Podcasts about Insar

  • 29PODCASTS
  • 79EPISODES
  • 1h 1mAVG DURATION
  • ?INFREQUENT EPISODES
  • Feb 5, 2025LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about Insar

Latest podcast episodes about Insar

Earthquake Science Center Seminars
Leveraging high temporal and spatial resolution geodetic data through the earthquake cycle

Earthquake Science Center Seminars

Play Episode Listen Later Feb 5, 2025 60:00


Cassie Hanagan, USGS Advancing our understanding of earthquake processes inevitably pushes the bounds of data resolution in the spatial and temporal domains. This talk will step through a series of examples leveraging two relatively niche geodetic datasets for understanding portions of the earthquake cycle: (1) temporally dense and sensitive borehole strainmeter (BSM) data, and (2) spatially dense sub-pixel image correlation displacement data. More specifically, I will detail gap-filling benefits of these two datasets for different earthquakes. BSMs respond to a frequency of deformation that bridges the capabilities of more common GNSS stations and seismometers. As such, they are typically installed to capture deformation signals such as slow slip or transient creep. In practice they are also useful for measuring dynamic and static coseismic strains. This portion of the talk will focus on enhanced network capabilities for detecting both coseismic and postseismic deformation with a relatively new BSM array in the extensional Apennines of Italy, with events spanning tens to thousands of kms away. Then, we will transition toward how these instruments can constrain spatiotemporally variable afterslip following the 2019 Mw7.1 Ridgecrest, California earthquake. High spatial resolution displacements from sub-pixel image correlation serve as gap-filling datasets in another way – providing higher spatial resolution (~0.5 m) maps of the displacement fields than any other method to date, and patching areas where other methods fail to capture the full deformation magnitude or extent, such as where InSAR decorrelates. This portion of the talk will focus on new results that define expected displacement detection thresholds from high-resolution satellite optical imagery and, alternatively, from repeat lidar data. Examples will include synthetic and real case studies of discrete and diffuse deformation from earthquakes and fault creep.

Earthquake Science Center Seminars
Decadal Creep-rate Changes Along the Hayward Fault

Earthquake Science Center Seminars

Play Episode Listen Later Jul 10, 2024 60:00


Roland Burgmann, University of California Berkeley Decadal changes in aseismic fault slip rate on partially coupled faults reflect long-term changes in fault loading and/or fault-frictional properties that can be related to earthquake cycle processes. We consider constraints on aseismic fault slip rates from historical alignment array measurements, InSAR measurements since 1992, and repeating micro-earthquakes since 1984 along the Hayward fault, California. During recent decades, creep rates consistently increased along the whole Hayward fault. Accelerated fault creep associated with M > 4 earthquakes on the northern Hayward fault in 2007, 2010 and 2018 may explain some of the creep-rate accelerations, but the acceleration on the remaining Hayward fault does not seem to be directly tied to small-scale afterslip transients. Dynamic models of partially coupled faults through earthquake cycles suggest non-stationary asperities that continue to decrease in size late in the earthquake cycle. We explore such asperity erosion models to explain the apparent decadal acceleration of aseismic Hayward fault slip.

Irish Tech News Audio Articles
Irish Student Achieves Global Success at International Science Fair!

Irish Tech News Audio Articles

Play Episode Listen Later May 21, 2024 3:28


SciFest national champion Jack Shannon from Clongowes Wood College, Co. Kildare, represented Ireland at the Regeneron ISEF 2024 Science Fair in Los Angeles, California, coming away with two top awards. Shannon was placed First in the 'Environmental Engineering' category and also won the prestigious EUCYS award which earns the teenager an all-expenses paid trip to compete in the European Union Contest for Young Scientists (EUCYS) in Poland in September. Regeneron ISEF is the world's largest international pre-college science competition, involving some 1,700 students from over 67 countries and territories competing for a prize fund totalling $9 million. Jack secured his place at the international competition when he was named SciFest STEM Champion 2023 at the SciFest 2023 National Final last November. He claimed first prize for his project 'Ireland's Carbon Sinks - Remote Sensing for Monitoring Peatland Restoration'. His study utilised remote sensing techniques for monitoring peatland restoration in Ireland. Two distinct peatland sites, Clara bog and Keelbanada bog, were investigated to assess the effectiveness of multispectral, LiDAR, SAR, and InSAR analyses in tracking restoration progress and degradation. These methodologies supply regular and precise data on restoration progress and degradation areas, enhancing restoration planning and management. His project underscores the potential of remote sensing techniques for monitoring peatland restoration or degradation at multiple scales, contributing to Ireland's commitment to the Paris Agreement and the 2030 Climate and Energy Framework by facilitating comprehensive assessments of progress towards restoration and carbon sequestration targets. Speaking about attending ISEF, Jack Shannon said: "I am thrilled to have had the opportunity to attend and participate in Regeneron ISEF in Los Angeles, California. This was a great opportunity to showcase my skills and creativity on a global stage and I am over the moon to have won two awards. Having worked so hard on my project, I'm delighted to have been able to meet with other students and see their projects. I'm so thankful to my family, friends, teachers and everyone at SciFest, who have supported me on this journey." Sheila Porter, SciFest Founder and CEO commented: "We are all very proud of Jack on his achievement in winning two top awards. Participating in Regeneron ISEF is a wonderful opportunity and I know Jack has really enjoyed the experience. SciFest is all about encouraging a love of science, technology, engineering and maths among young people. Jack has developed a truly innovative project and we are delighted that he has had the opportunity to bring it to an international audience. We wish him every success for the future." Supported by Intel Ireland, Boston Scientific and EirGrid, SciFest is the largest, most inclusive all-island STEM fair programme for second-level students in Ireland. SciFest is free to enter and open to everyone across the island of Ireland, no matter their background or circumstances. The most important thing for SciFest is the participation of students and encouraging their interest in STEM in a fun and engaging way.

Hablando con Científicos - Cienciaes.com
¿El suelo que pisas se eleva o se hunde? Descúbrelo con EGMS. Hablamos con Elena González Alonso

Hablando con Científicos - Cienciaes.com

Play Episode Listen Later Dec 16, 2023


Por mucho que nos parezca que el suelo bajo nuestros pies permanece inalterable, al menos a una escala de tiempo compatible con nuestras vidas, la realidad es muy distinta. El suelo se mueve y ese movimiento es evidente cuando se observa de forma continua durante largos periodos de tiempo. La tecnología que permite esa proeza se denomina InSAR, acrónimo inglés de Interferometría de radar de Apertura Sintética. Elena González Alonso, nuestra invitada en Hablando con Científicos, trabaja en vigilancia volcánica en el Instituto Geográfico Nacional con tecnología InSAR y ha participado recientemente en la presentación del Servicio Europeo del Movimiento del Terreno (EGMS), un servicio que se centra en la medida del movimiento del suelo en toda Europa a lo largo de varios años.

Cienciaes.com
¿El suelo que pisas se eleva o se hunde? Descúbrelo con EGMS. Hablamos con Elena González Alonso - Hablando con Científicos

Cienciaes.com

Play Episode Listen Later Dec 16, 2023


Por mucho que nos parezca que el suelo bajo nuestros pies permanece inalterable, al menos a una escala de tiempo compatible con nuestras vidas, la realidad es muy distinta. El suelo se mueve y ese movimiento es evidente cuando se observa de forma continua durante largos periodos de tiempo. La tecnología que permite esa proeza se denomina InSAR, acrónimo inglés de Interferometría de radar de Apertura Sintética. Elena González Alonso, nuestra invitada en Hablando con Científicos, trabaja en vigilancia volcánica en el Instituto Geográfico Nacional con tecnología InSAR y ha participado recientemente en la presentación del Servicio Europeo del Movimiento del Terreno (EGMS), un servicio que se centra en la medida del movimiento del suelo en toda Europa a lo largo de varios años.

The 365 Days of Astronomy, the daily podcast of the International Year of Astronomy 2009
Cheap Astronomy - Dear CA # 096: Touring the Solar System

The 365 Days of Astronomy, the daily podcast of the International Year of Astronomy 2009

Play Episode Listen Later Aug 8, 2023 14:28


Next steps… - What's all the fuss about Venus? In June 2021, NASA announced two new Venus missions, Veritas (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) which is expected to happen in 2028 and DAVINCI+ (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging, Plus) which is expected in 2029 or 2030.   - Can our Mars-bound astronauts survive years of exposure to space radiation? Well yes, they can potentially, but solutions are yet to be agreed upon, let alone implemented. A radiation shielding solution for a Mars-bound spacecraft, is either going to add a lot of mass if it's physical shield or draw a lot of power and still add some mass if it's a magnetic shield. You also need solutions for extra vehicular activities, that is space suit shielding.   We've added a new way to donate to 365 Days of Astronomy to support editing, hosting, and production costs.  Just visit: https://www.patreon.com/365DaysOfAstronomy and donate as much as you can! Share the podcast with your friends and send the Patreon link to them too!  Every bit helps! Thank you! ------------------------------------ Do go visit http://www.redbubble.com/people/CosmoQuestX/shop for cool Astronomy Cast and CosmoQuest t-shirts, coffee mugs and other awesomeness! http://cosmoquest.org/Donate This show is made possible through your donations.  Thank you! (Haven't donated? It's not too late! Just click!) ------------------------------------ The 365 Days of Astronomy Podcast is produced by the Planetary Science Institute. http://www.psi.edu Visit us on the web at 365DaysOfAstronomy.org or email us at info@365DaysOfAstronomy.org.

Autism Science Foundation Weekly Science Report
attention attention…this is the INSAR 2023 summary

Autism Science Foundation Weekly Science Report

Play Episode Listen Later May 14, 2023 23:26


Last week in Stockholm, Sweden, 2200 researchers and scientists working to understand and help those on the spectrum, met to share their most recent findings and exchange ideas. What were the main takeaways as ASF saw them? We cover why some autistic people don't want genetics to be studied, how to better engage families with … Continue reading "attention attention…this is the INSAR 2023 summary"

Spectrum Autism Research
What kind of autism research should we do, and where should we do it?

Spectrum Autism Research

Play Episode Listen Later May 12, 2023 7:08


Researchers at INSAR 2023 need to discuss these questions and remember that the purpose of research may be different for different communities.

Spectrum Autism Research
What kind of autism research should we do, and where should we do it?

Spectrum Autism Research

Play Episode Listen Later May 12, 2023 7:08


Researchers at INSAR 2023 need to discuss these questions and remember that the purpose of research may be different for different communities.

Autism Science Foundation Weekly Science Report
The 2023 Day of Learning Quickie

Autism Science Foundation Weekly Science Report

Play Episode Listen Later Apr 2, 2023 23:14


What do anxiety, prevalence, ketamine, other neurodevelopmental disorders, siblings, genetics, brain imaging and the autistic researcher committee at INSAR all have in common? They were all topics at the last Day of Learning. You can hear a 20 minute summary of the talks on this week's #ASFpodcast.

Earthquake Science Center Seminars
Liquefaction or liquefiction? Anthropogenic regulation and the influence of evaporite dissolution on ground failure in the 2019 Mw 7.1 Ridgecrest Earthquake and beyond

Earthquake Science Center Seminars

Play Episode Listen Later Mar 15, 2023 60:00


Paula Burgi Remote sensing observations of the 2019 Ridgecrest, California, earthquake sequence revealed a significant amount of surface ejecta in the nearby Searles Lake, including one area where the surface ejecta was arranged in a repeating hexagonal “honeycomb” pattern. This pattern is collocated with injection wells from a solution mining operation, suggesting anthropogenic activities influenced the spatial distribution of surface ejecta. Lithology, geotechnical soil behavior, and the spatial distribution of long-term InSAR-derived subsidence indicate that surface ejecta in Searles Lake is not likely related to liquefaction. We propose a process, similar to liquefaction, that results in surface ejecta: (1) dissolution of evaporites increases the void/cavity space that is filled with fluid, (2) ground shaking causes void/cavity collapse (i.e., a volume reduction), (3) the collapse increases the fluid pressure, and (4) the increased pressure results in fluid flow to the surface.

Geology Bites By Oliver Strimpel
Romain Jolivet on the 2023 Turkey-Syria Earthquakes

Geology Bites By Oliver Strimpel

Play Episode Listen Later Mar 2, 2023 29:52


Romain Jolivet studies active faults and the relative motion of tectonic plates. His research focuses on the relationship between slow, aseismic slip that occurs “silently” between earthquakes and the rapid slip accompanying earthquakes. As he describes in the podcast, he uses interferometric synthetic aperture radar (InSAR) images from radar satellites to examine surface deformation over wide areas at meter-scale resolution. InSAR images of the 2023 Turkey-Syria earthquakes reveal complicated slip patterns occurring on well-recognized plate boundary faults as well as on hitherto ignored faults. Romain Jolivet is a Professor of Geoscience at the École normale supérieure in Paris. For illustrations that support this episode and to learn more about Geology Bites, go to geologybites.com.

MiningWeekly.com Audio Articles
DRDGold using satellite imagery to monitor tailings

MiningWeekly.com Audio Articles

Play Episode Listen Later Aug 24, 2022 3:57


Surface gold mining company DRDGold is using satellite imagery to monitor its tailings dumps, in addition to quarterly drone surveillance. An international tailings performance management system implemented ensures the integrity of data for day-to-day management and oversight. “There's a direct line from this into the board, so there's no sugar-coating of information,” DRDGold CEO CEO Niël Pretorius disclosed on Wednesday, when the company reported a solid set of results and paid dividends for 15 years in a row. In a presentation covered by Mining Weekly, Pretorius described the surveillance technology being deployed as something about which he is particularly excited. (Also watch attached Creamer Media video.) “I do believe that technology plays such an important role in managing an industry that is this complex and at this scale,” he added. He was referring to the use of interferometric synthetic aperture radar imagery known as InSAR. “This is satellite imagery that picks up the slightest movement in just the shape, height, and width of tailings facilities, so that if there is any movement of a sidewall, then this gets picked up and it's brought to your attention. And then there's the quarterly drone surveillance as well,” Pretorius said. The disclosure points to the phenomenal sophistication is being applied to those tailings dumps so evident around Johannesburg and on the East Rand and West Rand, which is placing the company in pole position to offer a complete tailings management solution to the world. Tailings management has become a global demand in the wake of the horrific tailings disaster in Brazil and DRDGold considers that it can offer as an additional service, beyond the bounds of its own business, a complete tailings management solution, combined with rehabilitation, which is where its skillset lies. An external tailings review panel is involved with the management of DRDGold's tailings facilities, which are characterised by world-leading vegetation that has reduced dust to very low levels. “This has been work that establishes a benchmark of what good environmental governance is all about comes down to the management of tailings,” Pretorius said. “We run some of the largest in the industry, and although there's a big move away from upstream deposition, the reality is that there are many of those out there, and they need to be managed in a way that limits their impact on the environment, and that's where our focus really lies, in becoming the benchmark in the industry on that,” he said. Sustainable development and rehabilitation expenditure is deeply embedded in the cash-rich company. Group cash and cash equivalents are 16% higher at R2.5-billion, which puts the company in a strong position to continue with its phase of capex, as well as taking up other growth opportunities. The group remains free of bank debt. UPDATE ON 20 MW SOLAR POWER The Johannesburg- and New York-listed company also provided an update on the steps it is taking complete its 20 MW solar power project, which will store power during offpeak hours draw that stored power during peak hours and halve the business' carbon footprint. DRDGold is constructing the solar power plant and power storage facility at Ergo, the gold from mine waste operation on the East Rand. The first phase of the project involves the upgrading of the existing supply line to the Brakpan/Withok tailings storage facility to 88 kVA, the construction of the initial 20 MW photovoltaic plant, and ten power storage batteries of 10 MW each. The batteries will be charged off the Eskom grid during offpeak periods, and then drawn during peak periods. “It's a wonderful financial model. It basically pays for itself if you use it only for storage at the current pricing profile,” Pretorius told the results presentation.

Earthquake Science Center Seminars
The Pyrocko Seismological Toolbox: Extending tooling to DAS data handling and processing

Earthquake Science Center Seminars

Play Episode Listen Later Jun 15, 2022 60:00


Marius Isken and Sebastian Heimann, GFZ Potsdam and University of Potsdam, Germany Pyrocko (https://pyrocko.org) is an open source seismology toolbox and library, written in the Python programming language. It can be utilized flexibly for a variety of geophysical tasks, like seismological data processing and analysis, modelling of InSAR, GNSS data and dynamic wave forms, or for seismic source characterization. The presentation introduces the framework and focuses on a flexible and computationally efficient f-k filtering technique for DAS data, which makes use of its dense spatial and temporal sampling, and can handle the large amount of data. The presented adaptive frequency-wavenumber filter suppresses the incoherent seismic noise while amplifying the coherent wave field. Bio: Marius Paul Isken is a Geophysicist interested in observational seismology and earthquake source characterisation. He studied Geosciences (BSc) and Geophysics (MSc) at the University of Kiel and afterwards worked as a research seismologist at the USGS in Menlo Park and KAUST, Saudi Arabia. Before starting his PhD about distributed acoustic sensing (DAS) for earthquake modelling at the GFZ Potsdam with the section Physics of Earthquakes and Volcanoes in 2020, he worked as a software developer at the University of Kiel (2016 - 2020). In 2018 he co-founded QuakeSaver GmbH, pursuing the aim to develop smart seismometers and seismic networks.

Autism Science Foundation Weekly Science Report

This year's first podcast dedicated to COVID issues explores both caregiver and clinician satisfaction with telehealth. New studies explore this satisfaction with assessment as well as psychiatric interventions. Also, as a follow up to the INSAR presentations on resiliency in mental health, a new study from Canada explains what may be at the core of … Continue reading "Hybrid is Most Helpful"

The Geotechnical Engineering Podcast
TGEP 50: InSAR and Finite Element Analysis in Geotechnical Engineering

The Geotechnical Engineering Podcast

Play Episode Listen Later May 19, 2022 28:48


In this episode, we talk to Andrew Lees, Ph.D., MICE CEng, Director of Geofem, Global Application Technology Manager at Tensar International, as well as Visiting Research Fellow at the University of Southampton about Finite Element Analysis, Geogrid Stabilization, InSAR, and what the future looks like for geotechnical engineering. Engineering Quotes: Here Are Some of the […] The post TGEP 50: InSAR and Finite Element Analysis in Geotechnical Engineering appeared first on Engineering Management Institute.

Naukowo
O zapadaniu się miast, kosmicznej Europie i odpadach jądrowych - #013

Naukowo

Play Episode Listen Later Apr 26, 2022 19:30 Transcription Available


Trzynasty odcinek opowie o odpadach jądrowych i plastikowych, zapadających się miastach, muzykalnych szczurach i odległej Europie.A jeśli uznasz, że warto wspierać ten projekt to zapraszam do serwisu Patronite, każda dobrowolna wpłata od słuchaczy pozwoli mi na rozwój i doskonalenie tego podkastu, bardzo dziękuję za każde wsparcie!Zapraszam również na Facebooka, Twittera i Instagrama, każdy lajk i udostępnienie pomoże w szerszym dotarciu do słuchaczy, a to jest teraz moim głównym celem :)Źródła użyte przy tworzeniu odcinka:Maia Mulko, "Scientists Turn Nuclear Waste Into Diamond Batteries That Could Last 1,000's of Years", https://www.thebrighterside.news/post/scientists-turn-nuclear-waste-into-diamond-batteries-that-could-last-1-000-s-of-yearsMackenzie, G. R., Kaluvan, S., Martin, P. G., Hutson, C., Connolley, T., Cattelan, M., Dominguez-Andrade, H., Martin, T. L., Fox, N. A., & Scott, T. B. (2021). A diamond gammavoltaic cell utilizing surface conductivity and its response to different photon interaction mechanisms. Materials Today Energy, 21, [100688]. https://doi.org/10.1016/j.mtener.2021.100688Alison DeNisco Rayome, "We're Drowning in Plastic. Here's What You Can Do About It", https://www.cnet.com/culture/features/were-drowning-in-plastic-heres-what-you-can-do-about-it/Roland Geyer, Jenna R. Jambeckand, Kara Lavender Law, "Roland Geyer Jenna R. Jambeckand Kara Lavender Law", https://doi.org/10.1126/sciadv.1700782Pei-Chin Wu, Meng (Matt) Wei, Steven D'Hondt, "Subsidence in Coastal Cities Throughout the World Observed by InSAR", https://doi.org/10.1029/2022GL098477Camille Squires, "These are the 10 fastest sinking cities in the world", https://www.weforum.org/agenda/2022/04/coastal-cities-flooding-sinking-climate-change/Gemma Ware, Daniel Merino, "A tale of two cities: why Indonesia is planning a new capital on Borneo – and abandoning Jakarta. Podcast", https://theconversation.com/a-tale-of-two-cities-why-indonesia-is-planning-a-new-capital-on-borneo-and-abandoning-jakarta-podcast-181134Crespo-Bojorque, P., Celma-Miralles, A. & Toro, J.M. Detecting surface changes in a familiar tune: exploring pitch, tempo and timbre. Anim Cogn (2022). https://doi.org/10.1007/s10071-022-01604-wNeuroscience News, "“I Know This Song!” Evolutionary Keys to Musical Perception", https://neurosciencenews.com/music-evolution-20458/Daniel Lawler, "Water on Jupiter's moon closer to surface than thought: study", https://phys.org/news/2022-04-jupiter-moon-closer-surface-thought.htmlCulberg, R., Schroeder, D.M. & Steinbrügge, G. Double ridge formation over shallow water sills on Jupiter's moon Europa. Nat Commun 13, 2007 (2022). https://doi.org/10.1038/s41467-022-29458-3Europa Clipper Mission, NASA, https://europa.nasa.gov/Photo by Naja Bertolt Jensen on Unsplash

Spectrum Autism Research
Pandemic, politics temper INSAR's in-person return

Spectrum Autism Research

Play Episode Listen Later Apr 20, 2022 5:43


Some autism researchers and clinicians say they are boycotting the upcoming annual meeting of the International Society for Autism Research in Austin, Texas, because of the state's controversial health policies and lack of COVID-19 mitigation strategies. The post Pandemic, politics temper INSAR's in-person return appeared first on Spectrum | Autism Research News.

Down To Earth: A podcast for Geoscientists by Geoscientist
S2 (Ep6) Down to Earth: In Venus VERITAS? Looking to Venus for truths about Earth In Venus VERITAS?

Down To Earth: A podcast for Geoscientists by Geoscientist

Play Episode Listen Later Apr 5, 2022 20:30


VERITAS, or truth, has been a recurring theme this season, particularly with respect to scientific integrity. But in this episode, it means something a little different. Standing for Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy, VERITAS is actually the name of a new space mission that will map the surface of Venus. In this episode, we speak with Dr. Scott Hensley about this new mission, and what it means for enhancing our knowledge of Earth

Spectrum Autism Research
Pandemic, politics temper INSAR's in-person return

Spectrum Autism Research

Play Episode Listen Later Apr 4, 2022 5:43


Some autism researchers and clinicians say they are boycotting the upcoming annual meeting of the International Society for Autism Research in Austin, Texas, because of the state’s controversial health policies and lack of COVID-19 mitigation strategies.

Spectrum Autism Research
Pandemic, politics temper INSAR's in-person return

Spectrum Autism Research

Play Episode Listen Later Apr 4, 2022 5:43


Some autism researchers and clinicians say they are boycotting the upcoming annual meeting of the International Society for Autism Research in Austin, Texas, because of the state’s controversial health policies and lack of COVID-19 mitigation strategies.

The Economy, Land & Climate Podcast
Roxane Andersen explains why peatlands are the "superheroes" of carbon storage

The Economy, Land & Climate Podcast

Play Episode Listen Later Mar 25, 2022 31:15 Transcription Available


Bertie talked to renowned peatland expert Professor Roxane Andersen, of the University of Highlands & Islands, the Environmental Research Institute, and the Flow Country Research Hub. They talked about the Flow Country in Scotland, her research on restoration, monitoring, and peatland fires, and more generally about why peatlands are so important for climate mitigation. After our podcast last year with Ed Struzik, listeners got in touch to say they wanted more content on peatlands, especially covering the science! We reached out to Professor Andersen, and were delighted she agreed to come on the show: do get in touch with recommendations or feedback, if there is anything you would like to hear about. We love hearing from you all.Further reading from this episode: - Read about the InSAR monitoring technology here, and in even more detail here!- Read about the FireBlanket project here- Read about the damaging afforestation on peatlands in the UK in the 1970s and 1980s here- Read about the Flow Country here, including the application to make it a UNESCO world heritage site

Cyber and Technology with Mike
07 July 2021 Cyber and Tech News

Cyber and Technology with Mike

Play Episode Listen Later Jul 7, 2021 10:14


In today's podcast we cover four crucial cyber and technology topics, including: 1. SonicWall VPN vulnerable; patch available  2. British Airways settles 2018 data breach case 3. Pro-Trump social media site scraped, user data aggregated and released 4. Kaspersky fixes botched random password generator I'd love feedback, feel free to send your comments and feedback to  | cyberandtechwithmike@gmail.com

Innovation Now
Tracking Natural Disasters

Innovation Now

Play Episode Listen Later Jun 25, 2021


Researchers supported by NASA's Applied Sciences Disasters Program use satellites in space to gauge damage that natural hazards such as hurricanes and earthquakes cause on Earth.

Occhio alla Terra!
#62 Toscana: l'arte di usare i satelliti

Occhio alla Terra!

Play Episode Listen Later Jun 13, 2021 24:07


con Ilaria Tabarrani - sistemi informativi e pianificazione territoriale. La Regione Toscana è stata una delle prime Regioni a riconoscere l'importanza del telerilevamento satellitare per costruire basi cartografiche di riferimento accurate, affidabili e verificate. come si colmano le lacune tra una produzione cartografica e l'altra? Come si promuove l'adozione dei dati satellitari tra professionisti, enti locali e comuni?

Innovation Now
In the Wake of Disaster

Innovation Now

Play Episode Listen Later Apr 23, 2021


An innovative satellite-based radar technology is allowing researchers at NASA to understand damage from natural hazards in new and powerful ways.

GeoCastAway | GeoNáufragos
T12E30. Facies contorníticas | Volcán Merapi | InSAR, interferometría de radar

GeoCastAway | GeoNáufragos

Play Episode Listen Later Apr 18, 2021 36:42


Hoy Olga y Nieves hablan con Elda Miramontes de la Universidad de Bremen, sobre facies contorníticas. A continuación Marta nos cuenta sobre el volcán Maripi en la Isla de Java dado que se encuentra en el GFZ de Postdam. Por último, en esta contribución sobre teledetección, Jorge (@lithospheric) nos explica los fundamentos de la interferometría de radar de apertura sintética, o InSAR, tan útil y empleada para el estudio de la deformación del terreno. ¿Qué tiene que ver InSAR con el suelo de una estación de servicio? Grupo de Telegram: t.me/geocastawaypodcast Web: http://geocastaway.com Twitter: http://twitter.com/geocastaway Facebook: http://facebook.com/geocastaway Youtube: http://youtube.com/geocastaway Correo: geocastaway@gmail.com Tienda: https://shop.spreadshirt.es/geocastaway/

Spegillinn
Spegillinn 1.mars 2021

Spegillinn

Play Episode Listen Later Mar 1, 2021 30:00


Spegillinn 1.mars 2021 Umsjón: Kristján Sigurjónsson og Anna Kristín Jónsdóttir Tæknimaður: Mark Eldred Gervihnattamyndir af Reykjanesskaga og ný gögn sýna umtalsverða færslu á landi sem ekki verði bara skýrð með jarðskjálftum og benda til þessað kvikugangur sé að myndast þar sem mesta skjálftavirkni hefur verið síðustu daga, það er við Keili. Kristín Jónsdóttir hópstjóri Náttúruvárvaktar á Veðurstofu Íslands segir að því sé mikilvægt að draga fram sviðsmynd um gos. Hraun frá því hefði ekki áhrif í byggð. Ekki er talin ástæða til að breyta viðbúnaði almannavarna en fylgst er grannt með svæðinu. Jarðskjálfti 5,1 að stærð varð um klukkan hálf fimm í dag á Reykjanesskaga. Þetta er þriðji stærsti skjálftinn i hrinunni síðan hún hófst á miðvikudag. 1800 skjálftar hafa mælst frá miðnætti, 23 skjálftar að stærð 3 eða stærri og um 3 skjálftar eru 4 að stærð eða stærri. Framkvæmdastjóri Unicef á Íslandi segir verkefni Barnahjálpar Sameinuðu þjóðanna að bólusetja íbúa um 90 fátækra landa í heiminum gegn COVID-19 sé tvímælalaust stærsta bólusetningarverkefni sögunnar Framleiðsluáætlun kórónuveirubóluefnaframleiðandans Janssen hefur ekki gengið eftir og því óvíst hvenær bóluefnið kemur hingað til lands. Forsætisráðherra Armeníu kveðst tilbúinn að boða til þingkosninga verði það til þess að leysa úr pólitískri kreppu sem þar hefur ríkt síðustu mánuði. Lengri umfjöllun: 800 ár eru liðin frá síðustu eldsumbrotum á Reykjanesskaga og jarðsagan segir að hann sé kominn á tíma. Eldfjallfræði- og náttúruvárhópur Háskóla Íslands hefur útbúið kort sem sýna hugsanlega hraunrennslisstefnu ef til goss kæmi. Þorvaldur Þórðarson prófessor í í eldfjalla- og bergfræði við Háskóla Íslands segir mjög ólíklegt að eldgos fylgi núverandi jarðhræringum á Reykjanesskaga, það sé þó ekki útilokað. Spegillinn ræddi við Þorvald í dag, en það skal tekið fram að viðtalið var tekið um miðjan dag, áður en stöðufundur almannavarna var haldinn sem við sögðum frá í fréttahluta Spegilssins. Þar kom fram að Vísindaráð hafi farið yfir gervihnattamyndir (InSAR) sem bárust í dag, en úrvinnsla úr þeim myndum sýna meiri færslu en áður hefur orðið vart við á svæðinu síðustu daga. Líklegasta skýringin er sú að kvikugangur sé að myndast undir því svæði þar sem mesta jarðskjálftavirknin hefur verið síðustu daga að því er segir í tilkynningu frá Vísindaráði og almannavörnum. Kristján Sigurjónsson talaði við Þorvald. Framkvæmdastjóri Unicef á Íslandi, Birna Þórarinsdóttir, segir verkefni Barnahjálpar Sameinuðu þjóðanna að bólusetja íbúa um 90 fátækra land

Spegillinn
Spegillinn 1.mars 2021

Spegillinn

Play Episode Listen Later Mar 1, 2021


Spegillinn 1.mars 2021 Umsjón: Kristján Sigurjónsson og Anna Kristín Jónsdóttir Tæknimaður: Mark Eldred Gervihnattamyndir af Reykjanesskaga og ný gögn sýna umtalsverða færslu á landi sem ekki verði bara skýrð með jarðskjálftum og benda til þessað kvikugangur sé að myndast þar sem mesta skjálftavirkni hefur verið síðustu daga, það er við Keili. Kristín Jónsdóttir hópstjóri Náttúruvárvaktar á Veðurstofu Íslands segir að því sé mikilvægt að draga fram sviðsmynd um gos. Hraun frá því hefði ekki áhrif í byggð. Ekki er talin ástæða til að breyta viðbúnaði almannavarna en fylgst er grannt með svæðinu. Jarðskjálfti 5,1 að stærð varð um klukkan hálf fimm í dag á Reykjanesskaga. Þetta er þriðji stærsti skjálftinn i hrinunni síðan hún hófst á miðvikudag. 1800 skjálftar hafa mælst frá miðnætti, 23 skjálftar að stærð 3 eða stærri og um 3 skjálftar eru 4 að stærð eða stærri. Framkvæmdastjóri Unicef á Íslandi segir verkefni Barnahjálpar Sameinuðu þjóðanna að bólusetja íbúa um 90 fátækra landa í heiminum gegn COVID-19 sé tvímælalaust stærsta bólusetningarverkefni sögunnar Framleiðsluáætlun kórónuveirubóluefnaframleiðandans Janssen hefur ekki gengið eftir og því óvíst hvenær bóluefnið kemur hingað til lands. Forsætisráðherra Armeníu kveðst tilbúinn að boða til þingkosninga verði það til þess að leysa úr pólitískri kreppu sem þar hefur ríkt síðustu mánuði. Lengri umfjöllun: 800 ár eru liðin frá síðustu eldsumbrotum á Reykjanesskaga og jarðsagan segir að hann sé kominn á tíma. Eldfjallfræði- og náttúruvárhópur Háskóla Íslands hefur útbúið kort sem sýna hugsanlega hraunrennslisstefnu ef til goss kæmi. Þorvaldur Þórðarson prófessor í í eldfjalla- og bergfræði við Háskóla Íslands segir mjög ólíklegt að eldgos fylgi núverandi jarðhræringum á Reykjanesskaga, það sé þó ekki útilokað. Spegillinn ræddi við Þorvald í dag, en það skal tekið fram að viðtalið var tekið um miðjan dag, áður en stöðufundur almannavarna var haldinn sem við sögðum frá í fréttahluta Spegilssins. Þar kom fram að Vísindaráð hafi farið yfir gervihnattamyndir (InSAR) sem bárust í dag, en úrvinnsla úr þeim myndum sýna meiri færslu en áður hefur orðið vart við á svæðinu síðustu daga. Líklegasta skýringin er sú að kvikugangur sé að myndast undir því svæði þar sem mesta jarðskjálftavirknin hefur verið síðustu daga að því er segir í tilkynningu frá Vísindaráði og almannavörnum. Kristján Sigurjónsson talaði við Þorvald. Framkvæmdastjóri Unicef á Íslandi, Birna Þórarinsdóttir, segir verkefni Barnahjálpar Sameinuðu þjóðanna að bólusetja íbúa um 90 fátækra land

Occhio alla Terra!
#34 Mini-satelliti RADAR dai super-poteri

Occhio alla Terra!

Play Episode Listen Later Nov 8, 2020 18:56


Tutte le curiosità sulla costellazione finlandese ICEYE raccontate da MARIA FRUNZA - Customer Operations & Satellite Planning. Tutto il mondo, ogni ora: la mission rivoluzionaria di ICEYE. Da monitoraggio a sorveglianza dallo spazio: microsatelliti radar che registrano video con super risoluzione! Quali sono le applicazioni basate su questi straordinari dati?

Location Matters
Spatial finance: Investing wisely using location technology

Location Matters

Play Episode Listen Later Sep 7, 2020 41:01


On this week's episode of Location Matters, we're chatting to the General Manager of EO Data Science, Sam Atkinson and Marketing Manager at NGIS Australia, Sarah Butler. We dive into spatial finance - What it is and how financial practices and organisations can use spatial technology to monitor, plan and mitigate risk across their assets portfolio. On the Location Matters podcast, we cover all topics geospatial, whether that's new technologies, partnerships or inspiring people in the industry. If you want to be updated on when the latest Location Matters podcast episodes come out - please hit 'subscribe' on Apple Podcasts, 'follow' on Spotify or Stitcher. EO Data Science - https://eodatascience.com/ Digital Agriculture Services - https://digitalagricultureservices.com/  Orbital Insight - https://orbitalinsight.com/  OMFIF - https://www.omfif.org/ WWF and Investec Report - https://wwfeu.awsassets.panda.org/downloads/investec_sustainability_and_satellites_june_2019.pdf Detecting palm oil plantation land use in Myanmar - https://newsroom.eodatascience.com/detecting-palm-oil-plantation-land-use-in-myanmar  All things InSAR with 3vGeomatics - https://ngis.com.au/Newsroom/Podcast#lm5  You can follow EO Data Science on Facebook, LinkedIn and Twitter.

Location Matters
All things InSAR with 3vGeomatics

Location Matters

Play Episode Listen Later Sep 1, 2020 39:08


Welcome back to another episode of Location Matters! On today's episode we jump into the world of InSAR, also known as Interferometric Synthetic Aperture Radar with our friends over at 3vGeomatics. Our Marketing Manager, Sarah Butler sits with General Manager at EO Data Science, Sam Atkinson and (virtually with) the Chief Technology Officer at 3VGeomatics, Parwant Ghuman to find out what InSAR is, why it's cool and how it can be applied within the Australian context and how it's being used at the moment to fight climate change. On the Location Matters podcast, we cover all topics geospatial, whether that's new technologies, partnerships or inspiring people in the industry. If you want to be updated on when the latest Location Matters podcast episodes come out - please hit 'subscribe' on Apple Podcasts, 'follow' on Spotify or Stitcher. EO Data Science - https://eodatascience.com/ 3vGeomatics - https://3vgeomatics.com/ Tailings dams storage facilities blog - https://newsroom.eodatascience.com/how-can-we-ensure-a-safe-future-for-tailings-dams 3vGeomatics press release on the partnership with NVIDIA - https://3vgeomatics.com/news/3v-geomatics-joins-nvidia-inception-program/ InSAR in the Clouds: satellite-based monitoring at Grasberg Mine - InSAR in the Clouds - https://papers.acg.uwa.edu.au/p/2025_14_Leighton/ Benefits and applications of InSAR for the design construction and maintenance of infrastructure - https://attendee.gotowebinar.com/recording/2973740655808525057 Want to find out more? You can reach the 3vGeomatics team at info@3vgeomatics.com or you can follow EO Data Science on Facebook, LinkedIn and Twitter.

Occhio alla Terra!
#15 Eppur si muove! Dal satellite al periscopio

Occhio alla Terra!

Play Episode Listen Later Apr 25, 2020 13:44


230.00 ponti in Usa sono a rischio strutturale. La subsidenza e i movimenti millimetrici della superficie terrestre sono misurati grazie ai satelliti radar. Una nuova generazione di analytics semplifica il loro utilizzo per la manutenzione preventiva delle reti idrauliche. Il caso italiano.

Location Matters
Remote sensing for the resources industry

Location Matters

Play Episode Listen Later Nov 10, 2019 19:36


Remote sensing technology enables us to understand the environmental change over time and gain insights into the extent of deforestation or environmental impact of a mine from exploration through to rehabilitation. In this episode of Location Matters we're joined by Sam Atkinson, General Manager at EO Data Science and Krystle Dobson, Senior Account Executive for Resources at NGIS Australia. We cover the key challenges faced used remote sensing, the role remote sensing can play in preventing tailings dams failures and how Krystle and Sam see the resources industry evolving with the advancements in cloud technology. In this episode: 1:16     What is remote sensing and what are the types of remote sensing out there? 4:40     What are some of the key challenges to using remote sensing? 5:40     What information can you capture using remote sensing and what insights can you pull using this data for the resources industry? 9:30     Can you tell me about the effects of tailings dams failures and where you see remote sensing playing a part in preventing these tragedies? 11:35    How accurate are InSAR systems? 14:30    Have the techniques changed recently with how we work with remote sensing data? 15:40    How do you see the resources industry evolving over the next few years with the advancements in cloud technology? Important links: EO Data Science: https://eodatascience.com/ 3vGeomatics: https://3vgeomatics.com/ 

Autastic: A Comedians Guide to Autism
Yale Physician Researcher Abha Gupta talks CDD

Autastic: A Comedians Guide to Autism

Play Episode Listen Later Jun 21, 2019 23:37


Jill is back at INSAR and she interviews Yale Physician Researcher Abha Gupta and Childhood disintegrative disorder. CDD

Autism Science Foundation Weekly Science Report
Getting Autistic People to Work

Autism Science Foundation Weekly Science Report

Play Episode Listen Later May 20, 2019 11:00


This week’s podcast is dedicated to the recently released INSAR – supported employment policy brief.  This was a 2 year project by ASF, Stony Brook, University, Karolinska Institute in Sweden and Curtin University in Australia to provide a cross-cultural perspective on getting autistic people who want to work, employed, and stay employed.  Thank you to […]

Autism Science Foundation Weekly Science Report
INSAR with a T, for “technology”

Autism Science Foundation Weekly Science Report

Play Episode Listen Later May 5, 2019 11:56


Lots of news outlets have great summaries of things that were presented at the International Society for Autism Research. However, one area was relatively missed:  technology.    This week’s podcast summarizes advances in technology for people with autism, how they are being used, what they could be used for and how they will improve services […]

Science... sort of
305 - AGU Part V, How To Train Your Science

Science... sort of

Play Episode Listen Later Apr 22, 2019 91:17


00:00:00 - In our final AGU episode, Abe and Ryan host a roundtable discussion with some of the researchers who took the train from Scripps Oceanographic Institute (@scripps_ocean) in San Diego all the way to DC as part of their #trAinGU initiative that they've been doing for several years now. You may have gotten a glimpse of this chat if you follow us or Scripps on twitter. In no particular order we chatted with:  Wesley Neely (@SIOHydrogeodesy), Adrian Doran, Dara Goldberg (@dara_berg_), and Margaret Lindeman (@maaahge). We begin with their science, each of there abstracts can be read here (they're in the same order as listed above): The Ups and Downs of California’s Central Valley from GPS-enhanced InSAR  Lateral heterogeneity of the upper oceanic lithosphere surrounding Hawaii  Multi-Sensor Natural Hazard Structural Monitoring at the UC San Diego Geisel Library  Ocean Warming Drives Increased Mass Loss at 79 North Glacier, Northeast Greenland  00:37:40 - Joe enjoys another drink from his local poke place, this time a ume juice drink. Ryan and Abe are sharing a Partner Ship collaboration beer from Heavy Seas and Maine Brewing Co., who contribute a portion of the proceeds to the Clean Water Fund, and that seems like a no brainer as a good thing. 00:43:50- And then we talk about why taking the train to scientific meetings can send an important message about how we each manage our own personal carbon footprint as well as how much fun a multi-day train trip sounds. You can see tweets from past trips and follow along the next time they embark with the hashtag #trAinGU. 01:02:07 - PaleoPOWs are a lot like train journeys, they’re best when they stay on the rails. We begin with the immense pleasure of grating a BSSO, this time to Patron Leah A. The title of her thesis is: Testing the efficacy of supersonic nuclear-powered mag-lev trains as high-capacity rapid evacuation vectors during massive tectonic events: derailing the strike-slip damage of the San Andreas. Thanks, Leah! Next, Abe has an e-mail from IRL friend of the show Morgan Marshall, who has questions about a certain city-wide destruction movie starring Dwayne Johnson, which doesn’t narrow things down as much as one might think. And Joe reads an impromptu tweet about the show from artist Kat MacDonald (@macdokat) which just gives us all the warm and fuzzies. Finally, a brief reminder that the back catalog of Joe’s show Technically Speaking is still available on Soundcloud here. More cool rewards await you if you decide to support us on our Patreon! Music credit: Take a Tiny Train - Blue Dot Sessions

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - VIDEO

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - VIDEO

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre - VIDEO

Collège de France (Général)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre - PDF

Collège de France (Général)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre

Collège de France (Général)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre - VIDEO

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre - PDF

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - VIDEO

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - PDF

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - VIDEO

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - PDF

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre

Collège de France (Général)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre - PDF

Collège de France (Général)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre - VIDEO

Collège de France (Général)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre - PDF

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre - VIDEO

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - PDF

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - PDF

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 21, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre

Collège de France (Général)

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - VIDEO

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - PDF

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - PDF

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Physique de l'intérieur de la terre
06 - Les Grands Tremblements de Terre - VIDEO

Physique de l'intérieur de la terre

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre - PDF

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Physique/Chimie)
06 - Les Grands Tremblements de Terre - VIDEO

Collège de France (Physique/Chimie)

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre - PDF

Collège de France (Général)

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Collège de France (Général)
06 - Les Grands Tremblements de Terre - VIDEO

Collège de France (Général)

Play Episode Listen Later Nov 20, 2017 100:14


Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

Modellansatz
InSAR - SAR-Interferometrie

Modellansatz

Play Episode Listen Later Sep 24, 2015 40:14


Im Rahmen des ersten Alumitreffens im neu renovierten Mathematikgebäude gibt uns unser Alumnus Markus Even einen Einblick in seine Arbeit als Mathematiker am Fraunhofer IOSB, dem Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung in Ettlingen in der Arbeitsgruppe zur Analyse und Visualisierung von SAR-Bilddaten. Er befasst sich mit der Entwicklung von Algorithmen für die Fernerkundung, genauer gesagt für die Deformationsanalyse mit Hilfe von SAR-Interferometrie (InSAR). Deformation bezieht sich hier auf Bewegungen der Erdkruste oder auf ihr befindlicher Strukturen, z.B. von Bauwerken. Hinter dem Stichwort SAR-Interferometrie verbirgt sich eine Vielfalt von Verfahren der Fernerkundung, die auf Synthetic Aperture Radar, auf Deutsch Radar mit synthetischer Apertur, beruhen, und die die Fähigkeit der Sensorik ein kohärentes Signal zu verarbeiten zur Erzeugung sogenannter Interferogramme nutzen. Für SAR ist es wesentlich, dass der Sensor bewegt wird. Zu diesem Zweck ist er auf einen Satelliten, ein Flugzeug oder auch auf einem auf Schienen laufenden Schlitten montiert. Für die Mehrzahl der Anwendungen wird er entlang einer näherungsweise geradlinigen Bahn bewegt und sendet in festen Zeitabständen elektromagnetische Signale im Mikrowellenbereich aus, deren Returns er, unterteilt in sehr kurze Zeitintervalle, aufzeichnet. Dabei "blickt" er schräg nach unten, um nicht systematisch von zwei verschiedenen Orten der Erdoberfläche rückkehrende Signale zu vermischen. Herauszuheben ist, dass er unabhängig von der Tageszeit- er beleuchtet die Szene selbst- und weitgehend unabhängig von den Wetterverhältnissen- die Atmosphäre verzögert das Signal, ist aber für diese Wellenlängen (ca. 3cm-85cm) bis auf seltene Ausnahmen durchlässig dafür- Aufnahmen machen kann. Dies ist ein Vorzug gegenüber Sensoren, die im optischen oder infraroten Teil des Spektrums arbeiten, und nachts oder bei Bewölkung nicht die gewünschten Informationen liefern können. Neben der Magnitude des rückgestreuten Signals zeichnet der SAR-Sensor auch dessen Phasenverschiebung gegenüber einem Referenzoszillator auf, die die Grundlage für die Interferometrie darstellt und viele Anwendungsmöglichkeiten bietet. Aus dem aufgezeichneten Signal wird das sogenannte fokusierte Bild berechnet. (Mathematisch gesehen handelt es sich bei dieser Aufgabe um ein inverses Problem.) Die Achsen dieses komplexwertigen Bildes entsprechen eine der Position des Satelliten auf seiner Bahn und die andere der Laufzeit des Signals. Der Zahlenwert eines Pixels kann vereinfacht als Mittel der aufgezeichneten Rückstreuung aus dem Volumen angesehen werden, dass durch das jeweilige Paar aus Bahninterval und Laufzeitinterval definiert ist. Dies ist der Kern von SAR: Die Radarkeule erfasst eine größere Fläche auf dem Boden, so dass das aufgezeichnete Signal aus der Überlagerung aller zurückkehrenden Wellen besteht. Diese Überlagerung wird durch die Fokusierung rückgängig gemacht. Dazu benutzt man, dass ein Auflösungselement am Boden zu allen Returns beiträgt, solange es von der Radarkeule erfasst wird und dabei eine bekannte Entfernungskurve durchläuft.Die Magnitude des sich so ergebenden Bildes erinnert bei hochaufgelösten Aufnahmen auf den ersten Blick an eine Schwarzweißphotographie. Betrachtet man sie jedoch genauer, so stellt man schnell Unterschiede fest. Erhabene Objekte kippen zum Sensor, da die höhergelegenen Punkte näher zu ihm liegen. Hohe Werte der Magnitude, also hohe Rückstreuung, sind in der Regel mit günstigen geometrischen Konstellationen verbunden: Eine ebene Fläche muss dazu beispielsweise senkrecht zum einfallenden Signal ausgerichtet sein, was selten der Fall ist. Geht man an die Grenze des aktuell Möglichen und betrachtet ein Bild einer städtischen Umgebung eines luftgetragenen Sensors mit wenigen Zentimetern Auflösung, so scheint es beinahe in punktförmige Streuer zu zerfallen. Diese werden durch dihedrale (Pfosten) und- häufiger- trihedrale Strukturen erzeugt. Trihedrale Strukturen reflektieren das einfallende Signal parallel zur Einfallsrichtung (man kennt das von den an Fahrzeugen verwendeten, Katzenaugen genannten Reflektoren). Sehr niedrige Rückstreuung ist meist darin begründet, dass kein Signal mit der entsprechenden Laufzeit zum Sensor zurückkehrt, sei es weil keine Streuer erreicht werden (Schatten) oder das Signal auf glatten Flächen vom Satelliten weggespiegelt wird. Für Wellenlängen von einigen Zentimetern sind z.B. asphaltierte oder gepflasterte Flächen glatt, bei Windstille ist es auch Wasser. Daneben gibt es auch kompliziertere Streumechanismen, die zu Magnituden mittlerer Höhe führen, etwa Volumenstreuung in Vegetation, Schnee und Sand, verteilte Streuung an Flächen mit vielen kleinen, homogen verteilten Objekten (z.B. Kiesflächen oder andere Flächen mit spärlicher Vegetation) oder einer gewissen Rauigkeit. Außer diesen gibt es noch viele weitere Möglichkeiten, wie Mehrfachreflektionen oder das Zusammenfallen in verschiedenen Höhen positionierter Streuer in einer Entfernungszelle.Die für die SAR-Interferometrie wesentliche Information aber ist die Phase. Sie kann allerdings nur genutzt werden, wenn zwei oder mehr Aufnahmen aus annähernd der gleichen Position vorliegen. Die grundlegende Idee dabei ist die Betrachtung von Doppeldifferenzen der Phase zweier Pixel zweier Aufnahmezeitpunkte. Um sie zu verstehen nehmen wir zunächst an, dass sich in beiden Auflösungszellen je ein dominanter, punktförmiger Streuer befindet, was so gemeint ist, dass die Phase einer Laufzeit entspricht. Da die Subpixelpositionen unbekannt sind und die Größe der Auflösungszelle um Vieles größer als die Wellenlänge ist, ist die Phasendifferenz zweier Pixel eines einzelnen Bildes nicht verwertbar. In der Doppeldifferenz heben sich die unbekannten Subpixelpositionen allerdings heraus. Die Doppeldifferenz ist in dieser idealisierten Situation die Summe dreier Anteile: des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien, des Laufzeitunterschiedes auf Grund einer relativen Positionsänderung der Streuer während der zwischen den Aufnahmen verstrichenen Zeit und des Laufzeitunterschiedes auf Grund der räumlichen und zeitlichen Variation der atmosphärischen Verzögerung. Diese drei Anteile können jeder für sich nützliche Information darstellen. Der Erste wird zur Gewinnung von Höhenmodellen genutzt, der Zweite zur Detektion von Deformationen der Erdoberfläche und der Dritte, obwohl meist als Störterm angesehen, kann bei der Bestimmung der Verteilung von Wasserdampf in der Atmosphäre genutzt werden. Es stellt sich aber die Frage, wie man diese Terme separiert, zumal noch die Mehrdeutigkeit aufgelöst werden muss, die darin liegt, dass die Phase nur bis auf ganzzahlige Vielfache von zwei Pi bekannt ist.Weitere Fragen ergeben sich, da in realen Daten diese Annahmen für viele Pixel nicht erfüllt sind. Stellt man sich beispielsweise eine Auflösungszelle mit mehreren oder vielen kleineren Streuern vor (z.B. mit Geröll), so ändert sich die Phase der überlagerten Returns mit dem Einfallswinkel des Signals. Sie ändert sich auch, wenn manche der Streuer bewegt wurden oder die beiden Aufnahmen nicht ausreichend genau zur Deckung gebracht wurden. Dies führt dazu, dass die Phase sich um einen schlecht quantifizierbaren Betrag ändert. Man spricht dann von Dekorrelation. Eventuell besteht nach Änderung der physischen Gegebenheiten in der Auflösungszelle keine Beziehung mehr zwischen den Phasenwerten eines Pixels. Dies ist etwa der Fall, wenn ein dominanter Streuer hinzu kommt oder nicht mehr anwesend ist, ein Gelände überschwemmt wird oder trocken fällt. Es stellt sich also die Frage, welche Pixel überhaupt Information tragen, bzw. wie ihre Qualität ist und wie sie extrahiert werden kann.Die Geschichte der SAR-Interferometrie begann nach dem Start des ESA-Satelliten ERS 1 im Jahr 1991 mit einfachen differentiellen Interferogrammen. Das berühmteste ist sicher das vom Landers-Erdbeben 1992 in Kalifornien. Zum ersten Mal in der Geschichte der Wissenschaft war es möglich, das Deformationsfeld eines Erdbebens flächig zu messen, wenn auch nur die Komponente in Sichtlinie des Sensors. Statt Werte hunderter in der Region installierter Messstationen stellte das Interferogramm ein Bild des Erdbebens mit Millionen Datenpunkten dar. Diese Fähigkeit, großflächig Deformationen der Erdoberfläche aufzuzeichnen, besitzt nur die SAR-Interferometrie! Allerdings ist zu bemerken, dass dieses Resultat seine Entstehung auch günstigen Umständen verdankt. Landers liegt in der Mojave-Wüste, so dass die Variation der atmosphärischen Verzögerung und die Dekorrelation vernachlässigbar waren. Dank der Verfügbarkeit eines guten Höhenmodells konnte der Anteil des Laufzeitunterschiedes auf Grund der verschiedenen Aufnahmegeometrien eliminiert werden (man spricht dann von einem differentiellen Interferogramm). Ein weiterer Meilenstein war die Shuttle Radar Topography Mission des Space Shuttle Endeavour im Februar 2000, während der die Daten für ein Höhenmodell der gesamten Landmasse zwischen 54 Grad südlicher Breite und 60 Grad nördlicher Breite aufgezeichnet wurden. Für diesen Zweck wurde die Endeavour mit zwei SAR-Antennen ausgestattet, eine am Rumpf, eine an einem 60 Meter langen Ausleger. Dank zeitgleicher Aufnahmen waren die Phasenanteile auf Grund Deformation und atmosphärischer Verzögerung vernachlässigbar. Dekorrelation auf Grund von Änderungen der physischen Gegebenheiten spielt hier auch keine Rolle. Dem Wunsch nach einem weltweiten, dazu deutlich höher aufgelösten Höhenmodell kommt seit 2010 die TanDEM-X-Mission des DLR nach, bei der die beiden SAR-Antennen von zwei Satelliten im Formationsflug getragen werden. Auch in der Algorithmik gab es entscheidende Fortschritte. Einer der fruchtbarsten war die Erfindung von Permanent Scatterer Interferometric SAR (PSInSAR) um das Jahr 2000, das durch die Verwendung einer längeren Zeitreihe von differentiellen Interferogrammen und einiger neuer Ideen das Problem der Separierung der im vorangehenden Abschnitt genannten Terme löste. Der Ausgangspunkt hierfür war die Entdeckung, dass häufig eine größere Anzahl über lange Zeiträume phasenstabile Streuer, die sogenannten Permanent Scatterer (auch Persistent Scatterer oder PS), gefunden werden können, die man sich vereinfacht als Pixel vorstellen darf, deren Auflösungszelle einen dominanten, punktförmigen, über die Zeitreihe unveränderten Streuer enthält. Auf diese wird nun die Auswertung beschränkt, die vereinfacht folgende Schritte durchläuft: Definition eines Graphen mit den PS als Knoten und Paaren benachbarter PS als Kanten; Schätzung einer Modellphase für Deformation und Höhenmodellfehler an Hand der Doppeldifferenzen aller verwendeten differentiellen Interferogramme für alle Kanten; Entrollen von Originalphase minus Modellphase, d.h. Auflösen der Mehrdeutigkeiten; räumlich-zeitliche Filterung, um die Variation der atmosphärischen Verzögerung zu eliminieren. Als Produkt ergeben sich für jeden PS seine Bewegung in Sichtlinie des Sensors und eine Korrektur seiner Höhenlage relativ zum für die Erzeugung der differentiellen Interferogramme verwendeten Höhenmodell. Seither wurden diese Grundideen modifiziert und verfeinert. Vor allem müssen die Berücksichtigung verteilter Streuer (auch Distributed Scatterer oder DS) für die Deformationsanalyse erwähnt werden, was die Informationsdichte vor allem in ariden Gebieten drastisch erhöhen kann, sowie die SAR-Tomographie, die eine Analyse auch dann erlaubt, wenn zwei oder drei vergleichbar starke Streuer in einer Auflösungszelle vorhanden sind (z.B. wenn ein Streuer am Boden, eine Fensterniche und eine Dachstruktur den gleichen Abstand zum Sensor haben). Die SAR-Interferometrie, insbesondere die Deformationsanalyse, verwendet vor allem mathematische Methoden aus den Bereichen Stochastik, Signalverarbeitung, Optimierungstheorie und Numerik. Besondere Herausforderungen ergeben sich daraus, dass die Vielfalt natürlicher Phänomene sich nur bedingt durch einfache statistische Modelle beschreiben lässt und aus dem Umstand, dass die Datensätze in der Regel sehr groß sind (ein Stapel von 30 Aufnahmen mit komplexwertigen 600 Megapixeln ist durchaus typisch). Es treten lineare Gleichungssysteme mit mehreren Zehntausend Unbekannten auf, die robust gelöst sein wollen. Für die Auflösung der Mehrdeutigkeiten verwenden die fortgeschrittensten Algorithmen ganzzahlige Optimierung. Wavelet-basierte Filterverfahren werden genutzt, um die atmosphärische Verzögerung vom Nutzsignal zu trennen. Im Zusammenhang mit der Schätzung der Variation der atmosphärischen Verzögerung werden geostatistische Verfahren wie Kriging eingesetzt. Statistische Tests werden bei der Auswahl der DS, sowie zur Detektion schlechter Pixel eingesetzt. Bei der Prozessierung der DS spielen Schätzer der Kovarianzmatrix eine prominente Rolle. Die SAR-Tomographie nutzt Compressive Sensing und viele weitere Verfahren. Zusammenfassend lässt sich sagen, dass die SAR-Interferometrie auch aus Perspektive eines Mathematikers ein reichhaltiges und spannendes Arbeitsgebiet ist. Eine wichtige Anwendung ist die Deformationsanalyse durch die InSAR-Methode: Die SAR-Interferometrie zeichnet sich vor allen anderen Techniken dadurch aus, dass sie bei geeignetem Gelände sehr großflächige Phänomene mit sehr hoher Informationsdichte abbilden kann. Allerdings liefert sie relative Messungen, so dass in der Regel eine Kombination mit Nivellement oder hochgenauen GPS-Messungen verwendet wird. Ihre Genauigkeit hängt neben der Qualität der Daten von der Wellenlänge ab und zeigt bei 3cm Wellenlänge meist nur wenige Millimeter je Jahr Standardabweichung. Damit können selbst sehr feine Bewegungen, wie z.B. die Hebung des Oberrheingrabens (ca. 2mm/y), nachgewiesen werden. Allerdings können wegen der Mehrdeutigkeit der Phase Bewegungen auch zu stark sein, um noch mit PSInSAR auswertbar zu sein. In diesem Fall können längere Wellenlängen, höhere zeitliche Abtastung oder Korrelationsverfahren helfen. Trotz der diskutierten Einschränkungen lässt sich die Deformationsanalyse mit InSAR in vielen Zusammenhängen nutzensreich einsetzen, denn auch die Ursachen für Deformationen der Erdoberfläche sind vielfältig. Neben geologischen und anderen natürlichen Phänomenen werden sie von Bergbau, Förderung von Wasser, Erdgas, Erdöl, durch Geothermiebohrungen, Tunnelbau oder andere Bautätigkeiten ausgelöst. Meist steht bei den Anwendungen die Einschätzung von Risiken im Fokus. Erdbeben, Vulkanismus, aber auch Schäden an kritischer Infrastruktur, wie Deichen, Staudämmen oder Kernkraftwerken können katastrophale Folgen haben. Ein weiteres wichtiges Thema ist die Entdeckung oder Beobachtung von Erdbewegungen, die sich potentiell zu einem Erdrutsch entwickeln könnten. Allein in den Alpen gibt es tausende Bergflanken, wo sich größere Bereiche in langsamer Bewegung befinden und in Leben oder Infrastruktur gefährdende Hangrutsche münden könnten. Auf Grund der zunehmenden Erderwärmung nimmt diese Bedrohung überall dort zu, wo Permafrost zu tauen beginnt, der bisher den Boden stabilisierte. InSAR wird bei der Erstellung von Risikokarten genutzt, die der Beurteilung der Gefährdungslage und der Entscheidung über Gegenmaßnahmen dienen. In vielen Regionen der Erde werden Deformationen der Erdoberfläche durch veränderte Grundwasserstände verursacht. Nimmt das Grundwasser ab, etwa wegen Entnahme zur Bewässerung oder industriellen Verwendung, so senkt sich die Erdoberfläche. Nimmt das Grundwasser während regenreicher Zeiten zu, so hebt sich die Erdoberfläche. Das Monitoring mit InSAR ist hier aus mehreren Gründen interessant. Bewegungen der Erdoberfläche können Schäden an Gebäuden oder anderen Strukturen verursachen (Bsp. Mexico City). Übermäßige Wasserentnahme kann zu irreversibler Verdichtung der wasserführenden Schichten führen, was Konsequenzen für die zukünftige Verfügbarkeit der lebenswichtigen Flüssigkeit hat. Bei Knappheit muss die Entnahme reguliert und überwacht werden (Bsp. Central Valley, Kalifornien). Von besonderer Bedeutung sind durch geologische Phänomene wie Vulkanismus oder tektonische Bewegungen verursachte Deformationen der Erdoberfläche. Die von SAR-Satelliten gewonnenen Daten werden zur Einschätzung von Risiken benutzt, auch wenn eine sichere, frühzeitige und zeitgenaue Vorhersage von Erdbeben oder Vulkanausbrüchen mit den heutigen Methoden nicht möglich ist. Sie sind aber die Grundlage für eine ausgedehnte Forschungsaktivität, die unser Verständnis der Vorgänge in der Erdkruste stetig wachsen lässt und immer genauere Vorhersagen erlaubt. Dies ist in erster Linie den SAR-Satelliten der ESA (ERS-1, ERS-2, Envisat und aktuell Sentinel-1A) zu verdanken, die seit 1991 mit lediglich einer Lücke von zwei Jahren (2012-2014) kontinuierlich die gesamte Erde aufnehmen. Die Idee dabei ist, dass so in festem zeitlichen Rhythmus (bei ERS alle 35 Tage) jeder Punkt der Erde aufgenommen wird. Dadurch ist ein großes Archiv entstanden, das es nach einem geologischen Ereignis ermöglicht, dieses mit den Methoden der SAR-Interferometrie zu untersuchen, da die Vorgeschichte verfügbar ist. Eine Entwicklung der letzten Jahre ist die Nutzung bei der Erschließung von Erdgas und Erdöl. Die mit InSAR sichtbar gemachten Deformationen erlauben es, neue Einsicht in die Struktur der Lagerstätten zu erhalten, geomechanische Modelle zu kalibrieren und letztlich die Rohstoffe Dank optimierter Positionierung von Bohrlöchern effektiver und kostengünstiger zu fördern. Wer InSAR noch besser verstehen will, der findet in den InSAR Guidlines der ESA die Grundlagen sehr gut erklärt. Einen etwas breiteren Überblick über Anwendungsmöglichkeiten kann man sich auf der Homepage von TRE verschaffen, einem Unternehmen, das von den Schöpfern von PSInSAR gegründet wurde und im Bereich InSAR-Auswertungen nach wie vor führend ist. Die Wettbewerber ADS und e-GEOS bieten außer InSAR weitere Anwendungen von SAR-Daten. Aus wissenschaftlich/politischer Perspektive kann man sich in der Broschüre der DLR über Themenfelder der Erdbeobachtung informieren. Zu dem speziellen Thema der Erdbewegung auf Grund Absenkung des Grundwasserspiegels in den USA gibt es weitere Informationen. Literatur und weiterführende Informationen A. Ferretti, A. Monti-Guarnieri, C. Prati, F. Rocca, D. Massonnet: InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, TM-19, ESA Publications, 2007. M. Fleischmann, D. Gonzalez (eds): Erdbeobachtung – Unseren Planeten erkunden, vermessen und verstehen, Deutsches Zentrum für Luft- und Raumfahrt e.V., 2013. Land Subsidence, U.S. Geological Survey. M. Even, A. Schunert, K. Schulz, U. Soergel: Atmospheric phase screen-estimation for PSInSAR applied to TerraSAR-X high resolution spotlight-data, Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 2010. M. Even, A. Schunert, K. Schulz, U. Soergel: Variograms for atmospheric phase screen estimation from TerraSAR-X high resolution spotlight data, SPIE Proceedings Vol. 7829, SAR Image Analysis, Modeling, and Techniques X, 2010. M. Even: Advanced InSAR processing in the footsteps of SqueeSAR Podcast: Raumzeit RZ037: TanDEM-X Podcast: Modellansatz Modell010: Positionsbestimmung Podcast: Modellansatz Modell012: Erdbeben und Optimale Versuchsplanung Podcast: Modellansatz Modell015: Lawinen

united states man fall er situation leben thema position phase ps geschichte arbeit dabei gef rolle blick definition zeiten grund sand bei idee diese entwicklung fokus dazu hilfe pi damit einblick ideen einen bedeutung region qualit unternehmen bild beziehung entscheidung signal dank mexico city neben wasser verst gonzalez analyse esa punkt schritte aufgabe modeling perspektive luft interpretation trotz unterschiede grad bewegung zum erde daten meter punkte wissenschaft methoden umst hinter positions kern signals allerdings regel homepage pixel schatten auswahl grundlage geb szene konsequenzen mittel risiken allein struktur vielfalt entstehung einsch die geschichte strukturen grenze ursachen ds bahn umgebung grundlagen linie bereiche paar abstand atmosph kombination literatur nutzung zweck schnee dadurch gel aufgrund vieles techniken einschr zusammenh orten anwendung anteil ereignis aufl sar stellt anzahl tm schulz vorg verfahren pixels bew returns infrastruktur regionen flugzeug zweite wellen fortschritte modelle kalifornien bedrohung die idee verwendung rhythmus betrachtung variation entdeckung aufnahmen meist erfindung positionierung alpen meilenstein signale sensor bestimmung sensors optimierung bewegungen volumen nimmt daneben summe anwendungen dritte central valley resultat erstellung magnitude beobachtung algorithmen verz erdbeben verteilung ausnahmen anteile auswertung baut gebieten einsicht seither visualisierung abschnitt komponente erd endeavour gegebenheiten raumfahrt terme landers schichten vorhersagen umstand paaren breite kanten betrag annahmen korrektur knoten beurteilung vorgeschichte rocca dlr ers permafrost eventuell sensoren erderw laufzeit geosciences erdgas konstellationen vegetation vorhersage satelliten fahrzeugen brosch bsp betrachtet stapel objekten mathematiker geological survey gewinnung millimeter schienen anwendungsm schwarz wei schlitten wellenl gegenma grundwasser bildes messungen deckung bergbau zeitr arbeitsgruppe mehrzahl fleischmann erzeugung erschlie diese f fraunhofer institut datens im zusammenhang themenfelder tageszeit ferretti zusammenfassend rumpf pfosten prati sensorik spektrums erdoberfl weitere fragen deformation erdrutsch vorzug vulkanausbr geos staud verdichtung streuung entnahme wasserdampf eine entwicklung erdbebens graphen bauwerken kernkraftwerken detektion reflektoren space shuttle endeavour wetterverh der ausgangspunkt filterung mehrdeutigkeit zentimetern lagerst ettlingen messstationen zeitabst mathematisch erdbeobachtung bohrl erdkruste vulkanismus insar signalverarbeitung grundideen informationsdichte wavelet prozessierung landmasse fernerkundung mojave w forschungsaktivit systemtechnik arbeitsgebiet vielfache hebung numerik envisat separierung deformationen sichtlinie formationsflug interferometrie gleichungssysteme abtastung fokusierung terrasar x
Don't Panic Geocast
Episode 15 - "If it didn't, that seismometer probably wasn't working" The Nepal Earthquake

Don't Panic Geocast

Play Episode Listen Later May 1, 2015 42:46


This week we are joined by a guest co-host in Shannon’s absence. Matt Herman talks to us about the recent earthquake in Nepal. We had to record in an empty classroom, so sorry about the audio quality. We’ll be back to our normal location and setup next week! Earthquake USGS Event Page Plate Map PAGER Report John’s Ground Motion Movie Everest Avalanche Movie Matt uses INSAR and GPS to look at static displacements. USArray Ground Motion Visualizations Coulomb Stress Geologic Cross-section Rayleigh-Benard Convection Fun Paper Friday This week we read about a mysterious mist above your coffee and tea. This is a great reason to film your coffee cup! Umeki, T., Ohata, M., Nakanishi, H., & Ichikawa, M. (2015, January 2). Dynamics of microdroplets over the surface of hot water. arXiv.org. http://doi.org/10.1038/srep08046 Contact us: Show - www.dontpanicgeocast.com - @dontpanicgeo - show@dontpanicgeocast.com John Leeman - www.johnrleeman.com - @geo_leeman Shannon Dulin - @ShannonDulin

EAGE E-Lecture Series
EAGE E-lecture: Satellite InSAR Data by Alessandro Ferretti

EAGE E-Lecture Series

Play Episode Listen Later Sep 11, 2014 19:57


Satellite radar data for surface deformation monitoring are gaining increasing attention. They provide a powerful tool for remotely measuring small surface displacements that can be applied successfully to many different applications, spanning from sinkhole detection to reservoir optimization. This course provides a step-by-step introduction to satellite radar sensors, SAR imagery, SAR interferometry and advanced InSAR techniques. Rather than a tutorial for remote sensing specialists, the course starts from very basic concepts and explain in plain language the most important ideas related to SAR data processing and why geoscientists and engineers should take a vested interest in this new information source.

Alberta Geological Survey Geology Podcasts
Satellite-Based Mapping of Landslide Movements on Little Smoky River

Alberta Geological Survey Geology Podcasts

Play Episode Listen Later Sep 30, 2008 7:06


Since 2005, the Geological Hazards Section at AGS has used new remote-sensing technologies to detect and map movements associated with ground hazards in Alberta. Once promising technology is Interferometric Synthetic Aperture Radar (InSAR). This article is some of the results of that testing.

Alberta Geological Survey Geology Podcasts
Satellite-Based Mapping of Landslide Movements on Little Smoky River

Alberta Geological Survey Geology Podcasts

Play Episode Listen Later Sep 30, 2008 7:06


Since 2005, the Geological Hazards Section at AGS has used new remote-sensing technologies to detect and map movements associated with ground hazards in Alberta. Once promising technology is Interferometric Synthetic Aperture Radar (InSAR). This article is some of the results of that testing.