POPULARITY
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
In den zellulären Stoffwechsel- und Signalnetzwerken existiert eine Vielzahl von logischen Abhängigkeiten, die auf Prozesse auf molekularer Ebene zurückzuführen sind. So lässt sich beispielsweise die Effizienz einer biochemischen Reaktion über Enzyme regulieren, deren Aktivitätsgrad von äußeren Parametern abhängt. Kraft stellt eine dieser Einflussgrößen dar. Diese Arbeit befasst sich damit, das Verhalten mehrerer, logisch verknüpfter, molekularer Domänen unter Krafteinwirkung zu studieren und sich deren Eigenschaften für nanotechnologische Verfahren zu Nutze zu machen. Neben der Untersuchung von in der Natur vorkommenden Proteinen mit multiplen Domänen wurden artifizielle DNA- und proteinbasierte Systeme mit verschiedener Bindungsstärke konstruiert. Dies ermöglicht den gerichteten Transport einzelner, molekularer Bausteine mit der Präzision eines Rasterkraftmikroskopes im Nanometer-Bereich. Mithilfe dieser Single-Molecule Cut-and-Paste (SMCP) Technik können auf der Basis gerichteter, molekularer Erkennung räumliche Arrangements funktioneller Bausteine geschaffen werden. Diese lassen sich mittels Fluoreszenzmikroskopie als isoliertes System betrachten. Die Zielsetzung bei der Untersuchung der natürlichen Systeme war es, deren Abhängigkeiten zu verstehen und herauszufinden, wie sich diese mit ihrer Funktion und den an das Protein gestellten Umgebungsbedingungen in Einklang bringen lassen. Die dabei gewonnene Erkenntnis liefert nicht nur wichtige Beiträge zur biologischen und medizinischen Grundlagenforschung, sondern kann, wie am Beispiel der SMCP-Technik ersichtlich, auch hilfreich bei der Entwicklung neuartiger Messmethoden der molekularen Bio- und Nanotechnologie sein. Mittels Einzelmolekülkraftspektroskopie im „Konstante-Kraft“ (engl. Force-Clamp) Modus wurde die Kooperativität der fünf Proteindomänen des Enzyms Titinkinase untersucht. Dieses Muskelprotein wandelt in der Skelett- und Herzmuskulatur mechanische in biochemische Signale um und regelt dadurch den Umsatz weiterer Proteine und die Expression von Genen. Es wird gezeigt, dass sich die einzelnen mechanisch induzierten Entfaltungsschritte gegenseitig bedingen und dass dies inhärent durch die molekulare Faltung des Proteins vorgegeben wird. Da Kraft zum natürlichen Parameterraum dieses Moleküls gehört, muss seine Struktur an kraftinduzierte konformationelle Änderungen angepasst sein. Durch die Abhängigkeit der Energiebarrieren während der Entfaltung wird gewährleistet, dass stabilisierende und enzymatisch wirksame Domänen nicht vor regulatorischen Domänen entfalten. Myosin-Light-Chain Kinase (MLCK) ist ein weiteres Muskelenzym, bei dem es Hinweise auf eine mechanische Aktivierbarkeit gibt. Einzelmolekülexperimente dieser Dissertation zeigen, dass die Entfaltung der Kinase ebenfalls in mehreren Schritten vonstatten geht und dass einer der Zwischenzustände durch ATP-Bindung stabilisiert wird. Die absoluten Entfaltungskräfte liegen dabei unter denen der Titinkinase, was der Hypothese der mechanischen Aktivierbarkeit entgegenkommt. Als weiteres System wurde das Cellulosom des thermophilen Bakteriums Clostridium Thermocellum auf seine mechanische Stabilität überprüft. Cellulosome sind an der Außenseite von Bakterien und Pilzen verankerte Proteinkomplexe, die in der Lage sind Lignozellulose zu zersetzen. Bei der Prozessierung der Cellulose können im Cellulosom hohe Scherkräfte auftreten, da dieses das gesamte Bakterium mit dem makromolekularen Substrat verknüpft. Mittels AFM-basierter Kraftspektroskopie wurde die Wirkung von Kraft auf einen Verbund verschiedener Konstituenten eines Cellulosoms untersucht. Es wird gezeigt, dass sich der Komplex im Vergleich zu anderen Biomolekülen durch eine extrem hohe mechanische Stabilität auszeichnet. Innerhalb der hohen Entfaltungskräfte besteht eine Hierarchie für die verschiedenen Komponenten. Bei vergleichsweise niedrigen Kräften entfalten die enzymatischen Domänen gefolgt von mittleren Kräften für das Entkoppeln der Enzyme mit dem Bindungspartner Cohesin. Sehr hohen Kräften halten die intramolekularen Wechselwirkungen der Cohesine und der Cellulose bindenden Domänen stand. Die Abstufung hoher Stabilitäten stellt eine sehr gute Anpassung an die natürlichen Anforderungen des Proteinkomplexes dar. Für die durchgeführten Messungen wurde ein modulares Kraftmikroskop (AFM) entwickelt, das sich mit einem einzelmolekülsensitiven Fluoreszenzmikroskop kombinieren lässt. Die spezielle Konstruktion weist eine extrem hohe mechanische Stabilität auf. Mittels einer photothermischen Regelung kann das AFM darüber hinaus für sensitive Bildgebung weicher molekularer Oberflächen oder in einen extrem schnellen kraftspektroskopischen Messmodus mit konstanter Zugkraft verwendet werden. Die akkurate Arbeitsweise des Systems wurde in einem internationalen Vergleichsversuch bestätigt.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 04/05
Genregulation gibt der Zelle die Kontrolle über Struktur und Funktion, und ist die Basis für zelluläre Differenzierung, Morphogenese und die Vielseitigkeit und Anpassungsfähigkeit von jedem Organismus. Um zu begreifen, wie eine Zelle ihre Funktion organisiert und wie sich ganz individuelle Organismen ausbilden, obwohl die gleichen genetischen Informationen vorhanden sind, muss man die Regulation der Genexpression im Detail verstehen. Diese Regulation wirkt an verschiedenen Stellen der Genexpression und besteht aus einer Vielzahl von komplexen Prozessen, die untereinander verbunden sind. Somit ist das Verständnis der zugrundeliegenden molekularen Mechanismen und ihres Zusammenspiels für Biologie und Biophysik von großer Bedeutung. Ziel dieser Arbeit ist die Untersuchung von Wechselwirkungen und Wechselwirkungskräften zwischen Biomolekülen, die an der Genregulation und der Epigenetik, auf der Ebene der Transkription beteiligt sind. Insbesondere konnten Protein-DNA-Wechselwirkungen und der Einfluss epigenetischer DNA-Modifikationen quantifiziert werden. Für die Messungen wurde ein molekularer Kraftsensor und als dessen Erweiterung ein molekularer Analog-Digital-Wandler entwickelt. Diese molekularen Sensoren ermöglichen die direkte Messung der Wechsel- wirkungskräfte zwischen DNA und Liganden. Mit dem molekularen Kraftsensor können außerdem hochparallel Messungen durchgeführt werden, wobei durch den symmetrischen, molekularen Aufbau zudem eine sehr hohe Sensitivität erreicht wird. Die Verwendung dieser Methode ermöglichte es, den Einfluss der epigenetisch modifizierten Basen Methylcytosin und Hydroxymethylcytosin („5. und 6. Base der DNA“) auf die mechanische Stabilität der DNA- Doppelhelix zu untersuchen. Es wird gezeigt, dass mit dem aus DNA-Oligomeren aufgebauten molekularen Kraftsensor Protein-DNA-Wechselwirkungen detektiert und deren Dissoziationskonstanten bestimmt werden können. Unter anderem wird die Wechselwirkung der Endonuklease EcoRI mit ihrer DNA- Erkennungssequenz quantifiziert. Hierfür wurden molekulare Kraftsensoren in Zipper- und Scher-Geometrie entworfen. Bei dem neu entwickelten Aufbau des Kraftsensors mit integriertem Förster-Resonanzenergietransfer-Farbstoffpaar genügt schon eine Fläche von 25 !m2, um die Stärke von Ligand-DNA-Wechselwirkungen bestimmen zu können. Diese Fläche liegt deutlich unterhalb der Messfleckgröße aktueller DNA-Mikroarrays. Damit erfüllt der molekulare Kraftsensor bezüglich der Messfleckdichte die Voraussetzung für moderne Hochdurchsatz- Methoden. In einem zweiten Schritt wird der molekulare Kraftsensor zu einem „molekularen Analog- Digital-Wandler“ erweitert. In Analogie zum elektronischen Flash-Analog-Digital-Wandler, bei dem mehrere Komparatoren mit unterschiedlichen Referenzschaltungen parallel geschaltet sind, werden beim molekularen Analog-Digital-Wandler parallel räumlich getrennte, molekulare Kraftsensoren mit unterschiedlich stabilen Referenz-Wechselwirkungen zur Bestimmung einer unbekannten molekularen Wechselwirkung verwendet. Durch eine Kompensationsmessung wird dann die Kraft von Ligand-DNA-Wechselwirkungen bestimmt. Es werden die Wechsel- wirkungen eines Pyrrol-Imidazol Hairpin-Polyamides, der Endonuklease EcoRI und des Transkriptionsfaktors p53 zur jeweiligen DNA-Erkennungssequenz vermessen. Eine hoch- parallele Version mit Messfleckgrößen mit einem Durchmesser von minimal 15 !m konnte realisiert werden. Abgeleitet vom Bell-Evans-Modell wurde ein analytisches Modell zur Beschreibung des molekularen Analog-Digital-Wandlers entwickelt. Neben den Protein-DNA-Wechselwirkungen werden die epigenetisch modifizierten DNA- Basen Methylcytosin (mC) und Hydroxymethylcytosin (hmC) untersucht. Es wird der Nachweis erbracht, dass sich die mechanische Stabilität der DNA-Doppelhelix bei Separation in zwei Einzelstränge in beiden Fällen signifikant um mehrere Pikonewton ändert. Die Stärke des Effekts ist abhängig von der DNA-Sequenz und der Richtung der angelegten Kraft. Durch Einzelmolekül-Kraftspektroskopie wird eine Reduzierung der Potentialweite durch mC aufgezeigt. Außerdem konnte mit Hilfe von Molekulardynamik-Simulationen der Effekt für mC und teilweise auch für hmC auf molekularer Ebene aufgeklärt werden. Es wird ein Modell entwickelt, das erklärt, wie dieser Effekt einen Einfluss auf die Genregulation ausüben kann.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Fri, 20 Jun 2008 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/8678/ https://edoc.ub.uni-muenchen.de/8678/1/Lugmaier_Robert_A.pdf Lugmaier, Robert Andreas ddc:500, ddc:530, Fakultät für
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Die Adhäsion von Polymeren an festen Oberflächen ist von großem wissenschaftlichen Interesse. Ebenso bedeutend ist die Polymerhaftung aber auch für eine Vielzahl industrieller Anwendungen. Bei Klebungen beispielsweise kommt der Adhäsion von Polymeren, die zwei Oberflächen überbrücken, besonderes Interesse zu. Die außergewöhnlichen Materialeigenschaften von Biomineralien und damit verbunden ihre Bedeutung für die Entwicklung zukünftiger Werkstoffe basieren auf der Wechselwirkung von Biopolymeren mit Mineraloberflächen. Eine gezielte Materialentwicklung mit vorhersagbaren Hafteigenschaften ist derzeit jedoch wegen des eingeschränkten Wissens über die zugrundeliegenden molekularen Mechanismen und Wechselwirkungen der Polymeradsorption noch nicht in zufriedenstellender Weise möglich. AFM-basierte Kraftspektroskopie ermöglicht die Untersuchung von Konformationen und Wechselwirkungen von Makromolekülen sowie die hochpräzise Bestimmung inter- und intramolekularer Kräfte. Desorptionsmessungen an einzelnen oberflächenadsorbierten Polyelektrolytketten können dabei zu einem besseren Verständnis der molekularen Wechselwirkungen beitragen. Sie ermöglichen die hochpräzise Quantifizierung der Wechselwirkungskraft zwischen Polymer und Oberfläche. Darüber hinaus bietet eine gesteuerte Veränderung der experimentellen Bedingungen und damit der Desorptionskraft Einsichten in die unterschiedlichen Wechselwirkungen. Im Fall oberflächenüberbrückender Polymere adsorbiert die Polymerkette auf zwei Oberflächen, die sozusagen in Konkurrenz zueinander stehen, so dass kompetitive Aspekte der Adhäsion eine wichtige Rolle spielen können. Im Rahmen dieser Arbeit konnte mit AFM-Desorptionsmessungen erfolgreich veranschaulicht werden, dass die Adhäsionseigenschaften beider Oberflächen berücksichtigt werden müssen. Daraus ergibt sich zum Beispiel eine Abhängigkeit der Länge des überbrückenden Polymersegments von der Dichte der Moleküle auf der Oberfläche, da benachbarte Moleküle die Wechselwirkung des Polymers mit der Oberfläche örtlich einschränken können. Intra- und intermolekulare Wechselwirkungen können zudem zu einem konturlängenabhängigen Dissoziationsverhalten des Polymers führen, das in Unterschieden der gemessenen Desorptionskraft resultiert. Bei Biomineralien mangelt es an Wissen über die Struktur der häufig sauren Makromoleküle und die komplexen Wechselwirkungen mit den Mineraloberflächen. An einem Modellsystem aus Polyglutaminsäure und Calcit konnte gezeigt werden, dass mit AFM-Desorptionsmessungen dieses molekulare Zusammenspiel von Wechselwirkungen auf der Basis von Wechselwirkungskräften sehr detailliert untersucht werden kann. Dies ist notwendig, da geringe Veränderungen auf der molekularen Skala große Effekte auf der makroskopischen Skala hervorrufen können. Es stellte sich außerdem heraus, dass Hochenergiekristallflächen von Calcit in guten Lösungsmitteln ohne stabilisierende Polymeradditive nicht existieren können, sondern sich in die stabile Calcit (104)-Fläche umwandeln.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Mon, 3 Apr 2006 12:00:00 +0100 https://edoc.ub.uni-muenchen.de/5211/ https://edoc.ub.uni-muenchen.de/5211/1/Kessler_Max.pdf Kessler, Max ddc:500, ddc:530, Fakultät für Physik
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Biologische molekulare Maschinen erfüllen in der Natur zentrale Aufgaben und erstrecken sich über alle Bereiche des Lebens. Ihren Aufbau und ihre Funktionsweise im Detail zu untersuchen und zu verstehen, ist ein großes Feld der aktuellen Forschung. Inspiriert durch die biologischen molekularen Maschinen wurde in den letzten Jahren versucht, künstliche molekulare Maschinen aufzubauen. Einer dieser Ansätze verwendet ein photoaktives Polymer, das durch das Bestrahlen mit Licht unterschiedlicher Wellenlänge kontrahiert oder relaxiert werden kann. Wird dieses photoaktive Polymer an ein Kraftspektroskop gekoppelt und über Totale Interne Reflexion (TIR) angeregt, so lässt sich damit eine künstliche molekulare Maschine realisieren, die aus einem einzelnen Polymer besteht. Bestandteil dieses photoaktiven Polymers sind Azobenzoleinheiten, die reversibel zwischen der cis- und der trans-Konformation geschaltet werden können. Dadurch wird das Polymer (Azobenzolpolypeptid) kontrahiert oder relaxiert und kann Arbeit an der Cantileverspitze des Kraftspektroskops verrichten. Ein Ziel dieser Arbeit war es, ein detailliertes Verständnis dieser künstlichen molekularen Maschine zu erlangen. Dazu wurde zuerst das Schalten der Azobenzoleinheiten im Polymer bei niedriger Kraft demonstriert. Anschließend wurde eine externe Kraft angelegt und beobachtet, dass sich das Schaltverhalten erst bei sehr hohen Kräften verändert. Das zweite Ziel war die Entwicklung eines theoretischen Modells, zur Beschreibung der Kraft-Abstandskurve des Azobenzolpolypeptid über den gesamten Kraftbereich. Dazu wurden ab-initio quantenmechanische Rechnungen für das Azobenzol durchgeführt und mit dem Modell der „Frei-Rotierenden-Kette“ kombiniert. Dieses Modell hat den Vorteil, dass es mit der Segmentlänge und der Anzahl der Monomere als Fittparameter auskommt. Es ist nun möglich die Kraft-Abstandskurven des Azobenzolpolypeptid direkt durch die Anzahl der Azobenzoleinheiten in der trans- und in der cis-Konformation über den ganzen Kraftbereich (0 bis 1000pN) zu beschreiben. Das Schaltverhalten des Polymers wird damit durch das Verhältnis der Anteile im cis- bzw. trans-Zustand ausgedrückt. Ein weiterer Schwerpunkt dieser Arbeit war die Untersuchung eines Rezeptor-Ligand-Systems. Am Beispiel des anti-Digoxigenin Antikörpers gegen Digoxigenin wurden Experimente über einen großen Bereich von Kraftladungsraten durchgeführt. Dadurch zeigte sich, dass die bisherige Analysemethode nur grobe Einblicke in die Energielandschaft der Rezeptor-Ligand-Wechselwirkung zulässt. Es konnte beispielsweise eine natürliche Dissoziationsrate von koff=0.015s-1 aus den kraftspektroskopischen Experimenten bestimmt werden, die mit Messungen an Fv-Fragmenten am Ensemble gut übereinstimmen (koff=0.023s-1). Aussagen bezüglich der Energielandschaft gestalteten sich schwieriger. Zuerst wurde das Maximum der Krafthistogramme als Funktion der Maxima der Ladungsratenhistogramme in einem Diagramm dargestellt. Dieses Diagramm wurde nach der Methode von Evans ausgewertet. Daraus ergab sich für den niedrigen Ladungsratenbereich die obige Dissoziationsrate von koff=0.015s-1 und eine Potentialweite von Dx=1.15nm. Für den hohen Ladungsratenbereich ergab sich eine Dissoziationsrate von koff=4.56s-1 und eine Potentialweite von Dx=0.35nm. Mit diesen Werten wurde nun versucht, die einzelnen Krafthistogramme für alle Ladungsraten zu fitten. Es hatte sich gezeigt, dass es bei niedrigen und bei hohen Ladungsraten eine Übereinstimmung zwischen dem gemessenen Krafthistogramm und der berechneten Wahrscheinlichkeitsverteilung gab. Allerdings konnte bei sehr hohen Ladungsraten und in dem Übergansbereich zwischen den beiden Bereichen keine Übereinstimmung erzielt werden. Daher sind Aussagen über die Energielandschaft nur beschränkt möglich. Um eine vollständige Auswertung der experimentellen Daten zu erreichen, werden weitere Entwicklungen bezüglich des theoretischen Modells nötig sein. Ein Ansatz besteht darin, ein mögliches Potential anzunehmen und darauf die Theorie von Kramers anwenden. Das Ergebnis wäre dann eine kraftabhängige Dissoziationskonstante koff für ein spezielles Potential. Des Weiteren wurde in dieser Arbeit ein Mehrkanal-Oberflächen-Plasmonen-Resonanz (SPR)-Spektrometer aufgebaut und charakterisiert.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 02/05
Die Kraftspektroskopie hat sich als eine moderne Methode zur Untersuchung der Elastizität und Entfaltung einzelner Proteine etabliert. Kraftspektroskopische Experimente zeichnen sich unter anderem dadurch aus, dass die Entfaltungskinetik einzelner Proteine bestimmt werden kann. In dieser Arbeit wurde die Kraftspektroskopie zur Analyse der Elastizität und der Entfaltungskinetik einzelner Zytoskelett-Proteine verwendet. Die untersuchten Moleküle, die Superhelix-Struktur des Myosin Schwanzes und das Aktin-bindende Protein Filamin (ddFLN) repräsentieren dabei zwei wichtige Strukturmotive der Proteinfaltung. Die Messungen wurden mit dem Ziel durchgeführt, ein detailliertes Verständnis hinsichtlich des Zusammenhangs zwischen der Struktur der Proteine und deren mechanischen Eigenschaften zu gewinnen. Der Anwendungsbereich der Methode konnte mit Hilfe eines neu entwickelten Messprotokolls erweitert werden. So wurde in Rückfaltungsexperimenten neben der Entfaltungskinetik auch die Rückfaltungskinetik einzelner Proteine bestimmt. Die kraftspektroskopische Untersuchung des Schwanzes des Muskelmotor-Proteins Myosin II zeigte, dass das Molekül über elastische Dehnungseigenschaften verfügt. Die Superhelix-Struktur des Schwanzes weist ein charakteristisches Kraftdehnungsverhalten auf, das bei Dehnung und Entspannung des Moleküls reversibel ist. Das Kraftdehnungsverhalten der Superhelix konnte erfolgreich durch ein Zwei-Zustands-Modell analytisch beschrieben werden. Das Modell beruht auf der Annahme, dass einzelne Segmente der Helix entweder einen gefalteten oder entfalteten Zustand einnehmen. Ferner liegt dem Modell zugrunde, dass ein thermodynamisches Gleichgewicht beim Übergang zwischen den Zuständen besteht. In den Experimenten mit dem Aktin-bindenden Protein ddFLN wurden die Entfaltungskräfte der Immunoglobulindomänen sowie die mechanische Stabilität der Dimerbindung des inelastischen Moleküls bestimmt. Es zeigte sich, dass die Dimerbindung im Vergleich zu den benachbarten Domänen von ddFLN über eine größere mechanische Stabilität verfügt. Experimente mit verschiedenen Konstrukten des Moleküls zeigten außerdem, dass die Entfaltung einer der ddFLN-Domänen, nämlich Domäne 4 (ddFLN4), über einen stabilen Zwischenzustand erfolgt. Auf Basis der NMR-Struktur und der kraftspektroskopischen Daten verschiedener Mutationen von ddFLN4 wurde eine Analyse der Primärstruktur dieses Zwischenzustandes vorgenommen. Demnach entfalten im ersten Entfaltungsschritt 50 Aminosäuren, währenddessen die restlichen 50 Aminosäuren von ddFLN4 den stabilen Zwischenzustand bilden. Wiederholtes Dehnen und Entspannen von ddFLN ergab, dass es sich bei dem Entfaltungszwischenzustand von ddFLN4 ebenfalls um einen Faltungszwischenzustand handelt. Die Analyse der Rückfaltungsereignisse führte zu dem Ergebnis, dass die Rückfaltung von ddFLN4 nur durch ein kinetisches Drei-Zustands-Modell mit einem obligaten Zwischenzustand beschrieben werden kann. Der Zwischenzustand stellt also einen „on-pathway“ Zwischenzustand dar, der von ddFLN4 zuerst eingenommen wird, bevor die Domäne in ihre native Struktur übergeht. Die quantitative Bestimmung der Faltungskinetik von ddFLN4 erfolgte durch Anpassung des Modells an die Daten. Der Vergleich der Faltungskinetik von ddFLN4 und allen anderen Domänen von ddFLN führte zu dem Ergebnis, dass ddFLN4 mit Zwischenzustand eine ca. 10fach schnellere Faltung aufweist, obwohl alle Domänen eine homologe Struktur besitzen. Domäne ddFLN4 stellt demnach ein Beispiel dar, inwiefern ein Faltungszwischenzustand zu einer substantiellen Beschleunigung der Faltung führen kann.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
Das Kraftmikroskop hat sich in vieler Hinsicht als effizientes Gerät für Untersuchungen und Manipulationen auf molekularer Ebene erwiesen. Dabei wird selbst unter physiologischen Bedingungen eine Auflösung erreicht, die Proteinsubstrukturen erkennen läßt. Als Kraftspektroskop kann es mechanische Eigenschaften wie Dehnungsverhalten und Reißfestigkeit einzelner Moleküle, die zwischen der Sensorfeder und der Unterlage eingespannt werden, untersuchen. Sogar die Bindungskräfte zwischen einem Molekül am Kraftsensor und einem anderen am Substrat können mittels Kraftspektroskopie mit etwa 3 pN Genauigkeit ermittelt werden. Von besonderem Interesse solcher Untersuchungen sind Moleküle mit spezifischer Affinität nach dem Schlüssel-Schloß-Prinzip, wie Rezeptor-Ligand- Systeme und Adhäsionsmoleküle. Bisher waren hauptsächlich wasserlösliche Moleküle solchen Messungen zugänglich. Bindungen zwischen amphiphilen Proteinen oder Membranproteinen zu messen, die durch hydrophobe Wechselwirkungen in der Membran verankert sind, erfordert neue Konzepte. Diesen Molekülen gilt das Augenmerk dieser Arbeit. Da die Verankerung in sogenanten „supported bi-layern“ und Vesikeln nicht immer zum gewünschten Erfolg führt, wird hier eine ungewöhnliche, aber sehr natürliche Alternative vorgestellt: Das Adhäsionsmolekül wird nicht aufwendig isoliert und der Meßmethode zugänglich gemacht, sondern bleibt in seiner natürlichen Umgebung, der Zelle, wohingegen die Methode angepasst wird. Dies ist durch die Befestigung einer Zelle am Kraftsensor eines Kraftspektroskopes geglückt und es gelang damit erstmals die Adhäsionskraft eines einzelnen Adhäsionsmoleküls in einer lebenden Zelle zu messen. So einfach diese Methode beschrieben ist, so viele Unwägbarkeiten treten dabei durch die hohe Komplexität der Zelle und der Zelloberfläche im Besonderen auf. Daher wird einleitend eine grobe Einführung in die Funktionen und den Aufbau einer Zelle und die üblichen Meßmethoden im Bereich der Zelladhäsionsmessung vorgestellt. Die Beschreibung der Meßmethode und der Umrüstung des Kraftmikroskopes zum Zelladhäsionskraftspektroskop sind durch technische Details im Anhang vervollständigt. Etwas aufwendig ist die Zusammenstellung der Daten, Theorien und Annahmen zum Aufbau eines semi-empirischen Modells zur Beschreibung der Adhäsionskraftmeßkurven beim Trennen adhärierender Zellen, auf der Basis vieler unabhängiger Einzelmolekülbindungen. Mit dem Zelladhäsionkraftspektroskop wurden dafür die Youngs-Moduli und die viskoelastischen Kelvin-Modell-Parameter verschiedener Zellen in dem eigens entwickelten „visko-elastic-response-mode“ vermessen. Ebenso wurden die Einflüsse der Zellkontaktkraft und der Kontaktzeit, sowie der Zuggeschwindigkeit auf die Zelladhäsionsantwort studiert und in Formeln gefaßt. Das Modell simuliert diese Meßdaten in guter Übereinstimmung und gibt dadurch einen Einblick in die physikalischen Randbedingungen für das einzelne Adhäsionsmolekül während solcher Experimente unter Berücksichtigung des zelltypischen Phänomens der Tetherbildung. Insbesondere kann damit die Bindungsdichte bei Adhäsionen auf verschiedenen Oberflächen berechnet werden. Demnach schließt eine Epithelzelle etwa vier Bindungen pro Quadratmikrometer mit einer Glasoberfläche, zwei mit einer anderen Epithelzelle und nur 0,8 mit einer passivierten Oberfläche. Mit kraftspektroskopischen Messungen der Adhäsionskräfte bei der Einnistung eines Trophoblasten in die Gebärmutter an einem naturnahen Laborsystem kann eine andersartige - mit dem Modell unabhängiger Bindungen nicht beschreibbare - Wechselwirkung identifiziert werden. Die Meßergebnisse deuten auf einen kooperativen Prozeß der molekularen Adhäsionsinselbildung hin. Kontrollmessungen an funktionalisierten Oberflächen erhärten diese Hypothese. Mit ersten Ergebnissen von Adhäsionsmessungen zwischen Knochenzellen und potentiellen Implantatoberflächen wird neben dem Einfluß der Oberflächenbeschaffenheit auch der des Meßmediums nachweisbar, wodurch die Generalität dieser Methode verdeutlicht wird. Im letzten Kapitel über die Interaktionen einzelner Zellen wird anhand der induzierten Lektinwechselwirkung zwischen roten Blutkörperchen die prinzipielle Möglichkeit der Zelladhäsionskraftspektroskopie Einzelmolekülereignisse zu vermessen nachgewiesen. Die dafür nötigen geringsten Kontaktkräfte von unter 40 pN, konnten durch extrem weiche Kraftsensoren (
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In dieser Arbeit wurde die in den letzten Jahren entwickelte Technik der auf dem Kraftmikroskop basierenden Einzelmolekül-Kraftspektroskopie auf zwei spezielle Systeme angewendet: Poly(ethylen Glycol) (PEG) und das Membranprotein Bakteriorhodopsin. Im Vordergrund stand dabei die Analyse der mechanischen Stabilität von Sekundärstrukturen. PEG ist aufgrund seiner ungewöhnlich hohen Wasserlöslichkeit eines der wichtigsten Polymere mit einer Vielzahl von technischen Anwendungen. Es wurden Messungen zur Elastizität einzelner PEG in Abhängigkeit des Lösungsmittels durchgeführt. Mit diesen Messungen konnte der genaue molekulare Mechanismus nachvollzogen werden, der zu der hohen Wasserlöslichkeit führt. Zudem konnte gezeigt werden, wie mit einem einfachen Modell neben Konformationsänderungen auch Konformationsenergien des Polymers quantitativ bestimmt werden können. Die Kraftspektroskopie als Instrument zur Untersuchung von mechanisch induzierten Strukturänderungen, z.B. der Proteinentfaltung, wurde bisher immer nur auf polymere Strukturen angewendet. Ziel der Messungen an Bakteriorhodopsin war es zu zeigen, dass sich diese Technik auch auf Moleküle anwenden lässt, die nicht aus sich wiederholenden Einheiten aufgebaut sind. Es konnte der genaue Entfaltungsweg von Bakteriorhodopsin mit all seinen stabilen Zwischenstrukturen bestimmt werden. Mechanismen der Stabilisierung wie die Nachbarschaft von Helices, hydrophobe Wechselwirkung und der Einfluss räumlicher Einschränkung konnten dabei in ihren Auswirkungen auf die Stabilität der Proteinstruktur beobachtet werden.
Fakultät für Physik - Digitale Hochschulschriften der LMU - Teil 01/05
In dieser Arbeit werden Anwendungen der Kraftspektroskopie zur Erforschung und Anwendung von nicht-kovalenten biologischen Bindungen vorgestellt. Analysiert wurde die Bindungsstärke einzelner Rezeptor-Ligand Bindungen und die Wechselwirkung von Zellmonolayern. Als Anwendung der molekularen Erkennung wird die Lokalisation von Zellen auf Grund ihrer spezifischen Wechselwirkung vorgestellt. Durch den Vergleich der Bindungskräfte mehrerer Rezeptoren zu einem Liganden lassen sich Aussagen über die biologische Wirkung und Aufgabe einer Rezeptor-Ligand Bindung treffen. Die Analyse der Trennkurven von biologisch relevanten Zell/Zellmonolayer- oder großflächigen Zell/Protein-Kontakten ergeben Einblicke in zeitliche Abläufe und involvierte Proteine bei der Zelladhäsion. • Dynamische Kraftspektroskopie mit drei verschiedenen Lektinen und zwei Liganden zeigten, daß die jeweilige Bindungskraft in dem experimentell zugänglichen Bereich der Ladungsrate über 3 Größenordnungen (100-10000 pN/sec) eine lineare Abhängigkeit vom Logarithmus der Ladungsrate aufweist. Zusätzlich sind die einzelnen Rezeptor-Ligand Systeme auf Grund ihrer Bindungsstärke bei Ladungsraten größer als 700 pN/sec eindeutig zu unterscheiden. Die Bindungsstärke, die für das schwächste Paar 34 pN und für das stärkste 58 pN bei 3000 pN/sec Ladungsrate beträgt, läßt sich in Relation zur biologischen Wirkung setzen. • Mit Monte Carlo und Wahrscheinlichkeitsdichte Simulationen konnte wegen der experimentell gemessenen linearen Abhängigkeit der Bindungskraft vom natürlichen Logarithmus der Ladungsrate die Breite oder Reichweite des Bindungspotentials der jeweiligen Rezeptor-Ligand Bindung bestimmt werden (4-10 Å). Die für die verschiedenen Bindungen durchgeführten Simulationen zeigten, daß die berechnete Breite des Potentials reziprok mit der gemessenen Dynamik der Bindungsstärke korreliert. • Am Beispiel von Uterusepithel- und Trophoblastzellen wurde gezeigt, daß mit dem Kraftmikroskop die Bindungsfähigkeit von Zellen gemessen werden kann. Experimente mit verschiedenen Modelloberflächen und die Variation der Kontaktzeit machten deutlich, daß die Präsenz von Rezeptoren für Zelladhäsionsproteine, wie z.B. Integrine für Fibronektin, in der apikalen Membran und Kontaktzeiten länger als 20 min die notwendige Voraussetzung für stabile interzelluläre Kontakte zwischen Epithelzellen sind. Für kürzere Kontaktzeiten ist ein Modell mit nicht vernetzten, membrangebundenen Bindungspartnern und deren möglicher viskoser Anbindung an die Zelle erstellt worden. • In einem gemischten Zellmonolayer aus Erythrozyten der Blutgruppe A und O, sind die Zellen der Gruppe A, auf Grund der spezifischen Wechselwirkung mit dem funktionalisierten Kraftsensor, mit einer Affinitätsabbildung lokalisiert worden. Die spezifische Lokalisation von Liganden an lebenden Zellen mit dem Kraftmikroskop ist demnach mit dieser Technik möglich.