Podcasts about mannigfaltigkeiten

  • 4PODCASTS
  • 10EPISODES
  • 1h 18mAVG DURATION
  • ?INFREQUENT EPISODES
  • Dec 14, 2016LATEST

POPULARITY

20172018201920202021202220232024


Best podcasts about mannigfaltigkeiten

Latest podcast episodes about mannigfaltigkeiten

Modellansatz
Minimalflächen

Modellansatz

Play Episode Listen Later Dec 14, 2016 58:50


Lorenz Schwachhöfer ist seit 2003 Professor für Mathematik an der TU Dortmund. Gudrun kennt ihn aus ihrer Zeit als als Hochuldozentin dort (2004-2008). Seinen kurzen Gastaufenthalt in der AG von Prof. Tuschmann in Karlsruhe wollten die beiden ausnutzen, um ein Podcast-Gespräch zu führen. Das Forschungsgebiet von Lorenz Schwachhöfer gehört zur Differentialgeometrie. Deshalb dreht sich ihr Gespräch um zentrale Begriffe in diesem mathematischen Gebiet zwischen Geometrie und Analysis: Die Krümmung und das Finden von Minimalflächen. Der Begriff Krümmung kommt in unserer Alltagssprache vor. Die Mathematik muss das Konzept von "gekrümmt sein" nur klar fassen, um damit präzise arbeiten zu können. Die zentrale Eigenschaft, die durch das Wort beschrieben wird, ist wie sehr sich eine Fläche von einer Ebene unterscheidet. Oder auch wie stark sich eine Kurve von einer Geraden unterscheidet. Eine Ebene (bzw.eine Gerade) ist nicht gekrümmt. Mathematisch ausgedrückt haben sie deshalb die Krümmung 0. Wenn man nun untersuchen - und mit einer Zahl ausdrücken - möchte, wie sehr sich z.B. eine Kurve in jedem Punkt von eine Gerade unterscheidet, verwendet man folgenden Trick: Man definiert einen Parameter - z.B. die Bogenlänge - und stellt die Kurve als Funktion dieses Parameters dar. Dann berechnet man die Änderung des Richtungsvektors der Kurve in jedem Punkt. D.h. man braucht die zweite Ableitung nach dem Parameter in dem Punkt. Das Ergebnis für einen Kreis mit Radius r lautet dann: Er hat überall die Krümmung 1/r. Daran sieht man auch, dass kleine Kreise sehr stark gekrümmt sind während sehr große Kreise eine so kleine Krümmung haben, dass man sie fast nicht von einer Geraden unterscheiden kann. Auch die Erdoberfläche wirkt lokal wie eine Ebene, denn in der mit unseren Augen wahrgenommenen Umgebung ist ihre Krümmung klein. Was für Kurven recht anschaulich zu definieren geht, ist für Flächen im dreidimensionalen Raum nicht ganz so klar. Das einzig klare ist, dass für jede Art Krümmung, die man mathematisch definiert, jede Ebene in jedem Punkt die Krümmung 0 haben muss. Wenn man die Idee der Parametrisierung auf Flächen überträgt, geht das im Prinzip auch, wenn man zwei Parameter einführt und Krümmung auf eine bestimmte Richtung im Punkt auf der Fläche entlang bezieht. Beim Zylinder kann man sich gut vorstellen, wie das Ergebnis aussieht: Es gibt die Richtung entlang der Kreislinie des Querschnitts. Diese Kurve ist ein Kreis und hat die Krümmung 1/r. Läuft man dazu im rechten Winkel auf der Zylinderhülle, folgt man einer Gerade (d.h. Krümmung in diese Richtung ist 0). Alle anderen Wege auf der Zylinderoberfläche liegen in Bezug auf die Krümmung zwischen diesen beiden Werten 1/r und 0. Tatsächlich kann man auch für allgemeine Flächen zeigen, dass man in jedem Punkt eine Zerlegung in zwei solche "Haupt"-Richtungen findet, für die maximale bzw. minimale Krümmungswerte gelten (und die senkrecht zueinander sind). Alle anderen Richtungen lassen sich daraus linear zusammensetzen. Die Kugeloberfläche hat z.B. eine hohe Symmetrie und verhält sich in allen Richtungen gleich. Alle Wege auf der Kugeloberfläche sind lokal Teile von Kreisen. Man kann sich hier auch überlegen, was tangential bedeutet, indem man in einem Punkt auf der Oberfläche eine Ebene anschmiegt. Die Richtung senkrecht auf dieser tangentialen Ebene ist die Normalenrichtung auf dem Punkt der Kugeloberfläche an dem die Tangentialebene anliegt. Tatsächlich gibt es für Flächen aber mehr als einen sinnvollen Krümmungsbegriff. Man kann z.B. einen Zylinder sehr schön in Papier "einwickeln". Bei einer Kugel geht das nicht - es bleibt immer Papier übrig, das man wegfalten muss. Wenn man einen Kühlturm einpacken möchte, reicht das Papier nicht für die nach innen einbuchtende Oberfläche. Die Eigenschaft, die wir mir dem Einwickeln veranschaulicht haben, wird mit dem Begriff der Gaußkrümmung ausgedrückt. Um sie zu berechnen, kann man in einem Punkt die oben definierten Richtungsskrümmungen anschauen. Maximal- und Minimalwerte werden für senkrecht aufeinander stehende Richtungen realisiert. Das Produkt der beiden extremen Krümmungen ergibt dann die Gaußkrümmung. In unserem Beispiel mit dem Zylinder ist die Gaußkrümmung also 0 mal 1/r = 0. Das ist aber tatsächlich ganz unabhängig von der Richtungskrümmung untersuchbar, weil es sich durch Längen- bzw. Flächenverhältnisse in der Fläche bestimmen lässt. Genauer gesagt: Wenn man auf der Kugel um einen Punkt einen Kreis auf der Kugeloberfläche zieht (d.h. seine Punkte liegen auf der Kugeloberfläche und haben alle den Abstand r vom gewählten Punkt), hat dieses Objekt einen kleineren Flächeninhalt als ein ebener Kreis mit dem gleichen Radius. Deshalb sagt man: Die Kugel hat positive Gaußkrümmung. Bei negativer Gaußkrümmung ist der Flächeninhalt auf der Oberfläche größer als in der Ebene. Das trifft für den Kühlturm zu. Diese Eigenschaft lässt sich innerhalb der Fläche untersuchen. Man braucht gar keine Einbettung in einen umgebenden Raum. Das ist zunächst sehr überraschend. Es ist aber unbedingt nötig für Anwendungen in der Astrophysik, wo die Raumzeit wegen der Gravitation gekrümmt ist (d.h. sie ist kein euklidischer Raum). Es hat aber niemand ein Bild, in welche höhere Dimension man die Raumzeit einbetten sollte, um dann mit der Krümmung in Bezug auf diesen Raum zu arbeiten. Neben den beiden schon diskutierten Begriffen kann man auch mit der mittleren Krümmung arbeiten. Sie ist definiert als Mittelwert aller Richtungskrümmungen. Man kannn aber zeigen, dass dies stets das arithmetische Mittel zwischen minimaler und maximaler Krümmung ist. Dies hat auch eine physikalische Interpretation - z.B. als Flächenspannung für eine Membran, die eingespannt ist. Die Membran versucht, einen möglichst geringen Flächeninhalt - eine sogenannte Minimalfläche - zu realisieren, weil dies dem minimalen Energieaufwand entspricht. Spannungsfreie Flächen sind sehr stabil und deshalb für Architekten interessant. Im Schülerlabor Mathematik kann man mit Seifenhäuten selbst ausprobieren, welche Flächen sich hier für unterschiedliche Randkurven herausbilden. Z.B. wurde die Dachkonstruktion des ehemaligen Olympiastadions in München aus Minimalflächen konstruiert, die mit Seifenhäuten gefunden, fotographiert und nachgebaut wurden.. Mathematisch sprechen wir vom Plateau-Problem. Die Frage ist dabei: Hat jede geschlossene Kurve mindestens eine zugehörige Minimalfläche? Heute wissen wir, dass die Antwort - unter sehr geringen Regularitätsforderungen an die Kurve - fast immer ja ist. Sehr verblüffendend ist in diesem Zusammenhang auch der Satz von Gauß/Bonnet. Er sagt, dass das Integral über die Gaußkrümmung jeder in sich selbst geschlossenen Fläche ein ganzzahliges Vielfaches von 2π ist. Dieser Faktor heißt dann Euler-Charakteristik und hängt nur von der Topologie (grob gesprochen der Zahl der Löcher im Gebiet) ab. Beim Torus ist sie 0 und für die Kugeloberfläche 2. Interessant ist in diesem Zusammenhang auch die Behandlung von nicht glatten Kurven bzw. Flächen mit Ecken und Kanten. An den Kanten ist das Konzept der Gaußkrümmung noch recht einfach übertragbar. Der betrachtete Kreis auf der Oberfläche klappt sich dabei um die Kante herum. An den Ecken geht das nicht so einfach, sondern führt auf komplexere Gebilde. Wenn man sich aber z.B. einen Würfel ansieht, hat dieser fast überall die Krümmung 0. Trotzdem ist er (topologisch gesehen) einer Kugel viel ähnlicher als einer Ebene. Hier kann man den Begriff der Gaußkrümmung richtig für Polyeder mit Kanten und Ecken verallgemeinern und der Satz von Gauß/Bonnet überträgt sich sinngemäß auf Polyeder. Das Integral wird zur Summe über die Polyederflächen und wir erhalten den wohlbekannten Polyedersatz: Euler-Charakteristik mal Anzahl der Flächen - Anzahl der Kanten + Anzahl der Ecken = 2 Der Polyedersatz ist eigentlich ein kombinatorisches Ergebnis. Trotzdem zeigt sich hier, dass die topologischen Eigenschaften intrinsisch mit der Krümmung zusammenhängen, was sehr überraschend, aber auch sehr ästhetisch zwei einander sehr fremde Teilgebiete der Mathematik zusammenführt. Lorenz Schwachhöfer hat in Darmstadt und in New Orleans Mathematik studiert und nach seiner Promotion 1992 (in Philadelphia) u.a. wissenschaftlich Station gemacht an der Washington Universität (in St. Louis), dem Max Planck Institut für Mathematik in Bonn, der Universität in Leipzig (dort Habilitation) und an der Université Libre in Brüssel. Literatur und weiterführende Informationen J-H. Eschenburg & J. Jost: Differentialgeometrie und Minimalflächen. Springer Verlag, 3. Auflage, 2014. T. Matiasek: Seifenhäute und Minimalflächen: Natur, Geometrie und Architektur. VDM Verlag Dr. Müller, 2010 Wolfgang Kühnel: Differentialgeometrie: Kurven - Flächen - Mannigfaltigkeiten, Springer Verlag, 2013. Manfredo doCarmo, Differentialgeometrie von Kurven und Flächen, Vieweg+Teubner Verlag, 1993. Christian Bär, Elementare Differentialgeometrie, deGruyter, 2017. Video Seifenhäute (engl.) Podcasts P. Schwer: Metrische Geometrie. Gespräch mit G. Thäter im Modellansatz Podcast, Folge 102, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. http://modellansatz.de/metrische-geometrie L. Mirlina, F. Dehnen: Qwirkle-Gruppe. Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 76, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. http://modellansatz.de/qwirkle-gruppe

Modellansatz
Quantenchaos

Modellansatz

Play Episode Listen Later Jan 28, 2016 31:26


Diesmal traf sich Gudrun zum Gespräch mit Anke Pohl, die zur Zeit am Max-Planck-Institut für Mathematik in Bonn arbeitet. Das Thema der Unterhaltung ist Mathematisches Quantenchaos. Anke Pohl untersucht nämlich, welchen Zusammenhang die geometrischen und spektralen Eigenschaften Riemannscher Mannigfaltigkeiten haben. Historisch ist das Interesse an diesen Eigenschaften und ihren Wechselwirkungen bei physikalischen Betrachtungen entstanden, wie z.B. bei den Studien der Schwingungen einer Membran. Im Jahre 1910 vermuteten Lorentz und Sommerfeld, dass der Flächeninhalt einer Membran (die ein Beispiel für eine Riemannsche Mannigfaltigkeit ist) durch die (Ober-)töne dieser Membran (die durch die Eigenwerte eines gewissen Operators bestimmt sind, der die Schwingungen der Membran beschreibt) bestimmt sind. Bereits kurze Zeit später gelang es Hermann Weyl, diese Vermutung mathematisch zu beweisen. Im Laufe der Zeit ist die Untersuchung solcher Zusammenhänge zu einem Teilgebiet der Mathematik und Mathematischen Physik angewachsen, welches sowohl hinsichtlich Motivation als auch in Bezug auf Methoden eng mit diversen anderen Teilgebieten der Mathematik, wie z.B. der Geometrie, der Zahlentheorie und der Analysis, zusammenhängt. Und auch heute noch liefern physikalische Erkenntnisse und Intuitionen gute Heuristiken bzw. sind wegweisend für mathematische Ansätze. Aktuelle große Vermutungen mit sowohl mathematischer als auch physikalischer Motivation sind beispielsweise die Rudnick-Sarnak Vermutung über eindeutige Quantenergodizität auf gewissen kompakten Riemannschen Mannigfaltigkeiten (Gleichverteilung von Eigenfunktionen im Mittel bei wachsendem Eigenwert; für den Beweis von eindeutiger arithmetischer Quantenergodizität wurde E. Lindenstrauss 2010 eine Fieldsmedaille verliehen), die Phillips-Sarnak Vermutung über die (Nicht-)Existenz von quadrat-integrierbaren Eigenfunktionen auf gewissen nicht-arithmetischen Mannigfaltigkeiten, die Sarnaksche Vermutung über das Größenwachstum von Eigenfunktionen bei wachsendem Eigenwert, oder die Sjöstrandsche Vermutung über die asymptotische Anzahl von Resonanzen in Streifen bei hyperbolischen Flächen unendlichen Inhalts. Details und weiterführende Informationen zu diesen und anderen Vermutungen sind beispielsweise in den Übersichtsartikel in den untenstehenden Referenzen enthalten. Anke Pohls befasst sich zur Zeit mit bestimmten Flüssen, den sogenannten geodätischen Flüssen, auf einer speziellen Klasse von Riemannschen Mannigfaltigkeiten. Als erste, recht elementare, Beispiele für Mannigfaltigkeiten kann man sich zunächst Oberflächen vorstellen. Wenn man auf ihnen Größen definiert hat, die zum Messen von Abständen und Winkel dienen, werden sie Riemannsche Mannigfaltigkeit genannt. Wie bei den oben genannten Membranen sind Geodäten. Mathematisch werden die Schwingungen als Lösungen des Laplaceoperators in der zugrundeliegenden Geometrie beschrieben bzw. mit Hilfe der Eigenwerte und Eigenfunktionen des Operators. Aus der Anschauung ist klar, dass die Schwingungen von den geometrischen Eigenschaften der Fläche abhängen. Wenn z.B. die Fläche oder Membran eingerissen ist oder ein Loch hat, klingt sie anders als wenn sie geschlossen ist bzw. gut eingespannt ist. Für kompakte Flächen ist bekannt, dass es unendlich viele solcher Eigenfunktionen gibt. Je nach Grad der Offenheit (also z.B. eine Fläche mit Riss oder Loch) ist es jedoch schwierig zu sagen, wie sich die Schar der Lösungen verändert. Ein interessantes Beispiel wäre z.B. zu betrachten, dass an einer Stelle die eingespannte Fläche im Unendlichen verankert ist, aber das darunterliegende Volumen endlich ist. Vorstellen kann man sich das etwa so, dass man an dieser Stelle die Fläche samt ihren Abständen unendlich weit zieht. Man fragt sich dann, ob eine Welle auf der Fläche auch diese Singularität überlebt. Ein methodischer Ansatz, solche und andere Fragen zu studieren, ist es, Beziehungen zu anderen Objekten, vor allem rein geometrischen, zu finden. Selbergs Beweis zur Unendlichkeit der Anzahl der Eigenfunktionen auf gewissen hyperbolischen Flächen zeigt zunächst, dass die Eigenwerte der Eigenfunktionen (spektrale Objekte) durch die Längen der geschlossenen Geodäten (geometrische Objekte) bestimmt sind. Genauer, sie sind unter den Nullstellen einer generierenden Zetafunktion für das Längenspektrum der Geodäten. Ausnutzung zusätzlicher Eigenschaften der Flächen, wie z.B. Kompaktheit oder zusätzliche Symmetrien, erlaubt dann (manchmal) zu bestimmen, ob Nullstellen existieren und ob sie von Eigenwerten stammen. Anke Pohl schaut sich die Geodäten auf bestimmten hyperbolischen Flächen an, diskretisiert sie und findet ein assoziiertes diskretes dynamisches System auf dem reellen Zahlenstrahl. Für dieses diskrete System sucht sie gewisse invariante Größen, z. B. invariante Maße oder Dichten. Genauer fragt sie nach Eigenfunktionen des assoziierten Transferoperators mit gewissen Parametern (inversen Temperaturen). An dieser Stelle sieht man wieder einen Einfluss aus der Physik: Transferoperatoren entstammen dem thermodynamischen Formalismus der statistischen Mechanik. Sie zeigt dann, dass die Eigenfunktionen dieser Transferoperatoren bijektiv zu den L_2 Eigenfunktionen des Laplaceoperators der hyperbolischen Flächen sind. Da die Eigenfunktionen der Transferoperatoren alleine durch die geschlossenen Geodäten bestimmt sind und somit also geometrische Objekte der Fläche sind, stellt auch sie eine Beziehung zwischen gewissen geometrischen und gewissen spektralen Objekten dieser Flächen her. Zum Abschluss noch eine kurze Erklärung zur Bezeichnung "Quantenchaos" für dieses Themengebiet: Der Laplaceoperator ist gerade, bis auf Skalierung, der Schrödingeroperator in der Physik. Quantenmechanisch werden seine L_2 Eigenfunktionen als gebundene Zustände verstanden. Das zugehörige Objekt in der klassischen Mechanik ist gerade das Hamiltonsche Vektorfeld des geodätischen Flusses, d. h. die Bildungsvorschrift für die Geodäten oder die Bewegungsvorschrift für Kugeln auf der Fläche. Das Korrespondenzprinzip der Physik besagt nun, dass im Grenzfall (hier: Eigenwerte der Eigenfunktionen gehen gegen unendlich) die Gesetze der Quantenmechanik in die der klassischen Mechanik übergehen sollten. Hier fragt man also gerade danach, wie die spektralen und die geometrischen Eigenschaften Riemannscher Mannigfaltigen wechselwirken. Daraus ergibt sich der Bestandteil "Quanten" in "Quantenchaos". Der Bestandteil "Chaos" ist wie folgt motiviert: Bei den in diesem Gebiet studierten Flüssen verhalten sich Bahnen, die sehr nah beieinander starten, typischerweise nach recht kurzer Zeit sehr unterschiedlich. Mit anderen Worten, kleine Änderungen in den Anfangsbedingungen wirken sich typischerweise sehr stark aus, d.h., das System ist in gewisser Weise chaotisch. Frau Pohl hat Mathematik an der TU Clausthal studiert, an der Universität Paderborn promoviert und habilitiert gerade an der Universität Göttingen. Literatur und Zusatzinformationen William P. Thurston: The Geometry and Topology of Three-Manifolds, Mathematical Sciences Research Institute, 2002. A. Pohl: Symbolic dynamics for the geodesic flow on locally symmetric good orbifolds of rank one, Dissertation Uni Paderborn, 2009. A.Pohl: A dynamical approach to Maass cusp forms, arXiv preprint arXiv:1208.6178, 2012. M. Möller und A. Pohl: Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory and Dynamical Systems 33.01: 247-283, 2013. P. Sarnak: Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc 48: 211-228, 2012. S. Zelditch: Recent developments in mathematical quantum chaos, Current developments in mathematics 2009: 115-204, 2010.

Modellansatz
Teichmüllerkurven

Modellansatz

Play Episode Listen Later Dec 25, 2014 48:06


Jonathan Zachhuber war zum 12. Weihnachtsworkshop zur Geometrie und Zahlentheorie zurück an seine Alma Mater nach Karlsruhe gekommen und sprach mit Gudrun Thäter über Teichmüllerkurven. Kurven sind zunächst sehr elementare ein-dimensionale mathematische Gebilde, die über den komplexen Zahlen gleich viel reichhaltiger erscheinen, da sie im Sinne der Funktionentheorie als Riemannsche Fläche verstanden werden können und manchmal faszinierende topologische Eigenschaften besitzen. Ein wichtiges Konzept ist dabei das Verkleben von Flächen. Aus einem Rechteck kann man durch Verkleben der gegenüberliegenden Seiten zu einem Torus gelangen (Animation von Kieff zum Verkleben, veröffentlicht als Public Domain): Polynome in mehreren Variablen bieten eine interessante Art Kurven als Nullstellenmengen zu beschreiben: Die Nullstellen-Menge des Polynoms ergibt über den reellen Zahlen den Einheitskreis. Durch Ändern von Koeffizienten kann man die Kurve verformen, und so ist die Nullstellenmenge von eine Ellipse. Über den komplexen Zahlen können diese einfachen Kurven dann aber auch als Mannigfaltigkeiten interpretiert werden, die über Karten und Atlanten beschrieben werden können. Das ist so wie bei einer Straßenkarte, mit der wir uns lokal gut orientieren können. Im Umland oder anderen Städten braucht man weitere Karten, und alle Karten zusammen ergeben bei vollständiger Abdeckung den Straßenatlas. Auch wenn die entstehenden abstrakten Beschreibungen nicht immer anschaulich sind, so erleichtern die komplexen Zahlen den Umgang mit Polynomen in einem ganz wichtigen Punkt: Der Fundamentalsatz der Algebra besagt, dass der Grad des Polynoms gleich der Anzahl der Nullstellen in ihrer Vielfachheit ist. Also hat nun jedes nichtkonstante Polynom mindestens eine Nullstelle, und über den Grad des Polynoms wissen wir, wie viele Punkte sich in der Nullstellenmenge bewegen können, wenn wir an den Koeffizienten Veränderungen vornehmen. Eine gute Methode die entstehenden Flächen zu charakterisieren ist die Bestimmung möglicher geschlossener Kurven, und so gibt es beim Torus beispielsweise zwei unterschiedliche geschlossene Kurven. Die so enstehende Fundamentalgruppe bleibt unter einfachen Deformationen der Flächen erhalten, und ist daher eine Invariante, die hilft die Fläche topologisch zu beschreiben. Eine weitere wichtige topologische Invariante ist das Geschlecht der Fläche. Die Teichmüllerkurven entstehen nun z.B. durch das Verändern von einem Koeffizienten in den Polynomen, die uns durch Nullstellenmengen Kurven beschreiben- sie sind sozusagen Kurven von Kurven. Die entstehenden Strukturen kann man als Modulraum beschreiben, und so diesen Konstruktionen einen Parameterraum mit geometrischer Struktur zuordnen. Speziell entstehen Punkte auf Teichmüllerkurven gerade beim Verkleben von gegenüberliegenden parallelen Kanten eines Polygons; durch Scherung erhält man eine Familie von Kurven, die in seltenen Fällen selbst eine Kurve ist. Ein Beispiel ist das Rechteck, das durch Verkleben zu einem Torus wird, aber durch Scherung um ganz spezielle Faktoren zu einem ganz anderen Ergebnis führen kann. Die durch Verklebung entstandenen Flächen kann man als Translationsflächen in den Griff bekommen. Hier liefert die Translationssymmetrie die Methode um äquivalente Punkte zu identifizieren. Für die weitere Analyse werden dann auch Differentialformen eingesetzt. Translationen sind aber nur ein Beispiel für mögliche Symmetrien, denn auch Rotationen können Symmetrien erzeugen. Da die Multiplikation in den komplexen Zahlen auch als Drehstreckung verstanden werden kann, sind hier Rotationen als komplexe Isomorphismen ganz natürlich, und das findet man auch in den Einheitswurzeln wieder. Literatur und Zusatzinformationen A. Zorich: Flat Surfaces, Frontiers in Number Theory, Physics and Geometry, On Random Matrices, Zeta Functions, and Dynamical Systems, Ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove. Vol. 1. Berlin: pp. 439–586, Springer-Verlag, 2006. M. Möller: Teichmüller Curves, Mainly from the Viewpoint of Algebraic Geometry, IAS/Park City Mathematics Series, 2011. J. Zachhuber: Avoidance of by Teichmüller Curves in a Stratum of , Diplomarbeit an der Fakultät für Mathematik am Karlsruher Institut für Technologie (KIT), 2013. C. McMullen: Billiards and Teichmüller curves on Hilbert modular surfaces, Journal of the AMS 16.4, pp. 857–885, 2003. C. McMullen: Prym varieties and Teichmüller curves, Duke Math. J. 133.3, pp. 569–590, 2006. C. McMullen: Dynamics of SL(2,R) over moduli space in genus two, Ann. of Math. (2) 165, no. 2, 397–456, 2007. Weitere Paper von C. McMullen, u.a. The mathematical work of Maryam Mirzakhani Podcast: Modellansatz 040: Topologie mit Prof. Dr. Wolfgang Lück

Modellansatz
Topologie

Modellansatz

Play Episode Listen Later Dec 11, 2014 76:08


Prof. Dr. Wolfgang Lück befasst sich am HIM (Hausdorff Research Institute for Mathematics) und dem Mathematisches Institut der Universität Bonn mit der Topologie von Mannigfaltigkeiten und Flächen wie auf einem Torus oder einer Kugel. Speziell für Kugeln und Kreise gibt es die Sphären-Notation , die die Oberflächen des Objekts im beschreiben. Damit ist eine Kreislinie und die Kugeloberfläche.Auch wenn Flächen lokal ähnliche Eigenschaften haben, kann die Situation global ganz anders aussehen: So unterscheidet sich die Vorstellung einer flachen Erde lokal nicht von der Kugelform der Erde, global sieht es aber ganz anders aus. Ebenso kennen wir auch jetzt noch nicht sicher die Topologie des Weltalls. Dazu beschränkt sich unser Vorstellungsraum oft auf drei Dimensionen, obwohl schon die relativistische Physik uns lehrt, unsere Umgebung als Raumzeit in 4 Dimensionen zu verstehen.Bei der Klassifikationen von Flächen auf unterschiedlichen Körpern verwendet man Homöomorphismen um ähnliche Flächen einander zuzuordnen, und letztlich unterscheiden sich die Flächenklassen dann nur noch durch die Anzahl der Löcher bzw. dem Geschlecht, was dann auch die Eigenschaften der Flächen bestimmt. Ein Weg das Geschlecht der Fläche zu bestimmen ist die Triangularisierung, eine andere Möglichkeit bietet die Analyse des Spektrums eines Operators wie dem Laplace-Operators, das auch in der Topologie von Graphen zum Einsatz kommen kann.Ein Beispiel für die Anwendung des Laplace-Operators ist die Wärmeleitungsgleichung, die zwar die lokalen Eigenschaften des Wärmetransports beschreibt, jedoch das Wärmegleichgewicht nach unendlicher Zeit die globalen Zusammenhänge beinhaltet. Ein wichtiger Begriff ist hier der Integralkern, der hilft Lösungen durch Integraloperatoren darzustellen.Ein wichtiger mathematischer Begriff ist dabei der -Funktionenraum, der über die Fourier-Transformation auf bestimmten Gebieten mit dem -Folgenraum identifiziert werden kann, und man dadurch auf Lösungen von partiellen Differentialgleichungen schließen kann.Besonderes Interesse liegt in der Topologie auf Invarianten, wie der Fundamentalgruppe, mit der man auch den Fundamentalsatz der Algebra beweisen kann. Ein weiteres Beispiel für eine Invariante ist die Windungszahl, die gerade in der Funktionentheorie zum Residuensatz und effizienten Integralberechnungsmethoden führt.Dabei entstehen oft nicht kommutative Verknüpfungen, wie man es zum Beispiel von der Matrizenmultiplikation oder den Symmetriegruppen kennen kann.Ein elementarer Einstieg in die Topologie ist auch über die Knotentheorie möglich, wo ebenso Knoten-Invarianten gefunden werden können, und über zum Beispiel Jones-Polynome klassifiziert werden können.Im weiteren Gespräch geht es um Themen wie die unterschiedlichen Bilder der Mathematik in Gesellschaft, Schule und Universität, die Bedeutung der Mathematik für Gesellschaft, die Ausbildung für Industrie und das Lehramt, und über den Stand und Möglichkeiten der Gleichberechtigung und Förderung von Frauen in der Wissenschaft.Literatur und Zusatzinformationen W. Lück: Was und wie zählt man im Alltag und in der modernen Mathematik? Vortrag im Kolloquium zur Didaktik der Mathematik, Karlsruhe, Dezember 2014. W. Lück: Algebraische Topologie, Homologie und Mannnigfaltigkeiten, Vieweg Spektrum, 2005. W. Lück: Transformation Groups and Algebraic K-Theory, Lecture Notes in Mathematics, 1989. Publikationen von Wolgang Lück Wolfgang Lück in der Wikipedia

Theoretische Physik 1: Mechanik (TP-1) 2014 (SD 640)
3 - Theoretische Mechanik: Differenzierbare Mannigfaltigkeiten 2014

Theoretische Physik 1: Mechanik (TP-1) 2014 (SD 640)

Play Episode Listen Later Apr 14, 2014 105:18


mechanik theoretische mannigfaltigkeiten
Theoretische Physik 1: Mechanik (TP-1) 2014 (Audio)
3 - Theoretische Mechanik: Differenzierbare Mannigfaltigkeiten 2014

Theoretische Physik 1: Mechanik (TP-1) 2014 (Audio)

Play Episode Listen Later Apr 14, 2014 105:18


mechanik theoretische mannigfaltigkeiten
Theoretische Physik 1: Mechanik (TP-1) 2014 (SD 640)
2 - Theoretische Mechanik: Topologische Mannigfaltigkeiten 2014

Theoretische Physik 1: Mechanik (TP-1) 2014 (SD 640)

Play Episode Listen Later Apr 9, 2014 101:06


mechanik theoretische mannigfaltigkeiten
Theoretische Physik 1: Mechanik (TP-1) 2014 (Audio)
2 - Theoretische Mechanik: Topologische Mannigfaltigkeiten 2014

Theoretische Physik 1: Mechanik (TP-1) 2014 (Audio)

Play Episode Listen Later Apr 9, 2014 101:06


mechanik theoretische mannigfaltigkeiten
Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

In dieser Arbeit untersuchen wir Perelmans Ricci-Fluss mit Chirurgie auf geschlossenen 3–Mannigfaltigkeiten, deren Ausgangsmetrik invariant unter einer vorgegebenen glatten Wirkung einer endlichen Gruppe ist. Eine solche Metrik kann stets durch Mittelung einer beliebigen Riemannschen Metrik erzeugt werden, und wegen der Eindeutigkeit des Ricci-Flusses bleibt dieser bis zum Auftreten von Singularitäten invariant unter der Gruppenwirkung. Die technische Schwierigkeit besteht nun darin, Symmetrien der evolvierenden Metrik zu kontrollieren, wenn sich der Fluss einer Singularität nähert. Zu diesem Zweck konstruieren wir eine invariante singuläre S²–Blätterung auf dem Bereich der Mannigfaltigkeit, der von der Chirurgie betroffen ist. Insbesondere ermöglicht es diese, den Chirurgieprozess äquivariant durchzuführen und die Gruppenwirkung auf solchen Komponenten zu analysieren, die bei der Chirurgie komplett entfernt werden. Darüber hinaus lässt sich mit Hilfe der Blätterung beschreiben, wie die Gruppenwirkungen vor und nach der Chirurgie zusammenhängen. Dadurch lassen sich aus dem Langzeitverhalten des Ricci-Flusses und der Gruppenwirkung Rückschlüsse auf die ursprüngliche Wirkung ziehen. Als Anwendung zeigen wir, dass jede glatte endliche Gruppenwirkung auf einer geschlossenen geometrischen 3–dimensionalen Mannigfaltigkeit mit sphärischer, hyperbolischer oder (S²×R)–Geometrie verträglich mit der geometrischen Struktur ist, dass also eine invariante vollständige lokalhomogene Riemannsche Metrik existiert. Dies löst eine von William Thurston aufgestellte Frage zu Gruppenwirkungen auf geometrischen 3–Mannigfaltigkeiten, die für die übrigen fünf Geometrien bereits von Meeks und Scott gelöst wurde.

Fakultät für Mathematik, Informatik und Statistik - Digitale Hochschulschriften der LMU - Teil 01/02

In dieser Arbeit werden einige Aussagen über symplektische Strukturen auf 4-dimensionalen Mannigfaltigkeiten und Kontaktstrukturen auf 5-dimensionalen Mannigfaltigkeiten bewiesen. Wir untersuchen zunächst den Zusammenhang zwischen dem symplektischen und dem holomorphen Minimalitätsbegriff für Kählerflächen. Außerdem beweisen wir ein Resultat über die Irreduzibilität minimaler, einfach-zusammenhängender symplektischer 4- Mannigfaltigkeiten unter zusammenhängender Summe und eine Aussage über die konformen Systolen symplektischer 4-Mannigfaltigkeiten. Als nächstes betrachten wir die Konstruktion von differenzierbaren 4-dimensionalen Mannigfaltigkeiten durch die verallgemeinerte Fasersumme. Für den Fall, dass die Summation entlang eingebetteter Flächen mit trivialem Normalenbündel erfolgt, werden die ganzzahligen Homologiegruppen und im symplektischen Fall auch die kanonische Klasse der Fasersumme berechnet. Wir betrachten verschiedene Anwendungen, insbesondere hinsichtlich der Geographie einfach-zusammenhängender symplektischer 4-Mannigfaltigkeiten, deren kanonische Klasse durch eine vorgegebene natürliche Zahl teilbar ist. Wir zeigen auch, dass man mit geeigneten verzweigten Überlagerungen von komplexen Flächen vom allgemeinen Typ einfach-zusammenhängende algebraische Flächen konstruieren kann, deren kanonische Klasse eine vorgegebene Teilbarkeit besitzt. Im zweiten Teil der Arbeit betrachten wir die Boothby-Wang Konstruktion von Kontaktstrukturen auf Kreisbündeln über symplektischen Mannigfaltigkeiten. Zusammen mit den Resultaten über Geographie aus dem ersten Teil der Arbeit zeigen wir, dass es auf bestimmten einfach-zusammenhängenden 5-Mannigfaltigkeiten Kontaktstrukturen gibt, die nicht äquivalent sind, aber die in derselben (nicht-trivialen) Homotopieklasse von Fast-Kontaktstrukturen liegen.