in a time efficient manner. Experiments performed on TerraSAR-X StripMap data of Southwest England and ScanSAR data of north-eastern Namibia during large-scale flooding show the effectiveness of the proposed methods in terms of classification accuracy, computational performance, and transferability. It is further demonstrated that hierarchical causal Markov models such as hierarchical maximum a posteriori (HMAP) and hierarchical marginal posterior mode (HMPM) estimation can be effectively used for modeling the inter-spatial context of X-band SAR data in terms of flood and change detection purposes. Although the HMPM estimator is computationally more demanding than the HMAP estimator, it is found to be more suitable in terms of classification accuracy. Further, it offers the possibility to compute marginal posterior entropy-based confidence maps, which are used for the generation of flood possibility maps that express that the uncertainty in labeling of each image element. The supplementary integration of intra-spatial and, optionally, temporal contextual information into the Markov model results in a reduction of classification errors. It is observed that the application of the hybrid multi-contextual Markov model on irregular graphs is able to enhance classification results in comparison to modeling on regular structures of quadtrees, which is the hierarchical representation of images usually used in MRF-based image analysis. X-band SAR systems are generally not suited for detecting flooding under dense vegetation canopies such as forests due to the low capability of the X-band signal to penetrate into media. Within this thesis a method is proposed for the automatic derivation of flood areas beneath shrubs and grasses from TerraSAR-X data. Furthermore, an approach is developed, which combines high resolution topographic information with multi-scale image segmentation to enhance the mapping accuracy in areas consisting of flooded vegetation and anthropogenic objects as well as to remove non-water look-alike areas.